
Verification of Distributed Protocols
Using Decidable Logic

Sharon Shoham

Tel Aviv University

Programming Languages Mentoring Workshop 2019

The research leading to these results has received funding from the European Research Council under the
European UnionΩs Horizon 2020 research and innovation programme(grant agreement No [759102-SVIS])

Why verify distributed protocols?

ÅDistributed systems are everywhere

ÅSafety-critical systems

ÅCloud infrastructure

ÅBlockchains

ÅDistributed protocols are notoriously hard to get right

ÅEven small protocols can be tricky

ÅBugs occur on rare scenarios

ÅTesting is costly and not sufficient

Verifying distributed protocols is hard

ÅInfinite state-space

Åunbounded #processes

Åunbounded #messages

Åunbounded #objects

Verify distributed protocols for any number of nodes and resources

Χ

I canΩt decide!

ÅAsymptotic complexity of verification

ÅRice theorem

Safety of Infinite State Systems

System S is safeif all the reachablestates satisfy the property P = ὄὥὨ

Reach

System State Space Safety
Property

ὄὥὨ

ὍὲὭὸ

άno two
leaders are
electedέ

Inductive Invariants

System State Space Safety
Property

ὄὥὨInv

ὍὲὭὸ

System S is safe iff there exists an inductive invariant Ὅὲὺ:

ὍὲὭὸṖὍὲὺ(Initiation)
if „ᶰὍὲὺand „ᴼ„ᴂthen „ᴂɴ Ὅὲὺ(Consecution)
Ὅὲὺ᷊ὄὥὨ (ɲSafety)

TR

TR

TR

System S is safeif all the reachablestates satisfy the property P = ὄὥὨ

άno two
leaders are
electedέ

Inductive Invariants

System State Space Safety
Property

ὄὥὨInv

ὍὲὭὸ

Reach
TR

TR

System S is safe iff there exists an inductive invariant Ὅὲὺ:

ὍὲὭὸṖὍὲὺ(Initiation)
if „ᶰὍὲὺand „ᴼ„ᴂthen „ᴂɴ Ὅὲὺ(Consecution)
Ὅὲὺ᷊ὄὥὨ (ɲSafety)

System S is safeif all the reachablestates satisfy the property P = ὄὥὨ

άno two
leaders are
electedέ

Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ

Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ

Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

ωThe ball starts at player 1ᴻ

ωCan the ball get to 2 ?Ȣ

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ

Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

ωThe ball starts at player 1ᴻ

ωCan the ball get to 2 ?Ȣ

ωIs άthe ball is not at 2 έȢ an inductive invariant?

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ

Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

ωThe ball starts at player 1ᴻ

ωCan the ball get to 2 ?Ȣ

ωIs άthe ball is not at 2 έȢ an inductive invariant? No!

ςCounterexample to induction

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ

Example

ωN pairs of players pass a ball:

ς1 wᴻill pass to 1ᴽ

ς1 wȢill pass to 1ᴻ

ς2 wᴻill pass to 2ᴽ

ς2 wȢill pass to 2ᴻΧ

ωThe ball starts at player 1ᴻ

ωCan the ball get to 2 ?Ȣ

ωIs άthe ball is not at 2 έȢ an inductive invariant? No!

ςCounterexample to induction

ωInductive invariant: άthe ball is not at 2 nᴻor 2 ”Ȣ

1ᴻ 2ᴻ

1ᴽ 2ᴽ

Χ

Logic-based verification

Provers/solvers for different logics made huge progress

ÅPropositional logic (SAT) ςindustrial impact for hardware
verification

ÅSatisfiability modulo theories (SMT) ςmajor trend in
software verification

ÅAutomated first-order theorem provers

ÅInteractive theorem provers

ÅZ3, CVC4, iProver, Vampire, Coq, Isabelle/HOL Χ.

