
Big Data Analytics with Datalog Queries on Spark

Alexander Shkapsky Mohan Yang Matteo Interlandi Hsuan Chiu

Tyson Condie Carlo Zaniolo

University of California, Los Angeles

{shkapsky, yang, minterlandi, cherylautumn, tcondie, zaniolo}@cs.ucla.edu

ABSTRACT
There is great interest in exploiting the opportunity pro-
vided by cloud computing platforms for large-scale analyt-
ics. Among these platforms, Apache Spark is growing in
popularity for machine learning and graph analytics. De-
veloping efficient complex analytics in Spark requires deep
understanding of both the algorithm at hand and the Spark
API or subsystem APIs (e.g., Spark SQL, GraphX). Our
BigDatalog system addresses the problem by providing con-
cise declarative specification of complex queries amenable to
efficient evaluation. Towards this goal, we propose compila-
tion and optimization techniques that tackle the important
problem of efficiently supporting recursion in Spark. We
perform an experimental comparison with other state-of-
the-art large-scale Datalog systems and verify the efficacy
of our techniques and effectiveness of Spark in supporting
Datalog-based analytics.

Keywords
Datalog, Recursive Queries, Monotonic Aggregates, Spark

1. INTRODUCTION
Over the past decade, the demand for analytics has driven

both researchers and industry to build cluster-based data
analysis systems. Initially, the focus was on batch analysis
and both research and industry proposed systems [3, 20, 26,
35] and languages [32, 51] supporting this endeavour. Re-
cently, demand has exploded for analytics over graphs and
networks. This has led researchers to refocus on providing
scalable systems for machine learning and graph analytics.
Among these systems is Apache Spark [4, 62], which is at-
tracting a great deal of interest as a general platform for
large-scale analytics, particularly because of its support for
in-memory iterative analytics.

Some might think as a system designed for iterative appli-
cations, Spark would also be well suited for recursive appli-
cations such as shortest paths computations, and link and
graph structure analysis. However this ignores three decades

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915229

worth of recursive query evaluation and optimization tech-
niques. Spark’s support of recursion through iteration is in-
efficient: in an iterative Spark application, a new job is sub-
mitted for every iteration and thus the system has only lim-
ited visibility over an application’s entire execution. From a
programming perspective, the development of efficient recur-
sive applications in Spark requires the programmer to have
(1) deep understanding of the algorithm being implemented,
(2) extensive knowledge of the Spark API, and (3) mastery of
Spark internals. Nevertheless, Spark is a promising system
for recursive applications because it provides many features
essential for recursive evaluation, including dataset caching
and low task startup costs. Along those lines, to examine
how Spark can be made to efficiently support recursive appli-
cations we implement a recursive query language on Spark.
Specifically, we implement Datalog, a well known recur-
sive query language. New interest has recently re-emerged
around Datalog for a wide spectrum of knowledge-oriented
applications including distributed programming [25], AI [27],
and distributed data management [64], as well as analytics
on single-node systems [47, 49]. The fact that Datalog is
also well suited to declaratively support large-scale analytics
was recently recognized by [48, 54].

In this paper we present BigDatalog, a full Datalog lan-
guage implementation on Apache Spark developed under the
Deductive Application Language System (DeALS) project
[7] at UCLA. The DeALS project seeks to (1) design a uni-
fied logical language that enables the concise and declarative
expression of analytics [41, 42], and (2) provide a system
that optimizes execution over diverse platforms including
sequential implementations [49], multi-core machines [59],
and clusters (with BigDatalog). BigDatalog supports rela-
tional algebra, aggregation, and recursion, as well as a host
of declarative optimizations. It also exploits semantic exten-
sions for programs with aggregation in recursion [41, 42]. As
a result, the Spark programmer can now implement complex
analytics pipelines of relational, graph and machine learn-
ing tasks in a single language, instead of stitching together
programs written in different APIs, i.e., Spark SQL [16],
GraphX [33] and MLlib. Furthermore, BigDatalog employs
techniques to identify and evaluate recursive programs that
are decomposable and can be evaluated without communi-
cation [46, 57], leading to efficient distributed evaluations.

Motivating Example. As an example of the performance
improvement that BigDatalog achieves for the evaluation of
recursive queries consider Figure 1. This figure shows the
execution time required to compute a 100 million vertex pair
transitive closure of a graph using a highly optimized hand-

http://dx.doi.org/10.1145/2882903.2915229

BigDatalog

Spark

Myria

SociaLite

0 250 500 4500 4750 5000
Time (s)

22

340

424

4736

Figure 1: Example Recursive Query Performance.

written Spark program versus the BigDatalog version (clus-
ter specs. in Section 6). This example shows how BigDatalog
is both considerably better than its host framework and also
performant w.r.t. large-scale Datalog systems, namely,
Myria [54] and SociaLite [48]. This orders of magnitude
speed-up is achieved by employing the efficient evaluation
techniques and optimizations of Datalog in Spark.

Contributions. We make the following contributions:
• We design and implement the BigDatalog compiler. We

show how BigDatalog programs are compiled into recur-
sive physical plans for Spark.

• We present a parallel evaluation technique for distributed
Datalog evaluation on Spark. We introduce recursion
operators and data structures to efficiently implement
the technique in Spark.

• We propose physical planning and scheduler optimiza-
tions for recursive queries in Spark, including techniques
to evaluate decomposable programs.

• We present distributed monotonic aggregates, and ac-
companying evaluation technique and data structures to
support Datalog programs with aggregates on Spark.

• We provide experimental evidence that a generic declar-
ative system can compete with a special-purpose graph
system.

Spark as a runtime for BigDatalog. In addition to its
popularity and healthy ecosystem, Spark is a general data
processing system and provides a SQL API; therefore, it is
conducive to supporting a Datalog compiler and Datalog
evaluation. Moreover, Spark’s large and active user com-
munity helps to ease engineering effort. BigDatalog both
benefits from and is limited by Spark’s generality and over-
all system design principles. These tradeoffs will be dis-
cussed throughout the paper. Lastly, BigDatalog is designed
for general analytical workloads, and although we will focus
much of the discussion and experiments on graph queries and
recursive program evaluation, we do not claim that Spark is
the best platform for graph workloads in general. In fact,
BigDatalog can also be backed by other general dataflow sys-
tems, including Naiad [44] and Hyracks [20], and many of the
optimization techniques presented in this paper will also ap-
ply. This is the benefit of employing a declarative language,
and comparing and analyzing the performance tradeoffs be-
tween different backend systems and/or computation models
on various workloads would be an interesting future work.
Outline. In Section 2, we review Datalog and Spark. Sec-
tion 3 introduces BigDatalog and the distributed evaluation
technique used to evaluate BigDatalog programs, and shows
how BigDatalog programs are compiled into physical plans
for execution on Spark. Section 4 presents evaluation, phys-
ical plan and job scheduling optimizations. Section 5 de-
scribes our aggregate design and implementation. Section

6 presents experimental results, including comparisons of
BigDatalog with other large-scale Datalog systems. Sec-
tion 7 reviews related works. Section 8 presents conclusions
and plans for future work.

2. PRELIMINARIES
In this section, we first provide background on Datalog

and then briefly review Spark. We will then tie the two
together with an example and discuss challenges for using
Spark as a Datalog runtime.

2.1 Datalog
A Datalog program is a finite set of rules. A rule r

has the form h ← b1, . . . , bn, where h is the head of r and
b1, . . . , bn is the body. h and each bi are literals with the
form pi(t1, . . . , tj) where pi is a predicate and t1, . . . , tj are
terms which can be constants, variables or functions. We
say r is a rule of predicate h, unless it has an empty body,
and then it is a fact. The comma separating literals in a
body is a logical conjunction (AND). A successful assign-
ment of all variables in the body produces a fact for the
head’s predicate. Predicates are also considered relations
and WLOG throughout the paper we will use the terms
predicate and relation interchangeably. A query indicates
the desired predicate to evaluate. As a convention, predi-
cate and function names begin with lower case letters, and
variable names begin with upper case letters.

Datalog by Example. We continue our review of Data-
log with the Transitive Closure (TC) program. Program 1
recursively produces all pairs of vertices that are connected
by some path in a graph.

Program 1. Transitive Closure

r1 . tc(X, Y)← arc(X, Y).
r2 . tc(X, Y)← tc(X, Z), arc(Z, Y).

Program 1 is explained as follows. r1 is an exit rule be-
cause it serves as a base case of the recursion. In r1, the
arc predicate represents the edges of the graph – arc is a
base relation1. r1 produces a tc fact for each arc fact. r2
is a recursive rule since it has the tc predicate in both its
head and body. r2 will recursively produce tc facts from the
conjunction2 of previously produced tc facts and arc facts.
The query to evaluate TC is of the form tc(X,Y). Lastly, this
program uses a linear recursion in r2, since there is a single
recursive predicate literal, whereas a non-linear recursion
will have multiple recursive literals in its body. The number
of iterations required to evaluate Program 1 is, in the worst
case, equal to the longest simple path in the graph.

2.2 Datalog Evaluation
Datalog is a declarative language and therefore rules are

independent of the operators used to implement them (e.g.,
type of join used). Furthermore, rules are independent of
the particular evaluation order and technique used as long
as the monotonic w.r.t. set-containment3, and least fixpoint,

1For readers not familiar with Datalog, base relations can
be seen as tables stored in a relational DBMS.
2In relational terminology, tc is joined with arc on Z – which
is positionally interpreted as where the second argument of
tc equals the first argument of arc.
3With set-containment monotonicity, evaluation only grows
a predicate’s set of facts.

semantics of Datalog is maintained. Lastly, the order of
literals in a rule body provides no semantic meaning and
most implementations, including this work, evaluate literals
in a left-to-right fashion.

A näıve evaluation of Program 1 will execute r1 and then
repeatedly evaluate r2, joining arc facts with already dis-
covered tc facts in each iteration, until no new facts are
produced – a fixpoint has been reached. This approach will
inefficiently re-produce known facts in every iteration. We
can instead use the well-known Semi-Näıve evaluation (SN)
[18] which is efficient and produces no duplicates. Both
näıve and SN evaluations are bottom-up evaluation tech-
niques, which start from the initial database and perform a
repeated application of the rules until a fixpoint is reached.
Although SN is a centralized evaluation method, since it
serves as the basis for the evaluation method used in this
paper (cf. Section 3.3) we walk through an application of
SN using Program 1 as our target. To enable SN, a (sym-
bolic) rewriting [63] is applied to the rules of the original
program to produce a new recursive rule that maintains pro-
gram correctness. In the specific case of Program 1, the new
rule only evaluates facts of the recursive predicate (tc) pro-
duced during the previous iteration (indicated with δ) and
has the form tc(X, Y)← δtc(X, Z), arc(Z, Y).

