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ABSTRACT

An increasing amount of information is being published in struc-
tured databases and retrieved using queries, raising the question of
how query results should be cited. Since there are a large number of
possible queries over a database, one strategy is to specify citations
to a small set of frequent queries — citation views — and use these
to construct citations to other “general" queries. We present three
approaches to implementing citation views and describe alternative
policies for the joint, alternate and aggregated use of citation views.
Extensive experiments using both synthetic and realistic citation
views and queries show the tradeoffs between the approaches in
terms of the time to generate citations, as well as the size of the re-
sulting citation. They also show that the choice of policy has a huge
effect both on performance and size, leading to useful guidelines
for what policies to use and how to specify citation views.
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1 INTRODUCTION

An increasing amount of information is being published in struc-
tured databases and retrieved using queries, raising the question of
how query results should be cited. Typically, database owners give
the citation as a reference to a journal article whose title includes
the name of the database and whose author list includes the chief
personnel (e.g. the PI, DBA, lead annotator, etc), along with the
query and date of access. However, in many cases the content of
the query result is contributed by members of the community and
curated by experts, who are not on the author list of the journal ar-
ticle. There may also be other “snippets" of information that would
be useful to include in the citation that vary from query to query,
e.g. descriptive information about the data subset being returned,
analogous to the title of a chapter in an edited collection.

As an example, the TUPHAR/BPS Guide to Pharmacology !
(GtoPdb) is a searchable database with information on drug targets

http://www.guidetopharmacology.org/
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Figure 1: Sample data citation in GtoPdb

and the prescription medicines and experimental drugs that act on
them. The database content is organized by families of drug tar-
gets; each family is curated by a (potentially different) committee
of experts. Information about a family is presented to users via a
web-page view of the database, and a family-specific citation is pre-
sented at the bottom of the web-page (see Figure 1). The citation is
generated from hard-coded SQL queries in the web-page form that
retrieve the appropriate snippets of information from the database,
which are then formatted to create a citation for the web page.

These snippets of information play several important roles. First,
there is a human role: While the query and date of access (or some
form of digital object identifier) are important for locating the query
result, it does not give intuition about the content. For example,
“Nature, 171,737-738” specifies how to locate an article but doesn’t
tell you why you might want to do so, whereas adding the infor-
mation “Watson and Crick: Molecular Structure of Nucleic Acids"
does. Second, it enables data bibliometrics: Credit can be given to
data creators and curators for the portion of the database to which
they contributed, which encourages their continued contribution.
This permits fine-grained citation counts extending the current
practice of counting citations only at the dataset level — e.g. see
the Data Citation Index by Clarivate Analytics [12]. Third, the
snippets can capture provenance by including information about
contributors/curators and other relevant information.

A number of scientific databases therefore specify (in English)
what snippets of information to include in citations to different
web-page views of the data. Examples of this include the Reactome
Pathway database 2 and eagle-i 3. However, they do not automati-
cally generate the citations, leaving it to the user to construct them
by hand. Although GtoPdb generates the citations for frequent
queries over the database, i.e. web-page views, it does not do so for
other general queries over the database, although the developers
have said they would like to enable this in the future [8, 10].

Goals and Challenges. The goal of our work is to develop a
framework to automatically generate citations to general queries.
This is challenging because there are many potential queries over

http://www.reactome.org/pages/documentation/citing-reactome-publications/
Shttps://www.eagle-i.net/get-involved/for-researchers/citing-an-eagle-i-resource/
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a database, each accessing and generating different subsets of data.
Each of these subsets may be attributable to different sets of people,
and have different descriptive information. It is therefore infeasible
to specify a citation to every possible query result. The idea that
we explore in this paper is to specify citations for a small set of fre-
quent queries (e.g. web page views), and use these to automatically
construct citations for data returned by general queries.

Another goal is to efficiently manage fine-grained citations. Dis-
cussions with users show that they frequently want to refer to a
subset of the query result rather than the entire result. For instance,
in the neuro-imaging community it is quite common to query a
system to get a set of relevant images and then manually narrow
down the result set [18] (see also [21]). We therefore manage cita-
tions at the level of individual tuples in the query result, and lift the
citation up to the level of any selected subset of the query result.

Approach. Our framework for data citation is based on conjunc-
tive queries [3]. Conjunctive queries form the basis of languages
associated with a variety of different data models, enabling the
framework to be used across a variety of different database system
(including relational, XML, and RDF). The framework builds on the
idea of a citation views proposed in [10]. A citation view specifies
what snippets of information to include and how to construct the
citation for a particular query — or view — of the database.

The architecture of our framework is shown in Figure 2. The
DBA specifies citations for a small set of frequent queries (Citation
Views). When a general query Q is submitted, the views are mapped
to Q. Sets of mapped views are then constructed that “cover” Q
(Covering Sets). The citations associated with each view in a covering
set are then jointly used to construct a citation to Q. Since there
may be more than one covering sets for Q, our system also reasons
over alternate covering sets. Citations to individual tuples are then
aggregated to form a citation to the selected query result. The joint
(*), alternate (+®), and aggregated (Agg) use of citation views are
examples of Policies that are given by the DBA. We note (but do not
discuss further) that to enable the query result to be viewed later
when the citation is dereferenced, the database should be versioned,
and the query and version number (or date of access) should be
included in the snippets of information in the citation.

Example. Referring again to Figure 2, suppose the database con-
sists of computer science publications (DBLP-NSF), which includes
individual papers as well as proceedings. The DBA specifies two
citation views (see red box above DBA), one which returns the
citation to a paper (Vpgper) and the other which returns the cita-
tion to a proceedings (Vconf)- Note that both of these views are
parameterized by the id of the paper or proceedings, indicated by A-
terms [22]. When a user asks a query over DBLP which returns the
set of papers in Sessions 1-3 of SIGMOD2018, the citation system
determines that both views could be used as covering sets. However,
after aggregating over the result set (specified as intersection over
the view name, see red box below DBA), the covering set Vpgper
will generate a large citation for the query result since the citation
would include individual citations for all 10 papers. In contrast, the
aggregated citation using V¢, ¢ would be a single citation to the
proceedings, since each tuple in the result carries the same A-term
for Veop . This view is therefore selected using the policy min for
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Figure 2: Data Citation Framework and Example

are retrieved from the database. Note that the query as well as the
date are included in the citation at the bottom right of the figure.
This example illustrates why alternate covering sets might be
desirable — to balance between the size and specificity of the final
citation. It is also possible to ensure that citations are unique at
design time by guaranteeing that there is at most one covering set
for any input query (partitioning views, see Section 3.2).
Implementation. Since we implement fine-grained citations,
each tuple in the query result may have a different citation (as illus-
trated by Vpgper in the example above). This leads to two concerns:
1) time overhead, since the citation system is an interactive tool;
2) size of the citation.* To test whether fine-grained citations are
feasible, we therefore present three approaches to implementing
citation views, in which the reasoning progressively shifts from the
tuple level to the schema level, and describe alternative policies for
the joint, alternate and aggregated use of citation views. Extensive
experiments explore the tradeoffs between these approaches as well
as the choice of policies. Based on these results, we conclude that
generating citations for realistic citation views, queries and policies
is effective both in terms of time overhead and citation size, and
that the choice between the approaches depends on the granularity
with which the DBA wishes citations to be constructed.
Contributions. of this paper include:

(1) A framework for citation based on conjunctive queries [3]
that can be used across many different types of databases,
including relational, XML, and RDF (Section 3.2).

(2) A semantics for citations to general queries using Citation
Views based on covering sets of mappings between the views
and the input query (Section 3.3).

(3) Three approaches to implementing the Covering Sets Genera-
tor in Figure 2, which are then used to generate citations for
general queries (Sections 4.1- 4.3). Two of the approaches en-
able fine-grained citations, while the last generates a citation
to the entire result.

(4) Alternative Policies for the joint, alternate, and aggregated
use of citation views, and a description of how the policies
are integrated into each of the approaches (Section 4.4).

(5) Extensive experiments performed in the context of a re-
lational database implementation using synthetic citation

41f citations are thought of as searchable digital objects rather than consuming space
on paper, size may be less of a concern.
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views and queries as well as realistic citation views and
queries for two different choices of policies (Section 5). The
experiments show the tradeoffs between the approaches
in terms of (i) the time to generate citations as well as (ii)
the size of the resulting citation. The realistic cases show
that all three approaches are feasible, although reasoning at
the schema level results in a 2-3x performance gain at the
expense of generating citations to individual tuples.

As a positive side-effect of the experiments on realistic cases, we
have created a dataset that ties computer science publications in
DBLP to their NSF funding grants (DBLP-NSF) that will be made
available to the community.

The rest of the paper is organized as follows: Section 2 discusses
related work in the digital libraries and database communities. The
model and running example (GtoPdb) are presented in Section 3,
along with a discussion of the relationship of our model to query
rewriting using views. Section 4 describes the three approaches, and
discusses different policies for joint, alternate, and aggregated use of
citations. Section 5 presents experimental results. We conclude in
Section 6. Appendix A contains more details on how the approaches
are implemented, and Appendix B contains details on the datasets
used in the experiments.

2 RELATED WORK

Core principles: Two major international initiatives within the
digital libraries community have focused on defining core principles
for data citation, CODATA [1] and FORCE 11 [13]. In addition to
highlighting the idea that data is a research object that should be
citable, giving credit to data creators and curators, these principles
state anumber of criteria that a citation should guarantee, including:
1) identification and access to the cited data; 2) persistence of the cited
data, persistent identifiers and their related metadata (i.e. fixity); and
3) completeness of the reference, meaning that a data citation should
contain all the necessary information to interpret and understand
the data even beyond the lifespan of the data it describes. These were
also included in a series of 14 recommendations by the Research
Data Alliance (RDA) [23].

