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Why verify distributed protocols?

ÅDistributed systems are everywhere

ÅSafety-critical systems

ÅCloud infrastructure

ÅBlockchains

ÅDistributed protocols are notoriously hard to get right

ÅEven small protocols can be tricky

ÅBugs occur on rare scenarios

ÅTesting is costly and not sufficient



Verifying distributed protocols is hard

ÅInfinite state-space  

Åunbounded #processes 

Åunbounded #messages

Åunbounded #objects 

Verify distributed protocols for any number of nodes and resources

Χ

I canΩt decide!

ÅAsymptotic complexity of verification

ÅRice theorem



Safety of Infinite State Systems
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Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ



Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ



Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

ωThe ball starts at player 1ᴻ

ωCan the ball get to 2 ?Ȣ

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ



Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

ωThe ball starts at player 1ᴻ

ωCan the ball get to 2 ?Ȣ

ωIs άthe ball is not at 2 έȢ an inductive invariant? 

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ



Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

ωThe ball starts at player 1ᴻ

ωCan the ball get to 2 ?Ȣ

ωIs άthe ball is not at 2 έȢ an inductive invariant? No!

ςCounterexample to induction

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ



Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

ωThe ball starts at player 1ᴻ

ωCan the ball get to 2 ?Ȣ

ωIs άthe ball is not at 2 έȢ an inductive invariant? No!

ςCounterexample to induction

ωInductive invariant: άthe ball is not at 2 nᴻor 2 ”Ȣ
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Logic-based verification

Provers/solvers for different logics made huge progress

ÅPropositional logic (SAT) ςindustrial impact for hardware 
verification

ÅSatisfiability modulo theories (SMT) ςmajor trend in 
software verification

ÅAutomated first-order theorem provers

ÅInteractive theorem provers

ÅZ3, CVC4, iProver, Vampire, Coq, Isabelle/HOL Χ.



Inv(V)is an inductive invariant if the verification conditions(VCs) are valid:
Initiation Init(V) Inv(V) 

Cons.        Inv(V)ØTR(V,VΩ) Inv(VΩ)

Safety Inv(V) Bad(V)

Logic-based verification

ὄὥὨInv

ὍὲὭὸ

TR

TR

Represent ὍὲὭὸ, Ὕὶ, ὄὥὨ, Ὅὲὺby logical formulas: Formula ė Set of states

Reach

unsat( Init(V)Ø×Inv(V) )

unsat( Inv(V)ØTR(V,VΩ)Ø×Inv(VΩ) )

unsat( Inv(V)ØBad(V) )



Challenges for logic-based verification

Formal specification

Modeling the system and its invariants

Deduction

Checking validity of the VCs

Inference 

Finding an inductive invariant



Inv(V)is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V) Inv(V) unsat( Init(V)Ø×Inv(V) )

Cons.        Inv(V)ØTR(V,VΩ) Inv(VΩ)   unsat( Inv(V)ØTR(V,VΩ)Ø×Inv(VΩ) )

Safety Inv(V) Bad(V) unsat( Inv(V)ØBad(V) )

Are the logical VCΩs valid ?

ChurchΩs Theorem

I canΩt decide!

Counterexample Unknown / 
Diverge

Proof 

Deduction



Interactive theorem provers 
(Coq, Isabelle/HOL, LEAN)
ÅProgrammer proves  the 

inductive invariant

ÅHuge programmer effort 
(~10-50 lines of proof per 
line of code)

Deduction

Automatic solvers/provers
(e.g. Z3, CVC4, Vampire)
ÅVCs discharged automatically

ÅTools may diverge (for SMT: 
matching loops, arithmetic)

ÅUnpredictability (butterfly effect)

e.g. Verdi e.g. Ironfleet



Logic-based verification approaches
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Interactive 
theorem 
provers Automated

deductive 
verification

Model 
Checking, 
Abstract 

Interpretation

ÅHuge programmer effort 
(~10-50 lines of proof 
per line of code)

ÅSMT solver may diverge 
(matching loops, arithmetic)

ÅUnpredictability, butterfly 
effect

ÅLimited due to 
undecidability
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Interactive 
theorem 
provers Automated

deductive 
verification

Model 
Checking, 
Abstract 

Interpretation

ÅHuge programmer effort 
(~10-50 lines of proof 
per line of code)

ÅSMT solver may diverge 
(matching loops, arithmetic)

ÅUnpredictability, butterfly 
effect

ÅLimited due to 
undecidability

Desired
- Expressiveness
- High degree of automation
- Predictability
- Comprehensibility for users
- Efficiency/scalability



This talk: Restrict VCΩs to decidable logic

Inv(V)is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V) Inv(V) unsat( Init(V)Ø×Inv(V) )

Cons.           Inv(V)ØTR(V,VΩ) Inv(VΩ)   unsat( Inv(V)ØTR(V,VΩ)Ø×Inv(VΩ) )

Safety Inv(V) Bad(V) unsat( Inv(V)ØBad(V) )

Are the logical VCΩs valid ?I can decide!

