XL: An XML Programming Language for Web Service
Specification and Composition

Daniela Florescu
XQRL, Inc.

dana@xqrl.com

ABSTRACT

We present an XML programming language designed for the
implementation of Web services. XL is portable and fully
compliant with W3C standards such as XQuery, XML Pro-
tocol, and XML Schema. One of the key features of XL
is that it allows programmers to concentrate on the logic
of their application. XL provides high-level and declarative
constructs for actions which are typically carried out in the
implementation of a Web service; e.g., logging, error han-
dling, retry of actions, workload management, events, etc.
Issues such as performance tuning (e.g., caching, horizontal
partitioning, etc.) should be carried out automatically by
an implementation of the language. This way, the produc-
tivity of the programmers, the ability of evolution of the
programs, and the chances to achieve good performance are
substantially enhanced.

Keywords
XML, Web Service, Programming Language

Categoriesand Subject Descriptors
D.3.2 [Software]: Language Classifications

1. INTRODUCTION

XML is the lingua franca for data exchange on the Inter-
net. Among its many possible uses, XML-based languages
are ideal for publishing documents on Web sites, for storing
catalogs in electronic market places, and for exchanging data
between business processes. Even though some data sources
will probably continue to use relational and object-relational
database systems as a primary form of storage (at least for
a certain time), we expect that most data sources will even-
tually provide XML access for their published data. Soft-
ware vendors and standard bodies, like the W3 consortium,
have been very active in providing tools (XML parsers) and
standardized languages (XSLT, XPointer, XPath, XQuery,
etc.) for XML. So far, however, no imperative programming
language has been proposed that is specifically tailored for
building XML applications and Web services, and, unfortu-
nately, side-effect free languages like XSLT and XQuery are
not powerful enough to describe the logic of complex Web
services.

The concept of “Web services” became recently very pop-
ular; however, there is no clear agreed upon definition yet.
Copyright is held by theauthor/evner(s).

WWW2002, May 7-11,2002,Honolulu,Hawaii, USA.
ACM 1-58113-449-5/02/0005.

Andreas Grunhagen
TU Munich

gruenhag@in.tum.de

Donald Kossmann
TU Munich, XQRL, Inc.

kossmann@in.tum.de

By a Web service we understand an autonomous piece of
software uniquely identified by an URI and that can interact
with peer Web services via messages using Internet proto-
cols like XML, XMLP or HTTP. Web services can, but they
are not required to, preserve an internal state. In addition,
Web services can participate in complex conversations. A
conversation is an exchange of correlated messages among a
certain number of participant Web services. By exchanging
messages during a conversation the participant Web services
strive to achieve a certain (business) goal; e.g., place an or-
der, place a bid, send a request for information. The Web
services can, but they are not required to, maintain contez-
tual or historical information about the messages exchanged
as part of a certain conversation. The Web services can, in
general, perform several operations, each being specialized
to a certain task. Operations are invoked by XML mes-
sages using the emerging XML protocol [18]; the result of
the execution is sent back to the originator using the same
protocol.

1.1 Problemsin Web sewicesimplementation

As of today, most Web services are built using classic
programming languages, such as Java or Visual Basic, and
some kind of SQL-based RDBMS (e.g., Oracle or DB2), a
mixture of paradigms that inherently implies a number of
logically irrelevant but costly and error prone intermediate
data-transformations. An XML Web application built on
such technologies will have to deal with difficulties such as:

1. XML-Java mismatch: XML data must be converted
into Java objects (or the internal representation of an-
other language of the sorts) before it can be processed
by the Java program. Likewise, Java objects must be
converted back into XML data at the end of process-

ing.

2. Java-Database mismatch: Java objects must be mar-
shaled back and forth through JDBC-like interfaces
to access and update the RDBMS. This is the infa-
mous “database impedance mismatch” that triggered
the development of object databases technology [11].

Language implementors and database manufacturers are
making great efforts to increase their products with “XML
extensions” and to introduce automatic treatment for those
chores whom programmers are currently dealing with man-
ually. Indeed, there are significant efforts both on the Java
side, from database and third-party vendors in these direc-
tions. However, we believe that the type systems of XML,

Java, and relational database systems are simply too differ-
ent and ultimately incompatible for productively building
large scale applications that span across the three different
paradigms.

In addition to the double impedance mismatch, program-
mers face another problem that drastically impacts both
the productivity and the performance of Web services. The
problem is that, very often, the application tier mixes in a
dangerous way, in the same imperative language (e.g., Java),
very different semantic actions. For example, low level pro-
tocols manipulation and performance improvements are of-
ten mixed with data validation and real application logic.

In the case where those different semantic actions are
strongly interleaved, the application evolution is almost im-
possible. Imagine the difficulty of changing the data model
or the logic of such an application, where data spans three
different paradigms and data instances are present in the
three different layers and, potentially, cached or material-
ized in various places on the platform!

1.2 Our contribution

The alternative that we are pursuing with this paper is
to introduce a new high-level programming language called
XL for the specification of Web services. There are a couple
of reasons why we believe that such a language can simplify
the above problems. First, we believe that programmers
should use a single data representation and type system to
program a Web service. For obvious reasons we believe that
this unique type system should be based on XML. Moreover,
the language should be, as much as possible, declarative and
high level.

We listed above a couple of semantic actions that are inter-
leaved today, with unfortunate consequences. Among those,
we believe that all the performance improvement mecha-
nisms should not be programmed by hand, but derived au-
tomatically. A lesson that we all learned from the success
of relational databases is that the ability to do automatic
optimization is a key factor in the possibility to evolve an
application and to be robust to the inevitable hardware or
software platform evolution, or the environment evolution
(data volume or statistics, application workload). Such a
declarative, high level language can simplify or solve this
problem, since it provides great opportunities for automatic
optimizations like application transparent caching, replica-
tion, partitioning, or load balancing.

Another important feature of XL is that other semantic
actions, like data validation, error handling, and scheduling,
are as much as possible separated from the application logic
itself and, as much as possible, specified in a declarative
manner’.

Five fundamental principles underlie the design of this
new language:

1. XL should support a unique data model and type sys-
tem: the standard XML one [22].

2. XL should be expressive enough to describe the logic
of most Web services.

3. XL should not just be complete with respect to Web
service specification, but also comfortable to use. Hence,

!By declarativity we mean the programmers ability to spec-
ify what action do they want to perform and not how to
implement it.

it should provide special constructs for important Web
services programming patterns (e.g., logging, retry of
actions, and periodic actions).

4. With the help of XL, programmers should concentrate
entirely on the logic of their application and not on
implementation issues.

5. XL must be compliant with all W3C standards and it
must gracefully co-exist with the current Web services
and infrastructure.

