
Data Stream Management for Historical XML Data

Sujoe Bose, Leonidas Fegaras

The University of Texas at Arlington
416 Yates Street, P.O. Box 19015

Arlington, TX 76019
{bose,fegaras}@cse.uta.edu

ABSTRACT
We are presenting a framework for continuous querying of
time-varying streamed XML data. A continuous stream in
our framework consists of a finite XML document followed
by a continuous stream of updates. The unit of update
is an XML fragment, which can relate to other fragments
through system-generated unique IDs. The reconstruction
of temporal data from continuous updates at a current time
is never materialized and historical queries operate directly
on the fragmented streams. We are incorporating temporal
constructs to XQuery with minimal changes to the existing
language structure to support continuous querying of time-
varying streams of XML data. Our extensions use time pro-
jections to capture time-sliding windows, version control for
tuple-based windows, and coincidence queries to synchro-
nize events between streams. These XQuery extensions are
compiled away to standard XQuery code and the resulting
queries operate continuously over the existing fragmented
streams.

1. INTRODUCTION
Many data management applications require the existence

of time-varying data. For example, medical information sys-
tems store information on patient histories and how each
patient responds to certain treatments over time. Financial
databases use histories of stock prices to make investment
decisions. Temporal databases provide a complete history
of all changes to a database and include the times when
changes occurred. This permits users to query the current
state of the database, as well as past states, and even future
states that are planned to occur.

There is a recent interest in a new type of data man-
agement based on streams of historical data. Stream data
may be infinite or repeated and transmitted in a continuous
stream, such as measurement or sensor data transmitted
by a real-time monitoring system continuously. An infinite
stream may consist of a finite data stream followed by an
infinite number of updates. Since client queries may refer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

to past history as well as to current data, a data stream
resembles a read-once temporal database where all versions
of data must be available to the client upon request. For
example, a server may broadcast stock quotes and a client
may evaluate a continuous query on a wireless, mobile de-
vice that checks and warns on rapid changes in selected stock
prices within a time period.

While temporal query languages were developed to han-
dle stored historical data, continuous queries were designed
to operated on streaming data. For example, sliding win-
dow queries capture streaming data in a moving fixed-size
window and are executed in a continuous manner over each
window [5, 3]. Streamed data is inherently associated with a
valid or transaction time dimension that identifies the time
instant when the data is valid or is generated. For example,
a temperature sensor may indicate the temperature reading
at a certain location taken at a particular time of the day.
Streamed data can be broadly classified into two types: in-
stantaneous or event based, which takes place at a certain
point of time, and epoch or lifetime based, which is valid
during a certain time interval. Instantaneous data is typi-
cally associated with sensor streams, such as traffic sensors,
while lifetime data is associated with change-based or up-
date streams, such as stock quotes.

Earlier work on continuous query processing has focused
on relational data transmitted as a stream of tuples. Each
tuple is typically associated with a timestamp, which al-
lows the specification of time-sliding windows in continuous
queries. For example, an update to a record may simply
be a newly inserted record in the stream with the same
key but with different timestamp and values. This makes
the continuous queries over historical stream data easier
to specify in relational form than in other forms. Recent
proposals of continuous query languages, such as CQL [11,
15], extend SQL with simple temporal constructs, such as
time-interval and version projections to specify time- and
tuple-based windows, but do not support temporal joins to
synchronize events between streams.

In our framework, data is transmitted in XML form, since
it is now the language of choice for communication between
cooperating systems. A typical configuration for our push-
based data model consists of a small number of servers that
transmit XML data over high-bandwidth streams and many
clients that receive this data. Even though our model resem-
bles a radio transmitter that broadcasts to numerous small
radio receivers, our clients can tune-in to multiple servers at
the same time to correlate their stream data. In contrast
to servers, which can be unsophisticated, clients must have

enough storage capacity and processing power to evaluate
sophisticated, continuous queries on the XML data streams.
Contrary to other data stream management systems, a client
would have to register/unregister with a server only once
using a pull-based web service, but would be capable of exe-
cuting any number of continuous queries without registering
the queries with the server. The server, on the other hand,
would multicast its data to the registered clients without
any feedback from them. Pushing data to multiple clients is
highly desirable when a large number of similar queries are
submitted to a server and the query results are large [7], such
as requesting a region from a geographical database. Fur-
thermore, by distributing processing to clients, we reduce
the server workload while increasing its availability. On the
other hand, a stream client does not acknowledge correct
receipt of the transmitted data, which means that, in case
of a noise burst, it cannot request the server to resubmit a
data packet to correct the errors.

A data stream in our framework consists of a finite XML
document followed by continuous updates to the document.
It is essential, therefore, to specify XML updates unambigu-
ously, that is, to uniquely identify the updated element in
an XML document. Hierarchical key structures [10] can
uniquely identify XML elements, such as elements with an
ID attribute, but not all elements can be identified this way.
Our approach to updating XML streams is novel in that it
does not require keys to update XML elements. Instead, we
fragment an XML document into manageable chunks of in-
formation. These chunks, or fragments, are related to each
other and can be reassembled at the client side upon arrival.
Our XML fragments follow the Hole-Filler model [12, 9] in
which every fragment is treated as a “filler” and is associ-
ated with a unique ID. When a fragment needs to refer to
another fragment in a parent-child relationship, it includes
a “hole”, whose ID matches the filler ID of the referenced
filler fragment. A document can be fragmented to produce
fillers and holes in arbitrary ways and the fragments can
be arranged to any depth and breadth in a document tree.
A server may choose to disseminate XML fragments from
multiple documents in the same stream, can repeat some
fragments when they are critical or in high demand, can re-
place them when they change by sending delta changes, and
can introduce new fragments or delete invalid ones.

The notion of the filler ID is similar to that of a surro-
gate key in relational databases or an OID in object-oriented
databases, but the granularity of our data is a fragment,
which may contain multiple elements, rather than a single
XML element. In our Hole-Filler model, updating a frag-
ment is simply streaming a new fragment with the same
filler ID but with different timestamp and content. An in-
sertion of a new child to a node is achieved by updating the
fragment that contains the node with a new hole, and dele-
tion of a child, by removing the hole corresponding to the
deleted fragment. When a fragment is deleted all its chil-
dren fragments become inaccessible. In essence, a fragment
is the unit of updates: one can only replace the entire frag-
ment, not parts of it. If an XML document is transmitted
unfragmented, any update would have to transmit the entire
updated document. It is essential, therefore, that a server
does a reasonable fragmentation of data to accommodate
future updates with minimal overhead.

At each instance of time, a client should be able to see
the complete history of changes in the transmitted docu-

ment since the beginning of time. The Hole-Filler model is
too low a level for the client to execute high-level XQueries
since it requires the user to navigate from holes to the cor-
responding fillers during querying. More importantly, since
a hole may correspond to multiple fillers due to updates,
historical queries would have to explicitly manipulate the
timestamp component of fragments. Instead, we provide
the client a virtual view of historical data upto the current
time that is easy and intuitive to query. This temporal view
is derived by merging all versions into one XML tree, by
replacing each hole with the sequence of all fragments that
correspond to the hole. This view is never materialized; in-
stead XQueries over this view is translated into XQueries
over the existing streams of fragments.