Counterexample Proof 

Dɴecidable logic
With good tool support



Challenges for verification 
with decidable logic

Formal specification 

Modeling in a decidable logic

Deduction

Checking validity of the VCΩs

Invariant inference

Finding an inductive invariant



This talk

Formal specification 

ÅSurprisingly expressive

Invariant inference

ÅAutomatic (based on PDR)

- Semi-algorithm: may diverge

ÅInteractive

- Based on graphically displayed counterexamples to induction

Logic: EPR ςdecidable fragment of first order logic



Effectively Propositional Logic ςEPR

Decidable fragment of first order logic

JAllows quantifiers to reason about unbounded sets
- xᶅ,y. leader(x) ᷈ leader(y) O x y

JSatisfiability is decidable   => Deduction is decidable

JSmall model property        => Finite cexto induction

JTuring complete modeling language

LLimited language for safety and inductive invariants
üSuffices for many infinite-state systems

+ Quantification ($*"*) - Theories (e.g., arithmetic)



Successful verification with EPR

ωShape Analysis 
[Itzhaky et al. CAVΩ13, POPLΩ14, CAVΩ14, CAVΩ15]

ωSoftware-Defined Networks 
[Ball et al. PLDIΩ14]

ωDistributed protocols 
[Padon et al. PLDIΩ16, OOPSLAΩ17, POPLΩ18, PLDIΩ18]

ωConcurrent Modification Errors in Java programs 
[Frumkin et al. VMCAIΩ17]



Example: Leader Election in a Ring

ωNodes are organized in a unidirectional ring

ωEach node has a unique numeric id

ωProtocol:

ςEach node sends its id to the next

ςA node that receives a message passes it to the next if the id in 

the message is higher than the nodeΩs own id

ςA node that receives its own id becomes the leader

ωTheorem:

ςThe protocol selects at most one leader

[CACMΩ79] E. Chang and R. Roberts. An improved algorithm for decentralized 
extrema-finding in circular configurations of processes
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ωState: finite first-order structure over vocabulary V  

Å (ID, ID) ςtotal order on node idΩs

Åid: Node Ą ID ςrelate a node to its id

Åbtw (Node, Node, Node) ςthe ring topology

Åpending(ID, Node) ςpending messages

Åleader(Node) ςleader(n) means n is the leader

structureprotocol state

Axiomatizedin EPR

n1
×L

id1

n2
×L

id2

n3
×L

id3

n4
×L

n5
×L

id5 id6

<n5, n1, n3> ɴ Ὅbtw)

id4

n6
×L

n1

Modeling with EPR
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Modeling with EPR

ωState: finite first-order structure over vocabulary V (+ axioms)

ω Initial states and safety property: EPR formulas over V

ςInit(V)ςinitial states, e.g.,  ᶅƛŘΣƴȢpendingÉÄȟÎ

ςBad(V)ςbad states, e.g.,    ɱn1,n2.leaderƴм l᷈eaderƴн n᷈1 n2

ÅTransition relation: expressed as EPR formula TR(V, VΩ), e.g.:

nɱ,s. άs = next(n)έ᷈ xᶅ,y. pendingΩ(x,y)ᴾ (pending(x,y) (᷉x=id[n] y᷈=s))

᷉ɱ n. pending(id[n],n) ᷈ᶅ x. leader’(x) (leader(x) ᷉ x=n) 

Χ
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Χ

Propose(n):  send(id(n), next(n))

Recv(n,msg): if msg= id(n) then leader(n) := true

if msg> id(n) then send(msg,next(n))
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Modeling with EPR

ωState: finite first-order structure over vocabulary V (+ axioms)

ω Initial states and safety property: EPR formulas over V

ςInit(V)ςinitial states, e.g.,  ᶅƛŘΣƴȢpendingÉÄȟÎ

ςBad(V)ςbad states, e.g.,    ɱn1,n2.leaderƴм l᷈eaderƴн n᷈1 n2

ÅTransition relation: expressed as EPR formula TR(V, VΩ), e.g.:

- nɱ,s. άs = next(n)έ᷈ xᶅ,y. pendingΩ(x,y)ᴾ (pending(x,y) (᷉x=id[n] y᷈=s))