Computational solutions for data citation often rely on per-
sistent identifiers such as Digital Object Identifiers (DOI), Persistent
Uniform Resource Locator (PURL) and the Archival Resource Key
(ARK) [19, 28]. While persistent identifiers enable the data to be
located and, provided the cited data are somehow versioned, have
associated guarantees of persistence (fixity), they do not constitute
a full-fledged solution for data citation. Relevant examples are the
Dataverse network and the DataCite initiative [2, 7]. They mint and
assign DOI to datasets, but they do not handle dataset versioning,
automatically generate snippets of information that are useful for
human understanding (completeness), or address the issue of the
variable granularity of data to be cited (e.g., subsets or aggrega-
tions). These and other deficiencies were noted in [8], which posed
data citation as a computational problem.

Several proposals target XML data. The first is a rule-based
citation system that exploits the hierarchical structure of XML to
provide citations to XML elements [9]. The second uses database
views to define citable units as a key to specifying and generating
citations to XML elements [8]. This approach was then extended

SIGMOD, 2018, Houston, Texas, USA

in [4] to develop a citation generation and dereferencing system
for an RDF dataset called eagle-i. The third uses a machine learning
approach that learns a model from a training set of existing citations
to generate citations for previously unseen XML elements [27].

There are three main proposals for citing RDF datasets. The
first proposes a nano-publication model where a single statement
(expressed as an RDF triple) is made citable via annotations con-
taining context information such as time, authority and prove-
nance [16]. The model does not specifically address how to cite
RDF sub-graphs with variable granularity and the automatic cre-
ation of citation snippets. The second defines a methodology based
on named meta-graphs to cite RDF sub-graphs [26]. Although the
approach addresses the variable granularity problem, the snippets
of information desired for a citation are not automatically selected.
The last proposal is restricted to generating citations for single
resources within an RDF dataset [4].

Two approaches deal with citation for relational databases. In
Proll et al [20, 21], a query against the database returns a result set as
well as an associated stable identifier which serves as a proxy for the
data to be cited. The database is versioned, so that when the stable
identifier is later used (dereferenced) the data can be recovered as
of the query time rather than the current version. This solution has
been implemented for CSV as well as for relational databases. In
particular, Proll et al’s approach addresses identification, persistence
and fixity of data citation, but not completeness (recommendation 10
of RDA), which is our target. These ideas could be integrated with
our approach by including stable identifiers [20, 21] (or DOIs[2, 7])
in the snippets of information included in the citation.

The second approach [8] proposes a hierarchy of citable units
that can be attached to parts of the database, and used to generate
citations for user queries. This idea was formalized in [10], and
an architecture and partial implementation were proposed in [5].
Our paper differs from this work by presenting a semantics of
covering sets of mappings using conjunctive queries, presenting
three different approaches to implementing this semantics, showing
how policies can be integrated, and presenting a comprehensive
experimental analysis of the tradeoffs between the approaches.

3 MODEL

The citation framework is based on conjunctive queries [3]. Conjunc-
tive queries are at the core of many query languages for relational,
semi-structured, and graph-based data [6, 11], and therefore the
framework extends well beyond relational systems; in particular,
conjunctive queries were used in [4] to specify citations for the
eagle-i RDF dataset. Conjunctive queries also simplify the reasoning
used to generate citations for general queries.

We start by describing the GtoPdb database [25], which will
be used as a running example throughout this section. We then
discuss how citation views are specified for frequent queries and
show how they can be used to generate citations for general queries,
i.e. queries for which citations have not been specified. We also
discuss a simple but common special case of partitioning views
which avoids the problem of alternative citations to general query
results. We conclude by discussing the connection between citation
reasoning and query rewriting using views.
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3.1 Running Example: GtoPdb

In GtoPdb, users view information through a hierarchy of web
pages: The top level divides information by families of drug targets
that reflect typical pharmacological thinking; lower levels divide
the families into sub-families and so on down to individual drug
targets and drugs. The content of a particular family “landing”
page is curated by a committee of experts; a family may also have a
“detailed introduction page" which is written by a set of contributors,
who are not necessarily the same as the committee of experts for
the family. The citations for a family landing page and detailed
introduction page may therefore differ.

The citation for GtoPdb as a whole is a traditional paper written
by the database owners [25], a citation to a family page includes
the committee members who curated the content for that family
page, and a citation to a family detailed introduction page includes
the contributors who wrote the introduction for that family.

The simplified GtoPdb schema we will use is (keys are under-
lined):

Family(FID, FName, Type)
FamilyIntro(FID, Text)
Person(PID, PName, Affiliation)
FC(FID, PID), FID references Family,
PID references Person
FIC (FID, PID), FID references FamilyIntro,
PID references Person
MetaData(Type, Value)

Intuitively, FC captures the committee members who curate the
content of a family page while FIC captures the contributors who
author the Family Introduction page of a family. The last table,
MetaData, captures other information that may be useful to include
in citations, such as the owner of the database (‘Owner’, “Tony Har-
mar’), the URL of the database (‘'URL’, ‘guidetopharmacology.org’)
and the current version number of the database (‘Version’, ‘23’).

3.2 Citation views

The citation framework is based on a set of citation views, which
specify how citations are constructed for common queries against
the database. A citation view specifies: 1) the data being cited (view
definition); 2) the information to be used to construct the citation
(the citation queries); and 3) how the information is combined to
construct the citation (the citation function). The citation function
uses the output of the citation queries to construct the citation in
some appropriate format (e.g. human readable, BibTex, RIS or XML).
The citation can be thought of as an annotation on every tuple in
the view result.

To simplify the reasoning for generating citations for general
queries, the view definition is a non-recursive conjunctive query.
The remaining components — the citation query and citation func-
tion — may be in any language, although throughout this presenta-
tion we illustrate citation queries using conjunctive queries.

The view definition and citation queries are optionally parame-
terized, where the parameters (lambda variables) appear as variables
somewhere in the body of the query. > A parameterized view creates

5 Also called binding patterns in [22].
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Figure 3: Effect of Parameters on Views

a set of instantiated views, one for each possible choice of parame-
ters. The number of such views is therefore instance-dependent.
For example, view definitions for the simplified GtoPdb schema

could be:

AF.V1(F,N) : —Family(F,N, Ty)
AF.V2(F,Tx) : —FamilyIntro(F, Tx)
V3(F,N,Ty) : —Family(F,N, Ty)

ATy.V4(N, Ty) : —Family(F, N, Ty),F > 60
ATy.V5(F,N, Ty, Tx) : —Family(F, N, Ty),
FamilylIntro(F1,Tx),F = F1

All views except V3 are parameterized. V1 and V2 create sets of
instantiated views, one for each tuple in Family and FamilyIntro.
V4 and V5 create sets of instantiated views, one for each type
in Family, whereas V3 creates one view containing all tuples in
Family. Figure 3 shows the effect of views V1, V3 and V4 on a
sample instance of Family. For example, V1 results in a set of 5
views, V3 a single view, and V4 a single view.

We assume that all queries (including view definitions) use fresh
variables in every position; any local predicates on variables (i.e.
those involving a single variable) and global predicates (i.e. those
involving more than one variable) are expressed as non-relational
subgoals of a query.

For each of the views, we define one or more citation queries.
Recall that FC captures the committee members who curate the
content of a family page while FIC captures the contributors who
author the family introduction page:

AF. Cy1(F, N, Pn) - — Family(F, N, Ty), FC(F, C),
Person(C, Pn, A)
: — Family(F, N, Ty),
Familylntro(F, Tx),
FIC(F,C), Person(C, Pn, A)
: — MetaData(T1,X1),
T1 = ‘Owner’,
MetaData(T2,X2),T2 = ‘URL’
: — Family(F, N, Ty), FC(F, C),
Person(C, Pn, A)
: — Family(F, N, Ty),
FamilyIntro(F, Tx),
FIC(F,C), Person(C, Pn, A)
The view to which each citation query shown above is associated

is given as a subscript, e.g. Cy is associated with V1. To ensure that
the citation is the same across all tuples in the view, the parameters

AF. Cys(F,N,Tx, Pn)

Cys3(X1,X2)

ATy. Cy4(Ty, N, Pn)

ATy. Cys(N, Ty, Tx, Pn)
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of the citation query must be a subset of the parameters of the view
definition.

The output of the citation queries associated with a view is then
used by the citation function to construct a citation. For example,
the output of the citation function for V1 parameterized by F=61
(denoted V1(61)) could be:

{ID: ‘61°, Name: ‘n4’, Committee: [‘Hay’, ‘Poyner’]}

We could also associate a citation query with no parameters to
V1, for example, a citation for the traditional reference paper for
GtoPdb as a whole.

Partitioning Views. The sample views V1-V'5 are more com-
plex that we have seen in practice, and are introduced for pedagogic
reasons. The views currently used in GtoPdb are essentially V1 and
V2, extended to include as head variables all attributes in Family
and FamilylIntro, respectively. {V1, V2} illustrates a simple but
common case of a set of views that partition the database schema:
Each attribute of each relation appears in at most one view. In con-
trast, {V'1, V3, V4} is not partitioning since the FName attribute of
Family appears in all three views. As we will see in the next subsec-
tion, attributes which appear in multiple views lead to alternative
citations for the query result, which may (or may not) be undesir-
able from the perspective of the DBA. In the case that views are
select-project views of a single relation (e.g. V1-V4 above), it is easy
to check whether they are partitioning (proof omitted). The DBA
could therefore be warned that a given set of views for a relation
would lead to alternative citations, and decide if this is what they
want.

3.3 General queries

To give a semantics to citations for general queries, we use the
following intuition: If a view tuple is visible in the query result, then
the result tuple carries the view tuple’s citation annotation. To do
this, we find maximal, non-redundant sets of valid mappings from
the views to the input query (covering sets). For each such set of
mappings, the citation is constructed by jointly using the citations
of the views in the mappings. We formalize this as follows.