The rest of the paper is organized as follows: Section 2
proposes the XCQL language to perform continuous queries
on a temporal view of stream data. Section 3 details the
approach we adopt to process stream events and updates in
a temporal context. Section 4 describes the streaming strat-
egy employed to model events and updates as fragments of
XML data embedded with contextual information. Section 5
covers the reconstruction of a temporal view of the trans-
mitted fragments. Section 6 formalizes the translation of
XCQL expressions to process fragments as and when they
arrive, without waiting for complete materialization. Sec-
tion 7 provides the results of our experimental evaluation,
and Section 8 summarizes the contributions and proposes fu-
ture work envisioned in this framework. Section 9 discusses
the related work, and Section 10 concludes the paper.

2. THE XCQL LANGUAGE
Our query language, XCQL, is XQuery extended with

temporal language constructs for effective querying of his-
torical data. These extensions are compiled away when an
XCQL query over the temporal view is translated into an
XQuery over the fragmented stream. Instead of restricting
the lifespan of input streams only, as is done in CQL [11], we
let our temporal extensions apply to any XQuery expression.

Essential to our query language is the notion of time and
time intervals. Time can be any XQuery expression of type
xs:dateTime, which conforms to the ISO8601 extended for-
mat CCYY-MM-DDThh:mm:ss where CC represents the cen-
tury, YY the year, MM the month and DD the day. The
letter T is the date/time separator and hh, mm, ss represent
hour, minute and second respectively [13]. The time dura-
tion used in expressions takes the form PnYnMnDTnHnMnS,
where nY represents the number of years, nM the number of
months, nD the number of days, T is the date/time separa-
tor, nH the number of hours, nM the number of minutes and
nS the number of seconds [13]. In addition, time expressions
may use the constant start to indicate the beginning of time
and the constant now to indicate the current time, which
changes during the evaluation of a continuous query.

The time interval, [time1, time2], contains all the time
points between and including time1 and time2. XCQL sup-
ports a number of syntactic constructs to compare two time
intervals a and b, such as a before b, which is equivalent to
a.t2<b.t3 when a=[t1,t2] and b=[t3,t4]. The time interval,
[time], contains just one time point: time, so is a shorthand
for [time, time]. Our version numbering scheme uses inte-
gers 1, . . . , last to number all versions of a fragment, starting
from the first version, 1, and ending at the last version at
the current time, last. A version interval, [e1, e2], contains

all the versions e1, e1 +1, . . . , e2, where e1 and e2 are integer
expressions. As before, [e] is a shorthand of [e, e].

Time and version intervals can only be used in the follow-
ing XCQL syntax:

e?time interval interval projection
e#version interval version projection
vtFrom(e) interval begin
vtTo(e) interval end

where e is any XCQL expression. Note that the interval and
version projections may be used at the same time to restrict
versions applicable within the time range. The conceptual
temporal view of data is based on the assumption that any
XML element has a lifespan (a time interval), which can be
accessed using the vtFrom/vtTo functions. In reality, very
few elements are typically directly associated with a lifes-
pan. These are the elements that correspond to event or
temporal fragments in the Hole-Filler model. The lifespan
of any other element is the minimum lifespan that covers
the lifespans of its children (or [start,now] for leafs). Any
XQuery expression, even those that construct new XML ele-
ments from temporal elements, conforms with this temporal
view since temporal information is propagated from children
to parent. The default interval projection applied to an ex-
pression is [start,now], which has no effect on the temporal
information of data. If the most recent data is desired, then
e?[now] should be used. When an interval projection is ap-
plied to an expression, the lifespan of the resulting value
will be equal to the intersection of the projection interval
and the current lifespans of input (the semantics will be
given in Section 6). On the other hand, only elements as-
sociated with event or temporal fragments have versions.
When a version projection is applied to a temporal element
(that is, an element associated with an event or temporal
fragment), then the correct version is chosen (if exists) and
its lifespan is used in a temporal projection over the chil-
dren of the element. Even though the interval and version
projections have very simple syntax, they are very powerful
and can capture many operations proposed by others. For
example, windowing, such as R[Partition by R.A Rows n] or
R[Partition by R.A Range n Days] in CQL, can be simulated
by performing the group by first using regular XQuery and
applying a version or an interval projection respectively to
the result.

The following are examples in XCQL:

1. Suppose that a network management system receives
two streams from a backbone router for TCP connec-
tions: one for SYN packages and another for ACK
packages that acknowledge the receipt. We want to
identify the misbehaving packages that do not receive
an acknowledgment within a minute:

for $s in stream("gsyn")//packet

where not (some $a in stream("ack")//packet

?[vtFrom($s)+PT1M,now]

satisfies $s/id = $a/id

and $s/srcIP = $a/destIP

and $s/srcPort = $a/destPort)

return <warning> { $s/id } </warning>

where PT1M is one minute duration.

2. In a radar detection system, a sweeping antenna moni-
tors communications between vehicles by detecting the

time of the communication, the angle of the antenna
when it captures the signal, the frequency, and the
intensity of the signal. This information is streamed
to a vehicle monitoring system. This system can lo-
cate the position of a vehicle by joining the streams of
two radars over both frequency and time and by using
triangulation:

for $r in stream("radar1")//event,

$s in stream("radar2")//event

?[vtFrom($r)-PT1S,vtTo($r)+PT1S]

where $r/frequency = $s/frequency

return

<position>

{ triangulate($r/angle,$s/angle) }

</position>

where function triangulate uses triangulation to calcu-
late the x-y coordinates of the vehicle from the x-y
coordinates of the two radars and the two sweeping
angles. Here we assume that each antenna rotates at
a rate of one round per second, thus, when a vehicle
is detected by both radars, the two events must take
place within one second.

3. Some vehicles, such as buses and ambulances, have
vehicle-based sensors to report their vehicle ID and lo-
cation periodically. Road-based sensors report their
sensor ID and the speed of the passing vehicles. Some
traffic lights, on the other hand, not only report their
status each time it changes, but they also accept in-
structions to change their status (e.g., from red to
green). When an ambulance is close enough to a traf-
fic light, we would like to switch the light to green at
a time that depends on the speed and the position of
the ambulance:

for $v in stream("vehicle")//event

$r in stream("road_sensor")

//event?[vtFrom($v),vtTo($v)]

$t in stream("traffic_light")

//event?[vtFrom($v),vtTo($v)]

where distance($v/location,$r/location)<0.1

and distance($v/location,$t/location)<10

and $v/type = "ambulance"

return

<set_traffic_light ID="{$t/id}">

<status>green</status>,

<time> {vtFrom($t)

+(distance($v/location,$t/location)

div $r/speed)}

</time>

</set_traffic_light>

3. OUR APPROACH
In our framework, we consider data from a wide variety of

streaming data sources, such as computer applications that
generate values automatically or through user interactions.
The ability to synchronize between the streams by issuing
coincidence queries, using simple extensions to the standard
XQuery language, is one of the contributions of our work.

