
1

Fall 2004 CIS 650 1

Querying XML

Susan B. Davidson
susan@cis.upenn.edu

Some slide content courtesy of Zack Ives

Fall 2004 CIS 650 2

Querying XML
How do you query a directed graph? a tree?

The standard approach used by many XML,
semistructured-data, and object query
languages:
– Define some sort of a template describing

traversals from the root of the directed graph
– In XML, the basis of this template is called an

XPath

2

Fall 2004 CIS 650 3

XML Data Model Visualized

Root

?xml dblp

mastersthesis article

mdate key
author title year school editor title yearjournal volume eeee

mdate
key

2002…

ms/Brown92

Kurt P….

PRPL…

1992

Univ….

2002…

tr/dec/…

Paul R.

The…

Digital…

SRC…

1997

db/labs/dec

http://www.

attributeroot

p-i element

text

Fall 2004 CIS 650 4

Sample XML
<?xml version="1.0" encoding="ISO-8859-1" ?>
<dblp>

<mastersthesis mdate="2002-01-03" key="ms/Brown92">
<author>Kurt P. Brown</author>
<title>PRPL: A Database Workload Specification Language</title>
<year>1992</year>
<school>Univ. of Wisconsin-Madison</school>

</mastersthesis>
<article mdate="2002-01-03" key="tr/dec/SRC1997-018">
<editor>Paul R. McJones</editor>
<title>The 1995 SQL Reunion</title>
<journal>Digital System Research Center Report</journal>
<volume>SRC1997-018</volume>
<year>1997</year>
<ee>db/labs/dec/SRC1997-018.html</ee>
<ee>http://www.mcjones.org/System_R/SQL_Reunion_95/</ee>

</article>

3

Fall 2004 CIS 650 5

Some Example XPath
Queries

• /dblp/mastersthesis/title
• /dblp/*/editor
• //title
• //title/text()

Fall 2004 CIS 650 6

Context Nodes and Relative
Paths

XPath has a notion of a context node, which
is analogous to a current directory
– “.” represents this context node
– “..” represents the parent node
– We can express relative paths:

subpath/sub-subpath/../.. gets us back to the context
node

By default, the document root is the context
node

4

Fall 2004 CIS 650 7

Predicates – Selection
Operations

A predicate allows us to filter the node set
based on selection-like conditions over sub-
XPaths:

/dblp/article[title = “Paper1”]

which is equivalent to:

/dblp/article[./title/text() = “Paper1”]

Fall 2004 CIS 650 8

Axes: More Complex
Traversals

Thus far, we’ve seen XPath expressions that go down
the tree (and up one step)
– But we might want to go up, left, right, etc.
– These are expressed with so-called axes:

• self::path-step
• child::path-step parent::path-step
• descendant::path-step ancestor::path-step
• descendant-or-self::path-step ancestor-or-self::path-step
• preceding-sibling::path-step following-sibling::path-step
• preceding::path-step following::path-step

– The previous XPaths we saw were in “abbreviated form”

5

Fall 2004 CIS 650 9

Querying Order
• We saw in the previous slide that we could query

for preceding or following siblings or nodes
• We can also query a node for its position according

to some index:
– fn::first(), fn::last() return index of 0th & last

element matching the last step:
– fn::position() gives the relative count of the current

node

child::article[fn::position() = fn::last()]

Fall 2004 CIS 650 10

XPath dereferences
• Recall that ID and IDREF can be used to create a

reference between one element and another.
• This can be dereferenced in XPath. For example,

to find Joe’s wife you would write:

– /person[@name=“Joe”]/@spouse ==> person

6

Fall 2004 CIS 650 11

Users of XPath

• XML Schema uses simple XPaths in
defining keys and uniqueness constraints

• XQuery
• XSLT
• XLink and XPointer, hyperlinks for XML

Fall 2004 CIS 650 12

XQuery
A strongly-typed, Turing-complete XML manipulation

language
– Attempts to do static typechecking against XML Schema
– Based on an object model derived from Schema