The rest of the paper is organized as follows. Section
2 describes the main design goals for a programming
language for Web services. Section 3 gives a short re-
minder of existing XML related standards (data model,
schema, and expression/query language). Section 4
details the design of XL. Section 5 gives a simple ex-
ample: an auctioning system. Section 6 gives a brief
overview of related work. Section 7 concludes this
work.

2. DESIDERATA FORAN XML PROGRAM-
MING LANGUAGE

In this section, we will describe a list of more specific
requirements that drove our design of XL. Some of the re-
quirements are derived from the global architecture in which
a Web service specified using this language should be inte-
grated.

1. Compliance with the W3C standards. XL must
be compliant with the XML W3C standards such as
XML Schema [23], XQuery [22], XPath [30], XSLT
[31], XML Forms [20], XML Protocol [18], and WSDL [8].

2. Business processes, Web conversations. The lan-
guage must provide constructs to implement business
processes and, more generally, it must support conver-
sations between two or more Web services.

3. Service composition. XL must allow the construc-
tion of high-level services out of the composition of
more basic services. It must also be possible to com-
pose new services out of services that are not written in
XL. It must be possible, for instance, to integrate Web
services written in Java in a transparent and seamless
way. The Web services participating in a conversation
must be loosely coupled. In other words, changes in
the implementation of one such service must not affect
the other services that invoke or are being invoked by
it.

4. Message-based programming. A Web service im-
plemented in XL must communicate with other Web

services via (XML) messages. Services are invoked via
messages and results are also returned via messages.

5. Location independent invocation. Web services
must be uniquely identified using URIs. The invo-
cation of a Web service must use the respective URI
and be independent from the location where its code
is stored or executed.

6. Platform independence, code mobility. The lan-
guage must be platform independent. It must be pos-
sible to run programs virtually on any machine that

10.

11.

12.

13.

14.

15.

16.

17.

runs an interpreter for the language — independent of
the operating system or the database system used.

Unique XML-based data model and type sys-
tem The data manipulated must be modeled by the
standard XML data model and type system [22]. No
other data models and type systems are allowed.

Optional strong typing. Types for data compo-
nents (e.g., variables) are optional. However, if a vari-
able is associated with a type, strong typing must be
enforced (i.e., type checking at compile-time). Special
constructs must be provided such that programmers
can enforce properties of components dynamically if
no specific type is statically associated with a compo-
nent.

Logical /physical data independence. Program-
mers should be aware only of the logical structure of
the XML data (i.e., the XML Schema) and they need
not be aware of the physical representation of the data
(e.g., DOM trees, SAX events, XML files, or database
tuples).

High-level programming. The language must be
high level and use declarative constructs whenever pos-
sible. The language must also support high-level ex-
ception handling and other special constructs to easily
implement more complex services like logging, data
lineage, time-triggered actions, etc.

Imperative programming. The language must pro-
vide standard imperative constructs like sequencing
and iteration. However, we expect that such imper-
ative constructs will be used less often than in tradi-
tional programming, given the particular nature of the
applications we are targeting. Simple application logic
should be expressed in a declarative way; imperative
programming should only be necessary for complex ap-
plication logic.

Transactions. The language must provide constructs
allowing programmers to specify sequences of actions
to be executed in an isolated and atomic way; i.e.,
transactions.

Universal naming for each component. Each
component (program, conversation, message, transac-
tion) must have a URI for data lineage and information
traceability.

Authentication, authorization, and security. It
must be possible to implement discretionary access
control and, thus, restrict the use of a service.

Optimization. The language design should enable
and encourage automatic optimizations and should dis-
courage or even disallow low level hard-coded opti-
mizations.

Protocol transparency. Accesses to a database and
invocation of remote Web services must be transpar-
ent. The protocols used (e.g., JDBC or HT'TP) must
be hidden in the implementation of the language.

Elegance and simplicity. The semantics of the lan-
guage should be clean and intuitive.

3. OVERVIEW OF RELEVANT XML
TECHNOLOGY

A very popular wrong myth related to XML is that “XML
is just a syntax, and programmers cannot reason on a syn-
tax”. While it is indeed true that the original XML recom-
mendation described only a syntaz for data and documents,
and not a logical data model, the W3C is currently in the
process of standardizing such a logical, abstract data model
for XML. The purpose of an abstract data model has been
clear since the original papers of Codd in the 70’s: it allows
programs to achieve logical and physical data independence.
In other words, programmers can concentrate on the ab-
stract representation of data and they can ignore the real
physical representation of the data. As a result, the phys-
ical data representation can evolve without any impact on
the code of the applications itself. The huge advantage of
this concept has been validated in the last 30 years by the
success of the database industry.

Fortunately, the XML standards did not ignore this im-
portant database heritage. The semantics of the current
W3C’s XML related programming languages (XSLT and
XQuery) are described in terms of an XML abstract data
model [3] that serves the same purpose as the relational
data model for relational databases.

The W3C XML data model describes, in an E/R fash-
ion, a set of entities present in an XML document and a
set of relationships among them. The entities describe the
data itself (e.g., nodes, values, sequences) and schema com-
ponents. The data is modeled as very general mathematical
structures, i.e., as ordered trees of nodes. The internal nodes
have node identity and they can be of several kinds (e.g.,
document nodes, element nodes, attribute nodes, comment
nodes, processing instruction nodes, namespace nodes) while
the leaves of the trees, i.e., the values, can be values in the
domains of the XML Schema basic types (e.g., integer, dec-
imal, string, duration). Pivotal to the XML data model
is the notion of sequence. One important property of the
XML data model is that sequences are always flat; i.e., se-
quences of sequences are automatically unnested. Another
important property of the XML data model is the ability
to capture the topological order in nodes of the document.
This order can be queried and exploited during the compu-
tation. Finally, an XML data model is also able to model
errors, which are accepted intermediate results of various
XML computations.

3.1 XML Schemasandthe XML type system

The data model describes only the basic composition of or-
dered tree. The XML Schema [23] describes structural and
content-based constraints on the ordered trees. The XML
Schema describes the simple types (with their accepted do-
main values and the accepted basic operations) supported
by the XML data model, the definition of user-defined com-
plex types and gives a basic support for user-defined in-
tegrity constraints (e.g., referential integrity constraints, lex-
ical constraints).

The XML type system formally described in [24] captures
the essence of the structural information present in the XML
Schema. The goal of the type system is threefold. First,
it allows automatic type inference: given an XML expres-
sion (as described in the next paragraph) and the type of
the input data set, the type system is able to intentionally
(i.e., without executing the query on any particular data

set) derive the type of the result. Second, it is possible
to do type checking: given an expression and the expected
type describing the input data set, it is possible to derive
that the expression will return errors on all (or some of) the
valid instances of the input type. Finally, the type system
is capable of testing the type subsumption. This is a useful
feature for the following scenario: given an XML expression
and the type describing the expected input data set, detect
automatically if the result of the evaluation of the expres-
sion on all valid input data instances will be valid instances
of a predefined expected output data type. More detailed
information about the type system can be found in [24].

