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Why verify distributed protocols?

- . Of
ADistributed systems are everywhere L[ . T /@_
ASafetycritical systems O
. C1[g - T \OR
ACloudinfrastructure N ,
. g
ABlockchains

ADistributed protocolsare notoriously hard to get right
AEven small protocols can be tricky
ABugs occur on rare scenarios

ATesting is costly and not sufficient



Verifying distributed protocols is hard

Verify distributed protocols for any number of nodes and resources
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Alnfinite state-space  carDdecidel
Aunbounded #processes

Aunbounded#messages
Aunbounded#objects

AAsymptotic complexity of verification
ARice theorem




Safety of Infinite State Systems

System State Space

1 8 &0 0no two
leaders are
electeck

System S isafeif all thereachablestates satisfy the property P =0 @ 'Q
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Example

w N pairs of players pass a ball:
¢ M will pass tald
¢ 18 will pass tolV
¢ 2V will pass taz2o
¢ 28 will pass ta2! X
w The ball starts at playd
w Can the ball get t@5?

w Isdthe ball is not at28€ an inductive invariant®o!
¢ Counterexample to induction

w Inductiveinvariant ¢the ball is notat 2/ nor 28”




Logicbaseadverification

Provers/solvers for different logics made huygegress

APropositional logic (SAT)ndustrial impact for hardware
verification

ASatisfiability modulo theories (SM@)najor trend in
softwareverification

AAutomated firstorder theorem provers
Alnteractive theorem provers
AZ3, CV@, iProver Vampire, Cog, Isabelle/HGL



Logicbased verification

0 wQ

RepresentOs ,"BYg 0 w0, (D¢ hy logicaformulas:Formulaé Set of states

Inv(V)is aninductive invariantf the verificationconditions(VCs) are valid:
Initiation Init(V)  Inv(V) unsa( Init(V)Y3 Anv(V))
Cons INV(VI@TR(V,@  In\(VQ unsal Inv(V)ATR(V, 3 Anv(V(})
Safety  In\(V) Bad(V) unsaf Inv(V2Bad(V) )



Challenges for logllbased verification

Formal specification
Modeling the system and its invariants

Deduction
Checking validity of the VCs

Inference
Finding an inductive invariant



Deduction

Inv(V)is aninductive invariantf the followingverification conditions
arevalid:

Initiation  Init(V)  Inv(V) unsai Init(V)3 AnvV))
Cons INVIVIOTR(V,®  Inv(VQ unsal In(VBTR(V, 3 Anv(VQ)
Safety  In\(V) Bad(V) unsaf Inv(\V2ZBad(V))
Churcl® Theorem
Are the logical V@ valid 1‘ | ) ' car@decide

1 }




Deduction

Interactive theorem provers Automatic solvers/provers
(Coq Isabelle/HOL, LEAN) (e.g. B, CV@, Vampire)

AProgrammermroves the AVCs discharged automatically
inductive invariant ATools mayiverge(for SMT:

AHuge programmer effort matchingloops, arithmetig
(~10-50lines of proof per AUnpredictability (butterfly effect)
line of code

e.g. Verdi e.g.lronfleet




Expressiveness

Logicbased verificatiormpproaches

| ' afn
reoen | VAPEF

provers Automated
AHugepro_grammer effort de_d_UCti_Ve € Absint
(~10-50lines of proof verification P T
per line of code) _
ASMT solver may diverge Model
(matching loops, arithmetic) _
AUnpredictability, butterfly Checking,
effect Abstract
Interpretation
ALimiteddueto

undecidability

% Automation X ¥



EXxpressiveness

Logicbased verificatiormpproaches

1 G

Interactive oaiy@ (fFOER
theorem
provers B |l
AHugeprogram Expressiveness € Absint
(~10-30lines « High degree of automation [
per line of co( : T
Predictability
o Model
Comprehensibility for users “hecking
Efficiency/scalability Abstract
2rpretation
ALimiteddueto

undecidability

% Automation RO’