Definition 3.1. View Mapping Given a view definition V and
query Q
V(Y) : =A1(Y7),A2(Y2), . .., Ac(Yi), condition(V)
Q(X) : =B1(X7),B2(X2), . . ., Bu(¥n), condition(Q)
a view mapping M from V to Q is a tuple (k, ¢) in which:

e his a partial one-to-one function which 1) maps a relational
subgoal A; in V that uses some variable in ¥ to a relational
subgoal B; in Q with the same relation name; and 2) cannot
be extended to include more subgoals of Q.

o ¢ are the variable mappings from Y’ = UK_ ¥; to X’ =
U, Xi induced by h

A relational subgoal B; of Q is covered iff h(A;) = B; for some i. A
variable x of Q is covered iff ¢(x) = y for some y.

Example 3.2. Consider the following query which finds the names
of all ‘gper’ families that have an introduction page:
Q(N) : —=Family(F1, N, Ty), FamilyIntro(F2, Tx),

Ty =‘gper’,F1 = F2

There are obvious view mappings from each of the views presented
above to the body of Q. For example, one possible mapping, M1,
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maps the first (and only) subgoal of V1 to the first subgoal of Q and
induces the mapping of variables §(F) = F1, ¢(N) = N, #(Ty) =
Ty. Another mapping, M4, also maps the first subgoal of V4 to the
first subgoal of Q and induces the mapping of variables ¢(F) =
F1, ¢(N) = Name, ¢(Ty) = Type.

A view mapping will only be valid for a tuple in the query result
if the relevant portions of the tuple matches the local and global
predicates of the view and is visible in the view. To determine this,
we must reason over all variables appearing in the body of the
query as well as the view, and therefore introduce the projection-
free notion of a query extension:

Definition 3.3. Query Extension Given a query
Q(X) : =B1(X7),B2(X2), . . ., Bn(Xm), condition(Q)

where condition(Q) are the non-relational subgoals, the extension

of Q, Qext, is

Qext(X') : =B1(X1),B2(X2), - - - , Bn(Xm), condition(Q)
where X’ = U;’;lxi. Note that X € X".
Since a view is also a query, we use the same notion for Vex;.

Definition 3.4. Valid View Mapping Given a database instance
D, a view mapping M = (h, ¢) of V is valid for a tuple t € Qex:(D)
iff:

e The projection of ¢ on the variables that are mapped in Qe+
under the mapping ¢ is a tuple in Vex;(D):
H¢(Y/)t S Vext(D) i

e There exists at least one variable y € Y such that ¢(y) is a
distinguished variable

e All lambda variables in V are mapped to variables in X’.

Example 3.5. Suppose the tuple t=(58, ‘nl’, ‘gpcr’, 58, ‘tx1’) ap-
peared in the result of Qex; from Example 3.2. Then V2 would
not be valid since (58, ‘tx1’) is not visible in the result (‘n1’), and
V4 would not be valid since the local predicate F > 60 is not met.
However, The view mappings of V1, V3 and V5, i.e. M1, M3 and
M5 would be valid.

Given a set of views V, a query Q and a database instance D, a
set of valid view mappings M(¢) is built for each tuple t € Q(D)
according to Definitions 3.1 and 3.4. Different view mappings from
M(t) are then combined to create a covering set of views for ¢.

Definition 3.6. Covering setLet C C M(t) be a set of valid view
mappings. Then C is a covering set of view mappings for ¢ iff

e NoV € M(t) \ C can be added to C to cover more subgoals
of Q or variables in X; and

e No V € C can be removed from C and cover the same sub-
goals of Q and variables in X.

Note that for each tuple t there may be a set of covering sets,
{Cy,...,Cr}.

Example 3.7. Returning to Example 3.5, the covering sets for ¢
are C; = {M1}, C; = {M3} and C3 = {M5}. C; is parameterized by
FID and would therefore generate different citations for each result
tuple in Qex . Co is not parameterized and would therefore generate
the same citation for each result tuple. C3 is parameterized by Ty
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which matches a local predicate of Q¢x; and would also generate
the same citation for each result tuple. Note that Cs3 is a “tighter”
match than C; since there are tuples in V3 that do not appear in
the query result whereas all tuples in V5 do appear.

In each C; = {Mj, My, ..., M}, the citation views are jointly
used (denoted *) to construct a citation for ¢, denoted My *Ma*...5xM].
The citations from each C; are then alternately used (denoted +R)
to construct a citation for ¢, denoted as C; +R. 4R Cp.

Partitioning Views, revisited. The running example illustrates
that there may be several alternative citations that can be associ-
ated with each tuple in the query result. However, if the views are
partitioning, then there is a unique covering set for each tuple in
the query result which meets the local predicates in matched views.

Example 3.8. Consider the following query and views:
Q’(F1,N,Ty,Tx) : — Family(F1,N, Ty),
FamilyIntro(F2,Tx), F1 = F2

AF.V1'(F,N,Ty) : — Family(F, N, Ty)

AF.V2'(F,Tx) : — FamilyIntro(F, Tx)

{V1’,V2'} is partitioning, and is carried by each tuple ¢ in the
query result. However, since the views are parameterized by FID,
the citations would potentially be different for each tuple in the
query result, leading to a large citation result for the entire query.

The example above illustrates why, when general queries are
allowed, the DBA may want to include additional, redundant views.
For example, adding the following views:

V3’(F,N,Ty) : — Family(F, N, Ty)

V4'(F,Tx) : — FamilyIntro(F, Tx)

would lead to a choice of four covering sets. However, the DBA
could give an interpretation of +® (a policy) which gave preference
to the citation associated with {V3’,V4’} for Q’ (since it leads to a
single citation shared by all result tuples), but gave preference to
the citation associated with {V1’,V2’} for a query which specified
the FID (since the query result would contain at most one tuple, and
the citation would be “precise” for that tuple). This is analogous to
the use of “et al” in traditional citations when author lists are very
long, when conciseness is preferred over specificity.

Finalizing the citation. The result of Q is obtained by project-
ing Qexs over Q’s distinguished variables: Q(D) = IIsQext(D).
Thus a tuple t € Q(D) may be derived from multiple tuples in
Qext(D). The annotations from all derivations of t are therefore
combined to form a citation for t using the abstract operator +,
indicating alternate derivations. To create the citation for the query
result, the annotations of all tuples in the result are then combined
using the abstract operator Agg. The abstract operators *, +X, +
and Agg are policies to be specified by the database owner, and
could be union, intersection, the “best" in some ordering over view
mappings, or some form of join. We discuss this more in Section 4.4

3.4 Query Rewriting Using Views: Discussion
Query rewriting using views has been used in many data manage-
ment problems, in particular query optimization and data integra-
tion [17]. We now discuss the relationship between covering sets
of views in citation reasoning and query rewriting using views.
Query rewriting using views is centered around the notion of
query containment: A query Q1 is contained in a query Q2, denoted
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Q1 C Qz2, iff for any database instance D, Q1(D) € Q2(D). Q1 is
equivalent to Q2, denoted Q1 = Q2, iff 01 C Q2 and Q2 C Q1.

In the context of query optimization, the rewriting must be
equivalent to the original query. For a given query Q and a set of
views V, the goal is to find a subset {Vi, Vo, ... Vi } € V such that
Q' : =V, Va,...V and Q' = Q. Furthermore, the rewriting should
be optimal in some sense, for example, in the number of views used
or the estimated join cost.

In the context of data integration, the rewriting must be a max-
imal containment rewriting, which is a weaker condition. For a
given query Q and a set of views V, the goal is to find a subset
{V1,Va,...Vi.} €V suchthat Q' : =V, V3,...Vi, Q’ C Q and there
is no other rewriting Q”” such that 9’ T Q" and Q" C Q.

For citation reasoning, the query is evaluated on the database;
views are virtual. Covering sets of views are then calculated at the
level of each tuple in the result, and the reasoning relies on the
provenance of values. However, reasoning about covering sets of
views is similar to reasoning about valid query rewritings in that
they are both centered on mappings between subgoals in the views
to subgoals of the query. As in data integration, the view mapping
may not include all subgoals of the view and may not cover all
subgoals of the query.

The most significant difference between citation reasoning and
traditional query rewriting using views is that citation reasoning
supports tuple-level reasoning. The approaches described in the
next section are therefore potentially applicable in any scenario
where fine-grained reasoning is needed, e.g. fine-grained access
control [24].

4 APPROACH

We now describe three approaches to implementing the citation
model for general queries discussed in Section 3.3: tuple level (TLA),
semi-schema level (SSLA) and schema level (SLA). As the names
suggest, an increasing amount of reasoning, in particular that of
finding valid view mappings, progressively shifts from the tuple
level to the schema level. We close this section by discussing differ-
ent interpretations of policies, and how they are implemented in
each approach. A detailed description of the three approaches can
be found in Appendix A.

4.1 Tuple Level

In order to generate citations, we first need to calculate the covering
sets for each tuple in the query result. Covering sets are created
from valid view mappings (Definition 3.4). The last two conditions
in this definition can be easily checked using the view mapping
M by comparing the schema of the view V and query Q. However,
the first condition is harder since it must be checked tuple by tuple
in the query result. Thus the satisfiability of (local and global)
predicates of view V under view mapping M will become the main
concern in our approaches.

To facilitate checking local predicates, in the tuple-level approach
the database schema is modified: A view vector column is added
to each relation identifying all views in which a tuple potentially
participates. For each view V : =By, V is added to the view vector
of each tuple t in relation R € By whenever t satisfies the local
predicates for V. This reduces the overhead for checking the local
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predicates at query time, and filters out invalid view mappings
early. Any global predicates which compare variables from different
relations (e.g. joins) are checked at query time.