Events and updates generated by a data stream appli-
cation are usually associated with context information. For

example, a temperature sensor generating temperature read-
ings is associated with the locational information of the sen-
sor, which is primarily static. While events are dynamic, the
event context information is primarily static, but changing
at times. For example, a credit card account is associated
with a credit limit, which changes from time to time. Charge
transactions made on the card are associated with and are
bounded by the credit limit on the account at that partic-
ular point in time. The charge transactions are the events,
and the credit limit, along with other account information,
forms a context for the event. We observe that when events
are generated, the context information need not be sent ev-
ery time, however, the events must be processed within the
overall context in a historical timeline to accurately cap-
ture the semantics of the event within its global context.
The context information may itself change at times, so we
would like to capture its temporal extents in the same way
as we do for regular events. Thus, we treat both events
and updates as stream entities and identify them with their
contextual locality so that they can be integrated together
and processed uniformly in the historical timeline. Also, we
are faced with a challenge of sending XML data in frag-
ments, associated with a context such that the data can be
processed within its context. We address this challenge by
encoding fragments with a context id and using the id to
construct a complete XML document, with the events as se-
quences with an associated valid time within their context,
and updates as elements associated with temporal duration.
The fragments encoded with structural context information
and associated with temporal extents can be visualized as
forming a complete XML document so that queries on the
entire XML document view can be processed with XCQL
expressions.

Our approach benefits from two aspects. First, since we
only send data in fragments, which is a unit of information
for both events and updates, the amount of data transfer
is minimal and sufficient. Second, we can process tempo-
ral queries against these fragments in a continuous fashion
as and when they arrive without waiting to materialize the
fragments to a complete XML document. The data frag-
ments in the stream, comprising of events and updates to
event contexts, provide a temporal XML view in the histor-
ical timeline of the stream.

We illustrate our approach in Figure 1. The events stream
generates an infinite sequence of fragments corresponding
to real-life events. The update stream produces fragments
corresponding to updates to the event context and other re-
lated temporal data. By capturing both events and updates
as fragments with temporal extents, we provide a unified
continuous query processing, using the XCQL language, to
query both historical and current data.

While an event is associated with a single time point, up-
dates are associated with a valid time duration with “from”
and “to” extents, denoting the temporal duration of valid-
ity. However, for convenience and simplicity, we associate
“from” and “to” extents to events also, both being the same
as its valid time.

3.1 Running Example
As a running example consider a credit card processing

system. The accounts present in the system are associated
with temporal qualifiers indicating their lifetime. Moreover,
accounts are associated with credit limits, which change

Updates

(Stream)

Events

(Stream)

����
(Merge)

(Stream)

��@@

�
���

@
@@R -

�
�

�
�XCQL - Temporal

XML

Figure 1: Event and Update Stream Processing

from time to time. While charge transactions arrive in a
continuous event stream, as charges gets posted to accounts,
account-level updates, such as credit limit changes, arrive in
an update stream.

The DTD for the credit card system, with the associated
temporal qualifiers, is the following:

<!DOCTYPE creditSystem [

<!ELEMENT creditAccounts (account*)>

<!ELEMENT account (customer, creditLimit*,

transaction*)>

<!ATTLIST account id ID #REQUIRED>

<!ATTLIST account vtFrom CDATA #REQUIRED>

<!ATTLIST account vtTo CDATA #REQUIRED>

<!ELEMENT customer (#CDATA)>

<!ELEMENT creditLimit (#PCDATA)>

<!ATTLIST creditLimit vtFrom CDATA #REQUIRED>

<!ATTLIST creditLimit vtTo CDATA #REQUIRED>

<!ELEMENT transaction (vendor, status*, amount)>

<!ATTLIST transaction vtFrom CDATA #REQUIRED>

<!ATTLIST transaction vtTo CDATA #REQUIRED>

<!ELEMENT vendor (#PCDATA)>

<!ELEMENT status (#PCDATA)>

<!ATTLIST status vtFrom CDATA #REQUIRED>

<!ATTLIST status vtTo CDATA #REQUIRED>

<!ELEMENT amount (#PCDATA)>]>

Even though transactions are event-based, being associ-
ated with a single valid time extent, we encode their tempo-
ral dimension with both “from” and “to” time points, equal
to the valid time of the event, for simplicity and uniformity
to facilitate the XCQL translation. As charge transactions
are made against credit cards, the transaction fragments are
transmitted in the stream. Moreover, the transactions in an
account may be questioned, suspended, revoked, charged at
different points in time based on customer/vendor feedback.
The following is a fragment of the temporal credit card sys-
tem XML data:

<creditAccounts>

<accounts id="1234" vtFrom="1998-10-10T12:20:22"

vtTo="2003-11-10T09:30:45">

<customer> John Smith </customer>

<creditLimit vtFrom="1998-10-10T12:20:22"

vtTo="2001-04-23T23:11:08">

2000 </creditLimit>

<creditLimit vtFrom="2001-04-23T23:11:08"

vtTo="now">

5000 </creditLimit>

<transaction id="12345"

vtFrom="2003-10-23T12:23:34"

vtTo="2003-10-23T12:23:34">

<vendor> Southlake Pizza </vendor>

<amount> 38.20 </amount>

<status vtFrom="2003-10-23T12:24:35"

vtTo="now">

charged

</status>

</transaction>

...

</accounts>

...

</creditAccounts>

Based on the temporal XML view of the credit system,
we would like to answer the following useful queries.

Query 1 : Retrieve all accounts and their current cred-
itLimit, which are maxed-out in the billing period of Novem-
ber 2003. Assume billing periods for all accounts start on
the 1st of every month.

for $a in stream("credit")//account

where sum($a/transaction?[2003-11-01,2003-12-01]

[status = "charged"]/amount) >=

$a/creditLimit?[now]

return

<account>

{ attribute id {$a/@id},

$a/customer,

$a/creditLimit }

</account>

Note that the window specification, in our XCQL lan-
guage, is blended into a temporal duration specification in
a seamless XQuery compatible format. The window condi-
tion acts as a filtering criterion to group together matching
elements along with other filtering conditions. Also note
that the “transaction” elements are inherently grouped by
accounts so that the transactions pertaining to each account
may be processed as a group within the window/filter crite-
rion.

Query 2 : Retrieve all accounts that exhibit potential
fraudulent behavior, that is, to detect the credit cards that
may be lost and misused, so that the account holder may be
contacted and alerted. We need to determine all accounts
whose transactions within an hour totals a value of more
than a maximum of $5000 and 90% of its current credit
limit.

for $a in stream("credit")//account

where sum($a/transaction?[now-PT1H,now]

[status = "charged"]/amount) >=

max($a/creditLimit?[now] * 0.9, 5000)

return

<alert>

<account id={$a/@id}>

{$a/customer}

</account>

</alert>

4. FRAGMENTED XML DATA
As and when events are generated in the system, eg. when

transactions are made against credit cards, the system will

XML fragments

(Stream)

XML fragments

Temporal XML Temporal XML

(Result)

--- ---

- -

6 666

Materialize Materialize

XQuery
�
 �	

XQuery
�
 �	

XCQL
(Query)

6

???