3.2 XML expressionsand XML queries

A complementary W3C standard deals with XML expres-
sions and XML queries[22]. XQuery is a functional language.
Like all functional languages, XQuery expressions are con-
structed using first order and second order function appli-
cations starting with variables and constants. Examples of
first order functions are: logical, arithmetic, string manipu-
lation, collection oriented operations like union, intersection,
and difference. Examples of second order functions are map
and sort. Of particular importance are the second order
FLWR expressions: they are XML expressions constructed
based on a pattern that is akin to SQL’s SELECT-FROM-
WHERE queries. Like SQL queries, a FLWR expression has
a special clause to define variables and their associated do-
mains (the FOR clause in XQuery corresponds to the FROM
clause in SQL), a special clause that filters variable bindings
based on predicates (the WHERE clause in both languages)
and a special clause that specifies how to construct the re-
sult (the RETURN clause in XQuery corresponds to the
SELECT clause in SQL). Special expressions called path ez-
pressions are used in order to navigate in an XML tree; the
syntax and semantics of path expressions are defined in the
XPath standard [30].

XML queries [22] are declarative, side effect free programs
that manipulate XML data. A query is composed of a
preamble containing function definitions, local type decla-
rations, function declarations, XML schema imports, plus
a main expression to be evaluated and returned as a result
of the execution of the program. Unfortunately, the logic of
complex Web services cannot be described using only declar-
ative programs, or using only side effect free XML query
expressions.

4. XL SYNTAX AND SEMANTICS

The programming language we propose in this paper ex-
tends the simple XQuery expression language to a full pro-
gramming language, powerful enough to specify the logic of
complex Web services. In this section we will describe the
concepts of an initial design; these concepts provide a core
functionality. More functionality (and syntactic sugar) are
probably necessary to achieve wide acceptance. Moreover,
the semantics of certain concepts (e.g., transactions or ac-
cess control) need further investigation; they are omitted
from this paper.

4.1 Websewicesin XL

A Web service in XL generalizes the notion of an XQuery
entity. In addition to a query, a Web service is identified
by a unique URI (the target URI). Like an XQuery entity,
a Web service specification can contain a set of local func-

tion declarations plus a set of type definitions and schema
and namespace imports. In addition, a Web service speci-
fication in XL can contain: (a) local data declarations, (b)
declarative clauses, and (c) specifications of the Web service
operations.

The syntax of XL for Web services is as follows. Here and
in the rest of the paper, keywords are denoted in bold-face
and non-terminals are enclosed in angle brackets. Optional
parts are denoted in square brackets. Comments are repre-
sented in italics. An asterisk is used if a clause can occur
0 or more times. The order in which the individual clauses
occur is arbitrary; the individual clauses are separated by
semi-colons.

service <uri>
< FUNCTION DEFINITIONS >
< LOCAL DECLARATIONS >
< DECLARATIVE WEB SERVICE CLAUSES >
< OPERATION SPECIFICATIONS >
endservice

Functions are defined in XL in exactly the same way as
in XQuery. We will describe local declarations, declarative
web service clauses, and operation specifications which are
specific to XL in the following subsections.

4.2 \Websewiceslocal declarations

As in XQuery, a Web service implemented in XL can have
local types and imported schema components. In addition,
an XL Web service can declare local variables. Such vari-
ables hold only XML data and their potential values can be
constrained by the XML type system. Two kinds of local
variables can be declared in XL. The first kind of variables
represents the internal state of the whole Web service. These
variables are instantiated once when the Web service is in-
stalled and persist the whole life time of the Web service.
The scope of these variables is the whole Web service. An
example is the customer database of an online broker.

The second kind of variables represents the internal state
of a particular conversation that the Web service is involved
in. Examples are the session id when a user logs into the
system or the maximum bid for an item in an auctioning
system. These variables are instantiated when the Web ser-
vice joins a new conversation; in other words, when the Web
service receives the first message with a specific conversation
URI. We assume here that the SOAP messages which are
exchanged between Web services can carry the unique iden-
tifier (URI) of a conversation in their envelop®. This kind
of variables can be used in the body of all operations of the
Web service that participate in conversations; i.e., all oper-
ations that are able to receive messages that carry the URI
of a conversation. The life time of such variables is bound
by the life time of the conversation. Since the Web service
can be involved in several conversations at the same time,
multiple instances of such variables can exist at the same
time; one instance of each variable for each conversation. In
some sense, the set of all instances of these variables can
be thought of as an array that is indexed by the URIs of
conversations. In the buy operation of an online broker, for
instance, a session id variable will be used in order to deter-
mine which customer invoked the buy operation; the right
value (i.e., instance) of this variable will automatically be

%Such information is not yet taken into consideration by the
current XML protocol but we expect that it will be added
in near future.

set using the conversation URI of the message sent from the
customer to the online broker. (Obviously, this conversation
URI should not be public in this example.)

The syntax for declaring these two kinds of variables is
the following:

service <uri>
'l function definitions, local types,
!l schema imports

Il state of the web service
(let [<type>] <variablename>
[:= <expression>];)*

!l state of a conwversation of the service
(context let [<type>] <variablename>
[:= <expression>];)*

!l declarative web serwvices clauses
!l and operations
endservice

In this syntax, the “type” is the optional type constrain-
ing the type of the variable’s values, while “expression” is an
XQuery expression describing the initial value of the vari-
able. If no “expression” is given, then the variable is ini-
tialized to the empty sequence; if no “type” is given then
the variable can be bound to any valid instance of the XML
data model (see Section 3).

4.3 Declarative Web sewice clauses

Essentially, this part contains a set of high level decla-
rations that control the Web services global state, how the
Web service operations are executed and how the Web ser-
vices interacts with other Web services. The syntax for these
clauses is as follows:

service <uri>

!l function definitions
!

[history ;]

defaultoperation <operation> ;
[unkownoperation <operation> ;]
[init <operation> ;]

[close <operation> ;]

(invariant <booleanExpression>
throw <expression> ;)x

(on change <variable>
invoke <operation> ;)x

(on event <booleanExpression>
invoke <operation>
[with input <expression>] ;)=x

[on error invoke <operation> ;]
[conversationpattern
(required | ... | never) ;]
[conversationtimeout
<durationExpression> [<operation>] ;]

!l operation specifications
11

endservice

In the following, we will briefly describe the individual
clauses. The meaning of the individual clauses will become
clearer in the discussions and examples of the following sub-
sections.