Algorithm 1 Semi-Näıve Evaluation of Program 1

1: δtc := arc(X, Y)
2: tc := δtc
3: do
4: δtc′ := πX,Y(δtc(X, Z) 1 arc(Z, Y))− tc
5: tc := tc ∪ δtc′
6: δtc := δtc′

7: while (δtc 6= ∅)
8: return tc

Algorithm 1 shows the SN evaluation for Program 1. Note
that the rules have been converted to a relational operator
form (lines 1,4). In Algorithm 1 tc is the set of all facts
produced for the recursive predicate and δtc (δtc′) is the
set of facts produced for tc during the previous (current)
iteration. In SN, exit rules are evaluated first. The facts
of arc become the initial set of facts for both δtc (line 1)
and tc (line 2). Then, SN iterates until a fixpoint is reached
(line 7). Each iteration begins by joining δtc with arc and
projecting X, Y terms to produce candidate tc facts (line 4).
These facts are then set-differenced with tc to eliminate
duplicates and produce δtc′ (line 4), which is unioned into
tc (line 5) and becomes δtc (line 6).

2.3 Apache Spark
Spark provides a language-integrated Scala API enabling

the expression of programs as dataflows of transformations
(e.g., map, filter) on Resilient Distributed Datasets (RDD)
[62]. An RDD is a distributed shared memory abstraction
representing a partitioned dataset; RDDs are immutable,
and transformations are coarse-grained and thus apply to
all items in the RDD to produce a new RDD. Spark exe-
cutes transformations lazily: a job is submitted for execu-
tion only when actions such as count or reduce are called by
the user’s program. Once a job is submitted, the scheduler
groups transformations that can be pipelined (e.g., map over
a join) into a single stage. The stages composing a dataflow
are executed synchronously in a topological order: a stage
will not be scheduled until all stages it is dependent upon

1 var tc = sc.parallelize(graph, numPartitions)
2 val arcs = tc.map(x => (x._2, x._1)).cache()
3 var deltaTC = tc
4 do {
5 deltaTC = deltaTC.join(arcs)
6 .map(x => (x._2._2, x._2._1))
7 .subtract(tc).distinct().cache()
8 tc = tc.union(deltaTC).cache()
9 } while (deltaTC.count() > 0)
10 tc

Figure 2: Semi-näıve TC Spark Program.

have finished successfully. Between stages, Spark shuffles
the dataset to repartition it among the nodes of the cluster.
When a stage can be run, the scheduler creates a set of tasks
(i.e., execution units) consisting of one task for each input
partition, and launches the tasks on worker nodes.

RDDs can be explicitly cached by the programmer in
memory or on disk at workers. Fault tolerance is provided by
recomputing the sequence of transformations for the miss-
ing partition(s). Spark has libraries for structured data pro-
cessing (Spark SQL), stream processing (Spark Streaming),
machine learning (MLlib), and graph processing (GraphX).

Spark SQL. Spark’s structured data and relational process-
ing module, supports a subset of SQL. Spark SQL provides
logical and physical relational operators. Spark SQL physi-
cal operators use a pipelined iterator model and are imple-
mented as functions applied over the iterator from an up-
stream operator. The Catalyst framework [16] supports the
compilation and optimization of Spark SQL programs into
physical plans. In this work, we use and extend Spark SQL
operators. We also propose BigDatalog operators that are
implemented using the Catalyst framework so BigDatalog
can use Catalyst planning features on recursive plans.

Iterative Spark Programs. Spark iterative applications
are implemented by having a driver program iterate over a
sequence of transformations terminated by an action. Each
iteration is a new job that operates on cached RDD(s) pro-
duced by the previous iteration. Iteration terminates after a
user-defined number of iterations or based on a user-defined
predicate that determines when convergence is reached. Ex-
amples of algorithms supported by this approach include
PageRank, logistic regression, and the semi-näıve transitive
closure shown in Figure 2, and explained as follows. After
some initial setup including distributing the graph among
nodes of the cluster (line 1) and preparing the edges of the
graph for joins (line 2), the program enters a do-while loop.
It will iterate by executing a new job for each count ac-
tion, until an iteration produces no new results (line 9). In
each iteration, the program will join facts from the previous
iteration (deltaTC) with arcs (line 5), project the pair of
vertices (line 6), and eliminate duplicates (line 7). The set
of all previously produced pairs is then combined with the
newly produced pairs (line 8). Reused RDDs are cached.

Note the simplicity of the Datalog program in Program 1
compared to the Spark program in Figure 2. Spark requires
the programmer (1) be familiar with semi-näıve evaluation,
(2) directly express a dataflow’s physical plan composed of
properly ordered operations and (3) handle memory man-
agement (RDD caching) to obtain better performance. In-
stead, BigDatalog enables high-level specification amenable
to optimizations and rescues the programmer from extensive
coding, debugging and maintenance effort.

Challenges for Datalog on Spark. The three main chal-
lenges we face with implementing Datalog on Spark are:

1. Acyclic Plans: Supporting compilation, optimization
and evaluation of Datalog programs on Spark requires
features not currently supported. A recursive, rule-based
syntax requires a different compiler front-end than Spark
SQL language queries. Spark SQL lacks recursion opera-
tors, operators are designed for acyclic use, and the Cata-
lyst optimizer is targeted for non-recursive plans.

2. Scheduling: Spark’s synchronous stage-based sched-
uler issues tasks for a stage only after all tasks of the pre-
vious stages have completed. For (monotonic) Datalog
programs, like the ones studied in this paper, this can be
seen as unnecessary coordination because monotonic Dat-
alog programs are eventually consistent [15, 34].

3. RDD Immutability & Memory Utilization: An
iteration of recursion will produce a new RDD to repre-
sent the updated recursive relation. This RDD will con-
tain both new facts and all the facts produced in earlier
iterations, which are already contained in earlier RDDs.
If poorly managed, recursive applications on Spark can
experience memory utilization problems.

3. BIGDATALOG
BigDatalog programs are expressed as Datalog rules, then

compiled, optimized and executed on Spark. BigDatalog will
manage the persistence of datasets and make partitioning
decisions. BigDatalog supports recursion, non-monotonic ag-
gregation (min, max, sum, count, average) and aggregation
in recursion with monotonic aggregates (Section 5).

3.1 Benchmark Programs
In this paper, we focus on monotonic (positive) programs

which include classical recursive queries from the literature
as well as aggregate queries, some of which are long stud-
ied (e.g., shortest paths) and others studied more recently
(connected components) [48, 54].

Classical Recursive Queries

• Transitive Closure (TC)

• Same Generation (SG) identifies pairs of vertices
where both are the same number of hops from a com-
mon ancestor.

• Reachability (REACH) produces all nodes connected
by some path to a given source node.

Aggregation in Recursion Queries

• Single-Source Shortest Paths (SSSP) computes the
length of the shortest path from a source vertex to each
vertex it is connected to.

• Connected Components (CC) identifies connected
components in the graph.

3.2 BigDatalog API By Example
The program snippet shown in Figure 3 computes the size

of the transitive closure of the graph using the BigDatalog
API for Spark. In a driver program, the user first gets a
BigDatalogContext (line 1), which wraps the SparkContext
(sc) – the entry point for writing and executing Spark pro-
grams. The user then specifies a database schema definition
for base relations and program rules (lines 2-4). Lines 3-
4 implement TC from Program 1. The database definition
and rules are given to the BigDatalog compiler which loads

1 val bdCtx = new BigDatalogContext(sc)
2 val program = "database({arc(X:Integer, Y:Integer})."
3 + "tc(X,Y) <- arc(X,Y)."
4 + "tc(X,Y) <- tc(X,Z), arc(Z,Y)."
5 bdCtx.datalog(program)
6 bdCtx.datasource("arc", filePath)
7 val tc = bdCtx.query("tc(X,Y).")
8 val tcSize = tc.count()

Figure 3: BigDatalog Program for Spark.

the database schema into a relation catalog (line 5). Next,
the data source (e.g., local or HDFS file path, or RDD) for
the arc relation is provided (line 6). Then, the query to
evaluate is given to the BigDatalogContext (line 7) which
compiles it and returns an execution plan used to evaluate
the query. As with other Spark programs, evaluation is lazy
– the query is evaluated when count is executed (line 8).

3.3 Parallel Semi-naïve Evaluation on Spark
BigDatalog programs are evaluated using a parallel version

of SN we call Parallel Semi-näıve evaluation (PSN). PSN
is an execution framework for a recursive predicate and it
is implemented using RDD transformations. Since Spark
evaluates synchronously, PSN will evaluate one iteration at
a time, where an iteration will not begin until all tasks from
the previous iteration have completed.

The two types of rules for a recursive predicate – the exit
rules and recursive rules – are compiled into separate physi-
cal plans (plans) which are then used in the PSN evaluator.
Physical plans are composed of Spark SQL and BigDatalog
operators that produce RDDs. The exit rules plan is first
evaluated once, and then the recursive rules plan is repeat-
edly evaluated until a fixpoint is reached. Note that as with
SN, PSN will also evaluate symbolically rewritten rules (e.g.,
tc(X, Y)← δtc(X, Z), arc(Z, Y).).

Algorithm 2 is the psuedocode for the PSN evaluator. The
exitRulesPlan (line 1) and recursiveRulesPlan (line 5)
are plans for the exit rules and recursive rules, respectively.
We use toRDD() (lines 1,5) to produce the RDD for the plan.
Each iteration produces two new RDDs – an RDD for the
new results produced during the iteration (delta) and an
RDD for all results produced thus far for the predicate (all).
The updateCatalog (lines 3,8) stores new all and delta

RDDs into a catalog for plans to access. The exit rule plan
is evaluated first. The result is de-duplicated (distinct)
(line 1) to produce the initial delta and all RDDs (line 2),
which are used to evaluate the first iteration of the recursion.
Each iteration is a new job executed by count (line 9). First,
the recursiveRulesPlan is evaluated using the delta RDD
from the previous iteration. This will produce an RDD that

Algorithm 2 PSN Evaluator with RDDs

1: delta = exitRulesPlan.toRDD().distinct()
2: all = delta
3: updateCatalog(all, delta)
4: do
5: delta = recursiveRulesPlan.toRDD()
6: .subtract(all).distinct()
7: all = all.union(delta)
8: updateCatalog(all, delta)
9: while (delta.count() > 0)

10: return all

is set-differenced (subtract) with the all RDD (line 6) and
de-duplicated to produce a new delta RDD. With lazy eval-
uation, the union of all and delta (line 7) from the previous
iteration is evaluated prior to its use in subtract (line 6).