Translation

Translation´

Figure 2: XCQL Query on Fragmented Stream

transmit the event data framents consisting of transaction
information. Transmitting data in fragments, instead of
sending the entire XML document, is expedient as only a
part of the data, in our case transactions, needs to be trans-
mitted. As and when new events get posted, a fragment
comprising of the event data is transmitted along with infor-
mation regarding the structural location of the event within
its context. Similarly, for stream updates, only the fragment
corresponding to the change has to be transmitted as none of
the data in its structural context changes. Moreover trans-
mitting in fragments is beneficial, as small fragments can be
processed as and when they occur, as will be seen in the
later sections. This increases the throughput of query pro-
cessing, as fragments are processed as soon as they arrive
without waiting to reconstruct the entire XML document
before processing begins.

Our approach in transmitting XML fragments as and when
they are generated, and processing XML fragments as and
when they arrive, without reconstructing the complete XML
document in its historical entirety, is summarized in Fig-
ure 2. The unit of transfer in our system is an XML frag-
ment, which can relate to an event or an update to an XML
element. When fragments are received, one simple option
is to materialize the complete XML document based on the
context information in the fragments. A query written in
XCQL, is then compiled-out to translate interval and ver-
sion projections into a standard XQuery, which is processed
against the materialized XML. As an efficient alternative, in-
stead of materializing a complete XML document, we would
like to process the XML fragments as and when they arrive
in a continuous fashion. Thus the XCQL query translation
must now be cognizant of the context of a fragment in or-
der to process the fragments prior to materialization. We
transform the XCQL expressions into XQuery expressions
to operate on fragments and then we materialize the result-
ing XML by reconstructing the processed result fragments
with its context information.

4.1 Tag Structure
Our framework makes use of a structural summary of

XML data, called the Tag Structure, which contains, along
with structure of data, information about fragmentation and
the temporal dimensions of data. The Tag Structure de-
fines the structural make-up of the XML data stream, and
captures all the valid paths in the data fragments. This in-
formation is used in the transformation process of XCQL
expressions to operate on the XML fragments and during

materialization of the result. Moreover, the Tag Structure
is used while expanding wild-card path selections in the
queries. Also, this structure gives us the convenience of
abbreviating the tag names with IDs (not used here) for
compressing stream data. The Tag Structure is structurally
a valid XML fragment that conforms to the following simple
recursive DTD:

<!DOCTYPE tagStructure [

<!ELEMENT tag (tag*)>

<!ATTLIST tag type (snapshot | temporal | event)

#REQUIRED>

<!ATTLIST tag id CDATA #REQUIRED>

<!ATTLIST tag name CDATA #REQUIRED>]>

A tag is qualified by an id and name along with the type
of the elements occurring with that tag name. Since there
are 3 types of fragments that are possible in a streaming
context, namely snapshot, temporal and event, we anno-
tate the tag structure with the type of fragment to aid in
query processing on the fragments. While a snapshot tag de-
fines fragments as regular non-temporal elements that have
no temporal dimension, the temporal tag defines fragments
that have a “valid time from” and “valid time to” time di-
mensions, and the event tag defines fragments as transaction
elements with only a “valid time” time dimension. The XML
data is fragmented only on tags that are defined as temporal
and event nodes only. The tag structure corresponding to
the credit card application can be defined as follows:

<stream:structure>

<tag type="snapshot" id="1" name="creditAccounts">

<tag type="temporal" id="2" name="account">

<tag type="snapshot" id="3" name="customer"/>

<tag type="temporal" id="4" name="creditLimit"/>

<tag type="event" id="5" name="transaction">

<tag type="event" id="6" name="vendor"/>

<tag type="temporal" id="7" name="status"/>

<tag type="snapshot" id="8" name="amount"/>

</tag> </tag> </tag>

</stream:structure>

The tag structure provides information on the location
of holes in the filler fragments. When the tag type in the
tag structure is “event” or “temporal”, the corresponding
tag in the stream will occur in a filler fragment. A tag
annotated as “snapshot” will always be embedded within
another temporal/event element or will be the root element,
which is always static.

4.2 XML Fragments
The XML fragments are annotated with the Tag Struc-

ture Id (tsid) in order to readily infer its structural location,
given the Tag Structure of the stream. Also, since fragment
must identify the holes they fill in their context fragment,
they are associated with filler ids. The filler and hole ids in
the fragments form the link to reconstruct the entire XML
document from the fragments. Moreover, the fragment is
qualified by a validTime extent, denoting the time of its
generation. As we will see in Section 5, the validTime in the
filler container is used to derive the temporal dimension of
the fragment contained in the materialized temporal view of
the XML stream. In our credit system example, since the
streamed charge transactions on credit cards must be as-
sociated to their accounts in the temporal stream view, we

encode the transactions as fragments qualified with a filler
id matching a hole in its account fragment along with its
time of occurrence. The transmitted fillers fill holes in their
contextual XML document, thus producing a temporal view
of the entire stream. For example, the following filler trans-
action fragments will be transmitted as and when the charge
transactions are made against a credit card.
filler 1:

<filler id="100" tsid="5"

validTime="2003-10-23T12:23:34">

<transaction id="12345">

<vendor> Southlake Pizza </vendor>

<amount> $38.20 </amount>

<hole id="200" tsid="7"/>

</transaction>

</filler>

filler 2:

<filler id="200" tsid="7"

validTime="2003-10-23T12:23:35">

<status> charged </status>

</filler>

¿From the example above, the “charge status” filler frag-
ment 2, with id = 200, fills the hole, with id = 200, in
its context “transaction” fragment. It can be noted that the
fragmentation granularity used in the example above closely
models the real-life behavior of requesting for a charge trans-
action and receiving a response of “charged” or “denied” at
a later time. When the card is successfully charged, the
entire “transaction” fragment need not be re-transmitted
again, but only information relevant to the status, such as
the confirmation number. The event generator, however,
retains the knowledge of the fragments so that the appro-
priate hole/filler ids may be associated with the fragments.
When the holes in above fragments are resolved, the ma-
terialized view will resemble the transaction element in the
XML excerpt in Section 3.1.

Since the validity of a charge transaction on a credit card
may be questioned by the account holder, the status of a
transaction is associated with temporal extents to capture
the time points at which the status changed as is illustrated
below:
filler 3:

<filler id="300" tsid="5"

validTime="2003-09-10T14:30:12">

<transaction id="23456">

<vendor> ResAris Contaceu </vendor>

<amount> $1200 </amount>

<hole id="400" tsid="7"/>

</transaction>

</filler>

filler 4:

<filler id="400" tsid="7"

validTime="2003-09-10T14:30:13">

<status> charged </status>

</filler>

filler 5:

<filler id="400" tsid="7"

validTime="2003-11-1T10:12:56">

<status> suspended </status>

</filler>

Filler 3 and 4 correspond to the charge transaction per-
formed on the card, and Filler 5 corresponds to a suspension
of the charge caused by a investigation request by the cus-
tomer at a later date. After Filler 5 is transmitted, any
query that filters transactions for charges more than $1000,
for example, must not report this transaction, as its status
has now changed to “suspended”. We will see how this is
accomplished in the later sections.