Preprocessing step. When a query Q : —Bg is submitted, we
first calculate all possible view mappings using the view and query
schemas. Some of these mappings may become invalid for individ-
ual result tuples depending on whether global predicates for the
views hold. In order to enable global predicate checking as well as
the evaluation of parameterized views, Q is then extended to in-
clude: 1) lambda variables under all possible view mappings (which
are used to evaluate parameterized views); 2) view vectors of every
base relation occurring in Bg; and 3) columns representing the
truth value of every global predicate under every possible view
mapping (which are used to filter out invalid view mappings based
on global predicates).

Query execution step. The extended query, Qex:1, is then exe-
cuted over the database instance D, yielding an instance Qex+1(D)
over which the citation reasoning occurs.

Reasoning step. In first phase of citation reasoning, valid view
mappings within each view vector are calculated for each tuple
t € Qext1(D). A multi-relation view mapping is valid iff all global
predicates under this mapping are true for ¢. Invalid view map-
pings are then removed from the view vectors. In the second phase,
combinations of mappings between the resulting view vectors are
considered to find the covering sets.

Example 4.1. Given the views provided in Section 3.2, the base
relations Family and FamilyIntro are expanded as shown in Tables 1
and 2. Now consider the following query:

Q1(FID1, Name, Type, Text) : —Family(FID1, Name, Type),
FamilyIntro(FID2, Text), FID1 = FID2

All possible view mappings are shown in Table 4. Q1 is extended
with the global predicate FID1 = FID2 (the global predicate in V5
under mapping M5), and the lambda terms shown in Table 3. After
deriving valid view mappings from each view vector, the result-
ing instance of the extended query Q1.x;1(D) is shown in Table 5.
Note that the lambda terms FID1 and Type already appear as dis-
tinguished variables in Q1 and are therefore not repeated, and that
the global predicate FID1 = FID2 appears in the body of Q1 and is
therefore not explicitly evaluated. The calculation of covering sets
starts from considering all view mapping combinations and ends up
with maximal and non-redundant sets, e.g. {M3, M2} and {M5} for
the first tuple in Q1¢x;1(D) (other combinations like {M1, M2, M5}
is redundant and thus thrown away). The final query result with
covering sets is shown in Table 6. Parameterized views are instanti-
ated by passing the parameter values (e.g. V1(59) indicates V1 for
family_id=59). There are no “+” terms since projection does not
change the result; the key, family_id, is retained in the result.

Population step. Deriving covering sets tuple by tuple is time-
consuming especially when the query result is very large. However,
it is possible to find subsets of tuples that will share the same
covering sets using the view vectors and boolean values of global
predicates returned in the extended query. By grouping tuples
that share the same view vectors and boolean values of global
predicates, deriving covering sets can be done once per group and
then propagated to all tuples within the group. For example, in
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Table 5, the first two tuples form one group and the third and fourth
tuples form another group. This optimization leads to significant
performance gains.

Aggregation step. We find the covering sets for the entire query
result (or some subset of the query result) by taking the Agg of the
covering sets of the selected tuples.

Citation generation step. The citation is then calculated by evalu-
ating the citation queries and functions, and will be discussed in
Section 4.4. Note that although the body of Q1 is the same as V5,
the citation associated with V5 may not be the best choice for the
final query result, since V5 is parameterized by Type. This would
lead to a set of associated citations, one for each instance of V5,
whose cardinality would be the number of different types.

Discussion. While the reasoning used in TLA may seem unnec-
essarily complex for the running example, it is necessary to handle
the general case. For example, if the input query was the product
of Family and FamilyIntro, M1-M5 would still be possible view
mappings using TLA. However, the validity of M5 for a single tuple
depends on whether the join condition in M5 is met, since the join
condition is missing in the input query and may not hold for all
the tuples in the query result. A view may also be involved in more
than one view mappings.

Note that the final step of this approach — generating citations —
is delayed until the user selects the tuples of interest (or the entire
query). This is due to the fact that executing the citation queries
tuple by tuple can be time consuming.

4.2 Semi-Schema Level

The semi-schema-level approach (SSLA) does not extend the schema
of base relations. Instead, the extended query explicitly tests for
both global and local predicates. Since many of the steps are the
same as for TLA (e.g. aggregation and citation generation), we focus
on those that differ.

Preprocessing step. As before, when a user query Q : —Bg is
submitted, all the possible view mappings are calculated. The query
is extended to include 1) lambda variables under all the possible view
mappings; and 2) columns representing the truth value of every
global and local predicate. Since base relations are not annotated,
no view vectors are returned. The extended query, Qex:2, is then
executed on the database yielding an instance Qexs2(D).

Reasoning step. In the first phase, the set of valid view mappings
for each tuple t € Qexr2(D), VM(t), is derived based on the truth
values of the global and local predicates (all must be true for a view
mapping to be in VM(t)). In the second phase, covering sets for ¢
are calculated using the view mappings from VM(t).

Example 4.2. We return to Example 4.1, and show the result of
the extended query Ql.xs2(D) in Table 7. As before, the lambda
terms all appear as distinguished variables and the global predicate
appears in the body of Q1, so the only additional information is
the local predicate test for V4 under mapping M4, FID1 > 60. The
result of this test shows that M4 is only valid for the last two tuples,
while the view mappings of the other four views are valid in all
four tuples. The final query result with covering sets is the same as
TLA and shown in Table 6.



SIGMOD, 2018, Houston, Texas, USA

Table 1: Sample table for base

relation Family

Table 2: Sample table for base

Anonymous

Table 3: Lambda terms in the view

relation FamilyIntro mappings
Family_id | Name | Type || View vector S— - - -
=3 el Zper V1V3V5 Family_id | Text || View vector View mappings | A terms
50 2 ey V1V3V5 58 tx1 V2Vs5 M1 FID1
Cammm i i o
61 n4 vgic V1V3V4 Vs o2 e V2’V5 M5 Type
62 ns5 vgic V1V3V4Vs d

Table 4: All possible view mappings for Q1

View . . : mappings Subgoals
View | mapping h: mappings on relations ((])Sn Vaﬁzblegs cov%red
F — FID1,
Vi M1 Family — Family N — Name, Family
Ty — Type
Familylntro — F — FID2, .
vz M2 Famiylylntro Tx — Text Familylntro
F — FID1,
V3 M3 Family — Family N — Name, Family
Ty — Type
F — FID1,
V4 M4 Family — Family N — Name, Family
Ty — Type
F — FID1,
Family — Family, N — Name, Famil
V5 M5 FamilyIntro — Ty — Type, Famil Ixi,tro
FamilyIntro F1 — FID2, Y
Tx — Text

Table 5: Result of executing the extended query, Ql.x:1(D)

Valid view Valid view
FID1 | Name | Type | Text mappings from | mappings from
view vector 1 view vector 2
58 nl gper tx1 M1,M3,M5 M2,M5
60 n3 gpcer tx2 M1,M3,M5 M2,M5
61 n4 vgic tx3 M1,M3,M4,M5 M2,M5
62 n5 vgic tx4 M1,M3,M4,M5 M2,M5

Table 6: The final result, Q1(D), annotated with the
covering sets

FID1 | Name | Type | Text Covering sets
58 nl gper | txl M3*M2(58) +RM5(‘gper’)
60 n3 lgic | tx2 M3*M2(60) +F M5(‘Igic’)
61 n4 vgic | tx3 M3*M2(61) +K M5(‘vgic’)
+R M1(61)*M4(‘vgic’)*M2(61)
62 n5 vgic | tx4 M3*M2(62) +F M5(‘vgic)
+R M1(62)*M4(‘vgic’)*M2(62)

Table 7: The instance of the extended query Qcx2(D)

FID1 | Name | Type | Text | FID1 > 60
58 nl gper | tx1 False
60 n3 lgic | tx2 False
61 n4 vgic | tx3 True
62 n5 vgic | tx4 True

Discussion. While TLA and SSLA will always produce the same
result, there are two salient differences which will have performance
implications: First, the schema of base relations is not extended in
SSLA and therefore less space is used. Second, the extended query
in TLA includes the truth value of global predicates as well as the
view vectors (which grow with the number of views) whereas the
extended query in SSLA includes the truth value of all local and
global predicates.

4.3 Schema Level

The schema level approach (SLA) does all reasoning at the level of the
database schema (including key and foreign key constraints), view
definitions and the input query. Therefore, it is instance independent
and finds a set of covering sets that is valid for all possible instances
of the database. The SLA implementation borrows some ideas from
query rewriting using views techniques proposed in [14].

Reasoning step. The first phase of reasoning in SLA calculates
the valid view mappings. Since the reasoning must be instance
independent, a view mapping M is said to be a valid view mapping
for Q iff it is a valid view mapping for every tuple t € Qex:(D)
for every instance D (c.f. Definition 3.4). The algorithm therefore
reasons over the global and local predicates of V and Q to deter-
mine whether the non-relational subgoals of V that are mapped
to Q imply the non-relational subgoals of Q involving the mapped
variables.® This involves checking that all the predicates of V in-
volving mapped variables are less restrictive than Q. It also checks
whether relational subgoals in V that are not mapped to a subgoal
in Q restrict the result by examining key-foreign key relationships.
Covering sets for Q are then calculated from the set of valid view
mappings.

Example 4.3. Returning to Example 4.1, using schema level rea-
soning M4 would not be considered since the predicate F > 60
does not appear in Q and is therefore more restrictive. Note that
the predicate does not hold for all tuples in all possible instances,
including the one shown in Table 1. However, M5 would be consid-
ered since it includes all relational subgoals in M5, and the (mapped)
global predicates in M5 is also in Q. Hence the resulting covering
set would be M3*M2 +RM5. Now suppose the query were modified
to:

Q2(FID, Name, Type) : —Family(FID, Name, Type), FID > 70

The local predicate of M4, FID > 60, is less restrictive than the
corresponding local predicate of Q2, FID > 70. Hence M4 is a valid
view mapping for Q2. However there is now no valid mapping
from V5 to Q2, since tuples in Family are restricted by the join with

®Recall that not all relational subgoals in V may be mapped to a subgoal in Q.
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FamilyIntro - there is a foreign key constraint from FamilyIntro to
Family, but not vice versa.