We have implemented PSN to cache RDDs that will be
reused, namely all and delta, but we omit this from Al-
gorithm 2 to simplify its presentation. Lastly, in cases of
mutual recursion, when two or more rules belonging to dif-
ferent predicates reference each other (e.g., A ← B, B ←
A), one predicate will “drive” the recursion with PSN and
the other recursive predicate(s) will be an operator in the
driver’s recursive rules plan.

3.4 Compilation and Planning
For BigDatalog we have extended the DeALS compiler [49,

50], which was originally designed for sequential program
evaluation, and we optimized and re-targeted it for paral-
lel, distributed bottom-up evaluation of Datalog programs.
The input for the compiler is a database schema definition,
a set of rules and a query. From this, the compiler cre-
ates a logical plan for the program, which is optimized using
database techniques such as projection pruning. The logical
plan for a non-recursive BigDatalog query is mapped into a
Spark SQL plan and executed accordingly. Logical plans for
recursive queries are converted to BigDatalog physical plans.

3.4.1 Logical Plans
Here, we use Program 1 (TC) to describe how the compiler

produces a logical plan. Given the query tc(X,Y), the pro-
gram is first compiled into a Predicate Connection Graph
(PCG) to identify the exit rules (r1) and recursive rules
(r2) of the tc recursive predicate. The PCG is a type of
AND/OR tree where OR nodes represent predicate occur-
rences in rule bodies and AND nodes represent rule heads
[17]. From the PCG, the logical query plan is produced by
mapping it into a tree of relational and recursion (i.e., fix-
point) operators. A recursion operator has two child logical
(sub)plans: one plan for the predicate’s exit rules and the
other for the predicate’s recursive rules. Figure 4(a) is the
logical plan produced by the BigDatalog compiler for Pro-
gram 1. The left side of Figure 4(a) is the exit rules plan
with only the arc relation, representing r1. The right side of
Figure 4(a) is the recursive rules plan made up of relational
operators to produce one iteration of r2.

Program 2. Same Generation

r1 . sg(X, Y)← arc(P, X), arc(P, Y), X ! = Y.
r2 . sg(X, Y)← arc(A, X), sg(A, B), arc(B, Y).

Consider Program 2, the same generation (SG) program.
The exit rule r1 produces all X,Y pairs with the same par-
ents (i.e. siblings) and the recursive rule r2 produces new
X,Y pairs where both X and Y have parents of the same gen-
eration. For PSN, r2 is (symbolically) rewritten as sg(X, Y)
← arc(A, X), δsg(A, B), arc(B, Y). The left side of Figure 4(b)
is the exit rules plan with a self-join of arc to find siblings.
The right side of Figure 4(b) is the recursive rules plan which
includes a three-way join of δsg and arc.

3.4.2 Physical Plans
BigDatalog translates logical plans into physical plans com-

prised of Spark SQL and BigDatalog physical operators. Like
Spark SQL operators, BigDatalog operators use the Spark
SQL Row type. Most logical-to-physical operator mapping is

(a) TC (b) SG

Figure 4: BigDatalog Logical Plans.

straightforward, however recursion, join and shuffle opera-
tors require discussion.

Recursion Operators. The Recursion Operator (RO) is a
special driver operator that runs on the master and executes
PSN, i.e., the psuedocode from Algorithm 2. An RO has
two child physical (sub)plans, the Exit Rules Plan (ERP)
and the Recursive Rules Plan (RRP). A Recursive Relation
operator represents a recursive predicate in the RRP and
produces the recursive relation when evaluated (i.e., the plan
version of a recursive predicate body literal).

Join Operators. BigDatalog uses binary hash join opera-
tors. We convert a multi-way join from logical plans into a
hierarchy of binary join operators, in a left-to-right fashion.
In a linear recursion, where only one join input is a recursive
relation, the non-recursive input is loaded into lookup tables
and the recursive relation is streamed. For instance, from
the logical plan for TC in Figure 4(a), the RRP will have a
join where δtc is streamed and arc is loaded into lookup ta-
bles. To help explain our approach for non-linear recursions,
we use the following non-linear program. In this program,
r2 creates new tc facts of the form (X, Y) by joining tc facts
of the form (X, Z) with tc facts of the form (Z, Y).

Program 3. Non-Linear Transitive Closure

r1 . tc(X, Y)← arc(X, Y).
r2 . tc(X, Y)← tc(X, Z), tc(Z, Y).

In Program 3, r2 will be (symbolically) rewritten for SN,
as tc(X, Y) ← δtc(X, Z), tc(Z, Y). Since both inputs to the
join are recursive relations, δtc will be loaded into lookup
tables and tc will be streamed. We choose this approach
because loading the smaller of the two into lookup tables is
less expensive and after a few iterations, tc is likely to be
much larger than δtc.

Shuffle Operators. After mapping the logical operators
into physical operators, the last step to produce a physical
plan for execution is to add shuffle operators for distributed
evaluation. Shuffle operators are used to repartition the
dataset when there is a mismatch between an operator’s re-
quired input partitioning and a child operator’s output par-
titioning. For example, a shuffle operator is needed to repar-
tition an input to a join if the input is not partitioned on the
join keys. We use a Catalyst feature to analyze the physical
plan and add shuffle operators where needed. We use hash
partitioning and a static number of partitions throughout
evaluation. Future work is to investigate dynamically ad-
justing the number of partitions during evaluation.

Example Plans. The physical plans produced for Program
1 (TC) and Program 2 (SG) are displayed in Figure 5(a)
and 5(b), respectively. Using Figure 5(a) as our point of

(a) TC (b) SG

Figure 5: BigDatalog Physical Plans.

reference, we explain how our operators from above are used
in plans. The root of the plan is the RO for the tc recursive
predicate. In the RRP, δtc is a Recursive Relation and
when evaluated will produce tc’s facts from the previous
iteration. Both inputs to the binary hash join are shuffled.
The subscript Z, [N] indicates the partitioning key is the Z

argument (from the rule), and there will be N partitions.
Here Z is the join argument so that tuples of arc and δtc
having the same key will be co-located on the same worker.

4. OPTIMIZATIONS
This section presents optimizations to improve the perfor-

mance of BigDatalog programs. Details on the datasets used
in experiments in this section can be found in Section 6.

4.1 Optimizing PSN
As shown with Algorithm 2, PSN can be implemented

with RDDs and transformations such as subtract, distinct
and union. However, using standard RDD transformations
is inefficient because each iteration the results of the recur-
sive rules are set-differenced with the entire recursive rela-
tion (line 6 in Algorithm 2), which is growing each iteration,
and thus expensive data structures must be created each
iteration. We propose instead to use the SetRDD, a spe-
cialized RDD for storing distinct Rows and tailored for set
operations needed for PSN. Each partition of a SetRDD is
a set data structure.

Monotonicity and RDD Immutability. We can ap-
ply an optimization enabled by Datalog set-containment
semantics to efficiently produce a new SetRDD from the
union transformation. Although an RDD is intended to be
immutable, we make SetRDD mutable under the union op-
eration. The union mutates the set data structure of each
SetRDD partition and outputs a new SetRDD comprised of
these same set data structures. If a task performing union
fails and must be re-executed, this approach will not lead
to incorrect results because union is monotonic and facts
can be added only once. This design saves system memory
because only one set exists per partition across all iterations.

Table 1 displays the results of evaluating TC and SG with
both PSN and PSN with SetRDD. PSN with SetRDD out-
performs PSN significantly in all cases.

Table 1: PSN vs. PSN with SetRDD Performance

Time (s)
TC SG

Tree17 Grid150 G10K Tree11 Grid150 G10K

PSN 244 OOM 208 OOM 230 1129

PSN with SetRDD 41 134 20 59 61 130

(a) TC (b) SG

Figure 6: PSN with SetRDD Physical Plans.

4.2 Partitioning
The initial version of PSN used RDD transformations

(e.g., distinct, subtract) that performed the necessary
shuffling operations. That approach was sufficient to pro-
duce a correct result, but could be inefficient to evaluate.
Now, SetRDD’s diff and union transformations are de-
signed to require properly partitioned input (i.e., they will
not shuffle). Therefore, none of the transformations used
in PSN will repartition inputs so shuffle operators need to
be placed into ERP and RRP to produce properly par-
titioned output for PSN transformations. This approach
allows for a simplified and generalized PSN evaluator and
brings the insertion of shuffle operators to the workflow un-
der the control of the BigDatalog compiler. With full control
over shuffle operator placement, (i.e., communication deci-
sions), BigDatalog can produce very efficient evaluations.

Earlier Datalog research showed a good partitioning strat-
egy (i.e., the arguments on which to partition) for a recursive
predicate was important for efficient parallel evaluation [23,
30, 31, 56]. In general, we seek a partitioning strategy that
limits shuffling. The default partitioning strategy employed
by BigDatalog is to partition the recursive predicate on the
first argument. Now we can produce plans for PSN that
will terminate with a shuffle operator if the output of the
plan does not match the partitioning strategy of the pred-
icate. Figure 6(a) is the plan for Program 1 for PSN with
SetRDD. With the recursive predicate (tc) partitioned on
the first argument notice how both the ERP and RRP ter-
minate with a shuffle operator.

User-Defined Partitioning. In the plan in Figure 6(a)
δtc requires shuffling prior to the join since it is not parti-
tioned on the join key (Z) because the default partitioning
is the first argument (X). However, if the second argument
were instead made the default, the inefficiency with Fig-
ure 6(a) would be resolved but then other programs such as
SG in Figure 6(b) would suffer (δsg would require a shuffle
prior to the join). Therefore, to support programs where
the default partitioning will lead to inefficient execution,
BigDatalog allows the user to define a recursive predicate’s
partitioning via a configuration option. For instance, by
overriding the default partitioning and making tc’s second
argument the partitioning strategy, the shuffle for δtc be-
fore the join in Figure 6(a) will not be inserted to the plan.
Table 2 shows the results of TC evaluated with the plan in
Figure 6(a) versus the same plan, but using the second ar-
gument as tc’s partitioning strategy. In fact, on all graphs
from Table 6, the plan using the second argument matched
or outperformed the other.