- nɱ. pending(id[n],n) ᷈ᶅ x. leader’(x) (leader(x) ᷉ x=n)

Χ

Specify and verify the protocol for anynumber of nodes in the ring



Using EPR for Verification

ωSystem model Init(V), Bad(V),TR(V, VΩ) ɴ EPR

ω Inductive invariantInv(V) "ɴ*

ωVerification conditions

Initiation  Init(V) Inv(V) unsat( Init(V)Ø×Inv(V))

Cons.        Inv(V)ØTR(V,VΩ) Inv(VΩ)   unsat( Inv(V)ØTR(V,VΩ)Ø×Inv(VΩ) )

Safety       Inv(V) Bad(V) unsat( Inv(V)ØBad(V) )

Verification conditions ɴ EPR

Č Decidable to check



Inductive Invariant for Leader Election

Safety property: 

I 0 = Bad = xᶅ,y : Node. leader (x) ᷈ leader (y) ᴼ x y

Å (ID, ID) ςtotal order on node idΩs

Åbtw (Node, Node, Node) ςthe ring topology

Åid: Node Ą ID ςrelate a node to its id

Åpending(ID, Node) ςpending messages

Åleader(Node) ςleader(n) means n is the leader
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Inductive Invariant for Leader Election

Safety property: 

I 0 = Bad = xᶅ,y : Node. leader (x) ᷈ leader (y) ᴼ x y

Inductive invariant:  Inv = I 0 Ø I 1 Ø I 2 Ø I 3

I 1 = "n1,n 2: Node . leader (n 1) ᴼ id [n 2] id [n 1]

I 2 = "n1,n 2: Node . pnd( id [n 1], n 1) ᴼ id [n 2] id [n 1]

I 3 = "n1,n 2,n 3: Node. btw(n 1,n 2,n 3) Øpnd( id [n 2], n 1)
ᴼ id [n 3] id [n 2]

The leader has 
the highest id

Only highest id 
can be self-pnd

Cannot bypass 
higher nodes

Å (ID, ID) ςtotal order on node idΩs

Åbtw (Node, Node, Node) ςthe ring topology

Åid: Node Ą ID ςrelate a node to its id

Åpending(ID, Node) ςpending messages

Åleader(Node) ςleader(n) means n is the leader

The reason for 
using άbtwέ 

instead of άnext έ



Inductive Invariant for Leader Election

Safety property: 

I 0 = Bad = xᶅ,y : Node. leader (x) ᷈ leader (y) ᴼ x y

Inductive invariant:  Inv = I 0 Ø I 1 Ø I 2 Ø I 3

I 1 = "n1,n 2: Node . leader (n 1) ᴼ id [n 2] id [n 1]

I 2 = "n1,n 2: Node . pnd( id [n 1], n 1) ᴼ id [n 2] id [n 1]

I 3 = "n1,n 2,n 3: Node. btw(n 1,n 2,n 3) Øpnd( id [n 2], n 1)
ᴼ id [n 3] id [n 2]

The leader has 
the highest id

Only highest id 
can be self-pnd

Cannot bypass 
higher nodes

EPR 
Solver

ὍὲὭὸὠ᷈ Ὅὲὺὠ
Ὅὲὺὠ Ὕ᷈Ὑὠȟὠ ᷈ Ὅὲὺὠ

Ὅὲὺὠ ὄ᷈ὥὨὠ

I candecide EPR!

Proof



Å (ID, ID) ςtotal order on node idΩs 

Åbtw (a: Node, b: Node, c: Node) ςthe ring topology

Åid: Node Ą ID ςrelate a node to its unique id

Åpending(ID, Node) ςpending messages

Åleader(Node) ςleader(n) means n is the leader

|

Intention EPR Modeling

Node 
IDΩs

Integers

"i:ID.  i i Reflexive
"i, j, k: ID. i j j᷈ k O i k  Transitive
"i, j: ID. i j j᷈ I O i=j  Anti-Symmetric
"i, j: ID.i j j᷉ i Total
"x, y: Node. id(x)= id(y) O x=y Injective

Ring 
Topology

Next 
edges + 
Transitive 
closure

"x, y, z: Node. btw(x,y, z) O btw(y, z, x)  Circular shifts
"x, y, z, w: Node.btw(w, x, y) ᷈ btw(w, y, z) O btw(w, x, z) Transitive
"x, y, w: Node. btw(w, x, y) O ×btw(w, y, x) Anti-Symmetric
"x, y, z, w: Node. distinct(x, y, z) O btw(w, x, y) ᷉ btw(w, y, x) 