HISTORY. If this clause is specified, then all calls to op-
erations of the Web service are automatically logged and
recorded in an implicitly declared read only $history vari-
able. The data automatically recorded in this variable in-
cludes for example the name of the operation that is called,
the identifier (URI) of the caller, the value of the input and
output messages, the timestamp when the operation was
called, and other statistical information that are important
for the Web services tracing and monitoring.

Automatic logging is very useful for security reasons and
in order to implement certain kinds of constraints. For in-
stance, the $history variable could be used in the debit op-
eration of a credit card company in order to constrain the
number of transactions of a user per day.

DEFAULT- & UNKNONNOPERAION. These clauses
declare the Web services behavior in cases when a message is
sent to the Web service service and it is unclear which oper-
ation should process the message. The DEFAULT operation
is executed whenever a message is sent to the service and
no operation name is specified as part of the message. The
UNKNOWN operation is executed if a message is sent to
the server and the caller specifies the name of an operation
which is not defined in the Web service. If no UNKNOWN-
OPERATION clause is given, then the default operation is
used in such cases.

INIT, CLOSE. These clauses specify a pair of operations
that are automatically invoked when the Web service is cre-
ated and destroyed, respectively. These operations can only
be invoked once and they take no input.

INVARIANTS.In this clause, global Web services integrity

constraints (or invariants) are defined. A Web service can
define an arbitrary number of invariants. Typically, invari-
ants are defined for stateful services and constrain the value
of internal variables. Invariants, however, can also constrain
the value of the $history variable and contexts of conversa-
tions. If at any time an invariant is violated, the statement
that caused the violation is undone, an exception is raised,
and the execution of the current operation is stopped if the
exception is not handled. The exception that is raised when
an invariant is violated is specified in the optional “excep-
tionExpression” part of the INVARIANT clause.

As an example, it could be specified that all customers
of the online broker must be older than eighteen years and
that the balance of the account of each customer must be
greater than (. These two invariants would be defined as
follows:

invariant $customer/age > 18

throw <error> You are too young!

</error>;

invariant $customer/balance >= 0

throw <error> Out of cash!
</error>;

ONCHANGE. In this clause, a simplified form of triggers

can be specified. The semantics are straightforward: if the
value of the variable changes, operation is called with an
empty input. Changes to any variable declared in the Web
services local declarations (Section 4.2) can be monitored
in this way; likewise, changes to the $history variable (if
declared) can be traced in this way.

ON EVENT. This clause allows to declare more elabo-
rate triggers and periodic tasks. Whenever, the booleanEz-
pression evaluates to true, the operation is invoked. If an
INPUT is specified, the corresponding expression is evalu-
ated and passed to the operation as input. In many cases,
the booleanEzpression will depend on some timestamp. For
instance, the following clauses of our online broker exam-
ple specify that dividends are once a year (October 1) and
that fees are due every month. xf:currentDateTime() is the
XQuery/XPath function that returns the current Times-
tamp; xl:createDateTime-Seq() is an XL function that con-
structs a sequences of timestamps, using * as a wild card in
the timestamp expression.

Il October 1, every year

on event xf:currentDateTime ()
= xl:createDateTimeSeq (”"+*—10—01—00:00")
invoke addDividend;

Il every month

on event xf:currentDateTime ()
= xl:createDateTimeSeq (" *—x—01-00:00")
invoke computeFee;

Note the semantics of the = operator in this example: the
= operator is equivalent to an existential quantification ac-
cording to the XQuery standard [24].

ON ERFOR INVOKE. This optional clause specifies an
operation that is called whenever an (other) operation of
the Web service fails; e.g., if an INVARIANT is violated. In
other words, if an operation raises an exception, this excep-
tion is passed as input to the operation specified in the ON
ERROR INVOKE clause and the output of this operation
is then returned to the client of the Web service. This way,
application logic can be separated from error handling; in
particular, all texts for error messages are employed by one
operation only. As will be discussed in Section 4.5.2 excep-
tions can also be handled locally using TRY and CATCH
statements. The operation specified in this clause is only
called for exceptions that are not handled locally and would
otherwise directly be returned to the client of the Web ser-
vice.

CONVERSAIONPATTERN. This clause specifies in a
declarative manner how the Web service interacts with other
services as part of conversations. There are many alterna-
tive models conceivable how to implement business conver-
sations. As mentioned earlier, in our model we assume that
the SOAP messages which are exchanged between Web ser-
vices can carry a conversation URI in their envelop. Using
this model, it would be very tiresome to specify for each
message individually to which particular conversation it be-
longs (if any). Fortunately, there are only a handful of dif-
ferent patterns in which Web services typically interact and
maintain conversations. Consequently, XL allows to spec-
ify the conversation pattern as part of the declaration of a
Web service. If such a pattern is specified, then the URI of
the conversation is set implicitly whenever the Web service
sends a message to another Web service. Currently, the con-
versation patterns supported by XL correspond one to one
to the different kinds of scopes of transactions supported by
J2EE [15]. These patterns are described in Table 1 — for
each pattern, two situations must be considered: (a) the in-
going message is not part of a conversation (defined as none

Pattern URI of URI of
Input Message | Outgoing Messages
. none C2
Required C1 c1
. none C2
RequiredNew c1 C2
Mandatory ngl;e eg(l)r
N none none
otSupported C1 none
Supports none none
P c1 1
N none none
ever C1 error

Table 1: Conversation Patterns

in the second column of Table 1); (b) the ingoing message
is part of a conversation (defined as C! in the second col-
umn of Table 1). As part of future work, we are going to
assess these particular patterns and see whether they meet
the requirements of typical Web applications.

For instance, the Required pattern has the following se-
mantics: (a) if the Web service receives a message that has
no conversation URI (i.e., is not part of a conversation), then
the Web service will generate a new conversation URI and
all other Web services it calls as part of processing the in-
put message will be called using this new conversation URI.
(b) If the Web service receives a message with a conversation
URI, then all other Web services it calls as part of processing
the input message will be called using the conversation URI
of the input message. Each single operation can overwrite
this default pattern by specifying its own pattern.

The online broker is an example of a Web service that
is based on the Mandatory pattern. Customers first invoke
the login operation; after that, all other operations (e.g., sell
and buy) must be called as part of the same conversation.
An auctioning system as described in Section 5 is another
example for a service that carries out conversations using
the Mandatory pattern for most operations. As mentioned
earlier, both of these Web service require a Web service can
be involved in several conversations at the same time. For
each conversation, the Web service maintains a separate con-
text; i.e., a separate set of instances of each variable declared
in a CONTEXT LET clause (see previous section). These
messages can only be used if the ingoing message carries a
conversation URI. Naturally, thus, such variables cannot be
used if the conversation pattern is set to Newver.