This talk: Restrict \\@&to decidable logic

Inv(V)is aninductive invariantf the followingverification conditions
are valid

Initiation  Init(V) Inv(V) unsai Init(VYa Anvu(V) )
Cons INIVOTR(V,®  Inv(VQ unsal In(VBTR(V, 3 Anv(VQ )
Safety  In\(V) Bad(V) unsaf Inv(\V2Bad(V))

Are the logical V@& valid 1’” Decidable logic




Challenges for verification
with decidable logic

Formal specification
Modeling in a decidable logic

Deduction
Checking validity of the \&

Invariantinference
Finding an inductive invariant



This talk

Logic.EPR; decidable fragment of first order logic

Formal specification
ASurprisinglexpressive

Invariantinference
AAutomatic(basedon PDR
- Semialgorithm: maydiverge
Alnteractive
- Based on graphically displayed counterexamples to induction



Effectively Propositional LogidcePR

Decidabldragment offirst order logic
+ Quantification ($*" *) - Theories (e.g., arithmetic)

J Allowsquantifiers to reason about unboundesets

- I x,y. leadernX)” leadeny)© x vy
J Satisfiabilitys decidable =Beductionis decidable
J Small model property => Fintexto induction
J Turing complete modeling language

L Limited language for safety and inductive invariants
U Suffices for many infinitstate systems



Successful verification with EPR

w Shape Analysis
[ltzhaky et al. CAY3, POPQ4, CAR4, CAD 5]

w SoftwareDefined Networks
Ball et al. PLI4]

w Distributed protocols
[Padon et al. PLQI, OOPSL@/, POPQ8, PLDN§]

w Concurrent Modification Errors in Java programs
[Frumkin et al. VMC Q7]




Example: Leader Election in a Ring

w Nodes are organized inumidirectional ring pey

w Each node has a unique numeric id
nex

w Protocol:

¢ Each node sends its id to the next

¢ A node that receives a message passéstiie nextif the id in
the message is higher than the nd&@ewn id

¢ A node that receives its own id becomes the leader

w Theorem:
¢ The protocol slects at most one leader

[CACMI9] E. Chang and R. Robeas improved algorithm for decentralized
extremafinding in circular configurations of processes



Modeling with EPR

w State finite first-order structure over vocabulary V

A (ID, IDX total order on node i@
Aid: NodeA IDc relate a node to its id - Axiomatizedn EPR
Abtw (Node, Node, Noda) the ring topology
Apending(ID, Node)c pending messages

Aleader(Node)c leader(n) means n is the leader

protocol state structure

<ng, N, >N "Cbtw)




Modeling withEPR

w State finite first-order structure over vocabulary V (+ axioms)

w Initial states andsafetyproperty: EPR formulas over V
¢ Init(V) ¢initial states, e.g.] A R&Epe n dkE Ay
¢ Bad(V ¢ bad states, e.g.,mn;,n,.leadery,, ~ leadeny,)” n, n,

ATransition relationexpressed as ER&mulaTR(V\A), e.g.:
mn,s &s =next(n)e ! x,y. pending®,yP (pendingXx,y)” (x=id[n] y=s))
T mn.p e n d@idn],g)” ! x.leader(x) (leadenx)” x=n)
X
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Modeling withEPR

w State finite first-order structure over vocabulary V (+ axioms)

w Initial states andsafetyproperty: EPR formulas over V
¢ Init(V) ¢initial states, e.g.] A R&Epe n dkE Ay
¢ Bad(V ¢ bad states, e.g.,mn;,n,.leadery,, ~ leadeny,)” n, n,