Ƨnext (a)=b ƨ¹"x: Node. x a x᷈ bᴼ btw(a,b,x)

Axioms: Leader Election Protocol



So far

Formal specification with EPR

ÅSurprisingly expressive

ÅIntegers: numeric idΩs expressed with 

ÅTransitive closure: ring topology expressed with btw

ÅNetwork semantics: pending messages

ÅSets and cardinalities (for consensus protocols) [OOPSLAΩ17]

ÅLiveness properties [POPLΩ18, FMCADΩ18]

ÅImplementations [PLDIΩ18]

Not in 
this talk



Next

Invariant inference: finding inductive invariants

(1) Automatically 

ςAdapt techniques from finite-state model checking (PDR)

(2) Interactively

ςBased on graphically displayed counterexamples to induction



How can we find a universally quantified inductive 
invariant?



Inductive Invariant for Leader Election

L L
id idpnd

I 0

Bad
nᶅ1,n 2 : Node. leader ( n1) l᷈eader ( n2) ᴼ n1 n2

I 1 "n1, n2: Node. leader ( n1) ᴼ id [ n2] id [ n1]

I 2 "n1, n2: Node. pnd( id [ n1], n1) ᴼ id [ n2] id [ n1]

I 3 "n1, n2, n3: Node. btw( n1, n2, n3) Øpnd( id [ n2], n1)
ᴼid [n 3] id [n 2]

The leader has 
the highest id

Only highest id 
can be self-pnd

Cannot bypass 
higher nodes

L

id id

pnd
id id

btw

nɱ1,n 2: Node. leader ( n1) l᷈eader ( n2) ᷈n1 n2

nɱ1,n 2: Node. leader (n 1) ᷈ id [n 2] id [n 1]

nɱ1,n 2: Node. pnd( id [n 1],n 1) ᷈ id [n 2] id [n 1]

nɱ1,n 2,n 3: Node. btw(n 1,n 2,n 3) Øpnd( id [n 2],n 1)
i᷈d [n 3] id [n 2]

At most one 
leader elected

n2n1 n2n1

n1 n2 n3



Construct Invby excluding άbadέ states

1. How to find these states?

2. How to generalize into conjectures? 



[CAVΩ15, JACMΩ17] Property-Directed Inference of Universal Invariants or Proving Their 
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.  

Use diagramsas generalization of (partial) states 

Åstate sis a finite first-order structure

L
Χ

L L s

sΩDiag(s) =           xґ y ØL(x) Ø L(y)
Ø (x, y) ØҘ (y, x) 
Ø (x, x) Ø (y, y) 

sis obtained from sΩby removing elements 
and projecting relations on remaining elements

ᶬ x y.

s' ṺDiag(s)  iff sis a substructure of s‘

exclude(s) = Diag(s)

L L

L

L

LL

Generalization using Diagram



[CAVΩ15, JACMΩ17] Property-Directed Inference of Universal Invariants or Proving Their 
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.  

L

L

Χ

s

sΩL

L L L

L

Generalize even more if 
sis a partial structure

Generalization using Diagram

Diag(s) =           xґ y
Ø (x, y) ØҘ (y, x) 
Ø (x, x) Ø (y, y) 

ᶬ x y.

exclude(s) = Diag(s)



ᶪᶻInvariant - excluded substructures

Inv¹"Ӷὼ. (l1,1( Ӷὼ) ÙΧ Ùl1,m( Ӷὼ)) ØΧ Ø"ὼȢ(ln,1( Ӷὼ) ÙΧ Ùln,m( Ӷὼ))

Inv¹ $ὼȢ(×l1,1( Ӷὼ) ØΧ Ø×l1,m( Ӷὼ))᷈ Χ᷈ $ὼȢ(×ln,1( Ӷὼ) ØΧ Ø×ln,m( Ӷὼ))

clause / conjecture

cube

r

t*



L L

id idpnd

pnd
id id

btwL

id id

substructure

The leader 
has the 

highest ID Only the leader 
can be self-

pending

Cannot bypass 
higher nodesAt most 

one 
leader

Leaderelection example

How to find the (partial) states to generalize from?



(1) Automatic inference: UPDR

ωBased on BradleyΩs IC3/PDR  [VMCAI11,FMCAD11]

ςSAT-based verification of finite-state systems

ωAbstracts concrete states using their logical diagram

ωBackward traversal performed over diagrams

ωBlocking of CTI excludes a generalizationof its 
diagram Č generates universally quantified lemmas

ω [CAVΩ15, JACMΩ17] Property-Directed Inference of Universal Invariants or Proving Their 
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham. 