Query execution step. In order to evaluate citations for parame-
terized views that appear in the resulting covering sets, the query Q
must be extended to include all lambda variables that do not appear
as distinguished variables under all the valid view mappings. The
extended query, Qex:3, is then evaluated to construct covering sets
and thus final citations, and the query result Q(D) is obtained by
projecting Qex3(D) over the distinguished variables of Q.

Discussion. Similar to SSLA, SLA does not require the schema of
base relations to be extended. Although all three approaches require
the query to be extended prior to evaluation, SLA only extends with
the necessary view parameters, whereas TLA additionally extends
the query with global predicates and SSLA extends with both global
and local predicates. Most significantly, SLA does not reason over
individual tuples which leads to considerable performance gains.

However, SLA does not generate a per tuple citation which is
useful if users wish to cite subsets of the query result; it also may
not generate the “most specific” citation if all tuples in the query
result happens to satisfy the local and global predicates in a view.

4.4 Generating Citations

The output of the approaches described above is an annotation of
covering sets on the query result as a whole (in the case of SLA),
or on each tuple in the query result (in the case of TLA/SSLA).
Annotations on tuples are then combined using Agg in TLA/SSLA
to create an annotation for the query result (or a subset of the
query result). We now discuss how citations are constructed from
covering set annotations in each of these approaches.

The abstract operators #, +X, + and Agg can have different in-
terpretations. For example, * can be join or union; +R can be union
or min; + can be union and Agg can be intersection or union. The
interpretations of the last three (+X, +, and Agg) are implemented
at level of covering sets, whereas that of * is implemented at the
level of citations (which in our case are JSON objects).

The first step is to evaluate +%, which has two interpretations:
union and min. The union of covering sets is straightforward, al-
though it can lead to very large citations. In contrast, the goal of
min is to find the covering set with minimum cost (according to
some custom cost function), and it is evaluated as the covering sets
are being constructed. It therefore has the advantage of avoiding
enumerating all covering sets, thereby significantly reducing the
overhead of this step in all three approaches. Note that the problem
of finding a min-cost covering set can be formalized as a set cover
problem, which is NP-complete. However, a greedy algorithm can
be applied to derive an O(log n)-approximate solution [29]. (See
the Appendix for the details of the cost functions and the greedy
algorithms.)

Intuitively, the cost function we use chooses the covering set with
the smallest number of views in the #-term, balanced by the number
of unmatched terms, including unmatched subgoals, unmatched
distinguished variables, and unmatched lambda terms in each view.
For example, in Q1 the parameters Family_id and Type are not
equated to constants and therefore M1, M2, M4 and M5 all have
unmatched lambda terms. When they appear in a covering set, this
leads to an enumeration over all instantiated views in the result set.
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Table 8: Citations for sample view mappings

View Result of citation function
M2(58) {ID: ‘58’, author: ['Mark’], Committee: [ Poyner’]}
M3 {author: [‘Roger’], Committee: [Justo’]}

Example 4.4. Returning to Q1(D) in Table 6, assume that the
interpretation of +¥ is union. For the first tuple in the table, the
result would be {M3*M2(58), M5(‘gper’)}.”

Now assume that the interpretation is min. Since both terms
contain a parameterized view with unmatched lambda terms (which
is expensive), the term with the fewer views is chosen and the result
would be {M5(‘gpcr’)}.

The result of evaluating +F is a set of covering sets (a unary set
in the case of min). The second step is to evaluate + by taking the
union over these sets for tuples that are unified in the projected
result. In our running example, there are no + terms.

The third step evaluates Agg, which is to generate covering sets
for the query result (or for subsets of the query result). When union
is used, the covering sets are calculated using the view mappings
valid for some tuples; when intersection is used, the view mappings
valid for the entire query result are involved in the construction
of covering sets. Note that in intersection the lambda terms are
ignored; for example, M5(‘gper’) and M5(‘vgic’) are both considered
to be instances of M5. Thus if a view is parameterized and appears
in the covering sets to be aggregated, the union of all mapped
instances of the view will be used.

Example 4.5. Assuming the interpretation of Agg is intersection
and the interpretation of +X is min, the result across all four tuples
is {M5}. Since M5 is parameterized by Ty, the citation {M5} would
be applied over all types in the database instance, i.e. ‘gpcr, ‘vgic’
and ‘Igic’. If, however, just the first tuple was selected and union
was used for +R, the resulting annotation would be: {M3*M2(58),
M5(‘gper’)}.

After evaluating +%, +, and Agg, we are left with a set of *
expressions, which are implemented at the level of the citations.
Thus, the s-operator takes as input the citations of its operands,
which in our implementation are JSON objects, and returns their
union or join (depending on the interpretation).

Example 4.6. Suppose the resulting annotation was {M3*M2(58),
M5(‘gper’)}. If the interpretation of « is join, the citation for cover-
ing set M2(58)*M3 will become the single object (see Table 8):

{ID: 58’, author: [‘Mark’, ‘Roger’], Committee: [ Poyner’, ‘Justo’]}.

If the interpretation is Union, the citation will be the set of objects:

{{ID: ‘58’, author: [‘Mark’], Committee: [ ‘Poyner’]}, {author: [‘Roger’],
Committee: [‘Justo’]}}.

5 EVALUATION

5.1 Experimental design

We implemented all three approaches in Java 8 and used PostgreSQL
9.6.3 as the underlying DBMS. All experiments were conducted on

"We do not reason about the expected number of instantiated views based on key
versus non-key attributes, or the size of underlying domains.
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a linux server with an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
and 64GB of central memory.

Datasets. Our experiments used two datasets. The first is the
GtoPdb database.® This database has information about 8978 chemi-
cal structures (ligands) and the 2825 human targets they act on. Each
target (and ligand) has citation information, such as contributors
and/or curators, associated with it.

We also developed a second database that connects computer
science publications—extracted from DBLP—to their NSF fund-
ing grants—extracted from the National Science Foundation grant
dataset. We will refer to this database as DBLP-NSF. The idea was
to add funding information to traditional paper citations, and to
be able to vary between citing the conference proceedings (if large
number of papers from the same conference were in the result set)
and citing individual papers. DBLP-NSF consists of 17 relations
(authors, papers, conferences, grants, etc.). Author is the largest
relation with about six million tuples, and the average size across
all relations is about 0.6 million tuples.

Workloads. We evaluated our approaches on two types of work-
loads: synthetic and realistic. We created large query results by
executing synthetic queries on the GtoPdb dataset. Queries were
built using a user query generator which takes as input: 1) the num-
ber of relational subgoals; 2) the number of tuples in the extended
query result (N;). We also implemented a view generator which
takes as input: 1) the number of views (Ny); 2) the number of
lambda terms in total (Nj); and 3) the total number of predicates
(Np). Each generated view has a single citation query attached to it.
In the experiments, the configurations of the query generator and
view generator ensure that there is only one view mapping from
each view to the query.

For realistic workloads, we used citation views and general
queries (Q0-Q7) from anticipated workloads of GtoPdb and DBLP-
NSF. For GtoPdb, general queries were designed by consulting with
the database owners, and views were designed based on its web-
page views. For each view, the corresponding citation query is the
query used to generate the hard-coded citations on the web-page.
For DBLP-NSF, citation views were designed to correspond to cita-
tions to a single paper, single conference and single grant. General
user queries (q1-q3) simulate cases where users are interested in
papers from certain authors, certain conferences and certain years
together with the grant information of those papers. See Appen-
dix B for details.

As discussed in Section 4.4, there are several different interpre-
tations of joint, alternative. and aggregated policies. We focus on
two interpretations:

(+, +R, +, Agg) = (join, union, union, union), called the full case, and

(x, +R, +,Agg) = (join, min, union, intersection), called the min case.

The goal of our evaluation is to study the size of citations and the
time performance of the three approaches under different policies
and workloads.

In terms of the time performance, an important metric to consider
is the time to derive covering sets for the query (t.s) in each of
the three approaches. As discussed in Section 4, TLA and SSLA
compute covering sets for the query in five steps: preprocessing,
query execution, reasoning, population and aggregation. Each step

8 Available at http://www.guidetopharmacology.org/download.jsp.

Anonymous

Table 9: Notation used in the experiments

Notation Meaning
tes time to derive covering sets for the entire query
tpre time for preprocessing step in TLA and SSLA
tge time to execute extended query in TLA and SSLA
tre time for reasoning step in TLA, SSLA and SLA
tpop time for population step in TLA and SSLA
tagg time for aggregation step in TLA and SSLA
tq query time in SLA
leg time for citation generation step in the three approaches
Nes number of covering sets for the entire query
N, number of view mapping to query
Np number of predicates under all the view mappings
N; number of lambda terms under all the view mappings
N; number of tuples in the extended query result

has a time overhead (tpre, tge, tre, tpop and tqgq respectively), and
under different policies and workloads the major overhead may
come from a different step. Unlike TLA and SSLA, SLA only has two
steps: reasoning (tr¢) and query execution (t5). We also provide
an incremental analysis of the time to derive the covering sets.
After the covering sets are derived, the citation generation step
produces a formatted citation, the time for which is denoted by teg-
To evaluate the citation size, we measure the number of covering
sets (N¢s) for the entire query. Table 9 provides a summary of this
notation.
Our evaluation addresses the following questions (EQs):

e EQ1: How do the different policies influence performance
and citation size?

e EQ2: What is the effect of Ny, N, and Nj on the time per-
formance and citation size?

e EQ3: What is the scalability of our approaches? That is, how
does N; influence the time performance?

e EQ4: What is the performance and citation size of the three
approaches in realistic scenarios?