Specify and verify the protocol fany number of nodes in the ring

v:;:.(){:-}x




Using EPR for Verification

w System modelnit(V), Bad(V)TR(YVQN EPR
w Inductive invariantnv(V)N " *

w Verification conditions

Initiation nit(V) Inv(V) unsal Init(V)2 Anv(V))
Cons. In VTRV Inv(VQ unsa( Inv(VATR(V, 2 Anv(V}D)
Safety InvV) Bad(V) unsai Inv(V)ZBad(V))

Verification conditionsN EPR
C Decidable to check



Inductive Invariant for Leader Election

Safety property:
|, = Bad= !xy:Node. leader (x) =~ leader (y) © x vy

A (ID, IDX; total order on node i@

Abtw (Node, Node, Node) the ring topology
Aid: NodeA ID¢ relate a node to its id
ApendingID, Nodex, pending messages
Aleader(Node)c leader(n) means n is the leader



Inductive Invariant for Leader Election

Safety property:
= Bad= !x,y:Node. leader (x) =~ leader (y) © x vy
Inductiveinvariant: Inv =10 @811 @12 @13

= "n,.n,: Node . leader (n,) © id[n id [n The leader has
1:112 (n4) [N 2] [ 4] the highest id

"n,n,:Node . pnd(id[n,,n ;) © id[n,] id [n ] Only highest id
can be selpnd

= " NN N5 Node.  btw(ny,nyng) @ pnd(id 0ol N 1) [ cannot bypass
© id [ng] id [n ] higher nodes

A (ID, IDX; total order on node i@
Abtw (Node, Node, Node) the ring topology
Aid: NodeA ID¢ relate a node to its id
Apending1D, Node) pending messages
Aleader(Node)c leader(n) means n is the leader

The reason for
usingobtw €
instead ofonext €




Inductive Invariant for Leader Election

Safety property:
= Bad= !x,y:Node. leader (x) =~ leader (y) © x vy
Inductiveinvariant: Inv =10 @811 @12 @13

= "ny,n,: Node . leader (n,) © id[n,] id [n 4]

The leader has
the highest id

= "n;,n,Node . pnd(id[n,,n ;) © id[n,] id [n 4] Only highest id
can be selpnd

= " ngn,n 3 Node. Dbtw(n,,n,n 3)_ @ pnd(] Cannot bypass
O ’|d [N L | can higher nodes

EPR Proof

0 (O Ot(w)
0L YY)~ 0L(d) >
08 (@) 6 O Solver




Axioms: LeaddElectionProtocol

A (ID, ID)X; total order on node i@

Abtw (a: Node, b: Node, c: Node}he ring topology
Aid: NodeA ID¢ relate a node to its unique id
Apending(ID, Node), pending messages
Aleader(Node)c leader(n) means n is the leader

____|Intention | EPR Modeling

Node

IDQ Integers

Next
Ring edges +
Topology Transitive

closure

"1lID. i i Reflexive

"1,),kiD.i j7 ] k© 1 k Transitive
"i1,):ID.d 7 ) 19 i5) AnttSymmetric
"I,0IDd 7 ) i Total

" X, ¥: Nodeid(x)=id(y)° x=y Injective

" X, Y, z: Nodebtw(x,y, z)° btw(y, z, x) Circular shifts

" X, VY, z, w: Nodebtw(w, X, y) btw(w,y, z)° btw(w, X, z) Transitive
" X, Yy, w: Nodebtw(w, x, y)° xbtw(w, y, X) AniSymmetric

" X, VY, z, w: Nodedistinct(x, y, zP btw(w, x, y) btw(w, y, X)

cnext (@=ba * " x:Node.x a~ x bO btw(a,b,x)



So far

Formal specification with EPR

ASurprisingly expressive
Alntegers: numeric i& expressed with
ATransitiveclosure: ring topology expressed withw
ANetwork semantics: pendingessages
ASets and cardinalities (for consensus protocols) [OQPBLA
AlLiveness properties [PQP8, FMCARSE] Not in
Almplementations [PLEAE] this talk



Next

Invariant inference: findinghductive invariants

(1) Automatically

¢ Adapt techniques from finitstate model checking (PDPR
(2) Interactively

¢ Based on graphically displayed counterexamples to induc



How can we find aniversally guantifiednductive
Invariant?