Unlike SQL, fully compositional, highly orthogonal:
– Inputs & outputs collections (sequences or bags) of XML

nodes
– Anywhere a particular type of object may be used, may

use the results of a query of the same type
– Designed mostly by DB and functional language people

Attempts to satisfy the needs of data management
and document management
– The database-style core is mostly complete (even has

support for NULLs in XML!!)
– The document keyword querying features are still in the

works – shows in the order-preserving default model

7

Fall 2004 CIS 650 13

XQuery’s Basic Form
• Has an analogous form to SQL’s

SELECT..FROM..WHERE..GROUP BY..ORDER BY
• The model: bind nodes (or node sets) to variables;

operate over each legal combination of bindings;
produce a set of nodes

• “FLWOR” statement:
for {iterators that bind variables}
let {collections}
where {conditions}
order by {order-conditions}
return {output constructor}

Fall 2004 CIS 650 14

“Iterations” in XQuery
A series of (possibly nested) FOR statements

assigning the results of XPaths to variables

for $root in document(“http://my.org/my.xml”)
for $sub in $root/rootElement,

$sub2 in $sub/subElement, …

• Something like a template that pattern-matches,
produces a “binding tuple”

• For each of these, we evaluate the WHERE and
possibly output the RETURN template

• document() or doc() function specifies an input file
as a URI

8

Fall 2004 CIS 650 15

Two XQuery Examples
<root-tag> {

for $p in document(“dblp.xml”)/dblp/proceedings,
$yr in $p/yr

where $yr = “1999”
return <proc> {$p} </proc>

} </root-tag>

for $i in doc (“dblp.xml”)/dblp/inproceedings[author/text() = “John
Smith”]

return <smith-paper>
<title>{ $i/title/text() }</title>
<key>{ $i/@key }</key>
{ $i/crossref }

</smith-paper>

Fall 2004 CIS 650 16

Joins in XQuery
Suppose we have a document of addresses, and
a document of movies. Who of our contacts was
involved in a movie?

<XML>
{
for $p in document(“address.xml”)//person,

$m in document(“moviedb.xml”)//movie[character=$p/name],
return <cine-contact>

<who>{$p/name/text()}</who>
<movie>{$m/title/text()}</movie>
{for $e in $p/email
return{<where>{$e/text()}</where>}}

</cine-contact>
}
<\XML>

9

Fall 2004 CIS 650 17

Nesting in XQuery
Nesting XML trees is perhaps the most common

operation
In XQuery, it’s easy – put a subquery in the return clause

where you want things to repeat!

for $u in doc(“dblp.xml”)/universities
where $u/country = “USA”
return <ms-theses-99>

{ $u/title} {
for $mt in $u/../mastersthesis
where $mt/year/text() = “1999”
return $mt/title }

</ms-theses-99>

Fall 2004 CIS 650 18

Equality
• Equality

– node-equal: same node
– deep-equal: same value

let $first:= {<val>1</val>, 2,3}
$second:={<val>1</val>, 2,3}

return <result>
Node: {sequence-node-equal($first, $second)}
Deep: {sequence-deep-equal($first, $second)}

</result>
Result:
<result>

Node: false
Deep: true

</result>

10

Fall 2004 CIS 650 19

Collections & Aggregation
• In XQuery, many operations return collections

– XPaths, sub-XQueries, functions over these, …
– The let clause assigns the results to a variable

• Aggregation simply applies a function over a
collection, where the function returns a value

let $allpapers := doc(“dblp.xml”)/dblp/article
return <article-authors>

<count> {fn:count(fn:distinct-values($allpapers/authors)) } </count>
{ for $paper in doc(“dblp.xml”)/dblp/article

let $pauth := $paper/author
return <paper> {$paper/title}

<count> { fn:count($pauth) } </count>
</paper>

} </article-authors>

Fall 2004 CIS 650 20

Sorting in XQuery
• SQL allows you to sort its output, with a special

ORDER BY clause (which we haven’t discussed)
• XQuery borrows this idea
• In XQuery, what we order is the sequence of

“result tuples” output by the return clause:

for $x in doc(“dblp.xml”)/proceedings
order by $x/title/text()
return $x

11

Fall 2004 CIS 650 21

What if order doesn’t
matter?