Table 2: Comparison of TC with Different Partitioning

Time (s) Tree17 Grid250 G10K

1st Argument 41 370 20

2nd Argument 26 265 19

Table 3: Join Optimizations for Linear Recursion

Time (s)
TC SG

Tree17 Grid250 Tree11 Grid250

Shuffle join no caching 26 265 59 107

Shuffle join caching 17 196 56 81

Broadcast join 53 197 45 54

4.3 Join Optimizations for Linear Recursion
Input Caching. Since we use a static number of partitions
and because non-recursive inputs do not change during eval-
uation, for a shuffle join implementing a linear recursion,
the non-recursive join input can be cached. This can lead
to significant performance improvement since input parti-
tions no longer have to be shuffled and loaded into lookup
tables prior to the join each iteration. Table 3 shows the
improved performance of caching. For TC on Tree17, the
time for shuffling and loading lookup tables each iteration is
significant even though there are only 17 iterations. Grid250
also benefits from caching because although the dataset is
smaller, evaluation requires 500 iterations.

Broadcast Joins. For linear recursions, instead of shuffle
joins, each partition of a recursive relation can be joined
with an entire relation (broadcast join4). For both types of
joins, the non-recursive input is loaded into a lookup table.
For a broadcast join, the cost of loading the entire relation
into a lookup table is amortized over the recursion because
the lookup table is cached and then reused every iteration.

Figure 7 shows an RRP for Program 2 (SG) where the
three-way join from the logical plan (Figure 4(b)) has been
converted to a two-level broadcast join. In the event that
a broadcast relation is used multiple times in a plan, as
in Figure 7, BigDatalog will broadcast it once and share it
among all broadcast join operators joining the relation.

Table 3 shows the results of using broadcast joins com-
pared to shuffle joins for TC and SG. SG benefits on both
graphs from using broadcast joins because three shuffles are
eliminated from the plan and these graphs require mini-
mal broadcast time. However, broadcast joins proved in-
efficient for Tree17 for TC — the job to load and broadcast
the lookup table takes as long as the entire execution using
shuffle joins. Nevertheless, broadcast join is the default join
operator for linear recursion, and shuffle join can be selected
via configuration setting.

4.4 Decomposable Programs
Previous research on parallel evaluation of Datalog pro-

grams determined some programs are decomposable and thus
evaluable in parallel without redundancy (a fact is only pro-
duced once) and without processor communication or syn-
chronization [57]. Techniques for evaluating decomposable
programs are appealing for BigDatalog because data-parallel
systems like Spark can scale to large numbers of cpu cores.
Furthermore, mitigating the cost of synchronization and shuf-
fling can lead to significant execution time speedup. How-
ever, even if a program is decomposable, the system still

4Broadcast joins are supported with Spark’s broadcast vari-
able infrastructure.

Figure 7: SG with
Broadcast Joins.

Figure 8: Decomposable
TC Plan.

needs to be able to produce physical plans to evaluate it as
such. We consider a BigDatalog physical plan decomposable
if RRP has no shuffle operators.

Program 1 (linear TC) is a decomposable program [57]
however, its physical plan shown in Figure 6(a) has shuf-
fle operators in RRP. BigDatalog will produce a decompos-
able physical plan for Program 1 by partitioning tc on the
first argument and using a broadcast join. The partitioning
strategy (first argument) divides the recursive relation so
each partition can be evaluated independently and without
shuffling, and the broadcast join allows each partition of the
recursive relation to join with the entire arc base relation.
Figure 8 is the decomposable physical plan for Program 1.
Since we do not pre-partition base relations, the ERP has
a shuffle operator to repartition the arc base relation into
N partitions by arc’s first argument X. Table 4 displays the
execution times using the shuffle join plan and the decom-
posable plan (Figure 8). With the exception of Tree17, the
decomposable plan greatly outperforms.

Table 4: Shuffle vs. Decomposable TC Plans

Time (s) Tree17 Grid250 G10K G10K-0.01 G20K

Shuffle 26 265 19 121 101

Decomposable 49 55 7 22 19

Identifying Decomposable Programs. BigDatalog iden-
tifies decomposable programs via syntactic analysis of pro-
gram rules using techniques presented in the generalized piv-
oting work [46]. The authors of [46] show that the existence
of a generalized pivot set (GPS) for a program is a suffi-
cient condition for decomposablility and present techniques
to identify GPS in arbitrary Datalog programs. We have
implemented the techniques described in [46] to determine
the GPS for BigDatalog programs. When a BigDatalog pro-
gram is submitted to the compiler, the compiler will apply
the generalized pivoting solver to determine if the program’s
recursive predicates have GPS. If they indeed do, we now
have a partitioning strategy and in conjunction with broad-
cast joins we efficiently evaluate the program with these set-
tings. For example, Program 1 has a GPS which says to
partition the tc predicate on its first argument.

Note that this technique is enabled by using Datalog
and allows BigDatalog to analyze the program at the logical
level. The Spark API alone is unable to provide this support
since programs are written in terms of physical operations.

4.5 Job Optimizations
Lineage. Since RDDs produced during an iteration are
input for the next iteration, RDD lineage can grow long for

Figure 9: Program 1 (TC) Scheduling Options. ShuffleMap-
Stages are orange; ResultStages are gray; FixpointStages are
blue. Job 0 broadcasts the arc base relation.

recursive programs. Since lineage is inspected frequently
during execution, for long running recursions we found this
can result in a stack overflow. The standard solution is
to checkpoint the RDD which clears the lineage after the
RDD is written to disk. To optimize this, we implement a
technique for cached RDDs that will clear lineage, but does
not checkpoint. We sacrifice some degree of fault tolerance in
favor of execution time performance, although this technique
can still utilize cache replication. Otherwise, we leverage the
standard fault tolerance mechanisms provided by Spark.

Scheduler-Aware Recursion. With PSN as shown in
Algorithm 2, the scheduler is unaware that subsequent iter-
ations could be required and therefore is unable to optimize
recursive execution. To address this, we investigate pushing
the recursion into the scheduler so recursive queries are sup-
ported as Single-Job PSN. We extend the Spark scheduler to
use a special stage for recursion (FixpointStage) and support
a fixpoint job, which is different from normal jobs in that 1)
each iteration, the scheduler evaluates a new RDD over the
previous iteration’s results and 2) the scheduler will issue
iterations until evaluation of the RDD results in an empty
RDD indicating a fixpoint has been reached. We now refer
to the original PSN (job per iteration) as Multi-Job PSN.
To support checkpointing an iteration in Single-Job PSN,
checkpointing is also pushed into the scheduler.

Optimizing Single-Job PSN. With Single-Job PSN, the
scheduler is now aware that multiple iterations could be re-
quired. If a program is partitioned such that it does not
require shuffling in the recursion, the scheduler will not cre-
ate stages with shuffle operators. When the scheduler de-
tects this situation, it configures the stage’s tasks to iterate
on workers and execute the same RDD until a fixpoint is
reached. To support reusing the same RDD, the RDD par-
titions in the local cache from the previous iteration are
overwritten with the RDD partitions produced during the
current iteration. We call this Single-Job PSN Reuse. This
approach eliminates the cost of scheduling and task creation
for subsequent iterations. Figure 9 depicts the three dif-
ferent scheduling approaches for Program 1 (TC) evaluated
with the plan from Figure 8.

Table 5 displays results of the execution times of TC and
SG using the Multi-Job PSN, Single-Job PSN and Single-Job
PSN Reuse. For datasets that require many iterations, such
as Grid250, the performance improvement is substantial.

Table 5: Comparison of PSN Job Strategies

Time (s)
TC SG

Tree17 Grid250 Tree11 Grid250

Multi-Job PSN 51 111 53 75

Single-Job PSN 49 55 53 53

Single-Job PSN Reuse 45 26 N/A N/A

Note that this scheduler optimization is used on decom-
posable programs. Being able to identify a decomposable

program (i.e., generalized pivoting) is independent from this
optimization and thus this can be used in general to evaluate
a decomposable plan, not just by BigDatalog.

5. AGGREGATES
BigDatalog supports non-monotonic aggregates (e.g., tra-

ditional SQL aggregates) min, max, sum, count, avg. As an
example, consider Program 4, the BigDatalog program which
counts the triangles in a graph, an important program in net-
work analysis. In this non-recursive program, r1 performs
self-joins of arc to produce triangle occurrences which are
then counted by r2. Lastly, note that although this program
is expressed as two Datalog rules, this program is a 50+
line GraphX program.

Program 4. Triangle Counting

r1 . triangles(X, Y, Z)← arc(X, Y), X < Y, arc(Y, Z), Y < Z, arc(Z, X).
r2 . count triangles(count〈 〉)← triangles(X, Y, Z).

However, non-monotonic aggregates cannot be used in re-
cursion. Researchers have recently proposed aggregates that
are monotonic w.r.t. set containment, the same monotonic-
ity used by standard Datalog, meaning these aggregates
can be used in recursive rules and evaluated using techniques
such as SN and magic sets [41, 42]. We have presented a se-
quential version of these aggregates in [49], whereas in this
paper, we present a distributed version of the aggregates.

BigDatalog supports four monotonic aggregates - mmin,
mmax, mcount, msum. The declarative semantics allows the
aggregates inside the recursion so long as monotonicity w.r.t.
set containment is maintained. Therefore, during evaluation
the monotonic aggregates can produce new higher (mmax,
mcount, msum) or lower (mmin) values with each input fact
and thus an outer non-monotonic aggregate (min or max) is
necessary to produce only the final value. An example of
this can be seen in Program 5, the single-source shortest
paths program (SSSP). Note, BigDatalog uses aggregates
functions in rule heads with the non-aggregate arguments
as the grouping arguments.

Program 5. Single-Source Shortest Paths

r1 . sssp2(Y, mmin〈D〉)← Y = 1, D = 0.
r2 . sssp2(Y, mmin〈D〉)← sssp2(X, D1), arc(X, Y, D2), D = D1+ D2.
r3 . sssp(X, min〈D〉)← sssp2(X, D).

The SSSP program computes the length of the shortest
path from a source vertex to all vertices it is connected to.
This program uses a mmin monotonic aggregate. Here the
arc predicate in r2 denotes edges of the graph (X, Y) with
edge cost D2. r1 seeds the recursion with starting vertex
1. Then, r2 will recursively produce all new minimum cost
paths to a node Y though node X. Lastly, r3 produces only the
minimum cost path for each node X, however in our actual
implementation, we do not have to evaluate r3 since at the
completion of the recursion, sssp2’s relation will contain the
shortest path from 1 to each vertex.