Inductive Invariant for Leader Election

I'n;,n, :Node. leader (n;)” leader (ny,) © n; n, FASHEENNE
Bad | mp_n,:Node. leader (n,)” leader (n,) ~

mn,,n,: Node. leader (n,)~

"ny, n,: Node leader (n;) © id[n,]

id [n ]

n, n, leader elected
id [ n,] The leader has
id [n,] the highest id

id [n ]

"n, N, Node pnd(id[ny], ny)) © id[n,]
mny,n,: Node. pnd(id [n],n ;) ~

oMMl Only highest id
id [n ] KLl be selpnd

" id [n 4]

id [

"ny, Ny, Nyt Node. btw(ng, n,, ng) @ pnd(id [n,], n) KeEllgela et
©id [n 4]
mn,,Nn,,Nn 5 Node.  Dbtw(n,n,nj;) @ pnd(id [n,],n ;)

n,J

id [n ;]

>

e85

Ny

pndgj

>

higher nodes
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4 Constructinv by excludingbade states
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1. How to find these states?
2. How to generalize into conjectures?



Generalization using Diagram <

Usediagramsas generali
Astates is afinite first-o

Diads) =M xy. xr y@LKx) @ L)
3 ()23 () \ G @
@ X8 ,vY)

s' U Diags) iff s is a substructure o§"

S is dbtained fromsCby removing elements
and projecting relations on remaining elements

exclude§) = Diads)

sQ

[CAVQ5, JACMR7] Property-Directed Inference of Universal Invariants or\P/roving Their
AbsenceA. Karbyshev, N. Bjorner, S. ltzhaky, N. Rinetzky and S. Shoham.



Generalization using Diagrant

Generalize even mong
S Is apartial structure

Diads) =M xV. X1y

@ (%y)93 (V,\X)
@ X8 ,vY)

exclude§) = Diads)

[CAVQ5, JACMR7] Property-Directed Inference of Universal Invariants or\P/roving Their
AbsenceA. Karbyshev, N. Bjorner, S. ltzhaky, N. Rinetzky and S. Shoham.



| “ Invariant- excluded substructures

Inv1 t (*r(lll((*D_UX U Il,m(d‘-b-)jgx Q" (‘-ﬂlnl((*rux U In,m(dD

Y .
clause / conjecture

\ %
Invt  $aB(x 1, (DX DI () X $aB*|,,(h DX DxI, (o)
\ )
Y

cube




Leaderelection example

Only the leader §
can be self
pending




(1) Automatic inference: UPDR

w Basedon Bradle® IG/PDR [vmcAL1LFMCADR]]

¢ SATbased verification of finitestate systems

w Abstracts concrete states using their logical diagran
w Backward traversal performed over diagrams

w Blocking of CTI excludegianeralizatiorof its
diagramC generates universally quantified lemmas

w [CAW5, JACML7] Property-Directed Inference of Universal Invariants or Proving Their
AbsenceA. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

w [VMCAQ7] Property Directed Reachability for Proving Absence of Concurrent
Modification ErrorsA. Frumkin,Y. FeldmanO.[ K 2 iDtPadbn M. Sagiv and S. Shoham



UPDR: Possibtaitcomes

w Universainductive invariant found
¢ System is safe

Used to inferinductive invariant$ procedure summariestf:

w Heapmanipulating programs, e.g.
¢ Singly/Doubly/Nested linkelist
¢ Iteratorsin Java Concurrent modification error (CME)

w Distributed protocols No need for
¢ Spanning tree userdefined

¢ Learning switch predicates/
¢ X templates!