ω [VMCAIΩ17] Property Directed Reachability for Proving Absence of Concurrent 
Modification Errors, A. Frumkin, Y. Feldman, O. [ƘƻǘłƪΣ O. Padon, M. Sagiv and S. Shoham.



UPDR: Possible outcomes

ωUniversal inductive invariant found

ςSystem is safe

Used to infer inductive invariants / procedure summaries of: 

ωHeap-manipulating programs, e.g. 
ςSingly/Doubly/Nested linked list

ς Iterators in Java - Concurrent modification error (CME)

ωDistributed protocols
ςSpanning tree 

ςLearning switch

ςΧ

No need for 
user-defined 
predicates/
templates!



UPDR: Possible outcomes

ωUniversal inductive invariant found

ςSystem is safe

ωProof that no universalinductive invariant exists

ςSafety not determined*

* can use Bounded Model Checking to find real counterexamples

BadInit
ΧṖ Ṗ Ṗ Ṗ



UPDR: Possible outcomes

ωUniversal inductive invariant found

ςSystem is safe

ωProof that no universalinductive invariant exists

ςSafety not determined*

ωDivergence

ςIn general, inferring universal ind. inv. is undecidable 

ςFor linked lists it is decidable, UPDR will also terminate
ωProof uses well-quasi-order and KruskalΩs tree theorem

ω [POPLΩ16] Decidability of Inferring Inductive Invariants, O. Padon, N. 
Immerman, S. Shoham, A. Karbyshev, andM. Sagiv.



Model
Verifier

Proof

user

Automatic Inference (e.g., UPDR)

Χ

Χ

Ultimately limited by undecidability



Model
Verifier

Proof

user

(2) Interactive Inference

Χ

Χ

Question

Answer

Supervised Verification of Infinite-State Systems

ÅLet the user guide the tool
ÅUser has intuition about the essence of the proof
ÅComputer is good at handling corner cases



Interactive Inference
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Automation

Deductiveverification

Model Checking
Static Analysis

Ultimately limited by human

Ultimately limited by undecidability

proof/code: 
Verdi: ~10
IronFleet: ~4

Supervised Verification of Infinite-State Systems

What is the humanΩs role?
What is the machineΩs role?
How do they interact?



Displays άminimalέ CTI to exclude

Generalizes to a partial state

Åremoves άirrelevantέ facts (graphical interface - checkboxes)

Translates to universally quantified conjecture (via diagram)

Provides auxiliary automated checks: 

1. BMC(K): uses SAT solver to check if conjecture is true up to K

ÅUser determines the right K to use 

2. ITP(K): uses SAT solver to discover more facts to remove

Examines the proposed conjecture ςit could be wrong

Adds Ὅ

Ivy: Interactive Generalization

Ὅὲὺ= Ὅ Ễ᷈ Ὅ᷈

[PLDIΩ16] IVy: Safety Verification by Interactive Generalization. O. Padon, 
K. McMillan, A. Panda, M. Sagiv, S. Shohamhttps:// github.com/Microsoft/ivy



Interactive Verification in IVy

Proof intuition and creativity

Graphical interaction

Decidable Problems

Predictable Automation

Projection of 
relevant facts

BMC bounds

Examining 
conjectures

Check inductiveness

BMC

Interpolation

Χ Χ

https://www.quora.com/Human-Computer-Interaction


Verification with decidable logic

ÅEPR - decidable fragment of FOL
ÅDeduction is decidable
ÅFinite counterexamples

ÅCan be made surprisingly powerful
ÅTransitive closure: linked lists, ring topology [PLDIΩ16]
ÅPaxos, Multi-Paxos, [OOPSLAΩ17]

ÅLiveness and Temporal Properties [POPLΩ18]
ÅDeveloping verified implementations [PLDIΩ18]

Å Domain knowledge 
and axioms

Å Derived relations
Å Modularity
Å Prophecy

Summary 1



Invariant Inference

ÅAutomatic inference: UPDR [CAVΩ15,JACM]

ÅInteractive inference: Ivy [PLDIΩ16]

ÅUse logical diagram to infer Inv ᶅɴ *

ÅCan also prove absence of Inv ᶰ *ᶅ

Summary 2



ÅDecidable logic is useful 
- facilitates automation

ÅWe need ways to guide verification tools

ÅHow to divide the problem between human and machine?

ÅDifferent inference schemes

ÅDifferent Forms of interaction

ÅOther logics

ÅTheoretical understanding of limitations and tradeoffs

Take away

Supervised Verification of Infinite-State Systems