Inv(V)is an inductive invariant if the verification conditions(VCs) are valid:
Initiation Init(V) Inv(V)

Cons. Inv(V)ØTR(V,VΩ) Inv(VΩ)

Safety Inv(V) Bad(V)

Logic-based verification

ὄὥὨInv

ὍὲὭὸ

TR

TR

Represent ὍὲὭὸ, Ὕὶ, ὄὥὨ, Ὅὲὺby logical formulas: Formula ė Set of states

Reach

unsat(Init(V)Ø×Inv(V))

unsat(Inv(V)ØTR(V,VΩ)Ø×Inv(VΩ))

unsat(Inv(V)ØBad(V))

Challenges for logic-based verification

Formal specification

Modeling the system and its invariants

Deduction

Checking validity of the VCs

Inference

Finding an inductive invariant

Inv(V)is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V) Inv(V) unsat(Init(V)Ø×Inv(V))

Cons. Inv(V)ØTR(V,VΩ) Inv(VΩ) unsat(Inv(V)ØTR(V,VΩ)Ø×Inv(VΩ))

Safety Inv(V) Bad(V) unsat(Inv(V)ØBad(V))

Are the logical VCΩs valid ?

ChurchΩs Theorem

I canΩt decide!

Counterexample Unknown /
Diverge

Proof

Deduction

Interactive theorem provers
(Coq, Isabelle/HOL, LEAN)
ÅProgrammer proves the

inductive invariant

ÅHuge programmer effort
(~10-50 lines of proof per
line of code)

Deduction

Automatic solvers/provers
(e.g. Z3, CVC4, Vampire)
ÅVCs discharged automatically

ÅTools may diverge (for SMT:
matching loops, arithmetic)

ÅUnpredictability (butterfly effect)

e.g. Verdi e.g. Ironfleet

Logic-based verification approaches
E

x
p

re
ss

iv
e

n
e

ss

Automation

Interactive
theorem
provers Automated

deductive
verification

Model
Checking,
Abstract

Interpretation

ÅHuge programmer effort
(~10-50 lines of proof
per line of code)

ÅSMT solver may diverge
(matching loops, arithmetic)

ÅUnpredictability, butterfly
effect

ÅLimited due to
undecidability

Logic-based verification approaches
E

x
p

re
ss

iv
e

n
e

ss

Automation

Interactive
theorem
provers Automated

deductive
verification

Model
Checking,
Abstract

Interpretation

ÅHuge programmer effort
(~10-50 lines of proof
per line of code)

ÅSMT solver may diverge
(matching loops, arithmetic)

ÅUnpredictability, butterfly
effect

ÅLimited due to
undecidability

Desired
- Expressiveness
- High degree of automation
- Predictability
- Comprehensibility for users
- Efficiency/scalability

This talk: Restrict VCΩs to decidable logic

Inv(V)is an inductive invariant if the following verification conditions
are valid:

Initiation Init(V) Inv(V) unsat(Init(V)Ø×Inv(V))

Cons. Inv(V)ØTR(V,VΩ) Inv(VΩ) unsat(Inv(V)ØTR(V,VΩ)Ø×Inv(VΩ))

Safety Inv(V) Bad(V) unsat(Inv(V)ØBad(V))

Are the logical VCΩs valid ?I can decide!

Counterexample Proof

Dɴecidable logic
With good tool support

Challenges for verification
with decidable logic

Formal specification

Modeling in a decidable logic

Deduction

Checking validity of the VCΩs

Invariant inference

Finding an inductive invariant

This talk

Formal specification

ÅSurprisingly expressive

Invariant inference

ÅAutomatic (based on PDR)

- Semi-algorithm: may diverge

ÅInteractive

- Based on graphically displayed counterexamples to induction

Logic: EPR ςdecidable fragment of first order logic

Effectively Propositional Logic ςEPR

Decidable fragment of first order logic

JAllows quantifiers to reason about unbounded sets
- xᶅ,y. leader(x) ᷈ leader(y) O x y

JSatisfiability is decidable => Deduction is decidable

JSmall model property => Finite cexto induction

JTuring complete modeling language

LLimited language for safety and inductive invariants
üSuffices for many infinite-state systems

+ Quantification ($*"*) - Theories (e.g., arithmetic)

Successful verification with EPR

ωShape Analysis
[Itzhaky et al. CAVΩ13, POPLΩ14, CAVΩ14, CAVΩ15]

ωSoftware-Defined Networks
[Ball et al. PLDIΩ14]

ωDistributed protocols
[Padon et al. PLDIΩ16, OOPSLAΩ17, POPLΩ18, PLDIΩ18]

ωConcurrent Modification Errors in Java programs
[Frumkin et al. VMCAIΩ17]

Example: Leader Election in a Ring

ωNodes are organized in a unidirectional ring

ωEach node has a unique numeric id

ωProtocol:

ςEach node sends its id to the next

ςA node that receives a message passes it to the next if the id in

the message is higher than the nodeΩs own id

ςA node that receives its own id becomes the leader

ωTheorem:

ςThe protocol selects at most one leader

[CACMΩ79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes

3 5

2

4

1

6
next

next next

next

next

next

ωState: finite first-order structure over vocabulary V

Å (ID, ID) ςtotal order on node idΩs

Åid: Node Ą ID ςrelate a node to its id

Åbtw (Node, Node, Node) ςthe ring topology

Åpending(ID, Node) ςpending messages

Åleader(Node) ςleader(n) means n is the leader

structureprotocol state

Axiomatizedin EPR

n1
×L

id1

n2
×L

id2

n3
×L

id3

n4
×L

n5
×L

id5 id6

<n5, n1, n3> ɴ Ὅbtw)

id4

n6
×L

n1

Modeling with EPR

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5

Modeling with EPR

ωState: finite first-order structure over vocabulary V (+ axioms)

ω Initial states and safety property: EPR formulas over V

ςInit(V)ςinitial states, e.g., ᶅƛŘΣƴȢpendingÉÄȟÎ

ςBad(V)ςbad states, e.g., ɱn1,n2.leaderƴм l᷈eaderƴн n᷈1 n2

ÅTransition relation: expressed as EPR formula TR(V, VΩ), e.g.:

nɱ,s. άs = next(n)έ᷈ xᶅ,y. pendingΩ(x,y)ᴾ (pending(x,y) (᷉x=id[n] y᷈=s))

᷉ɱ n. pending(id[n],n) ᷈ᶅ x. leader’(x) (leader(x) ᷉ x=n)

Χ

Modeling with EPR

ωState: finite first-order structure over vocabulary V (+ axioms)

ω Initial states and safety property: EPR formulas over V

ςInit(V)ςinitial states, e.g., ᶅƛŘΣƴȢpendingÉÄȟÎ

ςBad(V)ςbad states, e.g., ɱn1,n2.leaderƴм l᷈eaderƴн n᷈1 n2

ÅTransition relation: expressed as EPR formula TR(V, VΩ), e.g.:

nɱ,s. άs = next(n)έ᷈ xᶅ,y. pendingΩ(x,y)ᴾ (pending(x,y) (᷉x=id[n] y᷈=s))

᷉ɱ n. pending(id[n],n) ᷈ᶅ x. leader’(x) (leader(x) ᷉ x=n)

Χ

Propose(n): send(id(n), next(n))

Recv(n,msg): if msg= id(n) then leader(n) := true

if msg> id(n) then send(msg,next(n))

Modeling with EPR

ωState: finite first-order structure over vocabulary V (+ axioms)

ω Initial states and safety property: EPR formulas over V

ςInit(V)ςinitial states, e.g., ᶅƛŘΣƴȢpendingÉÄȟÎ

ςBad(V)ςbad states, e.g., ɱn1,n2.leaderƴм l᷈eaderƴн n᷈1 n2

ÅTransition relation: expressed as EPR formula TR(V, VΩ), e.g.:

nɱ,s. άs = next(n)έ᷈ xᶅ,y. pendingΩ(x,y)ᴾ (pending(x,y) (᷉x=id[n] y᷈=s))

᷉ɱ n. pending(id[n],n) ᷈ᶅ x. leader’(x) (leader(x) ᷉ x=n)

Χ

Modeling with EPR

ωState: finite first-order structure over vocabulary V (+ axioms)

ω Initial states and safety property: EPR formulas over V

ςInit(V)ςinitial states, e.g., ᶅƛŘΣƴȢpendingÉÄȟÎ

ςBad(V)ςbad states, e.g., ɱn1,n2.leaderƴм l᷈eaderƴн n᷈1 n2

ÅTransition relation: expressed as EPR formula TR(V, VΩ), e.g.:

- nɱ,s. άs = next(n)έ᷈ xᶅ,y. pendingΩ(x,y)ᴾ (pending(x,y) (᷉x=id[n] y᷈=s))

- nɱ. pending(id[n],n) ᷈ᶅ x. leader’(x) (leader(x) ᷉ x=n)

Χ

Specify and verify the protocol for anynumber of nodes in the ring

Using EPR for Verification

ωSystem model Init(V), Bad(V),TR(V, VΩ) ɴ EPR

ω Inductive invariantInv(V) "ɴ*

ωVerification conditions

Initiation Init(V) Inv(V) unsat(Init(V)Ø×Inv(V))