CONVERSAIONTIMEOUT Finally, a timeout can be
specified that terminates a conversation after a certain time
since the last message exchanged as part of the conversa-
tion. An operation can be declared that is invoked if such
a timeout takes effect. If a message is sent to a Web ser-
vice after the time out, the Web service will assume that
this message is part of a new conversation; in particular,
the context of the (old) conversation is lost after the time
out. For instance, if the time out of the online broker is set
to ten minutes and a customer logs on and carries out no
operations for ten minutes, then the user will have to log on
again before buying or selling stock. A conversation does
not necessarily terminated if a single Web service quits.

4.4 XL operations

Each Web service can perform multiple tasks, each de-
scribed by an operation. As mentioned earlier, an operation
is called every time a Web service receives a message. An
operation, therefore, gets the content of a message as input,
carries out a number of statements based on this input, and
generates a message with the output. Consequently, unlike
XQuery functions that can have multiple inputs and exactly
one answer, XL operations have exactly one input and at
most one output. Within every operation, two variables are
defined implicitly: $input and $output. The $input variable
is automatically bound with the content of the XML mes-
sage sent to the operation. The value of the $output variable
is computed in the implementation of the operation and au-
tomatically sent back as a message to the caller of the Web
service. The execution of the operations can also result in
errors which are sent also back as XML messages to the
caller.

In XL the specification of an operation is composed of the
operation’s declarative clauses and the operation body. The
syntax of an operation specification is as follows:

operation <uri>::<name>
< DECLARATIVE OPERATION CLAUSES >

< OPERATION BODY >
endoperation

4.4.1 Declarativeopermationclauses

As for the whole Web service, the declarative clauses of an
operation control the run-time behavior of the given opera-
tion. Some of the clauses are identical in syntax and seman-
tics to those of the Web service and serve only to refine the
global Web service behavior (HISTORY, CONVERSATION
PATTERN and ON ERROR INVOKE). We remark that
the notion of an conversation timeout cannot be associated
with a single operation. Other clauses like the PRECONDI-
TIONS, POSTCONDITIONS, and NO SIDEEFFECT are
specific only to operations, and we will describe them next.
The syntax is as follows:

operation <uri>::<name>

[history ;]

(precondition <booleanExpression>

throw <expression> ;)x

(postcondition <booleanExpression>

throw <expression> ;)=x

[on error invoke <operation> ;]

[no sideeffects ;]

[conversationpattern

(required | ... | never) ;]
!l Operation Body
11

endoperation

PRECONDITION.This is a condition that is checked be-
fore the first statement of the body of the operation is ex-
ecuted. If the condition fails (i.e., evaluates to the Boolean
value FALSE), an exception is raised. The exception is spec-
ified in the THROW clause. Within the header of an oper-
ation, any number of preconditions can be defined. If there
are several preconditions, these preconditions are evaluated
in a random order.

Typically, preconditions will test certain properties of the
$input variable; e.g., the existence of certain elements or the
range of the value of certain elements. Preconditions, how-
ever, can also involve internal variables which are declared

in the local declarations of the Web service (see Section 4.1).
The precondition could also depend on some external condi-
tions. The following precondition would specify that the buy
operation can only be called while the status of the online
broker is open:

precondition not($status = "OPEN”)
throw <error> Sorry, we
are closed! </error>;

POSTCONDITION.A postcondition is checked after the
last statement of the operation has been executed. Typi-
cally, a postcondition will involve the $output variable but,
again, any kind of Boolean expression can be used. If a
postcondition fails, the given exception is raised. If more
than one postcondition is defined, the postconditions are
evaluated in a random order. If an exception is raised by a
precondition, then no postcondition is evaluated. Likewise,
postconditions are not evaluated, if an exception is raised
within the body of the operation and the exception is not
handled within the body of the operation.

An example for a postcondition is to validate the type of
the $output variable before it is sent as a response to the
caller of the login operation:

postcondition $output validates as
myns:customerinfo
throw <failure> Sorry, $output
is invalid! </failure>;

NO SIDEEFFECTS This clause specifies that the opera-
tion has no sideeffects; i.e., the operation is an observer and
does not change the internal state of the Web service or of
any other Web service it might call. Operations that have no
sideeffects can be invoked as part of expressions; otherwise,
an operation cannot be invoked as part of an expression and
it must be invoked as part of a statement (described in the
next section).

4.5 XL statements

XL extends the notion of XQuery expressions to state-
ments. The body of an XL operation is described by such
a statement. In addition to classic imperative statements
like variable assignment, conditional statements, loops, er-
ror handling and return statements, XL supports some ad-
ditional ones: some are XML specific (e.g., the update state-
ments) and others are Web services specific (e.g., Web ser-
vices invocation, logging, sleep). Finally, in addition to the
classic imperative statement combinator (sequencing), XL
contains other statement combinators borrowed from the
workflow and dataflow theory (e.g., dataflow, parallelism,
choice).

4.5.1 XL simplestatements

In this section we introduce some of the basic atomic state-
ments that can be used in the body of an XL program.
(Statements used for specific services will be discussed in
the following subsections.)

Variable assignmentSThe simplest statement is the as-
signment of a local variable. The syntax is as follows:

let [type] variable := expression

Local variables need not be declared before being used.
However, the (XML schema) type of a variable can option-
ally be set as part of the first assignment to this variable.
The scope of a variable is the block where the variable is
defined (see Subsection 4.6). Expressions can be any ex-
pression defined by the W3C XQuery proposal [22].

Update StatementSUnfortunately, XQuery does not yet
provide expressions to manipulate XML data. There are
plans to extend XQuery in this respect and once a recom-
mendation has been released by the W3C, XL is going to
adopt the syntax and semantics of these expressions. In the
meantime, we will use the following statements to manipu-
late XML data:

e insert in order to add new nodes to the XML hierarchy
(e.g., an additional credit card element)

insert <creditcard> ...</creditcard>
into $customer

e delete in order to delete nodes from the XML hierarchy
(e.g., the Visa card)

delete $customer/creditcard [type="Visa”]

e replace in order to adjust elements (e.g., the telephone
number)

replace $customer/telephone with
<telephone> (408)8901 —23</telephone>

e rename in order to rename certain nodes (element or
attributes)

rename $customer/name as ” fullname”

e move in order to move some XML nodes to a different
location in the XML tree, while still preserving the
internal structure and the node identifiers.

move $customer/telephone
after $customer/city

The general syntax of the update statements is as follows:

insert <expression> (into | before | after)
<expression>

delete <expression>

replace <expression> with <expression>

rename <expression> as <expression>

move <expression> (into | before | after)
<expression>

For mowve, the second expression must uniquely identify the
position to which to move the XML nodes; in other words,
the second expression must evaluate to a single node of the
XML data model.