5. RECONSTRUCTION OF THE TEMPO-
RAL VIEW

The fragments received by a client may be reconciled for
holes and the resulting temporal view materialized to form a
complete XML document. Since fragments represent events
and updates to the XML data with temporal extents, af-
ter materialization, elements in the resultant XML will be
encoded with their temporal duration of validity. However,
materializing the fragments to form a temporal XML docu-
ment before processing is not our goal. We could do better
by processing the fragments as is, and then materialize the
result XML. The following function materializes an element
of a fragment by replacing holes with fillers:

define function temporalize($tag as element()*)

as element()*

{ for $e in $tag/*

return if(not(empty($e/*)))

then element {name($e)}

{$e/@*, temporalize($e)}

else if(name($e)="hole")

then temporalize(get_fillers($e/@id))

else $e }

Central to the temporalize method is the get fillers func-
tion, which returns the filler fragments corresponding to a
hole id along with their deduced temporal extents. The
get fillers method is used while traversing a hole to a filler
based on the hole-id and is defined as follows:

define function get_fillers($fid as xs:integer)

as element()

{ <filler id="{$fid}">

{ let $fillers := doc("fragments.xml")/fragments/

filler[@id=$fid]

for $f at $p in $fillers

let $e := $f/* order by $f/@validTime

return

element {name($e)}

{$e/@*,

attribute vtFrom {$f/@validTime},

attribute vtTo

{ if ($p = count($fillers))

then "now"

else $fillers[$p+1]/@validTime },

$e/node()} }

</filler> }

The get fillers method encases the versions of elements
present in matching filler ids into a filler with the same id.
This is required so that we can perform path projections to
extract the required elements from the fillers, since a context
element may contain holes pertaining to different elements.
For example, the “account” fragment has holes for both the

“creditLimit” (temporal) and the “transaction” (event) sub-
elements. So the get fillers method on the transaction may
yield fillers with both “creditLimit” and “transaction” el-
ements. By performing the “creditLimit” path projection,
we will get only “creditLimit” elements, and “transaction”
path projection, “transaction” elements.

The temporalize method replaces all occurrences of “holes”
with fillers based on the hole id. Thus the materialized re-
sult is a temporal XML, devoid of holes. As we mentioned
before, we will materialize the result only when a query has
completed execution and the results ready to be rendered.
Notice that the temporalize function is a recursive one, since
holes could be present anywhere deep in the filler chain. In
the following section, we will see how we can flatten this
recursive function by leveraging schema information on the
stream.

5.1 Schema-Driven Reconstruction
To remove recursion from the get fillers function that tem-

poralizes a fragmented XML stream, we leverage the schema
of the stream in the form of a Tag Structure presented in
Section 4.1. Since the tag structure provides information on
the location of holes in the fragments and the type of frag-
ments, the following instance of temporalize is generated
automatically from the Tag Structure:

define function

temporalizeCreditAccounts($e1 as element())

as element()

{ <creditAccounts>

{ for $e2 in get_fillers_list(

$e1/creditAccounts/hole/@id)/account

return

<account>

{$e2/@*,

$e2/customer,

for $e3 in get_fillers_list($e2/hole/@id)/*

return

if(name($e3) = "creditLimit") then $e3

else

<transaction>

{ $e3/@*,

$e3/vendor,

$e3/amount,

for $e4 in get_fillers_list(

$e3/hole/@id)/status

return $e4 }

</transaction> }

</account>}

</creditAccounts>}

The tags that correspond to a type “event” or “temporal”
in the Tag Structure will appear as separate filler fragments.
Thus, while elements with tag type “snapshot” are accessed
with a direct path projection, those qualified as “event” and
“temporal” are accessed by resolving the holes, using the
get filler function. When we come across a tag with type
“event” or “temporal”, we use the hole-id in the fragment
to get all the fillers corresponding to the hole. Since the
get fillers function only returns the various versions of a sin-
gle element corresponding to a hole id, we use a list-variant
of the get fillers function, get fillers list, to return a set of
versions of elements corresponding to a set of hole ids, since
a filler could have several holes relating to its various child

elements. The get fillers list function is defined as follows:

define function

get_fillers_list($fids as xs:integer*) as element()*

{ for $fid in $fids

return get_fillers($fid) }

After the fillers are retrieved based on the hole ids, we
perform path projections to retrieve the elements based on
the tag structure, and the fillers are further explored for em-
bedded holes. For example, the “accounts” tag could have
elements, which are either “creditLimit” or “transaction”.
In the former case, we do not need to navigate further, since
a “creditLimit” element does not have other child elements,
whereas the “transaction” element has other sub-elements,
which need to be explored recursively.

6. XCQL TRANSLATION
Since XCQL is XQuery with temporal extensions, our first

step would be to translate XCQL expressions to XQuery ex-
pressions so that the queries in our framework can be eval-
uated using a XQuery compliant query processor. The frag-
ments we receive with temporal extents can be materialized
to produce a temporal XML document on which the trans-
lated query will be processed. However, since we would like
to process the fragments ad verbatim without materializa-
tion, the XCQL expressions would need to handle the pres-
ence of holes within fillers in order to be able to continue
processing over the filler fragments having holes. We ob-
serve that only the path traversal expressions of an XCQL
expression need to be translated to handle holes in filler frag-
ments when a path expression crosses-over a hole. Thus the
following path traversal components of an XCQL (XQuery)
expression, e, are to be translated to handle holes.

e ::= stream(x) stream accessor
| e/A path projection
| e/∗ any projection
| e//A wild-card path projection
| e/@A attribute projection
| e[pred] predicate
| e?[tb, te] interval projection
| e#[vb, ve] version projection

We employ the tag structure to facilitate the path trans-
lation to handle holes. Based on the tag structure, if an
element is qualified as a “temporal” or “event” type, then
we know that the element will be present only as a filler
fragment filling a hole in the context element. We use the
get fillers function to find all the fillers having ids matching
the hole id. The mapping function that converts the XCQL
path expressions into a valid XQuery is presented using de-
notational semantics in Figure 3.

In Figure 3, e : ts → e′ indicates that e has tag struc-
ture ts and is translated into e′. When a path projection
is encountered, the tag type in the Tag Structure is used
to determine if a hole resolution must be performed. If the
tag type is “snapshot” then the element will be directly em-
bedded in the context, or will be present in another filler
otherwise. In the latter case, we use the hole id in the con-
text element to find out the fillers filling this hole. The
get filler method is used to determine the versions of the
filler elements that fill the hole. The new tag structure of
the projection is derived by going one level deeper into the
tag tree using the projection tag name.

For a wild-card tag projection, since the tag structure
describes all possible paths in the fragments, we traverse
through all child elements recursively, each time going one
level deeper into the tag structure, until we reach the termi-
nation condition of the presence of the tag. For an attribute
projection, since we do not have version attributes, the map-
ping is straightforward.