• By default:
– SQL is unordered
– XQuery is ordered everywhere!
– But unordered queries are much faster to answer

• XQuery has a way of telling the DBMS to avoid
preserving order:
– for $x in fn:unordered(mypath) …

– Some of us feel the default is “wrong”…

Fall 2004 CIS 650 22

Distinct-ness
• XQuery has a notion that DISTINCT-ness

happens as a function over a collection
– But since we have nodes, we can do duplicate removal

according to value or node
– Can do fn:distinct-values(collection) to remove duplicate

values, or fn:distinct-nodes(collection) to remove
duplicate nodes

for $years in fn:distinct-
values(doc(“dblp.xml”)//year/text()

return $years

12

Fall 2004 CIS 650 23

Querying & Defining Metadata
• Can’t do this in SQL..
• Can get a node’s name by querying node-name():

for $x in document(“dblp.xml”)/dblp/*
return node-name($x)

• Can construct elements and attributes using
computed names:

for $x in document(“dblp.xml”)/dblp/*,
$year in $x/year,
$title in $x/title/text(),

element node-name($x) {
attribute {“year-” + $year} { $title }

}

Fall 2004 CIS 650 24

XQuery: Beyond FLWR
• XQuery has many built-in functions and

predicates, such as
– count(), sum(), min(), max(), position(), first(…),

last() which work over sequences
– index-of() finds the position of a node in a

sequence
– Distinct-values(), distinct-nodes() remove

duplicates
– Set operations: union, intersection

• If-then-else statements and function
definition (“define function name (params)
returns result”) are also included

13

Fall 2004 CIS 650 25

XQuery Summary

• Very flexible and powerful language for
XML
– Clean and orthogonal: can always replace a

collection with an expression that creates
collections

– DB and document-oriented (we hope)
– The core is relatively clean and easy to

understand

Fall 2004 CIS 650 26

XSL(T): The Bridge Back to
HTML

• XSL (XML Stylesheet Language) is actually divided
into two parts:
– XSL:FO: formatting for XML
– XSLT: a special transformation language

• We’ll ignore for now XSL:FO
• XSLT is actually able to convert from XML

HTML, which is how many people do their
formatting today
– Products like Apache Cocoon generally translate XML

HTML on the server side

14

Fall 2004 CIS 650 27

A Different Style of
Language

• XSLT is based on a series of templates that match
different parts of an XML document
– There’s a policy for what rule or template is applied if

more than one matches (it’s not what you’d think!)
– XSLT templates can invoke other templates
– XSLT templates can be nonterminating (beware!)

• XSLT templates are based on XPath “match”es,
and we can also apply other templates (potentially
to “select”ed XPaths)
– Within each template, we describe what should be output

Fall 2004 CIS 650 28

An XSLT Stylesheet
<xsl:stylesheet version=“1.1”>

<xsl:template match=“/dblp”>
<html><head>This is DBLP</head>
<body>

<xsl:apply-templates />
</body>
</html>

</xsl:template>
<xsl:template match=“inproceedings”>

<h2><xsl:apply-templates select=“title” /></h2>
<p><xsl:apply-templates select=“author”/></p>

<.xsl:template>
…

</xsl:stylesheet>

15

Fall 2004 CIS 650 29

What XSLT Can and Can’t Do
• XSLT is great at converting XML to other formats

– XML diagrams in SVG; HTML; LaTeX
– …

• XSLT doesn’t do joins (well), it only works on one
XML file at a time, and it’s limited in certain
respects
– It’s not a query language
– … But it’s a very good formatting language

• Most web browsers (post Netscape 4.7x) support
XSLT and XSL formatting objects

• But most real implementations use XSLT with
something like Apache Cocoon

Fall 2004 CIS 650 30

Wrapping Up
We’ve seen three XML manipulation formalisms:

– XPath: the basic language for “projecting and selecting”
(evaluating path expressions and predicates) over XML

– XQuery: a statically typed, Turing-complete XML
processing language

– XSLT: a template-based language for transforming XML
documents

– Each is extremely useful for certain applications!