Servicelnvocation StatementsProbably the most rele-
vant atomic statements in XL are those used for invoking
other Web services; i.e., sending a message to another Web
service. Often, the other Web service will be written in XL,
but messages can be sent to any service that have a URI and
respond to SOAP messages [21]. Web services are invoked
independently of the specific way they are implemented. We
propose two ways to invoke a Web service as part of an XL
program: synchronous and asynchronous.
The syntax of a synchronous call is as follows:

<expression> —> <uri>[::<operation>]
[—> <variable>]

The semantics are straightforward. A message with the
value of expression is sent to the Web service identified by
uri. If a specific operation of that Web service should be
called, then the name of the operation can also be speci-
fied. Otherwise, the default operation of the Web service is
invoked. In a synchronous call, the execution is halted un-
til the called Web service finishes its execution and returns
the entire result (also wrapped in a SOAP message). If a
variable is given as part of the call, then the body of the
message returned by the called service is copied into this
variable. The message is sent exactly once and in a best
effort way. Quality of service guarantees and other speci-
fications such as “as often as possible” or “at least once”
which might become part of the XML Protocol recommen-
dation [18] cannot be expressed in the current version of XL.
‘We plan to extend XL accordingly once the XML Protocol
recommendation has been completed.

As an example, consider the following synchronous service
invocation that asks the online broker to buy 1000 SAP for
at most €140.00; the result is stored in the $receipt variable:

<order> <stock> SAP </stock>
<limit> 140 </limit>
<currency> Euro </currency>
<amount> 1000 < /amount>
</order> —>
HTTP://www. OnlineBroker .com::buy
—> $receipt

The syntax of an asynchronous call is similar to the syn-
chronous one:

<expression> =—> <uri>|[::<operation> |
[=> <operation>]

In terms of the semantics: in this case the execution will not
block and the program will immediately continue executing
the next statement after the message to the called service
has been sent. If the output (normal reply message or error)
needs to be processed, then the name of the operation that
will process the asynchronous result can be given as part
of the call; this operation has to be a member of the Web
service that originated the asynchronous call. Again, the
message is sent exactly once and in a best effort way.

Assertions Recall that it is possible to define precondi-
tions and postconditions of XL operations (see Section 4.4).
The more general concept is the concept of an assertion that
can be executed at any point during the execution of an XL
operation. Assertion statements are described using the fol-
lowing notation:

assert <booleanExpression> throw <expression>

If the Boolean expression evaluates to TRUE, the execu-
tion continues normally. Otherwise, an exception is raised.
The second expression specifies the exception that is raised
in this case.

4.5.2 Impemtive statementin XL

Conditional statementsJjust like most other program-
ming languages, XL provides an IF-THEN-ELSE statement
in order to carry out conditions:

if (<booleanExpression>) then
<statement>

endif

else
<statement>

endelse

The semantics are straightforward and the same as in
other imperative programming languages.

Furthermore, XL supports the following SWITCH state-
ment:

switch
if (<booleanExpression>)
then <statement> end
if (<booleanExpression>)
then <statement> end
if (<booleanExpression>)
then <statement> end
1!
[default <statement> end]
endswitch

Again, the semantics are straightforward. The Boolean ex-
pressions are checked from the top to the bottom until an
expression evaluates to TRUE. At most one statement is
executed—after that the switch statement terminates with-
out considering any other Boolean expression. (In C++ and
Java, break statements are used for this purpose.) The DE-
FAULT clause is optional.

Iteration statementsXL supports three different kinds of
loops: WHILE loops, DO-WHILE loops, and FOR-LET-
WHERE-DO loops, with the following syntax:

while (<booleanExpression>) do

<statement>
endwhile

and

do
<statement>
while (<booleanExpression>)

and

for <variable> in <expression>
let <variable> in <expression>
where <booleanExpression>

do <statement>

The FOR-LET-WHERE-DO loop corresponds to FLWR
expressions in XQuery [22].

Exceptiorhandlingstatementsweb services implemented

using XL signal failure by throwing exceptions - just as in
Java or C++. The syntax of the XL statement that raises
an exception is as follows:

throw <expression>

Here, expression can be any kind of XQuery expression. If
the exception is not handled locally (see below), the ex-
ecution of the operation terminates and the value of the
expression (instead of the value of the $output variable) is
returned as a message to the caller of the service. Just like
variables and any other expression, the exceptions can be
strongly typed optionally.

XL also adopts the Java syntax for catching exceptions.
TRY is used to indicate a statement (or sequence of state-
ments) in which an exception might be raised; CATCH is

used to write code that reacts to exceptions. The syntax is
as follows:

try
<statement>
endtry
catch <variable> do
<statement>
endcatch

The variable in the CATCH statement is bound to the
value of the data carried by the exception that is raised while
executing the statement(s) of the TRY statement. Like in
Java, a caught exception will trigger the execution of the
associated statement.

4.6 XL statementCombinators

Obviously, the body of an XL program can contain more
than one atomic statement. There are several ways to com-
bine statements. In the following “statementl” and “state-
ment2” can refer to any atomic statement as the ones de-
scribed in the previous sections or to any combination of
statements[28].

SequenceThe typical way to combine statements is by us-
ing the “” symbol, like in C++ or Java. Thus, the following
means that “statementl” is executed before “statement2.”

<statementl> ; <statement2>

Failure. If “statement1” fails, execute “statement2.”

<statementl> 7 <statement2>

Choice. Execute either “statementl” or “statement2,” but
not both. Which one is executed is nondeterministic.

<statementl> | <statement2>

Parallel execution. Execute “statement1” and “statement2”
in parallel. In other words, the order in which the individual
statements are carried out is not specified.

<statementl> || <statement2>

Dataflow. If there are data dependencies between “state-
ment1” and “statement2” (e.g., “statementl” binds a vari-
able that is used in “statement2”), then execute the state-
ment that depends on the other statement last. If there
are no dependencies, then execute “statementl” and “state-
ment2” in any order (or in parallel). If there is a cyclic
dependency, then this combination of statements is illegal.

<statementl> & <statement2>

Block. Asin C++ and Java, we use the following syntax to
identify a block of statements. The body of an XL program,
for instance, is formed as a block of statements. The scope
of a variable is the block of statements in which the variable
is used for the first time.

begin

<statement>
end

4.7 Web Sewicesspecificstatements

XL also provides a series of additional statements that are
very helpful to implement Web services. We list them in the
following.