Since a filtering condition can also be a XCQL expression,
we interpret the pred in the path expression in the current
context before applying the predicate to its context path.
We translate the interval projection and the version projec-
tion into XQuery functions to keep the translation modular-
ized. The interval projection finds the set of elements having
a valid temporal duration within the duration specified in
the filter. It performs temporal slicing on the elements, by
recursively navigating into the fragment, traversing “holes”
in the process, so that the temporal extents of all the ele-
ments in the sub-tree fall within the specified range. The
interval projection method is defined as follows:

define function interval_projection1($e as element(),

$tb as xs:time, $te as xs:time)

{ if(empty($e)) then ()

else if(name($e) = "hole") then

for $f in get_fillers($e/@id)

return interval_projection($f,$tb,$te)

else if (empty($e/@vtFrom)) then

element {name($e)}

{ if(empty($e/*)) then $e/text()

else for $c in $e/*

return interval_projection($c,$tb,$te)}

else if($e/@vtTo lt $tb or $e/@vtFrom gt $te)

then ()

else

element {name($e)}

{ attribute vtFrom {max($e/@vtFrom,$tb)},

attribute vtTo {min($e/@vtTo,$te)},

if(empty($e/*)) then $e/text()

else for $c in $e/*

return interval_projection($c,$tb,$te) }

}

define function interval_projection($e as element()*,

$tb as xs:time, $te as xs:time) as element()*

{ for $l in $e

return interval_projection1($l, $tb, $te) }

In the above function, it is assumed that $tb ≤ $te. Also
notice that the temporal extents of elements, which intersect
with the input range, are clipped to fall within the range of
intersection. When there is no interval projection, it is im-
plied e?[start,now], that is, for elements other than snapshot,
all the versions of the context elements are returned in the
system. The version projection on the other hand uses the
index of the elements in their historical timeframe to deter-
mine the elements, whose index falls within the version range
requested. After the version elements are selected, the time
interval of those elements are used to determine the tempo-
ral extents of the child elements in the tree that needs to be
retrieved. Thus the version projection method determines
the right version(s), and then uses the interval projection
method to perform a temporal slicing on the subtree. The
version projection method is defined as follows:

stream(x) : TagStructure(x) → get fillersx(0)

e/* : (ts1, . . . , tsn) → (e1, . . . , en) where ∀ci ∈ ts/tag/@name : e/ci : tsi → ei

e//A : (ts′, ts1, . . . , tsn) → (e′, e1, . . . , en) where e/A : ts′ → e′ and ∀ci ∈ ts/tag/@name : e/ci//A : tsi → ei

Given that e : ts → e′ , then :

e/@A : ts → e′/@A

e/A : ts/tag[@name = “A”] → e′/A if ts/tag[@name = “A”]/@type = “snapshot”

e/A : ts/tag[@name = “A”] → get fillersx(e′/hole/@id)/A otherwise

e[pred] : ts → e′[pred′] where pred : ts → pred′

e?[tb, te] : ts → interval projection(e′, tb, te)

e#[vb, ve] : ts → version projection(e′, vb, ve)

Figure 3: Schema-based translation (e : ts → e′ means that e has tag structure ts and is translated into e′)

define function version_projection($e as

element()*, $vb as xs:integer, $ve as xs:integer)

as element()*

{ for $item at $pos in $e

where $pos >= $vb and $pos <= $ve

return

element {name($item)}

{ $e/@*,

for $c in $e/*

return

interval_projection($c,$e/vtFrom,$e/vtTo)

} }

In the version projection method, we assume $vb ≤ $ve.
As an example of version projection, the following XCQL
expression:

stream("credit")

//transactions[vendor="ABC Inc"]#[1,10]

will retrieve the first ten transactions by vendor “ABC Inc”
recorded in the system. Note that the application of the
version projection has the same semantics as specifying a
tuple window with a grouping operation. Our XCQL lan-
guage version/interval expressions thus blend naturally with
an XQuery predicate filter. When the input element is a
“snapshot”, the version projection considers it as a single
version element. Note that holes embedded within the con-
text element sub-tree in a version projection, are resolved
by the interval projection function.

6.1 Example Translations
Consider the following simple XQuery to return all trans-

actions that carry a charge amount of >$1000.

for $t in stream("creditSystem")/creditAccounts/

//transaction

where $t/amount > 1000 and $t/status = "charged"

return $t

The query is transformed to interrogate filler fragments as
follows:

for $t in get_fillers(

get_fillers(

get_fillers(0)/creditAccounts/hole/@id

)/account/hole/@id

)/transaction

where $t/amount > 1000 and

get_fillers($t/hole/@id)/status = "charged"

return $t

The “creditAccounts” element is defined as a snapshot type,
and hence does not need hole traversals. However, since the
“account” tag is defined as “temporal” type, the get filler
method is used to traverse the holes to get all accounts.
The same holds for the “transaction” and the “status” ele-
ments. Note that due to the existential semantics of XQuery
path expressions, the above query will retrieve filler 3 in Sec-
tion 4.2, since it requires at least one “status” element to
be “charged”. The more accurate way of writing this query
would be:

for $t in stream("creditSystem")/creditAccounts/

//transaction

where $t/amount > 1000 and

$t/status?[now] = "charged"

return $t

In this case, the query is transformed with an interval pro-
jection as follows:

let $now := currentDateTime()

for $t in get_fillers(

get_fillers(

get_fillers(0)/creditAccounts/hole/@id

)account/hole/@id

)/transaction

where $t/amount > 1000 and

interval_projection(

get_fillers($t/hole/@id)/status, $now, $now)

= "charged"

return $t

The above query would not retrieve the filler 3, since its
current status, after filler 5 is received, is “suspended”. Note
that, in this example, we could have also used e#[last] to
achieve the same result.

The translation for Query 1 in Section 3.1, which deter-
mines the accounts that have maxed-out in the month, is as
follows:

let $now := currentDateTime()

for $a in

get_fillers(

get_fillers(0)/creditAccounts/hole/@id

)/account

where

sum(interval_projection(

get_fillers($a/hole/@id)/transaction,

"2003-11-01","2003-12-01")

[get_fillers(./hole/@id)/status= "charged"]

/amount) >=

interval_projection(

get_fillers($a/hole/@id)/creditLimit,

$now,$now)

return

<account>

{ attribute id {$a/@id},

$account/customer,

get_fillers($a/hole/@id)/creditLimit }

</account>

Any “transaction” XML fragment occurring in the stream as
an event, falling within the interval projection of the month
duration, is filtered and is used to compute the cumulative
charge amount for the month. This is then compared with
the current creditLimit to determine if the card has exceeded
its limit. If so, further transaction requests are denied.