UPDR: Possibtaitcomes

w Universainductiveinvariant found
¢ System is safe

w Proof thatno universalnductive invarianexists
¢ Safety not determined*

WYY Y @

* can use Bounded Model Checking to find real counterexamples



UPDR: Possibtaitcomes

w Universainductiveinvariant found
¢ System is safe

w Proof thatno universalnductive invarianexists
¢ Safety not determinetl

w Divergence
¢ In general, inferringiniversalind. inv. is undecidable

¢ For linked lists it is decidable, UPBR also terminate
w Proofuses wellquastorder andKruska®tree theorem

w [POPQ6] Decidability of Inferring Inductive Invariants, O. Padon, N.
Immerman, S. Shoham, A. Karbyshev, ldn&agiv.



Automatic Inference (e.qg., UPDR)

,
. s k\c ; .
/MOde / . PE— X = 1 L
— Verifier /_f__n,:z; 2l
o= ._ = ;".' l:._; "‘-‘|/y
P g e G
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e\ . :
/ Proof/ Lo

—
Ultimately limited byundecidability



(2) Interactive Inference

C— 7=

/Model/
f Question |
US@V% " ANSwWer /
/Proof/
e

A Letthe user guide the tool
A User has intuition about the essence of the proof
A Computer is good at handling corner cases



Expressiveness

Interactive Inference

Whatis thehumar@ role?
Whatis themachineQ role?

- e Howdo they interact?
Deductiveverification y
Ultimately limited by human @

proof/code:
Verdi: 40
IronFleet 4
Ultimately limited byundecidability
Model Checking
StaticAnalysis
- >
Automation



lvy: InteractiveGeneralization

Ot O E“ O ®\@D ) %

Inductlve'-’

44, Displaysiminimak CTI toexclude
5 Generalizes to a partial state P'°°fg§'f> .
% Aremovesdirrelevant facts (graphical interfacecheckboxes)
Translates to universally quantified conjecture (via diagram)
“* Provides auxiliary automated checks:
1. BMC(K): uses SAT solver to chec&njectureis true up toK
AUser determines the right K to use
2. ITP(K usesSATsolver to discover more facts temove
% Examineshe proposed conjecture it could bewrong
AddsO

[PLDQ6] IVy. Safety Verification by Interactive GeneralizatiOnPadon
K. McMillan, A. Panda, MagiyS. Shohamhttps:// github.com/Microsoft/ivy




Interactive Verification ihVy

Check inductivenes$ Projection of
\ relevantfacts
@ BMCbounds

Examining

Interpolation

conjectures

X

Decidable Problems Proof intuition and creativity
Predictable Automation Graphicainteraction


https://www.quora.com/Human-Computer-Interaction

Summaryl

Verification with decidable logic

AEPR decidable fragmenof FOL grc])(;n:)i(?ol:;?wledge
ADeduction is decidable

. Derived relations
AFinite counterexamples Modularity

Prophecy

ACanbe made surprisingly powerful
ATransitive closure: linked lists, ring topology [F2.@)!
APaxos Multi-Paxos[OOPSLA7]

ALiveness and Temporrtoperties [PORS]
ADeveloping verified implementations [PKH



Summary2

Invariant Inference

AAutomatic inference: UPDR [QA%,JACM]
Alnteractive inference: vy [PLID]

AUse logical diagram to infer IRV} *
ACan also prove absence of MV *



Proof Assistants Supervised

Ultimately d by human Verification
praeffeade: prooficode: IV ~1/10

mitec
0 -.‘2"“1-’!
'.'u-’f.ﬁl""}—_l Verdi: ~10
I%zrl IronFleet: ~4

Ultimately limited by undecidability

ADecidabldogic isuseful N
- facilitates automation

AWe need way$o guide verificatiortools

AHow to divide the problem betweemuman andmachine?
ADifferent inferenceschemes

ADifferent Formsof interaction

AOtherlogics

ATheoretical understanding of limitations and tradeoffs

Y
lllll

erc Supervised Verification of InfinHBtate Systems
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