Logging statement.As mentioned in Section 4.1, there is
an easy way to specify in XL that all calls to operations are
logged in an automatic way - simply, the keyword HISTORY
must be written in the declaration of a Web service. This
way of automatic logging only involves calls to a Web service,
the timestamp of the call, and the $input message sent by
the caller. In order to write more information into a log, we
propose the following syntax.

logpoint <exprl> as <namel>,

<exprN> as <nameN>
do
<statement>
endlogpoint

As a result of the execution of this statement, the expres-
sions 1 to N are evaluated before and after the execution
of the statement (or series of statements) and their values
are inserted each time into the $history variable using the
respective names.

RETURNstatement.The RETURN statement terminates
the execution of an XL operation and returns the current
value of the $output variable.

HALT statementThe HALT statement terminates the ex-
ecution of an XL operation without returning any message
to the caller. In the absence of a RETURN and HALT state-
ment, the body of the XL operation will be executed and
the content of the $output variable is returned after the last
statement of the XL operation has been executed.

NOTHING statementThe NOTHING statement repre-
sents the empty statement useful in certain cases of work-
flow.

SLEEPstatement.The SLEEP statement stops the execu-
tion of an XL program for a certain duration. For instance,
the following statement will stop the execution for 10 min-
utes:

sleep xf:duration ("P10M”)

The XQuery expression zf:duration(“P10M”) generates
an XML value of type duration; in order to do this, it uses
the function zf:duration defined in the XQuery built-in func-
tion and operation library.

WAIT ONEVENTandWAIT ON CHANGEstatements.

Sometimes it is important to suspend the execution of a
program until a certain event has happened. Examples for
events are data updates, messages received, or certain points
in time have been reached. For instance, the following state-
ment will suspend the execution of an XL operation until the
balance of the customer is more than 1000:

wait on event $customer/balance > 1000 ;

Analogously, we propose a WAIT ON CHANGE state-
ment that stops the execution of a program until the value

of a variable has changed. For instance, the following state-
ment will stop the execution until there is some change to
the $history variable. This statement could be part of an
operation that continuously monitors all the interactions of
a Web service in order to, say, detect fraud.

wait on change $history;

Il carry out fraud detection
1!

Note that the following two statements are not equivalent,
if the execution of a program should be halted until some
given timestamp (xf:currentDateTime() is the XQuery/X-
Path function that returns the current Timestamp [2]):

I correct statement to
Il wait for someTimestamp
wait on event
xf:currentDateTime () = $someTimestamp

Il incorrect statement to wait
'l for someTimestamp
do
nothing
until (xficurrentDateTime ()
= $someTimestamp)

The busy wait in this example does not work because there
is no guarantee that the condition will be checked at every
point in time.

RETRY statementSA typical programming pattern in Web
services is repetitive execution of statements until their suc-
cessful completion, e.g. try to send a message until an ac-
knowledgment is received. XL provides a convenient syntax
to facilitate the programming of such patterns, as follows:

retry
<statement>

[maximum <intExpression>
times [throw <expression>]]

[timeout after <durationExpression>
[throw <expression>]]
endretry

This statement will attempt the repetitive execution of the
statement until the execution finishes without an exception,
or at most a certain number of times (if a MAXIMUM clause
is given) or for a maximum duration (if a TIMEOUT clause
is given).

For instance, the following statement will try to charge the
visa credit card of a customer three times. Such a payment
can fail temporarily for various reasons; e.g., if servers are
overloaded. If all three times fail, however, it is assumed
that there is something wrong with the credit card and an
exception that indicates an illegal payment method is raised:

retry

<payment>
<info> { $customer/creditCard } </info>
<amount> { $order/volume } </amount>

</payment> —> HTTP://www. visa.com::check

—> $receipt
maximum 3 times
throw <error> Illegal payment method
</error>
endretry

5. EXAMPLE: AN AUCTIONING SYSTEM

In this section we show how an auctioning system can be
implemented using XL. We show the global definitions and
declarations of this Web service and the takeBid operation.
The full example, including definitions for the other oper-
ations (e.g., starting and ending an auction), is presented
in [13).

An auction is carried out as a conversation in which the
auctioning system and potentially a large set of bidders par-
ticipate. Several such conversations (i.e., auctions) can be
carried out concurrently; in particular, each bidder can si-
multaneously participate in several such conversations. In
order to give a new bid, bidders invoke the takeBid oper-
ation of the auctioning system. If the bidders are also im-
plemented in XL, bids are automatically associated to the
correct auction; if not, bidders must explicitly set the uri
of the conversation as part of the SOAP message they send
to the auctioning system. When a new bid is entered, the
other participants of the auction are automatically informed
so that they can react.

An auction terminates after a period of 10 hours with no
new bids. This period is specified in the CONVERSATION-
TIMEOUT clause. The end of an auction is implemented
by the closeAuction operation (not shown). Of course, not
everybody should be authorized to call this operation; ex-
tending XL for authorization is part of future work so that
such restrictions are not implemented here.

service HTTP://www.auction .com
namespace xf =
”http://www.w3.o0rg/2001/08/ xquery—operators”

Il Web service internal data
let bidder ;

let id ;

context let auction ;

!l entire Web service activity is monitored
history ;

!l default operation is unknownOP
defaultoperation unknownOP;

!l default pattern for all operations
conversationpattern mandatory;

! a conversation cannot last

!'! more than 10 hours

conversationtimeout xf:duration (?P10H”)
closeAuction;

operation takeBid

!l bid has an amount
precondition $input validates as
correctBid;

!l aquction is open
precondition $auction/status = "OPEN”;

!l mazbid is at least as high as bid
postcondition $auction /maxbid/amount
>= $input/amount;

!l default conversation pattern
!I'!' "mandatory’ is wused
body
!l register new participant of the

!l auction all participants are

!l informed of new bids
if ($auction/bidder != $input/uri)
then do

insert $input/uri into $auction /bidder
endif

9

!l Check bid: Is it high enough?
if ($auction /maxbid/amount

>= $input/bid)

then do

throw <error> Sorry, your bid is

too low. </error>

endif

b
! Register new bid
replace $auction /maxbid with
<maxbid>
<bidder>{$input/uri}</bidder>
<amount>{$input/amount}</amount>
</maxbid>;

!l Inform everybody (exzcept initiator)

'l of the new bid —— multicast !

1!