Query 2 in Section 3.1, is translated as follows:

let $now := currentDateTime()

for $a in

get_fillers(

get_fillers(0)/creditAccounts/hole/@id

)/account

where

sum(interval_projection(

get_fillers($a/hole/@id)/transaction,

$now-PT1H,$now)

[get_fillers(./hole/@id)/status= "charged"]

/amount) >=

max(interval_projection(get_fillers($a/hole/@id)

/creditLimit, $now, $now)

* 0.9, 5000)

return

<alert>

<account id={$a/@id}>

{$a/customer}

</account>

</alert>

The temporal duration qualifiers in the above translation,
eg. PT1H, are actually embedded in a xdt:dayTimeDuration
XML Type constructor in our implementation, but not shown
here. Thus the temporal queries defined using our XCQL
language are translated to process XML fragments directly
instead of materializing the temporal view. Note that the
window specification in our framework is blended into a tem-
poral query construct to provide clear semantics of stream
query processing. By treating both stream events and up-
dates to XML data in our framework, we provide a unified
query language and processing methodology well suited for
efficient XML data exchange.

7. EXPERIMENTAL EVALUATION
We have implemented the XCQL translator in Java, which

translates XCQL queries into XQueries operating directly on
fragments of XML data, as outlined in Section 6. We have
used the Qizx XQuery Processor [22] to process the trans-
lated queries and we have evaluated our filler-processing

query translations against the XMark [23] benchmark frame-
work. Our query processing approach on fragmented XML
streams is to process the queries directly on filler fragments
before reconstructing the result, as opposed to reconstruct-
ing the complete document by reconciling the holes, and
then executing the query on the materialized document. We
have selected three representative queries, Q1, Q2 and Q5,
from the XMark framework to compare the performance on
selective, range, and cumulative queries. The experiments
were run on datasets generated by the xmlgen program to
produce an auction XML stream, provided by the XMark
framework, with various scaling factors of 0.0, 0.05 and 0.1.
We have written an XML fragmenter that fragments an
XML document into filler fragments, based on the tag struc-
ture defining the fragmentation layout. The first method of
query execution is to construct the entire document from the
filler fragments and then executing the query on the docu-
ment (CaQ). The second method is to process the fragments
directly, thereby filtering those fillers that would not be part
of the result set and then constructing the resulting docu-
ment (QaC). The third method leverages the tag structure
id encoded in the filler fragments to process only those fillers
that are required by the query (QaC+). While in QaC, the
fillers are resolved starting from the root fragment, on de-
mand, along the query execution path, resolving holes along
the path traversal. In (QaC+), only the fillers required by
the query are processed without resolving the holes in other
levels not required by the query. We ran the experiments
on a 1.2Ghz Intel Pentium III processor, with 512MB RAM,
under normal load. The results of the experiments are sum-
marized in Figure 4.

To illustrate the differences in the execution of the query
methods on the filler fragments, consider the aggregate query
Q5 that determines the number of auctions that have closed
with a price of over $40, defined in the XMark framework
as:

count(for $i in document("auction.xml")/site/

closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price)

In the CaQ method, this query is translated to first materi-
alize the entire document and then to execute the query as
follows:

count(for $i in temporalize(get_fillers(0))/

closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price)

In the QaC method, the query is translated to operate on
the fragments, starting from the root, recursively reconciling
the holes, as follows:

count(for $i in get_fillers(

get_fillers(0)

/site/closed_auctions/hole/@id

)/closed_auction

where $i/price/text() >= 40

return $i/price)

In the QaC+ method, the query is translated to operate
only on the fragments required by the query path, guided
by the tag structure-based mapping of the path to the tsid,
as follows:

Query File Fragmented Method Run Time
Size File Size

QaC+ 161ms
27.3Kb 34.8Kb QaC 190ms

CaQ 320ms
QaC+ 1,723ms

Q1 5.8Mb 6.9Mb QaC 49,391ms
CaQ 335,843ms
QaC+ 3,966ms

11.8Mb 13.9Mb QaC 197,354ms
CaQ 1,799,207ms
QaC+ 190ms

27.3Kb 34.8Kb QaC 200ms
CaQ 341ms
QaC+ 4,487ms

Q2 5.8Mb 6.9Mb QaC 45,385ms
CaQ 353,248ms
QaC+ 8,222ms

11.8Mb 13.9Mb QaC 199,016ms
CaQ 1,859,073ms
QaC+ 160ms

27.3Kb 34.8Kb QaC 201ms
CaQ 310ms
QaC+ 1,763ms

Q5 5.8Mb 6.9Mb QaC 19,528ms
CaQ 335,382ms
QaC+ 3,095ms

11.8Mb 13.9Mb QaC 110,409ms
CaQ 1,886,022ms

Figure 4: Experimental Results

count(for $i in doc("auction_fillers.xml")/fragments

/filler[@tsid=603]/closed_auction

where $i/price/text() >= 40

return $i/price)

where tsid = 603 matches the tag id for the closed auction
filler fragments in the fragmented auction XML document.

¿From the experimental results we observe that at higher
loads, the QaC method outperforms the CaQ method by
an order of magnitude, and is outperformed by the QaC+

method by an order of magnitude. The difference in perfor-
mance widens in queries such as query Q1 and Q5, as the
queries are more selective, and the lesser performing meth-
ods spend much time reconciling the holes, which would
otherwise not be needed in the query. In the QaC+ method,
however, the fillers are retrieved using the tsid attribute and
the path expression does not require any hole reconciliation.

8. SUMMARY AND FUTURE WORK
In our framework, we propose XCQL as a XQuery exten-

sion to process streaming XML data in a temporal dimen-
sion. The queries operate seamlessly on fragments with-
out materializing the entire stream to execute the temporal
query. Moreover, XML-encoded stream events and XML
data updates are captured with temporal extents and the
XCQL query is performed with consistent semantics. We
prove the feasibility of our proposed approach of processing
directly the fragments prior to re-construction instead of
materializing the document and then executing queries, by
means of experimental evaluation using the XMark bench-

mark. Although we have addressed the processing of XML
fragments directly without materialization, we have not ad-
dressed the mechanics of scheduling the fragments through
the XCQL query tree. Techniques for Operator scheduling
in a stream management system have been proposed in [20,
18] and will be addressed in our framework as future work.
We have not addressed versioning attributes in our frame-
work. Although we can accommodate attribute versioning
in our existing framework by versioning the elements hav-
ing the attributes, we will address this comprehensively as
part of future work. τXQuery [2] has handled attribute ver-
sioning by constructing pseudo-elements to capture the time
extents of temporal element attributes. Also, we would like
to consider the effects of ID/IDREFs on temporality of the
stream data and the handling of recursive XML, which are
not currently supported in our current framework. Since
our translation relies heavily on efficiency of the get fillers
function, we would like to research optimization techniques
to unnest/fold the get fillers functions using language re-
writing rules. An alternative visualization of the get fillers
method would be a join between the hole-ids and the filler-
ids so that various join optimizations may be employed.