Evaluation and Implementation. Programs with mono-
tonic aggregates in recursive rules are evaluated with an ag-
gregate version of PSN we call Parallel Semi-naive - Ag-
gregate (PSN-A). Compared with PSN, PSN-A is a simpler
evaluator. Since new facts are only produced when a greater
(mmax, mcount, msum) or lesser (mmin) value than the previous
value for the (aggregate) group is produced, de-duplication is

unnecessary. Furthermore, the union is unnecessary because
new results are added to the aggregate relation during ag-
gregate evaluation. We implement PSN-A in an aggregate
version of an RO. Also, we use a specialized RDD called
an AggregateSetRDD, in which each partition is a key value
map where each entry represents a unique group and its cur-
rent value. Caching AggregateSetRDD avoids the expense of
reloading key value maps each iteration for aggregate. Ad-
ditionally, since the aggregate functions are monotonic, as
with SetRDD’s union operation, AggregateSetRDD is mu-
table under aggregate evaluation. AggregateSetRDD will
reference the same maps as its creator. Should a task fail
during evaluation, any changes to the aggregate partition
will not result in incorrect results since a value can only be
updated if it is higher (mmax, mcount, msum) or lower (mmin)
than previously computed values.

6. EXPERIMENTS
Experimental Setup. Our experiments are conducted on
a 16 node cluster. Each node runs Ubuntu 14.04 LTS and
has an Intel i7-4770 CPU (3.40GHz, 4 core/8 thread), 32GB
memory and a 1 TB 7200 RPM hard drive. Nodes of the
cluster are connected with 1Gbit network. Our implemen-
tation is in Spark 1.4.0 and uses Hadoop 1.0.4.

Table 6: Parameters of Synthetic Graphs

Name Vertices Edges TC SG

Tree11 71,391 71,390 805,001 2,086,271,974

Tree17 13,766,856 13,766,855 237,977,708

Grid150 22,801 45,300 131,675,775 2,295,050

Grid250 63,001 125,500 1,000,140,875 10,541,750

G5K 5,000 24,973 24,606,562 24,611,547

G10K 10,000 100,185 100,000,000 100,000,000

G10K-0.01 10,000 999,720 100,000,000 100,000,000

G10K-0.1 10,000 9,999,550 100,000,000 100,000,000

G20K 20,000 399,810 400,000,000 400,000,000

G40K 40,000 1,598,714 1,600,000,000 1,600,000,000

G80K 80,000 6,399,376 6,400,000,000 6,400,000,000

Table 7: Parameters of Real World Graphs

Name Vertices Edges Source

livejournal 4,847,572 68,993,773 [9, 58]

orkut 3,072,441 117,185,083 [10, 58]

arabic 22,744,080 639,999,458 [5, 19]

twitter 41,652,231 1,468,365,182 [36]

Datasets. Table 6 shows the synthetic graphs used for TC
and SG experiments. We use these graphs to understand
how BigDatalog evaluates TC and SG on graphs exhibiting
specific structural properties. Tree11 and Tree17 are trees
of height 11 and 17 respectively, and the degree of a non-
leaf vertex is a random number between 2 and 6. Grid150

is a 151 by 151 grid while Grid250 is a 251 by 251 grid.
The Gn-p graphs are n-vertex random graphs (Erdős-Rényi
model) generated by randomly connecting vertices so that
each pair is connected with probability p. Gn-p graph names
omitting p use default probability 0.001. Note that although
these graphs appear small in terms of number of vertices and
edges, TC and SG are capable of producing result sets many
orders of magnitude larger than the input dataset, as shown
by the last two columns in Table 6.

We perform experiments on REACH (Program 7), CC (Pro-
gram 8) and SSSP (Program 5) using both real world and

synthetic graphs. The real world graphs are displayed in Ta-
ble 7. The synthetic graphs, RMAT-n for n ∈ {1M, 2M, 4M,
8M, 16M, 32M, 64M, 128M}, are generated by the RMAT
graph generator [8] with parameters (a, b, c) = (0.45, 0.25,
0.15). RMAT-n has n vertices and 10n directed edges with
uniform integer weights range from [0, 100).

6.1 Benchmark Comparison
In this section, we report experimental results over the

benchmark programs of Section 3.1. We compare BigDatalog
with other distributed Datalog systems, namely Myria [54]
and SociaLite [48], and with options available in the Spark
stack. The purpose of this comparison is two-fold. Firstly,
it shows how the enhancements and optimizations proposed
in this paper enable Spark to serve as an efficient runtime
for Datalog. Secondly, it shows how our BigDatalog imple-
mentation performs w.r.t. to other Datalog systems.

For each system, one machine was dedicated as the mas-
ter and each of the 15 worker nodes was allowed 30 GB
RAM and 8 CPU cores (120 total cores). Myria was config-
ured with one instance of Myria and PostgreSQL per node,
since each node has one disk, which was confirmed as ap-
propriate by an author of [54]. For Spark programs and
BigDatalog, we evaluate with one partition per available
CPU core. BigDatalog uses Single-Job PSN with SetRDD.

6.1.1 TC and SG Experiments
For TC, BigDatalog uses Program 1 with the decomposed

plan from Figure 8. We use the Program 1 equivalent in
Myria and Socialite, and a hand-optimized semi-näıve pro-
gram written in the Spark API which is implemented to
minimize shuffling. For SG, BigDatalog uses Program 2 with
the plan with broadcast joins whose RRP is shown in Figure
7. We use the Program 2 equivalent in Myria and Socialite,
and we also implement a hand-optimized semi-näıve pro-
gram in the Spark API that attempts to minimize shuffling.

BigDatalog is the only system that finishes the evalua-
tion for TC and SG on all graphs in Table 6, except SG on
Tree17 since the size of the result is larger than the total
disk space of the cluster. Figure 10 shows the evaluation
time for all four systems, while the results for graphs that
only BigDatalog is capable of handling are not displayed. We
now go into details for each program.

TC. BigDatalog has the fastest execution time on six of the
seven graphs for TC; on four of the graphs it outperforms
the other systems by an order of magnitude. The BigDatalog
plan only performs an initial shuffle of the dataset, and then
evaluates the recursion without shuffling, and proves very ef-
ficient. In the case of Grid150, which is the smallest graphs
used in this experiment, in terms of both edges and tran-
sitive closure size, Myria outperforms BigDatalog. This is
explained as the evaluation requires many iterations (300),
where each iteration performs very little work, and therefore
the overhead of scheduling in BigDatalog takes a significant
portion of execution time. Note however that if BigDatalog
instead evaluates Grid150 with Single-Job PSN Reuse (Sec-
tion 4.5), the execution time drops to thirteen seconds.

The Spark program is also affected by the overhead of
scheduling on Grid150 and Grid250, which requires 300 and
500 iterations, respectively, but also suffers memory utiliza-
tion issues related to dataset caching and therefore runs out
of memory. For the remaining five graphs, the Spark pro-
gram is slower compared with BigDatalog due to the over-

 1

 10

 10
2

 10
3

 10
4

 10
5

Tree17 Grid150 Grid250 G10K G10K-0.01 G10K-0.1 G20K Tree11 Grid150 Grid250 G10K G10K-0.01

T
im

e
 (

s
)

transitive closure same generation

4
9

2
5 5

5

7

2
2

1
4
9

1
9 5

3

3
4 5
3 7
2

3
9
2
3

2
4
4

O
u
t
o
f
M

e
m

o
ry

O
u
t
o
f
M

e
m

o
ry

6
3

3
4
0

4
3
5
4

3
7
1

O
u
t
o
f
M

e
m

o
ry 1

9
5
5

O
u
t
o
f
M

e
m

o
ry

4
3
0

O
u
t
o
f
M

e
m

o
ry

9
1

2
2

6
8
6

5
0

4
2
4

4
8
0
7

O
u
t
o
f
M

e
m

o
ry

8
2
2

5

1
8

4
3
6

3
8
7
5
1

N
o
t
F

in
is

h
e
d
 i
n
 1

 D
a
y

4
6
5

6
3
0
5

6
5
4 4

7
3
6 2
9
8
5
2

5
3
3
5

O
u
t
o
f
M

e
m

o
ry

1
7 4

6

O
u
t
o
f
M

e
m

o
ry

O
u
t
o
f
M

e
m

o
ry

BigDatalog Spark Myria SociaLite

Figure 10: System Comparison using TC and SG.

head of shuffling. The same amount of data is also transmit-
ted via shuffling or message passing for both Myria and So-
ciaLite, but their performance is less stable compared with
Spark. More specifically, Myria runs out of memory on G20K

and SociaLite is always more than 10X slower. We believe
this is, in part, because the implementation of their commu-
nication subsystem is less robust compared to Spark’s.

SG. BigDatalog outperforms the other systems on the three
graphs with the largest result sets for SG. Although eval-
uation of Grid150 and Grid250 produces the two smallest
intermediate results and two smallest final results of our
test graphs, because there is little work to be performed
each iteration, Myria and SociaLite outperform BigDatalog
on both of these graphs due to the overhead of scheduling
in BigDatalog and differences in the generated physical plan.
For instance, recall the RRP for SG in Figure 7. The two
joins can generate a massive amount of intermediate dupli-
cate results, however de-duplication occurs after the shuffle
(in PSN). Therefore, to prevent a large amount of disk writes
for the shuffle, we place a distinct operator into the plan
immediately before the shuffle, much like a map-side com-
biner. However, this has a negative impact on execution
time for the smaller graphs (Grid150 and Grid250), but al-
lows BigDatalog to support larger graphs. This optimiza-
tion, along with Spark’s robust shuffling implementation,
helps to explain why BigDatalog is faster than Myria and
SociaLite on Tree11, G10K and G10K-0.01.

For SG, BigDatalog outperforms the handwritten Spark
programs on all graphs tested. Unlike with TC, the hand-
written Spark program finishes the evaluation on Grid150 as
the amount of data it caches in memory for SG is much less
than it does for TC. However it is over 50X slower compared
with BigDatalog since BigDatalog only requires a single shuf-
fle per iteration, whereas the Spark program has to shuffle
between nested-loop joins. The handwritten Spark program
runs out of memory on three graphs due to dataset caching.

6.1.2 REACH, CC and SSSP Experiments
We perform experiments comparing the execution time of

BigDatalog for REACH, CC and SSSP programs with Myria,
SociaLite and GraphX programs on both the RMAT graphs
and the real world graphs of Table 7. For these experiments,
we use programs for GraphX [33], Spark’s graph processing
module that implements Pregel [40], instead of handwrit-
ten Spark programs. GraphX outperforms native Spark on
these types of programs [33], which we validated in our ex-
perimental environment. Lastly, these results also help us
understand how BigDatalog scales on different programs as
the graph sizes increase. Further scaling experiments are
reported in Appendix B.