Cons. Inv(V)ØTR(V,VΩ) Inv(VΩ) unsat(Inv(V)ØTR(V,VΩ)Ø×Inv(VΩ))

Safety Inv(V) Bad(V) unsat(Inv(V)ØBad(V))

Verification conditions ɴ EPR

Č Decidable to check

Inductive Invariant for Leader Election

Safety property:

I 0 = Bad = xᶅ,y : Node. leader (x) ᷈ leader (y) ᴼ x y

Å (ID, ID) ςtotal order on node idΩs

Åbtw (Node, Node, Node) ςthe ring topology

Åid: Node Ą ID ςrelate a node to its id

Åpending(ID, Node) ςpending messages

Åleader(Node) ςleader(n) means n is the leader

3 5

2

4

1

6

2
No! 3 5

2

4

1

6

Inductive?

Inductive Invariant for Leader Election

Safety property:

I 0 = Bad = xᶅ,y : Node. leader (x) ᷈ leader (y) ᴼ x y

Inductive invariant: Inv = I 0 Ø I 1 Ø I 2 Ø I 3

I 1 = "n1,n 2: Node . leader (n 1) ᴼ id [n 2] id [n 1]

I 2 = "n1,n 2: Node . pnd(id [n 1], n 1) ᴼ id [n 2] id [n 1]

I 3 = "n1,n 2,n 3: Node. btw(n 1,n 2,n 3) Øpnd(id [n 2], n 1)
ᴼ id [n 3] id [n 2]

The leader has
the highest id

Only highest id
can be self-pnd

Cannot bypass
higher nodes

Å (ID, ID) ςtotal order on node idΩs

Åbtw (Node, Node, Node) ςthe ring topology

Åid: Node Ą ID ςrelate a node to its id

Åpending(ID, Node) ςpending messages

Åleader(Node) ςleader(n) means n is the leader

The reason for
using άbtwέ

instead of άnext έ

Inductive Invariant for Leader Election

Safety property:

I 0 = Bad = xᶅ,y : Node. leader (x) ᷈ leader (y) ᴼ x y

Inductive invariant: Inv = I 0 Ø I 1 Ø I 2 Ø I 3

I 1 = "n1,n 2: Node . leader (n 1) ᴼ id [n 2] id [n 1]

I 2 = "n1,n 2: Node . pnd(id [n 1], n 1) ᴼ id [n 2] id [n 1]

I 3 = "n1,n 2,n 3: Node. btw(n 1,n 2,n 3) Øpnd(id [n 2], n 1)
ᴼ id [n 3] id [n 2]

The leader has
the highest id

Only highest id
can be self-pnd

Cannot bypass
higher nodes

EPR
Solver

ὍὲὭὸὠ᷈ Ὅὲὺὠ
Ὅὲὺὠ Ὕ᷈Ὑὠȟὠ ᷈ Ὅὲὺὠ

Ὅὲὺὠ ὄ᷈ὥὨὠ

I candecide EPR!

Proof

Å (ID, ID) ςtotal order on node idΩs

Åbtw (a: Node, b: Node, c: Node) ςthe ring topology

Åid: Node Ą ID ςrelate a node to its unique id

Åpending(ID, Node) ςpending messages

Åleader(Node) ςleader(n) means n is the leader

|

Intention EPR Modeling

Node
IDΩs

Integers

"i:ID. i i Reflexive
"i, j, k: ID. i j j᷈ k O i k Transitive
"i, j: ID. i j j᷈ I O i=j Anti-Symmetric
"i, j: ID.i j j᷉ i Total
"x, y: Node. id(x)= id(y) O x=y Injective

Ring
Topology

Next
edges +
Transitive
closure

"x, y, z: Node. btw(x,y, z) O btw(y, z, x) Circular shifts
"x, y, z, w: Node.btw(w, x, y) ᷈ btw(w, y, z) O btw(w, x, z) Transitive
"x, y, w: Node. btw(w, x, y) O ×btw(w, y, x) Anti-Symmetric
"x, y, z, w: Node. distinct(x, y, z) O btw(w, x, y) ᷉ btw(w, y, x)

Ƨnext (a)=b ƨ¹"x: Node. x a x᷈ bᴼ btw(a,b,x)

Axioms: Leader Election Protocol

So far

Formal specification with EPR

ÅSurprisingly expressive

ÅIntegers: numeric idΩs expressed with

ÅTransitive closure: ring topology expressed with btw

ÅNetwork semantics: pending messages

ÅSets and cardinalities (for consensus protocols) [OOPSLAΩ17]

ÅLiveness properties [POPLΩ18, FMCADΩ18]

ÅImplementations [PLDIΩ18]

Not in
this talk

Next

Invariant inference: finding inductive invariants

(1) Automatically

ςAdapt techniques from finite-state model checking (PDR)

(2) Interactively

ςBased on graphically displayed counterexamples to induction

How can we find a universally quantified inductive
invariant?