5.2 Synthetic workloads

We first report on experimental results under synthetic workloads.

Exp1. The first experiment evaluates the effect of N;, on time
performance and citation size. We configured the query generator
to generate queries which produce a result set of about one million
tuples (N; = 10°) using a subset of the product of four randomly
selected relations. The view generator varied the number of views
and ensured valid view mappings from each view to the query.
Here, we do not consider other view features such as lambda terms
and predicates.

Results. For the full case, thousands of covering sets are gen-
erated as the number of view mappings exceeds 30 (Figure 4a). As
expected, the corresponding time to generate them (f.s) increases
exponentially. As shown in Figure 4b, the major overhead in . is
the reasoning time t,, when N, exceeds 25, leading to a conver-
gence of the three approaches.

Figure 4c shows the results for the min case, which has a huge
speed-up compared to the full case. Notice that t. is steady even
with a large Ny, and that in the worst case f.; is acceptable (about
25 seconds).


http://www.guidetopharmacology.org/download.jsp
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Table 10: Experimental results on real workloads (full case)

N, tes in tes in tes in teg

Query Nu | Np | Nes | TLA(s) | SSLA(s) SLA (s) (s)
Qo 8868 1 0 1 0.25 0.18 0.15 0.58
Q1 1366 1 0 1 0.19 0.15 0.13 0.41
Q2 2522 7 6 1 0.25 0.21 0.14 0.38
Q3 120 8 6 1 0.18 0.16 0.13 0.38
Q4 5748 7 6 7 0.26 0.22 0.14 0.47
Q5 1 8 6 1 0.16 0.14 0.12 0.37
Q6 271 7 6 1 0.17 0.16 0.12 0.36
Q7 521 1 0 1 0.16 0.14 0.13 0.41
ql 4884 4 1 3 1.19 1.18 1.15 11.31
q2 27 4 1 3 1.81 1.72 1.69 10.40
q3 7 2 0 2 0.94 0.91 0.90 2.31

These results partially answer EQ2—what is the effect of Ny, on
the time performance and citation size. In the full case, exponen-
tially large covering sets are generated, taking up to 10 minutes as
Ny, becomes large. Since each covering set represents a possible
citation, this also generates thousands of citations. On the other
hand, the min case returns the “best” citation, which reduces t,, to
a few milliseconds and leads to a steady t.s as Ny, increases.

The performance difference between the three approaches is
also worth noting. In the min case, SLA is faster than the other two,
which is expected as it only reasons over schemas. For TLA and
SSLA, we need to execute extra steps in the population step to store
covering sets for each tuple.

Exp2. This experiment tests how N, influences the performance
and size of citations. Like Exp1, the query generator randomly
picked four relations and ensured N; = 10°. However, the view
generator fixed the number of views as 15 and varied the total
number of local predicates (and thus Nj,) from 0 to 50.

Results. The number of predicates (Nj) influences the time
performance of TLA and SSLA in two ways. First, more predicates
add more complexity to the extended query and thus increases the
time to execute the query (fg¢). Second, it can create more groups
in the extended query result, incurring more reasoning time (ty¢).
However, Nj, has no effect on time performance and citation size
in SLA since the predicates are not used for extending the query
and no grouping or aggregation is involved.

Figures 5 and 6 show how t.¢ and its major timing components
(tqe and ty¢) are influenced by N, in the min and full cases, respec-
tively. In Figure 5, tqe is included for TLA and SSLA, and shows
that in the min case, increasing N, results in slight increases in the
(extended) query execution time for SSLA; thus t.s in SSLA is only
about twice that in TLA when N, is up to 50. The slightly worse
performance of SSLA is due to the complexity of the extended query.
Recall that the boolean values of local predicates are explicitly eval-
uated and then used for grouping in SSLA, which is not necessary
in TLA. The same is true for the full case (Figure 6).

For the full case, the reasoning time t,, becomes a major over-
head as N, increases for both TLA and SSLA. This is because more
predicates can create more groups in the query result, which incurs
more ¢ in total. Unlike TLA and SSLA, SLA is not influenced by
the predicates since the reasoning is at the schema level.

In terms of citation size, in the full case thousands of covering
sets are generated when N, is large since Agg is union, which drives
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the increase of the citation generation time t.4. The trend is almost
the same as Figure 4a (except for the label of x-axis) and thus the
figure is omitted. Thus EQ2 is partially answered, i.e. what the effect
of N, is on the time performance and citation size.

Exp3. This experiment evaluates the scalability of our approaches
in terms of time performance by varying N;. The view generator
randomly generates 15 views (N, = 15) with randomly assigned
local predicates and lambda terms. The query generator randomly
generates a query with four relations but varies the result size (from
102 to 107) at each iteration.

Results. Figure 7 shows that when there are fewer than 107
tuples in the query result, the time to calculate covering sets (t¢s)
in all three approaches is less than 200 seconds, and that of of SLA
is less than 60 seconds, addressing EQ3.

Discussion. These experimental results address EQ1, EQ2 and
EQ3.° For EQ1, the min case and the full case mainly differ in the
reasoning step, which leads to large differences in performance. In
the min case, even in complicated scenarios, the reasoning time ¢,
is small (a few milliseconds) since the search space is pruned. In
contrast, in the full case all three approaches are very slow in the
reasoning step since all possible citations are generated.

5.3 Realistic workloads

We now report experiments performed on the realistic datasets.
Table 10 shows all experimental results for the full case. Results for
the min case are only marginally better, and are not shown.

Exp4. This experiment evaluates how well the proposed ap-
proaches handle realistic workloads in the GtoPdb dataset. In this
experiment, 14 views were created and each view has one associ-
ated citation query according to the web-page views. Eight user
queries (Q0-Q7) were collected from the owners of GtoPdb.

Results. The first eight rows of Table 10 shows the result of Exp4.
The time to generate covering sets s and the time for the citation
generation step tc4 for all the queries are very small (less than 1
second). Although there are 14 views in total, only one covering
set exists for most queries and the number of view mappings is far
fewer than 14, leading to the short response time. This is the case
when the views partition the relations.

Exp5. This experiment is conducted on the DBLP-NSF dataset.
Six views are used, each of which is associated with 1-2 citation
queries. Three typical user queries are used as input. The first (q1)
asks for the titles of papers in a certain conference (e.g. VLDB),
while the second (q2) retrieves the titles of all papers published by
a given author in a given year. These correspond to searches over
the DBLP dataset where users are interested in papers of specific
authors or conferences. The third (q3) returns the NSF grants that
support papers in a given conference (e.g. VLDB).

Results. The last three rows of Table 10 show that the number
of covering sets N, and the time to generate them t are still very
small. However, the time for citation generation step teg is much
larger than that in Exp4, which is due to the fact that there is a join
between large relations in some of the citation queries. Thus Exp4

9We also ran experiments to determine the effect of the number of lambda terms, but
found that it does not have significant influence.
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and Exp5 address EQ4, i.e. the time performance and citation size
of our approaches in the realistic scenarios.

Discussion. Although the performance and size of citations in
the synthetic experiments are not acceptable for extreme values of
view mappings (Ny), predicates (Np) and tuple number (N;), Table
10 shows that for our realistic cases these values are all very small
(Ny and N are less than 10 while Ny is less than 10%). Revisiting
the results of Section 5.2, Figures 4a and 4b show that, in the full
case, when N, and Ny are less than 10, the performance and size
of citations is very reasonable for all three approaches: t. is less
than 1 minute, the citation generation time #.4 and the covering set
size N¢s are also very small. However, since N; is usually less than
10* whereas the synthetic workloads generate 10° tuples, tcs for
all three approaches in practice should be far less than 1 minute.

6 CONCLUSIONS

This paper builds on the notion of citation views [10] to give a
semantics for citations to general queries based on covering sets of
mappings between the views and the input query. We present three
approaches to implementing citation views and describe alternative
policies for the joint, alternate and aggregated use of citation views.

Extensive experiments were performed using synthetic as well
as realistic citation views and queries for two different choices
of policies. The experiments explore the tradeoffs between the
approaches, and show that the choice of policy has a huge effect
both on performance and on the size of the resulting citations. In
particular, when the “best" citation is chosen rather than using “all

Figure 6: tcs, tge and ty. VS Np
in full case

Figure 7: t;s VS N; in full case
(log scale in X-axis)

possible” citations there is an order of magnitude speedup. The
realistic cases show that all three approaches are feasible, and that
reasoning at the schema level results in a 2-3x performance gain at
the expense of generating citations to individual tuples.

The methods we propose are a first step towards fine-grained
data bibliometrics, but they need to be integrated within a larger
data citation infrastructure. Currently, none of the largest citation-
based systems consistently take into account scientific datasets
as targeted objects for use in academic work. In the future, the
scientific community must define a theory of data citation which
targets the problem of how to aggregate academic credit, and define
appropriate impact measures.

In future work, we will explore the connection of citation to
provenance. Since both provenance and citations are annotations
on tuples, it may be possible to reason over provenance polynomi-
als [15] of view definition tuples and of result tuples to determine
whether the result tuple carries the view tuple’s citation annotation.

Versioning is also crucial for ensuring that cited data can be
reconstructed. However, these techniques should be adapted for
data citation, which requires versioning to be triggered when a user
cites a data entry and only needs to record change on the cited data.
Thus interesting optimizations may be possible in this context.

Finally, we will explore how citations can be integrated into
data science environments, in which queries are interleaved with
analysis steps. We would also like to test (and possibly extend) our
approach using other types of common datasets in this environment,
e.g. dataframes, CSV, and time-series data.
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A APPENDIX: APPROACHES

A.1 Details of Approaches: full case

A.1.1  Details of TLA. TLA consists of several steps: preprocess-
ing, extended query execution, reasoning, population and aggrega-
tion.