Let n, m and d be the number of vertices, number of
edges, and diameter of a graph; the number of intermedi-
ate results produced during evaluation is O(m), O(dm) and
O(nm) for REACH, CC and SSSP, respectively. Figures 11
and 12 show the experimental results for the RMAT graphs
and the real world graphs, respectively. For each system,
we report the total time of evaluation starting from load-
ing the data from persistent storage, i.e., from PostgreSQL
for Myria and from HDFS for the remaining three systems,
until the evaluation completes. For CC, each point repre-
sents the average evaluation time on the test graph over five
runs. For REACH and SSSP, each point represents the aver-
age time over ten randomly selected vertices, run five times
each. A point is not reported in a figure if a system runs
out of memory for the experiment for all vertices. In general
we noticed that for all three programs on our test graphs,
SociaLite spends most of the time on the loading and ini-
tialization of base relations, and its implementation expects
a fast network connection to load large datasets efficiently,
as suggested by an author of [48]. Lastly, although both
systems evaluate on Spark, BigDatalog requires storing less
auxiliary data in memory than GraphX. We will now detail
the results of each program.

REACH. The REACH program finds all vertices connected
by some path to a given source vertex using a simple linear
recursion. REACH can be found in Appendix A. Figure 11(a)
shows that Myria performs the best on all graph instances
for REACH. Although Myria significantly outperforms on
the smaller graphs, as the graph size increases, and thus the
amount of communication required increases, BigDatalog is
able to narrow the gap in performance. Similar behavior
appears also in Figure 12. On all test graphs, BigDatalog
outperforms GraphX for REACH.

CC. The connected component program is depicted in Pro-
gram 8 of Appendix A. It uses a label propagation approach
for determining the lowest vertex id a vertex is connected
to, thus establishing membership in a component. This pro-
gram is interesting because it uses a monotonic mmin aggre-
gate in recursion. The Myria and SociaLite programs are
expressed similarly and we use the connected components
program packaged with the GraphX distribution.

For the RMAT graphs, as the amount of communica-
tion increases, BigDatalog outperforms Myria starting from
RMAT-8M for CC. BigDatalog is roughly 20% faster than
GraphX for the RMAT graphs. SociaLite exhibits poor rel-
ative performance due to slow dataset loading times. For
the real world graphs, we observed that BigDatalog outper-
forms Myria and Socialite on all four graphs, and outper-
forms GraphX on three graphs, the exception being arabic.

 1

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128

T
im

e
 (

s
)

of Million Vertices

(a) REACH

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

1 2 4 8 16 32 64 128

of Million Vertices

(b) CC

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

1 2 4 8 16 32 64 128

of Million Vertices

(c) SSSP

BigDatalog

GraphX

Myria

SociaLite

Figure 11: Performance comparison on RMAT Graphs. The x-axis represents test graphs from RMAT-1M to RMAT-128M.

 1

 10

 10
2

 10
3

 10
4

 10
5

livejournal orkut arabic twitter livejournal orkut arabic twitter livejournal orkut arabic twitter

T
im

e
 (

s
)

REACH CC SSSP

1
7 2
0 7

1 1
2
5

2
7 3
3

2
1
3

3
0
7

5
3

3
9

2
7
6

2
6
0

5 6

3
5 1

0
2

3
9 5
7

4
8
5

1
0
5
1

7
0

4
4

1
0
8
3

1
5
9
3

5
2 6
7

4
6
4

7
5
5

5
4 7
8

4
6
7

O
u
t
o
f
M

e
m

o
ry

1
7
2

1
0
6 6

0
6

O
u
t
o
f
M

e
m

o
ry

3
6 4
8 1

1
2

3
6
7
7

5
9

5
3 1

7
4

1
2
0
4
1

3
1
1

6
7

7
7
9
0
3

6
7
1
2

BigDatalog Myria SociaLite GraphX

Figure 12: Performance comparison of REACH, CC and SSSP on real world graphs.

SSSP. This program was introduced in Program 5 and uses
a mmin aggregate and a linear recursion. The Myria and
SociaLite programs are expressed similarly. We have imple-
mented SSSP in GraphX. As shown in Figure 11(c) and 12,
BigDatalog outperforms all the systems on both synthetic
and real world graph, except for Myria on the two small-
est RMAT instances (1M, 2M). On all test graphs, BigDatalog
outperforms GraphX.

6.2 Complex Data Analytics
In this section, we report experimental results on two data

analytics programs, where each represents a complex data-
processing pipeline of mixed graph and relational workloads.
For each program, we compare BigDatalog against (1) a reg-
ular Spark implementation; and (2) an implementation that
uses a mixture of GraphX (for graph computations) and
Spark SQL (for the relational part of the queries). The later
is the implementation that an expert programmer will de-
sign to be able to exploit system-specific optimizations.

People You May Know (PYMK) is a feature of LinkedIn
that helps members to grow their network by recommend-
ing other people to connect with [6]. One important com-
ponent used in PYMK is based on the idea that a mem-
ber is likely to know the people that share many common
connections with him/her. This is also known as triangle
closing. Program 9 in Appendix A contains our implemen-
tation of PYMK. Specifically, we count for a given member
X, the number of common connections with each member Y

that is not already connected to X. We then display to X

the members with top-k ranked count values together with
their basic information. The member information are stored
in a 200GB table produced using the PigMix dataset gener-
ator [11]. The query evaluation is depicted in Figure 13(a),
where we used each of the four real world graphs in Table 7
as the member connection graph. This query is not recur-
sive, therefore BigDatalog generates a plan that is the same

as the regular Spark SQL plan. As the experiments show,
the performance of BigDatalog is competitive to that of the
GraphX/Spark SQL implementation of the query.

Multi-Level Marketing Network Bonus Calculation
(MLM). Many companies use a multi-level marketing model
to sell a variety of products [1]. The MLM query, as shown
in Program 10 of Appendix A, computes the net profit of
a company embracing a Multi-Level Marketing model af-
ter paying bonuses to members. A bonus is distributed to
each member based on his/her personal sales, and the sales
of each member of the network he/she directly/indirectly
sponsored. The database contains the following tables:

• sponsor(M, NM) stores the sponsorship information. A
new member NM is sponsored by a member M that is al-
ready part of the marketing network;

• sales(M, S, P) stores the transaction records, where mem-
ber M sold some products for S dollars, and the gross
profit of the transaction is P;

• schedule(LS, RS, BP) stores the bonus schedule, which is
used to determine the bonus for making a sales of S dol-
lars, i.e., the bonus is BP× S if S ∈ [LS, RS).

We generate tables under a setting akin to the TPC-H
benchmark [13]: for a given scale factor (SF), sponsors

contains a forest of ten random recursive trees [12] with
150K × SF vertices in total, and sales contains 1.5M × SF

BigDatalog GraphX + Spark SQL Spark

 10

 10
2

 10
3

 10
4

livejournal orkut arabic twitter

T
im

e
 (

s
)

8
3

8
0 2

2
5 9

4
8

8
5

7
9 2

5
0 1

1
2

9

1
3

0

1
3

3

2
4

1

3
2

9
8

(a) PYMK

 10
 10

2
 10

3
 10

4
 10

5

SF=1 SF=10 SF=100

T
im

e
 (

s
)

3
5 9

1

1
5

1
3

1
0

0

2
0

3

1
8

6
5

0

9
0

5
5

0

O
u

t
o

f
M

e
m

o
ry

(b) MLM

Figure 13: Comparison of complex data analytics programs.

records. schedule always contains 12 records. Figure 13(b)
shows the experimental results on scale factors 1, 10 and
100; BigDatalog is consistently at least 2 times faster than
Spark and GraphX/Spark SQL.

7. RELATED WORKS
Datalog Implementations. The Myria [54] runtime sup-
ports Datalog evaluation using a pipelined, parallel, dis-
tributed execution engine that evaluates a graph of oper-
ators. Datasets are sharded and stored in PostgreSQL in-
stances at worker nodes. SociaLite [48] is a Datalog lan-
guage implementation for social network analysis. SociaLite
programs are evaluated by parallel workers that use mes-
sage passing to communicate. Both SociaLite and Myria
support monotonic aggregation inside recursion using ag-
gregate semantics based on the lattice-semantics of Ross
and Sagiv [45]. This semantics was shown to be not gen-
eral and difficult to use in practice [53]. Furthermore, al-
though operational semantics of their monotonic aggregate
programs is provided, no declarative semantics is given. In-
stead, BigDatalog bases its monotonic aggregate (operational
and declarative) semantics on works [41, 42] that use mono-
tonic w.r.t. set-containment semantics, and therefore main-
tain the least fixpoint semantics of Datalog.

Parallel Datalog Evaluation and Languages. Previous
research on parallel evaluation of Datalog programs deter-
mined that some programs are evaluable in parallel without
redundancy and without processor communication or syn-
chronization [57]. Such programs are called decomposable.
BigDatalog identifies decomposable programs via syntactic
analysis of program rules using the generalized pivoting work
[46]. To our knowledge BigDatalog is the only current Dat-
alog system providing such a feature.

Many works produced over twenty years ago focused on
parallelization of bottom-up evaluation of Datalog pro-
grams, however they were largely of a theoretical nature.
For instance [52] proposed a message passing framework for
parallel evaluation of logic programs. Techniques to parti-
tion program evaluation efficiently among processors [56],
the tradeoff between redundant evaluation and communica-
tion [30, 31] and classifying how certain types of Datalog
programs can be evaluated [23] were also studied. A parallel
semi-näıve fixpoint has been proposed for message passing
[56] that includes a step for sending and receiving tuples
from other processors during computation. The PSN used in
this work applies the same program over different partitions
and shuffle operators in place of processor communication.

Among the distributed Datalog languages, it is note-
worthy to mention OverLog [24, 38], used in the P2 system
to express overlay networks, and NDlog [37] for declarative
networking. The BloomL [25] distributed programming lan-
guage uses various monotonic lattices, also based on the se-
mantics of [45], to identify program elements not requiring
coordination. [21] showed how XY-stratified Datalog can
support computational models for large-scale machine learn-
ing, although no full Datalog language implementation on
a large-scale system was provided. Recent works on recur-
sive query evaluation showed efficient versions of transitive
closure for multi-core [60] and distributed [14] settings, how-
ever these works did not address how to convert arbitrary
programs to these desirable evaluation forms.