Inductive Invariant for Leader Election

L L
id idpnd

I 0

Bad
nᶅ1,n 2 : Node. leader (n1) l᷈eader (n2) ᴼ n1 n2

I 1 "n1, n2: Node. leader (n1) ᴼ id [n2] id [n1]

I 2 "n1, n2: Node. pnd(id [n1], n1) ᴼ id [n2] id [n1]

I 3 "n1, n2, n3: Node. btw(n1, n2, n3) Øpnd(id [n2], n1)
ᴼid [n 3] id [n 2]

The leader has
the highest id

Only highest id
can be self-pnd

Cannot bypass
higher nodes

L

id id

pnd
id id

btw

nɱ1,n 2: Node. leader (n1) l᷈eader (n2) ᷈n1 n2

nɱ1,n 2: Node. leader (n 1) ᷈ id [n 2] id [n 1]

nɱ1,n 2: Node. pnd(id [n 1],n 1) ᷈ id [n 2] id [n 1]

nɱ1,n 2,n 3: Node. btw(n 1,n 2,n 3) Øpnd(id [n 2],n 1)
i᷈d [n 3] id [n 2]

At most one
leader elected

n2n1 n2n1

n1 n2 n3

Construct Invby excluding άbadέ states

1. How to find these states?

2. How to generalize into conjectures?

[CAVΩ15, JACMΩ17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

Use diagramsas generalization of (partial) states

Åstate sis a finite first-order structure

L
Χ

L L s

sΩDiag(s) = xґ y ØL(x) Ø L(y)
Ø (x, y) ØҘ (y, x)
Ø (x, x) Ø (y, y)

sis obtained from sΩby removing elements
and projecting relations on remaining elements

ᶬ x y.

s' ṺDiag(s) iff sis a substructure of s‘

exclude(s) = Diag(s)

L L

L

L

LL

Generalization using Diagram

[CAVΩ15, JACMΩ17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

L

L

Χ

s

sΩL

L L L

L

Generalize even more if
sis a partial structure

Generalization using Diagram

Diag(s) = xґ y
Ø (x, y) ØҘ (y, x)
Ø (x, x) Ø (y, y)

ᶬ x y.

exclude(s) = Diag(s)

ᶪᶻInvariant - excluded substructures

Inv¹"Ӷὼ. (l1,1(Ӷὼ) ÙΧ Ùl1,m(Ӷὼ)) ØΧ Ø"ὼȢ(ln,1(Ӷὼ) ÙΧ Ùln,m(Ӷὼ))

Inv¹ $ὼȢ(×l1,1(Ӷὼ) ØΧ Ø×l1,m(Ӷὼ))᷈ Χ᷈ $ὼȢ(×ln,1(Ӷὼ) ØΧ Ø×ln,m(Ӷὼ))

clause / conjecture

cube

r

t*

L L

id idpnd

pnd
id id

btwL

id id

substructure

The leader
has the

highest ID Only the leader
can be self-

pending

Cannot bypass
higher nodesAt most

one
leader

Leaderelection example

How to find the (partial) states to generalize from?

(1) Automatic inference: UPDR

ωBased on BradleyΩs IC3/PDR [VMCAI11,FMCAD11]

ςSAT-based verification of finite-state systems

ωAbstracts concrete states using their logical diagram

ωBackward traversal performed over diagrams

ωBlocking of CTI excludes a generalizationof its
diagram Č generates universally quantified lemmas

ω [CAVΩ15, JACMΩ17] Property-Directed Inference of Universal Invariants or Proving Their
Absence, A. Karbyshev, N. Bjorner, S. Itzhaky, N. Rinetzky and S. Shoham.

ω [VMCAIΩ17] Property Directed Reachability for Proving Absence of Concurrent
Modification Errors, A. Frumkin, Y. Feldman, O. [ƘƻǘłƪΣ O. Padon, M. Sagiv and S. Shoham.