When a user query Q is evaluated, the preprocessing step derives
all possible view mappings and extends the schema of Q for check-
ing the validity of view mappings and groupings. Details for the
preprocessing step are shown in Algorithm 1.

Algorithm 1: Preprocessing step

Input :aset of views: V = {V;, Vs, ..., Vi }, user query:

Q(X) : —=B1(Xy), B2(X2), . . ., Bu(Xm), condition(Q) B
Output:the set of all possible view mapping M, the extended query Qex¢1(X”)
Initialize M = {} Initialize the schema of the extended query X’ = X
for each viewV € V do

Derive all possible view mappings from V to Q that follows definition 3.1
and the last two conditions in definition 3.4 and add them to M.

-

w o~

end
for each view mapping M € M do
Derive lambda terms L(M) and the predicates condition(M) under M
Add all lambda terms in L(M) to X’
Add boolean expressions of all the global conditions in condition(M) to
X7

® N oo w e

9 end

10 for each relation B; in the body of Q do

1 ‘ Add the view vectors Vec(B;) to X’.

12 end

13 Construct the extended query Qe ;1 with the following form:
1 Qextl()_(/) : _Bl(Xl)» BZ(XZ)v cees Bm(X:m)’ condition(Q)
return M, Qcx;1(X’)

-
=3

Algorithm 2: Determine the valid view mappings in TLA

Input :Database instance D, the set of all the possible view mappings M, the
schema of the extended query Qext1: (X’), and a tuple ¢ € Qexr1(D)
Output: A set of valid view mapping sets M(M(t)), a set of maximally
covered relations MCR(t)
1 Initialize M(M(2)) = {}

/* M(M(t)) denotes a set of view mapping sets */
2 for each view vector Vec(B;)(i = 1,2, ..., m)do
3 Denote the set of all the valid view mappings from Vec(B;) as M;(t)
Initialized M;(¢) = {}
4 for each annotated view V in Vec(B;) do
5 for each view mapping M that the view V is involved in do
6 check whether each view mapping M satisfies:

(1) the first condition in the definition 3.4 by
checking whether all of the boolean expressions
of the global predicates in condition(M) are true and

(2) B; is covered by the mapping M and

(3) if M covers more than one relations, V should appear in
every view vector of those relations.

if M follows all the three rules above then
| add M to M;(¢)

end
7 end
8 end
9 if M;(t) is not empty then
10 add M;(¢t) to M(M(t))
1 add B; to MCR(t)
12 end
13 end

-

4 return M(M(t)) and MCR(t)
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After executing the extended query (query execution step), for
each tuple t € Qexr1(D), the valid view mappings are derived. The
details are shown in Algorithm 2.

After calculating the valid view mapping sets for each relation
B;, the covering sets are derived by combining the view mappings
to cover as many relations and distinguished variables of Q as
possible; afterwards, duplicates are removed. The details are shown
in Algorithm 3. Algorithms 2 and 3 form the reasoning step. After
reasoning once for each group, the resulting covering sets are then
propagated to all the tuples in the group (population step).

After the reasoning and the population steps, every tuple in
Qexr1(D) is annotated with covering sets. The covering sets for
the entire query are then calculated using view mappings valid for
all the tuples in the query result, which is similar to Algorithm 3
and thus not presented here. The aggregated covering sets are then
converted to formatted citations using Algorithm 4. All the steps
for TLA are shown in Algorithm 5.

Anonymous

Algorithm 5: Details of TLA

Algorithm 3: Deriving the covering sets in TLA

Input :Database instance D, The set of all the possible view mappings M, the
schema of Q: X , a tuple ¢ € Qex1(D), a set of valid view mapping
sets M(M(t)) and a set of maximally covered relations MCR(t)

Output: A set of covering sets C(¢)

Initialize C(¢) = {}

for each view mapping set M;(t) € M(M(t)), each relation R(XR) from

[

MCR(t) do ) )
3 for each variable v from Xg (1 X do
4 find a set of view mappings Mg € M;(¢) in which each view

mapping can cover v
5 if Mg is not O then

6 | C(t) = cross_product(C(t), Mg)
7 end

8 end

9 end

10 for any two view mapping sets C; and C; in C(t) do
1 if C; C C;j then

12 ‘ remove C; from C(t)

13 end

14 end

15 return C(t)

Algorithm 4: Details of citation generation step

Input :aset of groups G, the aggregated covering sets: AC(Q), the extended
query result Qe x+(D)

Output: A set of citations C(Q)

Initiate C(Q) = {}

for each group G € G do

3 find all the covering sets AC(G) € AC(Q) so that each covering set in

AC(G) are valid for the group G

4 Get the values of lambda terms for views from covering sets AC(G) by

using all the tuples in G

[N

end

for each covering set AC € AC(Q) do

7 Generate citation C using the values of lambda terms and the citation
queries corresponding to the each view in AC.

8 Put the citation C in C(Q)

end

remove duplicates in C(Q)

return C(Q)

o @

[T
= 5 o

Input :aset of views: V = {Vj, Vs, ..., Vi }, Database instance: D,
Interpretation of aggregation: Agg, user query:
Q(X) : =B1(X1), Bo(X2), . . ., Bm(Xm), condition(Q)
Derive all the possible view mappings M using Algorithm 1
Derive Qex¢1(X’) using Algorithm ??
Execute query Qex¢1(X’) in D:
Tuples in Qexs1(D) are grouped during the execution of Qexs1(X’). Suppose
there are r groups, G = {G1, Gz, . . ., G}
/* Aggregated covering sets */
AC(Q) = {}
for each G in G do
select a representative tuple ¢ from G.
Determine the valid view mapping sets M(M(¢)) and maximally covered
relations MCR(t) using Algorithm 2
9 Deriving all the covering sets C(t) using Algorithm 3.
10 populate the resultant C(#) to all the other tuples ¢’ in G.
11 Update AC(Q) by using Algorithm ??
12 end
Generate formatted citations for covering sets AC(Q) using Algorithm 4.

T VR

® N o u
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A.1.2 Details of SSLA. The SSLA preprocessing step is almost
the same as that of TLA, but the way in which the user query is
extended is quite different. In order to check the validity of the
view mappings for each tuple and group the tuples, the boolean
expressions of both the local and global predicates of relevant views
are included and no view vectors are available for extending the
query.

The extended query instance Qex2(D) is retrieved from the data-
base by the extended query execution step. Valid view mappings are
derived based on the extra columns in the schema of the extended
query. Details are shown in Algorithm 6.

After deriving the set of valid view mappings, we obtain the
covering sets using a similar strategy to the one used in TLA. Details
are presented in Algorithm 7. Algorithms 6 and 7 form the reasoning
step for SSLA.

Algorithm 6: Determine the valid view mappings in SSLA

Input :Database instance D, The set of all the possible view
mappings M, the extended query: Qexs2(X’) :
—B(X1), B2(X2), . . ., Bm(Xom), condition(Q), and a
tuple ¢ € Qexr2(D)
Output: A set of valid view mappings M(¢), a set of maximally
covered relations MCR(t)
1 Initialize M(¢) = {}
2 Initialize MCR(¢) = {}
3 for each view mapping M in M do
4 check whether M satisfies the first condition in the definition 3.4
by checking whether all of the boolean expressions of
condition(M) are true
5 if M follows the rule above then
6 | add M to M(z)
7 end
8 add all the relations in Q that M covers into MCR(t)
9 end
10 return M(¢) and MCR(¢)

The population, aggregation and citation generation steps in SSLA
are the same as in TLA. All the steps for SSLA are shown in Algo-
rithm 8.
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Algorithm 7: Deriving the covering sets in SSLA

Input :Database instance D, The set of all the possible view mappings M, the
schema of Q: X, a tuple ¢ € Qext2(D), a set of valid view mapping
sets M(t)

Output: A set of covering sets C(¢)

1 Initialize C(¢) = {}

2 for each relation R(XR) from MCR(t) do

3 for each variable v from Xg () X do

4 find a set of view mappings Mg € M(t) in which each view

mapping can cover v

5 if Mg is not O then

6 | C(t) = cross_product(C(t), Mg)

7 end

8 end

9 end

10 for any two view mapping sets C; and C; in C(t) do

1 if C; c C;j then

12 ‘ remove C; from C(t)

13 end
14 end
15 return C(t)

Algorithm 8: Details of SSLA

Input :A set of views: V = {V;, V,, ..., Vi }, Database instance: D,
interpretation of aggregation: Agg, user query:
Q(X) : _Bl(Xl)y Bz(Xz), ces Bm(X_m)» condition(Q)
Derive all the possible view mappings M using Algorithm 1
Derive extended query Q. x2(X’) using the algorithm similar to Algorithm ??
Execute query Qexs2(X’) in D:
Tuples in Qe xs2(D) are grouped during the execution of Qe x2(X’). Suppose
there are r groups, G = {G1, G, . .., G, }
/* Aggregated covering sets */
ACQ) = {}
for each group G € G do
select a representative tuple ¢ from G
Determine the valid view mappings M(t) and the maximally covered
relations MCR(t) using Algorithm 6
9 Derive all the covering sets C(t) using Algorithm 7
10 Populate the resultant C(#) to other tuples ¢’ in G
1 Update AC(Q) using Algorithm ??
12 end
13 Generate formatted citations for covering sets AC(Q) using Algorithm 4.

T VR
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A.1.3  Details of SLA. The major difference between SLA and
the other two approaches is that SLA must remove view mappings
with logically stricter predicates than the input query, and must
also check foreign key constraints. For the remaining “valid” view
mappings, the reasoning step is similar to the one described in
Algorithm 7, so the details are ignored. The user query is then
extended to include the lambda terms of valid view mappings (query
execution step) so that view parameters can be evaluated, which is
similar to Algorithm 1 and thus also ignored here.