9. RELATED WORK
The Tribeca [4] data stream processing system provides

language constructs to perform aggregation operations, mul-
tiplexing and window constructs to perform stream synchro-
nization, however, is restricted to relational data. Other
efforts concentrating on windowed stream processing, such
as CQL [11], StreaQuel [16], COUGAR [1], AQuery [17]
also addresses only relational data, and provides SQL-like
constructs to process streaming data. In our framework,
we address streams of XML data, which is inherently hi-
erarchical and semistructured. We have developed XCQL
as a simple extension to the XQuery language to perform
complex stream synchronization, grouping and aggregation.
Moreover, since our language is based on XQuery, it provides
seamless integration between streamed and stored XML data
sources without additional conversion constructs. Moreover,
we have envisioned a unified model for processing events
and updates to XML data as fragments, wherein data may
be transmitted in manageable chunks closely modeling real-
life behavior. The COUGAR [1] system proposes the use
of ADTs in object-relational database systems to model
streams with associated functions to perform operations on
the stream data. The Aurora system [18, 14] provides a
graphical interface tool to build operator trees that will be
processed as the data streams through, and addresses opera-
tor scheduling to improve system efficiency of the continuous
queries.

Temporal coalescing [6] addresses the merging of tempo-
ral extents of value-equivalent tuples. In our framework,
temporal coalescing is performed by capturing the time of
occurrence of a change in a filler fragment. When a query is
executed, fillers are interrogated in the order of their valid-
Time timestamp and the temporal extents of the fragment
are determined before the query is evaluated. In [8], Mul-
tidimensional XML (MXML), an extension of XML is used
to encode the temporal dimensions and represent changes in
an XML document. Moreover, in MXML, the changes are
always materialized as separate instances. A variant of the
hole-filler model, for navigating XML data, has been pro-
posed in [19], however, in the context of pull-based content

navigation over mediated views of XML data from disparate
data sources. In our framework, the hole-filler model is used
in a push-based streaming model, for fragmenting XML data
to be sent to clients for continuous query processing in a his-
torical timeline.

In [21], an XML-XSL infrastructure is proposed to en-
code temporal information into Web documents, and sup-
port temporal predicate specification. τXQuery [2] has been
proposed as a query language for temporal XML. Although
the τXQuery language is based on XQuery, unlike our XCQL
language, it proposes basically two types of temporal mod-
ifiers, current and validtime, to denote current queries and
sequenced queries. While the former slices the XML tree on
the current snapshot, the latter derives sequences of valid-
Time groups. Compared to τXQuery, XCQL blends natu-
rally to the XQuery language, with only minor extensions
to perform powerful temporal and continuous stream syn-
chronization. Also, we have shown how XCQL can be op-
erated on streaming XML data, which arrives as fragments.
Moreover, we provide a unified methodology to continuously
process XML-encoded stream events and updates to XML
data in an integrated historical timeline.

10. CONCLUSION
Our framework for data stream management is different

from other proposals in terms of data model, query lan-
guage, and query processing. Our data model of continuous
XML updates and events, does not require the introduc-
tion of keys and the fragmentation necessary for updating is
hidden from users. Our query language works on multiple
XML data streams and is able to correlate and synchronize
their data. Even though the virtual view of the historical
streamed data is purely temporal, this view is never materi-
alized; instead temporal queries are translated into continu-
ous queries that operate directly over the fragmented input
streams and produce a continuous output stream.

Acknowledgments: This work is supported in part by the
National Science Foundation under the grant IIS-0307460.

11. REFERENCES
[1] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor

database systems. In Proceedings of the Second
International Conference on Mobile Data Management
2001, pages 3–14.

[2] D. Gao, R. T. Snodgrass. Temporal Slicing in the
Evaluation of XML Queries. In VLDB 2003, pages
632–643.

[3] L. Golab and M. T. zsu. Issues in data stream
management. In SIGMOD Rec., 32(2):5–14, 2003.

[4] M. Sullivan and A. Heybey. Tribeca: A system for
managing large databases of network traffic. In
Proceedings of the USENIX Annual Technical
Conference 1998 pages 13–24.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and Issues in Data Stream Systems.
In PODS 2002, pages 1–16.

[6] C. E. Dyreson. Temporal coalescing with now
granularity, and incomplete information. In SIGMOD
2003, pages 169–180.

[7] S. Babu and J. Widom. Continuous Queries Over Data
Streams. SIGMOD Record, 30(3):109–120, Sept 2001.

[8] M. Gergatsoulis and Y. Stavrakas. Representing
Changes in XML Documents Using Dimensions. In
Proceedings of XSym 2003, pages 208–222.

[9] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi.
Query processing of streamed xml data. In Proceedings
of the eleventh International Conference on
Information and Knowledge Management, CIKM 2002,
pages 126–133. November 2002.

[10] P. Buneman, S. Khanna, K. Tajima and W. C. Tan.
Archiving Scientific Data. In SIGMOD 2002, pages
1–12.

[11] J. Widom. CQL: A Language for Continuous Queries
over Streams and Relations. In the 9th International
Workshop on Data Base Programming Languages
(DBPL), Potsdam, Germany, September 2003.

[12] S. Bose, L. Fegaras, D. Levine, and V. Chaluvadi. A
Query Algebra for Fragmented XML Stream Data. In
the 9th International Workshop on Data Base
Programming Languages (DBPL), Potsdam, Germany,
September 2003.

[13] P. V. Biron and A. Malhotra. XML Schema Part 2:
Datatypes W3C Recommendation 02 May 2001,
http://www.w3.org/TR/xmlschema-2/.

[14] D. Carney, U. Cetinternel, A. Rasin, S. B. Zdonik,
M. Cherniack, M. Stonebraker. Operator Scheduling in
a Data Stream Manager. In VLDB 2003, pages
838–849, 2003.

[15] R. Motwani, et al. Query Processing, Approximation,
and Resource Management in a Data Stream
Management System. In the 1st Biennial Conference on
Innovative Data Systems Research (CIDR), Asilomar,
CA, USA, January 2003.

[16] S. Chandrasekaran, et al. TelegraphCQ: Continuous
Data flow Processing for an Uncertain World. In
Proceedings of Conference on Innovative Data Syst.
Res, pages 269–280, 2003.

[17] A. Lerner and D. Shasha. AQuery: Query Language
for Ordered Data, Optimization Techniques, and
Experiments. In VLDB 2003, pages 345–356.

[18] D. Carney, et al. Monitoring streams—A New Class of
Data Management Applications. In VLDB 2002, pages
215–226.

[19] B. Ludäscher, Y. Papakonstantinou, and P. Velikhov.
Navigation-driven evaluation of virtual mediated views.
In EDBT 2000, 7th International Conference on
Extending Database Technology, Konstanz, Germany,
March 27-31, 2000, pages 150–165.

[20] B. Babcock, S. Babu, R. Motwani and M. Datar.
Monitoring streams—A New Class of Data
Management Applications. In SIGMOD 2003, pages
253–264.

[21] F. Grandi and F. Mandreoli. The Valid Web: An
XML/XSL Infrastructure for Temporal Management of
Web Documents. In Proceedings of International
Conference on Advances in Information Systems, pages
294–303, Izmir, Turkey, October 2000.

[22] Qizx/Open. http://www.xfra.net/qizxopen.

[23] A. Schmidt, F. Vaas, M. L. Kersten, M. J. Carey,
I. Manolescu and R. Busse. XMark: A Benchmark for
XML Data Management. In VLDB 2002, pages
974–985, 2002.