UPDR: Possible outcomes

ωUniversal inductive invariant found

ςSystem is safe

Used to infer inductive invariants / procedure summaries of:

ωHeap-manipulating programs, e.g.
ςSingly/Doubly/Nested linked list

ς Iterators in Java - Concurrent modification error (CME)

ωDistributed protocols
ςSpanning tree

ςLearning switch

ςΧ

No need for
user-defined
predicates/
templates!

UPDR: Possible outcomes

ωUniversal inductive invariant found

ςSystem is safe

ωProof that no universalinductive invariant exists

ςSafety not determined*

* can use Bounded Model Checking to find real counterexamples

BadInit
ΧṖ Ṗ Ṗ Ṗ

UPDR: Possible outcomes

ωUniversal inductive invariant found

ςSystem is safe

ωProof that no universalinductive invariant exists

ςSafety not determined*

ωDivergence

ςIn general, inferring universal ind. inv. is undecidable

ςFor linked lists it is decidable, UPDR will also terminate
ωProof uses well-quasi-order and KruskalΩs tree theorem

ω [POPLΩ16] Decidability of Inferring Inductive Invariants, O. Padon, N.
Immerman, S. Shoham, A. Karbyshev, andM. Sagiv.

Model
Verifier

Proof

user

Automatic Inference (e.g., UPDR)

Χ

Χ

Ultimately limited by undecidability

Model
Verifier

Proof

user

(2) Interactive Inference

Χ

Χ

Question

Answer

Supervised Verification of Infinite-State Systems

ÅLet the user guide the tool
ÅUser has intuition about the essence of the proof
ÅComputer is good at handling corner cases

Interactive Inference
E

x
p

re
ss

iv
e

n
e

ss

Automation

Deductiveverification

Model Checking
Static Analysis

Ultimately limited by human

Ultimately limited by undecidability

proof/code:
Verdi: ~10
IronFleet: ~4

Supervised Verification of Infinite-State Systems

What is the humanΩs role?
What is the machineΩs role?
How do they interact?

Displays άminimalέ CTI to exclude

Generalizes to a partial state

Åremoves άirrelevantέ facts (graphical interface - checkboxes)

Translates to universally quantified conjecture (via diagram)

Provides auxiliary automated checks:

1. BMC(K): uses SAT solver to check if conjecture is true up to K

ÅUser determines the right K to use

2. ITP(K): uses SAT solver to discover more facts to remove

Examines the proposed conjecture ςit could be wrong

Adds Ὅ

Ivy: Interactive Generalization

Ὅὲὺ= Ὅ Ễ᷈ Ὅ᷈

[PLDIΩ16] IVy: Safety Verification by Interactive Generalization. O. Padon,
K. McMillan, A. Panda, M. Sagiv, S. Shohamhttps:// github.com/Microsoft/ivy

Interactive Verification in IVy

Proof intuition and creativity

Graphical interaction

Decidable Problems

Predictable Automation

Projection of
relevant facts

BMC bounds

Examining
conjectures

Check inductiveness

BMC

Interpolation

Χ Χ

https://www.quora.com/Human-Computer-Interaction

Verification with decidable logic

ÅEPR - decidable fragment of FOL
ÅDeduction is decidable
ÅFinite counterexamples

ÅCan be made surprisingly powerful
ÅTransitive closure: linked lists, ring topology [PLDIΩ16]
ÅPaxos, Multi-Paxos, [OOPSLAΩ17]

ÅLiveness and Temporal Properties [POPLΩ18]
ÅDeveloping verified implementations [PLDIΩ18]

Å Domain knowledge
and axioms

Å Derived relations
Å Modularity
Å Prophecy

Summary 1

Invariant Inference

ÅAutomatic inference: UPDR [CAVΩ15,JACM]

ÅInteractive inference: Ivy [PLDIΩ16]

ÅUse logical diagram to infer Inv ᶅɴ *

ÅCan also prove absence of Inv ᶰ *ᶅ

Summary 2

ÅDecidable logic is useful
- facilitates automation

ÅWe need ways to guide verification tools

ÅHow to divide the problem between human and machine?

ÅDifferent inference schemes

ÅDifferent Forms of interaction

ÅOther logics

ÅTheoretical understanding of limitations and tradeoffs

Take away

Supervised Verification of Infinite-State Systems