Systems for Large Scale Data Analysis. Spark [62]
has recently gained much attentions as a general platforms
for large-scale analytics. The Spark stack provides APIs
for relational queries [16], graph analytics [33], stream pro-
cessing and machine learning. DryadLINQ [61], REX [43],
and SCOPE [66] provide high level languages for data anal-
ysis and support iteration. Extended MapReduce system
designs providing API support include Haloop [22], PrIter
[65], and Twister [28]. Incremental iterations were inte-
grated into Stratosphere to support iterative algorithms with
sparse computational dependencies [29]. ScalOps [55] sup-
ports a loop construct to include iteration in a recursive
query plan executed on Hyracks [20], a distributed dataflow
engine. Naiad [44] uses a time-based dataflow computational
model to support iterative workflows and incremental up-
dates. Distributed systems providing a vertex-centric API
for graph analytics workloads include Pregel [40], Giraph [2]
and GraphLab [39].

8. CONCLUSION AND FUTURE WORK
In this paper, we presented BigDatalog, a Datalog lan-

guage implementation on Apache Spark. Using our system
Spark programmers can now benefit from using a declara-
tive, recursive language to implement their distributed algo-
rithms, while maintaining the efficiency of highly optimized
programs. On our large test graph instances BigDatalog out-
performs other state-of-the-art Datalog systems on the ma-
jority of our tests. Moreover, our experimental results con-
firmed that among Spark-based systems BigDatalog outper-
forms both GraphX and native Spark for recursive queries.

Addressing our Challenges. We addressed the challenges
for using Spark as a Datalog runtime as outlined in Sec-
tion 2.3 as follows: now with BigDatalog, recursive queries
are compiled and optimized for efficient evaluation on Spark,
which was verified by our experimental results (Challenge 1).
BigDatalog is able to identify and produce physical plans for
evaluating decomposable programs. In addition, we propose
a new type of job for recursive programs to allow the sched-
uler greater control over iterations (Challenge 2). Lastly,
we propose specialized RDDs (SetRDD/AggregateSetRDD)
that utilize Datalog semantics to support memory-efficient
recursive evaluation (Challenge 3).

Future Work. In the course of this research we have
identified several opportunities for exciting new directions.
One first direction is to extend BigDatalog to support XY-
Datalog and realize the vision of [21] to use Datalog to
support complex machine learning analytics such as logistic
regression over a massively parallel system. Another area
is to investigate system extensions for provenance and fault
tolerance enabled by monotonic Datalog constructs.

For the latest updates on the BigDatalog project, see [7].

9. ACKNOWLEDGEMENTS
This work was supported by NSF grants IIS-1218471, IIS-

1302698 and CNS-1351047, U54EB020404 awarded by the
NIBIB through funds provided by the NIH BD2K initiative,
and generous gifts from IBM Research, Symantec and Intel.
We thank our reviewers for their thoughtful comments and
insights. We very much appreciate the time and effort they
put forth to make this a better paper. We thank Jingjing
Wang and Jiwon Seo for their assistance with the experi-
mental comparison.

10. REFERENCES
[1] Amway Business Reference Guide.

https://www.amway.com/en/
ResourceCenterDocuments/Visitor/ops-amw-gde-v-
en--BusinessReferenceGuide.pdf.

[2] Apache Giraph. http://giraph.apache.org.

[3] Apache Hadoop. http://hadoop.apache.org.

[4] Apache Spark. http://spark.apache.org.

[5] arabic-2005 network.
http://law.di.unimi.it/webdata/arabic-2005/.

[6] Big Data Ecosystem at LinkedIn.
http://www.slideshare.net/mitultiwari/big-data-
ecosystem-at-linkedin-keynote-talk-at-big-data-
innovators-gathering-at-www-2015. Keynote talk at
Big Data Innovators Gathering at WWW 2015.

[7] Deductive Application Language System (DeALS).
http://wis.cs.ucla.edu/deals/.

[8] GTgraph. http://www.cse.psu.edu/˜kxm85/
software/GTgraph.

[9] LiveJournal social network.
http://snap.stanford.edu/data/com-LiveJournal.html.

[10] Orkut social network.
http://snap.stanford.edu/data/com-Orkut.html.

[11] PigMix. https:
//cwiki.apache.org/confluence/display/PIG/PigMix.

[12] Recursive tree.
https://en.wikipedia.org/wiki/Recursive tree.

[13] TPC-H. http://www.tpc.org/tpch/.

[14] F. N. Afrati and J. D. Ullman. Transitive closure and
recursive datalog implemented on clusters. In EDBT,
pages 132–143, 2012.

[15] T. J. Ameloot, F. Neven, and J. Van den Bussche.
Relational transducers for declarative networking. In
PODS, pages 283–292, 2011.

[16] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: Relational
Data Processing in Spark. In SIGMOD, pages
1383–1394, 2015.

[17] F. Arni, K. Ong, S. Tsur, H. Wang, and C. Zaniolo.
The deductive database system ldl++. TPLP,
3(1):61–94, 2003.

[18] F. Bancilhon. Naive evaluation of recursively defined
relations. In On Knowledge Base Management
Systems, pages 165–178. Springer-Verlag, 1986.

[19] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
UbiCrawler: A Scalable Fully Distributed Web
Crawler. Software: Practice & Experience,
34(8):711–726, 2004.

[20] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A flexible and extensible
foundation for data-intensive computing. In ICDE,
pages 1151–1162, 2011.

[21] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen,
N. Polyzotis, T. Condie, M. Weimer, and
R. Ramakrishnan. Scaling datalog for machine
learning on big data. CoRR, abs/1203.0160, 2012.

[22] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. The
haloop approach to large-scale iterative data analysis.
The VLDB Journal, 21(2):169–190, 2012.

[23] S. Cohen and O. Wolfson. Why a single parallelization

strategy is not enough in knowledge bases. In PODS,
pages 200–216, 1989.

[24] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis.
Evita raced: metacompilation for declarative
networks. PVLDB, 1(1):1153–1165, Aug. 2008.

[25] N. Conway, W. R. Marczak, P. Alvaro, J. M.
Hellerstein, and D. Maier. Logic and lattices for
distributed programming. In SoCC, 2012.

[26] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[27] J. Eisner and N. W. Filardo. Dyna: Extending datalog
for modern ai. In Datalog Reloaded, pages 181–220,
2010.

[28] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox. Twister: a runtime for
iterative mapreduce. In HPDC, pages 810–818, 2010.

[29] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.
Spinning fast iterative data flows. PVLDB,
5(11):1268–1279, 2012.

[30] S. Ganguly, A. Silberschatz, and S. Tsur. A framework
for the parallel processing of datalog queries. In
SIGMOD, pages 143–152, 1990.

[31] S. Ganguly, A. Silberschatz, and S. Tsur. Parallel
bottom-up processing of datalog queries. The Journal
of Logic Programming, 14(1):101–126, 1992.

[32] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a highlevel dataflow system on
top of mapreduce: The pig experience. PVLDB, 2(2),
2009.

[33] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. Graphx: Graph
processing in a distributed dataflow framework. In
OSDI, pages 599–613, 2014.

[34] M. Interlandi and L. Tanca. On the CALM principle
for BSP computation. In AMW, 2015.

[35] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys, pages 59–72,
2007.

[36] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In WWW,
pages 591–600. ACM, 2010.

[37] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay,
J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. Declarative networking:
language, execution and optimization. In SIGMOD,
pages 97–108. ACM, 2006.

[38] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. In SOSP, pages 75–90. ACM, 2005.

[39] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
graphlab: A framework for machine learning and data
mining in the cloud. PVLDB, 5(8):716–727, 2012.

[40] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[41] M. Mazuran, E. Serra, and C. Zaniolo. A declarative

https://www.amway.com/en/ResourceCenterDocuments/Visitor/ops-amw-gde-v-en--BusinessReferenceGuide.pdf
https://www.amway.com/en/ResourceCenterDocuments/Visitor/ops-amw-gde-v-en--BusinessReferenceGuide.pdf
https://www.amway.com/en/ResourceCenterDocuments/Visitor/ops-amw-gde-v-en--BusinessReferenceGuide.pdf
http://giraph.apache.org
http://hadoop.apache.org
http://spark.apache.org
http://law.di.unimi.it/webdata/arabic-2005/
http://www.slideshare.net/mitultiwari/big-data-ecosystem-at-linkedin-keynote-talk-at-big-data-innovators-gathering-at-www-2015
http://www.slideshare.net/mitultiwari/big-data-ecosystem-at-linkedin-keynote-talk-at-big-data-innovators-gathering-at-www-2015
http://www.slideshare.net/mitultiwari/big-data-ecosystem-at-linkedin-keynote-talk-at-big-data-innovators-gathering-at-www-2015
http://wis.cs.ucla.edu/deals/
http://www.cse.psu.edu/~kxm85/
software/GTgraph
http://snap.stanford.edu/data/com-LiveJournal.html
http://snap.stanford.edu/data/com-Orkut.html
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://en.wikipedia.org/wiki/Recursive_tree
http://www.tpc.org/tpch/

extension of horn clauses, and its significance for
datalog and its applications. TPLP, 13(4-5):609–623,
2013.

[42] M. Mazuran, E. Serra, and C. Zaniolo. Extending the
power of datalog recursion. The VLDB Journal,
22(4):471–493, 2013.

[43] S. R. Mihaylov, Z. G. Ives, and S. Guha. Rex:
Recursive, delta-based data-centric computation.
PVLDB, 5(11):1280–1291, July 2012.

[44] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In SOSP, pages 439–455, 2013.

[45] K. A. Ross and Y. Sagiv. Monotonic aggregation in
deductive databases. In PODS, pages 114–126, 1992.

[46] J. Seib and G. Lausen. Parallelizing datalog programs
by generalized pivoting. In PODS, pages 241–251,
1991.

[47] J. Seo, S. Guo, and M. S. Lam. Socialite: Datalog
extensions for efficient social network analysis. In
ICDE, pages 278–289, 2013.

[48] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed
socialite: A datalog-based language for large-scale
graph analysis. PVLDB, 6(14):1906–1917, 2013.

[49] A. Shkapsky, M. Yang, and C. Zaniolo. Optimizing
recursive queries with monotonic aggregates in deals.
In ICDE, pages 867–878, 2015.

[50] A. Shkapsky, K. Zeng, and C. Zaniolo. Graph queries
in a next-generation datalog system. PVLDB,
6(12):1258–1261, 2013.

[51] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive -
a warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[52] A. Van Gelder. A message passing framework for
logical query evaluation. In SIGMOD, pages 155–165,
1986.