!l Do not wait for answers —

!l bidders will answer by making new bids

for $q in $auction/bidders

where $q <> $input/uri

do <newbid>
<auctionId>{$auction /id} </auctionId>
<amount> {$input/bid} </amount>

</newbid> => $q;

Il Set output confirm bid
let $output :=
<confirmation>
<auctionId>{$auction /id}</auctionId>

<amount> {$input/bid} </amount>
</confirmation>
endbody
endoperation
endservice

6. RELATED WORK

The development and composition of Web services (or e-
services) is currently a very active area in both industry and
academic research. Very good resources that address various
aspects of this area are the recent W3C workshop on Web
services [10] and the latest issue of the IEEE Data Engineer-
ing Bulletin on e-services [1]. The main purpose of our work
was to provide a clean basis for a new XML programming
language for rapid development of Web services. Such a
language will obviously not be built from scratch but using
the knowledge and technology advancements accumulated
in the last 40 years.

In the industry, there have been a number of concrete
proposals for new languages and frameworks related but
not identical to our programming language proposal—most
prominently, SUN’s J2EE [15] and SunOne [25], and Mi-
crosoft’s .NET initiative [19]. Compaq has developed the
WebL language [28]; HP has developed the eFlow and eS-
peak systems [7, 12], IBM is working on a language called
Web Service Flow Language [29], and Microsoft has recently
released their BizTalk Server 2000 [4] and XLANG [27].
While there are many similarities between for example WSFL
and XLANG on one hand and XL on the other hand, there
are a couple of major differences. First, both WSFL and

XLANG are XML programming languages in the sense that
they have an XML syntaz; our understanding of an XML
programming language is a language that manipulates only
XML data, independently of the syntax of the language
itself. Second, both WSFL and XLANG are able to de-
scribe only how to compose existing Web service compo-
nents (that are expected to be implemented using other
languages), while XL is complete not only with respect to
Web service composition but also specification. Using XL, it
should be possible to implement complex Web services en-
tirely without any need for any other programming language.
Finally, and more importantly, XL adds to Web services the
concepts of declarative behavior specification inherited first
from relational databases and then from J2EE.

Two other specifications worth mentioning are the Busi-
ness Process Model Initiative whose goal is to implement
cross-organization processes and workflows on the Internet [5]
and DAML-S whose goal is the automation of Web services
using ontologies [9]. Moreover, the state of the art in the
Java world is to support XML via so-called servlets that
translate (XML and HTML) requests into Java classes and
back [16]. Furthermore, the J2EE framework provides a
number of features for service composition, conversations,
database interaction, transactions, and security [15]. Re-
cently, Sun Microsystems introduced the JXTA project on
peer-to-peer computing to support distributed computing
on the Internet [17]. SAP has recently announced an own
effort to implement a Web services platform [26]. Finally,
the notion of a service composition is based on a solid theo-
retical background consisting on the calculi developed first
by Hoare [14] and more recently by Cardelli [6].

However, none of those languages and frameworks are to-
tally consistent with the current W3C standards, and we
believe that this is a mandatory condition for the success of
such a programming language.

7. SUMMARY

In this paper we sketched the requirements and presented
an initial design of an XML programming language whose
purpose is to render the implementation and the composi-
tion of new and existing Web services as easy as possible.
Developers should not worry about details of Internet proto-
cols, database systems, and the infrastructure. Developers
should also not worry about hand-tuning their applications
or about marshaling particular data formats, but instead,
they should concentrate on the application logic.

Our short-term goal is to foster discussions that will even-
tually come to a consensus for a complete design of such a
language. Open questions involve the syntax and seman-
tics for transactions, support for more comfortable conver-
sations, constructs to explicitly set the SOAP envelop of
a message, implementation of multi-casts, and security as-
pects (e.g., authorization and encryption). In the long run,
the implementation of XL and of a global infrastructure
for Web service composition will involve a large number of
new research opportunities; e.g., code mobility, automatic
caching and optimization. One particular issue is to find
out what kind of meta-data is necessary in order to describe
a Web service and make these optimizations possible.

The language we propose here is currently being imple-
mented; we hope to have a demo available on the Web in
summer 2002.

8. REFERENCES

[1] Special issue on Infrastructure for Advanced E-services.

[2

[28

[29

[30

31

]

]
]

]

Data Engineering Bulletin, 24(1), March 2001.

XQuery 1.0, XPath 2.0 Functions, and Operations Version
1.0. http://www.w3.org/tr/xquery-operators/, December
2001.

XQuery 1.0 and XPath 2.0 Data Model.
http://www.w3.org/tr/query-datamodel/.

BizTalk.org. Biztalk initiative.
http://www.biztalk.org/home/default.asp.

BPMI.org. Business management initiative.
http://www.bpmi.org/index.esp.

L. Cardelli and R. Davies. Service combinators for

Web computing. In IEEE (TSE), 1999.

F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C.
Shan. eFlow: a platform for developing and managing
composite e-services. Technical report, Hewlett Packard,
2000.

E. Christensen, F. Curbera, G. Meredith, and

S. Weerawarana. Web services description language
(WSDL) 1.1. http://www.w3.org/TR/wsdl.

DAML Service Coalition. Daml-s: Semantic markup for
web services. http://www.daml.org/services.

W3C Consortium. Workshop on Web services.
http://www.w3.0rg/2001/01/WSWS.

G. Copeland and D. Maier. Making Smalltalk a database
system. In Proceedings of the 1984 ACM SIGMOD
International Conference on Management of Data, pages
316-325. ACM, 1984.

eSpeak. The universal language of e-services.
http://www.e-speak.hp.com/.

D. Florescu and D. Kossmann. An XML Programming
Language for Web Service Specification and Composition.
Technical report, TU Munich, June 2001.

C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

J2EE. Java 2 enterprise edition.
http://java.sun.com/j2ee/tutorial.

JAKARTA. The JAKARTA project.
http://jakarta.apache.org/.

JXTA. Project JXTA. http://www.jxta.org/.

XML Protocol Abstract Model.
http://www.w3.org/tr/xmlp-am/, Jul 2001.

.NET. http://www.microsoft.com/net.

XForms: The Next Generation of Web Forms.
http://www.w3.org/markup/forms/.

Simple Object Access Protocol.
http://www.w3.org/tr/soap/, May 2000.

XML Query. http://www.w3.org/xml/query, Dec 2001.
XML Schema. http://www.w3.org/xml/schema, May 2001.
XQuery 1.0 Formal semantics.
http://www.w3.org/tr/query-semantics/, June 2001.
Sun. Sunone. http://www.sun.com/software/sunone.
SAP Technology.
http://www.sap.com/company/publications
/fs_technology.asp?pressid=706.

S. Thatte. Xlang overview.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm.

WebL. Compaq’s web language.
http://www.research.compaq.com/SRC/WebL/.

WSFL. Web services flow language.
http://www-4.ibm.com/software/solutions
/webservices/pdf/ WSFL.pdf.

XML Path Language (XPath).
http://www.w3.org/tr/xpath, Nov 1999.

Extensible Stylesheet Language XSLT.
http://www.w3.org/style/xsl/, Jan 2002.