A.2 Details of approaches: min case

As discussed in Section 4.4, finding the minimum-cost covering set
is an NP-complete problem, which we approximate using a greedy
algorithm [29] in the implementations. The details of how it is used
in TLA and SSLA are slightly different from that of SLA.

A.2.1  Details of TLA/SSLA. For atuple t in Qex;1(D) or Qexs2(D),
after applying Algorithm 6, a set of valid view mappings will be de-
rived. Then a well-known greedy algorithm for set cover is applied
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to find an approximate optimal solutions. The details are shown in
Algorithm 9

Algorithm 9: Greedy algorithm using cost function

Input :A set of valid view mapping M(t), a set of maximally covered relation
MCR(t).the view set V
Output: A set of view mappings C(¢)
/* create a set to contain the selected view mappings, the result
of which should be the covering set with minimal cost */
Initialize C(¢) = {}
Derive a set of maximally covered distinguished variables MCH(t)
while MCR(¢) # ® and MCH(¢t) # ® do
/x use Hu(M) and R(M) to denote the distinguished
variables and relations that view mapping M covers in
the query */
select M from M(¢) that can minimize
cost(M)
[Ho(M)(\ MCH(t)[+[R(M) () MCR(t)]
5 MCH(t) = MCH(t)\Hv(M), MCR(t) = MCR(t)\R(M)
6 add M to C(t)
7
8

w Nom

'S

end
return C(t)

A.2.2  Details of SLA. Given a query Q, to speed up the process
of finding its min-cost covering set we build a query lattice index
(L) which is, in the worst-case scenario, the power set (without
the empty set) of the relational subgoals of the query. Each node in
this index is a pair (key, value) where the key is a set containing
the subset of relational subgoals of Q and the value is a subquery.
Tops are the elements with no supersets and roots are the elements
without subsets. We can further prune the lattice index by remov-
ing nodes which contain relations that cannot be covered by any
views. Moreover, three lattice indexes partitioning the views (tables,
distinguished variables and lambdas) are built off-line and used for
fast-filtering the views in the reasoning step.

In Algorithm 10 we report the main steps of the greedy algo-
rithm. In this algorithm we use two further functions. The first
one is called getSubquery(Lgp, Ty ), which takes the pruned query
lattice index L and a set of tables Ty as input and returns a sub-
query which uses only the given tables. getSubquery gets the roots
of L, selects the nodes associated to queries which have at least
one table in Ty and returns the query associated with their lowest
common ancestor node. The other function is GL@1, implement-
ing the approach presented in [14], which checks if V is a valid
cover for Q. This is achieved by comparing the relations, predicates,
distinguished variables and foreign key constraints of V and Q.

B APPENDIX: DATASETS
B.1 DBLP-NSF dataset

Schema of relations. We show the parts of schema, which are
touched by the views and user queries used in the experiments:

dblp_paper(pkey, ptitle, pyear, pconf)

dblp_conference(ckey, cname, cdetail)

dblp_author(aname, pkey)

grants_awards(award_id, award, ef fective_date, expiration_date,

amount, instrument, org, of ficer, abstract, . ..)

paper_awards(award_id, pconf, paper, author, pyear, pkey)

Views. The views used in the experiments are defined below (not
all of the attributes are listed to save space).
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Algorithm 10: Greedy algorithm using cost function User queries. The queries used in the experiments are:
Input :the view set V, the pruned query lattice £¢, the pruned query Q(X) Q1(oid1,In) : —gper(oidl, . . .),interaction(oid2,lid2, . . .),ligand(lid1,In, .. .)
Output: A set of views C 0id1 = oid2, lid1 = lid2
; ?Q(i—@;get table set of O Q2(oid1,In) : —g.pcr(oid.l, ), interaction(oi.dZ, lid2., ), B
5 foreach V; €V do ligand(lid1, In, approv, . . . ), lid1 = lid2, approved = ‘t
4 /* Assign the weight to the views */; Q3(oid1,0n) : —object(oidl,on,...), interaction(oid2, lid2, pri_target, . ..),
5 wi — |Ty; \Tol+1; ligand(lid1, In, . . .),0id1 = 0id2, lid1 = lid2, pri_target = ‘t’
: :'V'Ldﬂe To #0and "V £ 0 do Q4(oid1,0n) : —o.bject(o%dl,on, ), intef’action.(oidZT lid2, median, L)
s foreach V; € 7V do ligand(lid2, ltype, . . . ), 0id1 = 0id2,lid1 = lid2,
5 /" Assign the cost to the view */; Itype = ‘Natural product’, median > 8.0
* = “CU{TVZVW; Q5(ty, oid1) : —object(oid1, .. .), interaction(oid2, ty, . . .),
1 end 0id1 = oid2, ty = ‘Agonist’
12 Choose the set of views V7 sharing the minimum cost c; Q6(Oid1, on) . —ligand(lidl, In,... )’ object(oidl, on,... ),
B Crmp = 0 interaction(0id2, lid2, . . . ), lid1 = lid2
14 foreach V; € Vr do ’ i i ’
15 Q; « getsubaquery(Lo, Tv,); oid1 = 0id2,In = ‘12R — HETE’
16 if GLO1(V;, Q) then Q7(oid, oname) : —object(oid, oname, in_gtip, . .. ), in_gtip = ‘t’
1; else Cemp = Cemp U Vis Q8(lid, Iname) : —ligand(lid, Iname, in_gtip, . . .), in_gtip = ‘t’
19 ‘ Ve—V\Vy
2 end end Views. The views used in the experiments are shown below:
2 if |Cpmp| > 1 then o AF.V1(F,N) : —Family(F,N, Ty, ...)
2 Choose the view V; € Cymp minimizing |Y; \ X| + |Av; adg|; AF1.V2(F1,N,R2) : —Family(F1,N,Ty,...),receptor2family(OID2, F2)
z: else CoCUVTo —To\Tv;, V = VA Vi further_reading(OID1, R1), reference(R2, title, . . .)
26 | C—CUVL T« To\Ty,, V « V\ Vi F1=F2,R1 =R2,0ID1 = OID2
27 end AF1.V3(F1,N,FN,SN) : —Family(F1,N, Ty, ... ), subcommittee(C1,F2,...),
28 end contributor(C2,FN,SN,...),F1=F2,C1=C2
2o return C AF1.V4(F1, N, overview) : —Family(F1,N,Ty,...)
grac_family_text(F2, overview,...),F1 = F2
ATy.V5(F,N) : —Family(F,N,Ty,...)
Apk . V1(pk, pt,pconf) : —dblp_paper(pk, pt, pyear, pconf) AF2.V6(F2,N,Tx, ant) : —Family(F1,N, Ty, . ..), introduction(F2, tx, ant, ...)
Ack.V2(ck,cn,detail)  : —dblp_conference(ck, cn, detail) F1=F2
Apy, cn.V3(pk, pt, py, cn): —dblp_paper(pk, pt, py, pconf), AOID1.V7(OID1, comments) : —receptor_basic(OID2, comments),
dblp_conference(ck, cn, detail), object(OID1,...),0ID1 = OID2
cn = pconf AOID1.V8(OID1, RID, comments) : —transduction(OID2, TID1, comments),
Aaid.V5(aid, award, abs, amt,ef f_date, ex_date) object(OID1, .. .), transduction_refs(TID2,RID)
: —grants_awards(aid, award, ef f _date, OID1 = OID2,TID1 = TID2
ex_date,amt, instr,org,of ficer,abs,...)  AOID1.V9(OID1, tissues, tech, SN, RID) : —species(S1,SN, . ..),
Aef f_date,org.V5(aid, award, abs,amt,ef f_date, ex_date) tissue_distribution(TD1, OID2, S2, tissues, tech, . .. ),
: —grants_awards(aid, award, ef f _date, tissue_distribution_re fs(TD2, RID)
ex_date, amt, instr,org,of ficer,abs, . ..) object(OID1,...),0ID1 = OID2,S1 = S2,TD1 = TD2
Apk.V6(pk, pt,pconf) : —dblp_paper(pk, pt, pyear, pconf) AOID1.V10(OID1, tissues, tech, SN, RID) : —species(S1,SN, . ..),
functional_assay(FA1,0ID2, S2, tissues, . .. ),
. . . . functional_assay_re fs(FA2, RID)
s s s et b cormn e PO
’ AOID1.V11(OID1, tissues, trans, amin, GN, GLN, Gloc, SN, RID)
ql(pt) : —dblp_paper(pk, pt, py, pcon f), dblp_con ference(ck, cn, detail), : —species(S1,SN, .. .), object(OID1, .. .),
cn = peonf,peonf = ‘VLDB’ structural_info(SI1,0ID2, S2, trans, amin, GN, GLN,
q2(pt) : —dblp_paper(pk, pt, py, pconf), dblp_conference(ck, cn, detail), Gloc, .. .), structural_info_refs(SI2,RID)
dblp_author(an, pk2), cn = pconf, pk = pk2, py = 2017,an = ‘X’ OID1 = OID2,S1 = S2,SI1 = SI2
g3(award) : —grants_awards(aid, award,...), AOID1.V12(OID1, ac) : —receptor_basic(OID2, comments, ac, . . . ),
paper_awards(aid2, pconf,...),aid = aid2, object(OID1, . ..),0ID1 = OID2
peonf = ‘VLDB’ ALID.V13(LID, N, appro, iup, comments)

: —ligand(LID, N, appro, iup, comments, . . .),
AOID.V14(OID, N) : —object(OID1,N, ...)
B.2 GtoPdb dataset
Schema of relations. The schema of GtoPdb can be found on line,
which is ignored here due to space limit.
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