[53] A. Van Gelder. Foundations of aggregation in
deductive databases. In DOOD, pages 13–34, 1993.

[54] J. Wang, M. Balazinska, and D. Halperin.
Asynchronous and fault-tolerant recursive datalog
evaluation in shared-nothing engines. PVLDB,
8(12):1542–1553, 2015.

[55] M. Weimer, T. Condie, and R. Ramakrishnan.
Machine learning in scalops, a higher order cloud
computing language. In BigLearn, December 2011.

[56] O. Wolfson and A. Ozeri. A new paradigm for parallel
and distributed rule-processing. In SIGMOD, pages
133–142, 1990.

[57] O. Wolfson and A. Silberschatz. Distributed processing
of logic programs. In SIGMOD, pages 329–336, 1988.

[58] J. Yang and J. Leskovec. Defining and evaluating
network communities based on ground-truth.
Knowledge and Information Systems, 42(1):181–213,
2015.

[59] M. Yang, A. Shkapsky, and C. Zaniolo. Parallel
bottom-up evaluation of logic programs: DeALS on
shared-memory multicore machines. In Technical
Communications of ICLP, 2015.

[60] M. Yang and C. Zaniolo. Main memory evaluation of
recursive queries on multicore machines. In IEEE Big
Data, pages 251–260, 2014.

[61] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. Dryadlinq: A system for
general-purpose distributed data-parallel computing
using a high-level language. In OSDI, pages 1–14,
2008.

[62] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[63] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass,
V. S. Subrahmanian, and R. Zicari. Advanced
Database Systems. Morgan Kaufmann, 1997.

[64] V. Zaychik Moffitt, J. Stoyanovich, S. Abiteboul, and
G. Miklau. Collaborative access control in webdamlog.
In SIGMOD, pages 197–211, 2015.

[65] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A
distributed framework for prioritized iterative
computations. In SOCC, pages 13:1–13:14, 2011.

[66] J. Zhou, N. Bruno, M.-C. Wu, P.-A. Larson,
R. Chaiken, and D. Shakib. Scope: Parallel databases
meet mapreduce. The VLDB Journal, 21(5):611–636,
Oct. 2012.

APPENDIX
A. ADDITIONAL QUERIES

Program 6. Who will attend the party?

r1 . cntComing(Y, mcount〈X〉)← attend(X), friend(Y, X).
r2 . attend(X)← organizer(X).
r3 . attend(X)← cntComing(X, N), N ≥ 3.

Program 6 is the ATTEND program which identifies peo-
ple who will attend a party if they are an organizer or at
least three of their friends are attending. A version of this
program was originally proposed in [45]. This program is
explained as follows. The friend(Y,X) predicate instance
represents that person Y is a friend of X. r1 uses the mcount

monotonic aggregate inside the recursion to count the num-
ber of friends X that each person Y knows who is going to
the party. r2 says that organizers attend the party. r3 de-
termines X is going to the party if they have at least three
friends already attending.

There are two attributes of the ATTEND program worth
noting. Firstly, this program has a mutual recursion be-
tween the attend and cntComing recursive predicates. The
query to evaluate the program will be of the form attend(X)

so BigDatalog will make the attend predicate the RO, and
thus the driver of the recursion, and cntComing will be a
non-driver recursion operator in attend’s RRP. Second, the
comparison N ≥ 3 in r3 provides an example of a mono-
tonic arithmetic and monotonic boolean expression5, the
only type of expressions allowed on the result of a monotonic
aggregate. If instead of ≥, equality was used, this compar-
ison would only be true at three and then become false at
higher counts and thus introduce non-monotonicity.

Program 7. Reachability

r1 . reach(Y)← Y = $ID.
r2 . reach(Y)← reach(X), arc(X, Y).

5Once a monotonic boolean expression evaluates to true, it
stays true for evaluations on subsequent values.

The reachability (REACH) program identifies all nodes reach-
able from the given source node $ID. It has a linear recursion
and a unary (single argument) recursive predicate (reach).
r1 initializes the recursion from $ID. Then, in r2 previously
computed reach facts are joined to arc to find new vertices
reachable from $ID.

Program 8. Connected Components

r1 . cc2(X, mmin〈X〉)← arc(X,).
r2 . cc2(Y, mmin〈Z〉)← cc2(X, Z), arc(X, Y).
r3 . cc(X, min〈Y〉)← cc2(X, Y).

The connected components (CC) program is used to identify
the connected components of a graph. This program works
by initially assigning the node’s id to itself (r1), and then
propagating a new lower node id for any edge the node is
connected to. r3 is necessary to select only the minimum
node id Y for each X found in cc2.

Program 9. People You May Know

r1 . uarc(X, Y)← arc(X, Y).
r2 . uarc(Y, X)← arc(X, Y).
r3 . cnt(Y, Z, count〈X〉))←uarc(X, Y), uarc(X, Z), Y!= Z,∼uarc(Y, Z).
r4 . pymk(X, W9, topk〈10, Z〉)← cnt(X, $ID, Z), pages(X, W2, . . . , W9).

The people you may know (PYMK) program is for help-
ing members to grow their network by recommending other
people to connect with. Let arc(X, Y) be the member con-
nection graph. We assume the input graph to be undirected,
but arc only keeps pairs (X, Y) that satisfy X < Y in order to
save space. r1 and r2 construct the full undirected graph
from arc, and r3 counts the number of shared connections
between each pair (Y, Z) such that Y and Z are not directly
connected by an edge in the graph. In BigDatalog syntax,
Y!= Z means Y is not equal to Z, and ∼uarc(Y, Z) means that
tuple (Y, Z) is not in uarc. For a given member $ID, r4
first finds all the tuples (X, $ID, Z) in cnt, i.e., X is a candi-
date member to recommend to $ID, and Z is the number of
shared connections between X and $ID; then finds the user
information for each candidate member X, which is stored
in the last column of pages. Finally, r4 returns the top 10
candidate members (together with their infos) by number
of shared connections. In BigDatalog, topk〈X, Y〉 is a special
“aggregate” function returning the top X tuples ordered by
the Y-term.

Program 10. Multi-Level Marketing Network Bonus Cal-
culation

r1 . networkTC(M, M)← sponsor(M,).
r2 . networkTC(M, M)← sponsor(, M).
r3 . networkTC(M, M2)← networkTC(M, M1), sponsor(M1, M2).
r4 . memberTotalSales(M, sum〈S〉)← networkTC(M, NM),

memberSales(NM, S).
r5 . memberBonusSelf(M, B)← memberSales(M, ST),

memberTotalSales(M, S), schedule(LS, RS, BP),
S >= LS, S < RS, B = ST ∗ BP.

r6 . memberBonusFrontline(M, sum〈B〉)← sponsor(M, NM),
memberTotalSales(NM, S), schedule(LS, RS, BP),
S >= LS, S < RS, B = S ∗ BP.

r7 . bonus(sum〈B〉)← memberBonusSelf(M, B1),
memberBonusFrontline(M, B2), B = B1+ B2.

r8 . grossProfit(sum〈P〉)← sales(, , P).
r9 . netProfit(NP)← grossProfit(P), bonus(B), NP = P− B.

The multi-level marketing network bonus calculation (MLM)
program computes the net profit of a company embracing a

multi-level marketing model, after paying bonuses to mem-
bers. sponsor is a directed acyclic graph that represents the
sponsorship relation. r1, r2, and r3 computes the transitive
closure of sponsor, such that networkTC contains all the
tuples (M, NM) where M directly/indirectly sponsors NM. For
each member M, r4 computes the total sales for the network
where the members in the network are directly/indirectly
sponsored by M. The bonus of each member M consists of the
following two parts: (1) the bonus from his/her own per-
sonal sales (r5); and (2) the bonus derived from the sales
of each NM directly sponsored by M (r6). Bonuses are com-
puted by multiplying the related sales figures with a factor
BP determined by the schedule. Finally, r7 computes the
total bonus paid by the company, r8 computes the gross
profit of the company, and r9 computes the net profit for
the company.

B. MORE SCALING EXPERIMENTS
Here we report additional experimental results of how

BigDatalog scales over different cluster and dataset sizes.

 1

 2

 4

 8

 16

1 2 4 8 15
S

p
e
e
d
u
p

of Workers

(a) TC on G20K

 1

 2

 4

 8

 16

1 2 4 8 15

S
p
e
e
d
u
p

of Workers

(b) SG on G10K

Figure 14: Scaling-out Cluster Size.

Scaling-out. In this set of experiments we use the largest
Gn-p graphs that could be evaluated on all cluster sizes. Fig-
ure 14(a) shows the speedup for TC on G20K as the number
of workers increases from one to 15 (all with one master)
w.r.t. using only one worker, and Figure 14(b) shows the
same experiment run for SG with G10K. Both figures show a
linear speedup, with the speedup of using 15 workers is 12X
and 14X for TC and SG, respectively.

 1

 10
 10

2
 10

3

G5K
G10K

G20K
G40K

G80K

T
im

e
 (

s
)

5 7
19

123
1123

(a) TC

 1

 10
 10

2
 10

3

G5K
G10K

G20K

T
im

e
 (

s
)

12
74

907

(b) SG

Figure 15: Scaling-up on Random Graphs.

Scaling-up. We use the full cluster to see how BigDatalog
scales over graphs of increasing sizes for TC and SG. We
use Gn-p graphs from Table 6. For TC in Figure15(a) the
smaller G5K and G10K graphs take roughly the same time
to evaluate. From G20K, we observe the increase in run-
time matches the number of intermediate facts produced,
which should be viewed as the work the system must per-
form, rather than the increases in the size of the transitive
closure. For example from G40K to G80K, the size of the tran-
sitive closure increases 4X, while the size of the intermediate
results increases over 10X. We observe a similar result with
SG. For example from G10K to G20K we observe a 4X increase
in the size of the SG result set, but a nearly 16X increase in
intermediate facts produced.

	Introduction
	Preliminaries
	Datalog
	Datalog Evaluation
	Apache Spark

	BigDatalog
	Benchmark Programs
	BigDatalog API By Example
	Parallel Semi-naïve Evaluation on Spark
	Compilation and Planning
	Logical Plans
	Physical Plans

	Optimizations
	Optimizing PSN
	Partitioning
	Join Optimizations for Linear Recursion
	Decomposable Programs
	Job Optimizations

	Aggregates
	Experiments
	Benchmark Comparison
	TC and SG Experiments
	REACH, CC and SSSP Experiments

	Complex Data Analytics

	Related Works
	Conclusion and Future Work
	Acknowledgements
	References
	Additional Queries
	More Scaling Experiments

