
MFPS XIX Preliminary Version

A Type System for Robust Declassification

Steve Zdancewic 1

University of Pennsylvania
Department of Computer and Information Science

200 South 33rd Street
Philadelphia, PA 19104-6389

Abstract

Language-based approaches to information security have led to the development of
security type systems that permit the programmer to describe confidentiality poli-
cies on data. Security type systems are usually intended to enforce noninterference,
a property that requires that high-security information not affect low-security com-
putation. However, in practice, noninterference is often too restrictive—the desired
policy does permit some information leakage.

To compensate for the strictness of noninterference, practical approaches include
some mechanism for declassifying high-security information. But such declassifica-
tion is potentially dangerous, and its use should be restricted to prevent unintended
information leaks. Zdancewic and Myers previously introduced the notion of robust
declassification in an attempt to capture the desired restrictions on declassification,
but that work did not propose a method for determining when a program satisfies
the robust declassification condition.

This paper motivates robust declassification and shows that a simple change to
a security type system can enforce it. The idea is to extend the lattice of security
labels to include integrity constraints as well as confidentiality constraints and then
require that the decision to perform a declassification have high integrity.

1 Introduction

Security-typed languages track information flow within programs to enforce
security properties such as data confidentiality and integrity. Typically, these
languages are intended to enforce noninterference [17,6], a property that re-
quires that confidential data not affect the publicly visible behavior (outputs,
timing, etc.) of a computation.

1 Email: stevez@cis.upenn.edu
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Zdancewic

Security properties based on information flow, such as noninterference,
provide strong guarantees that confidentiality and integrity are maintained.
However, there are several reasons why strict noninterference as a security
policy may be undesirable:

• Sometimes the required policy intentionally permits some amount of in-
formation flow—confidentiality may conditionally depend on some other
factors. For example, Alice may be willing to release her private data to
Bob after he pays for it, but not otherwise.

• The policy may require that information be kept secret for only some fixed
duration. For example, an on-line auction service must release the value of
the winning bid after the auction closes.

• The rate at which information is intentionally leaked may be considered too
slow to pose a security threat. For example, a password-checking function of
an operating system manages on confidential passwords, but even denying
access reveals tiny amounts of information about the correct password.

• Noninterference is the desired policy, but the program analysis is not able
to justify the security of some operations. For example, the encryption
function of a cryptographic library takes confidential data and makes it
public, but the justification that this is secure lies outside the analysis of
the security type system.

Consequently, realistic systems include a means of downgrading—allowing
the security label of the data to be made more public. For confidentiality
policies, this process is called declassification. However, the ability to escape
from the strict confines of noninterference is both essential and dangerous:
unregulated use of downgrading can easily result in unexpected release of
confidential information.

Because it is potentially dangerous, downgrading should only be used in
certain, well-defined ways. One could imagine generalizing information-flow
security policies to include specifications of exactly what circumstances per-
mit declassification. The problem with such an approach is that establishing
that a given program meets the specifications of the security policy can be
extremely difficult—it is the problem of proving that a program meets an
arbitrary specification. Moreover, even stating these formal specifications of
security policies is hard because they may require an accurate description of
a very complex piece of software.

For practicality, we need a natural restriction on the use of declassification
in security-typed programming languages. In previous work, Zdancewic and
Myers [29] introduced the idea of robust declassification. Intuitively, the idea
is to limit declassification to be used only when the decision to perform the
declassification can be trusted.

As an example, consider a security-typed language implementation of the
first scenario in the list above. Alice owns some private data A. She is willing
to release the data to Bob, but only after he has paid her more than 10 dollars

2

Zdancewic

let A:{Alice:} = ... in // compute Alice’s secret

let paid = ... in // determine amount Bob paid

if (paid >= 10) then {

let B:{Alice:Bob} = declassify(A, {Alice:Bob}) in

// ...Bob can make use of the variable B...

} else {

// ...Bob hasn’t paid enough, A is secure...

}

Fig. 1. Example use of declassification

for it. The code in Figure 1 shows how this situation might be expressed in a
security-typed language.

This program shows how security-typed languages make it possible to pro-
gram interesting security policies. It first computes Alice’s secret, giving the
result the confidentiality label {Alice:}, indicating that she owns the data
and that she permits no other readers. This is an example of a security la-
bel from Myers’ and Liskov’s decentralized label model [12], which is discussed
more in Section 3.

The program next calculates what Bob has paid, and tests whether it is
sufficient to satisfy Alice’s requirement. If so, the secret is declassified to have
label {Alice:Bob}, which says that Alice still owns the policy on the data,
but that Bob is permitted to read it. Policy decisions like this one are made
explicit in the program by requiring that the programmer use the declassify
operation to mark intentional information leaks.

The issue is that because the declassification reveals Alice’s data, she must
be careful that this program is invoked appropriately. Furthermore, even
when she authorizes this program’s use, because the decision to perform the
declassification is based in part on the value paid, she must trust that paid

has been computed as described by the program—that is, she must trust the
integrity of the data. If Bob were somehow able to maliciously tamper with the
contents of the paid data or otherwise influence how it’s value is computed,
he could cause Alice’s declassification to be invoked inappropriately.

This problem is exacerbated in a distributed setting, because the computa-
tion that determines whether declassification should take place can potentially
reside on a different host than the actual declassification itself. Also, if this
program appeared as a service running on one host of a distributed system,
determining whether another host could invoke the service requires authenti-
cation to ensure that Alice’s policy is not violated. Much of the motivation
for this work comes from experience using the Jif, a security-typed variant of
Java [13], in distributed settings [31,32].

The rest of this paper shows how this constraint on the trustworthiness of
a decision to declassify data can be formalized in a type system. The idea is
to extend the security labels to include integrity labels that specify a degree of
trust in data. This extension is easily implementable and provides a natural

3

Zdancewic

`, pc ∈ L Security labels

m` ∈ M Memory cells

t ::= bool Boolean type

| [pc]s → s Function type

s ::= t` Security types

v ::= t | f Boolean base values

| λx :s. e Functions

| x Variables

e ::= v Values

| e e Function application

| e ⊕ e Primitive operations

| m` Memory cell contents

| m` := e Imperative update

| if e then e else e Conditional

⊕ ::= ∧ | ∨ | . . . Boolean operations

Fig. 2. λSEC grammar

way of thinking about when declassification should be permitted.

The rest of this paper is organized as follows. The next section briefly
sketches a typical security-typed language to set the stage for robust declas-
sification. Section 3 describes the decentralized label model and a version
with integrity labels. Section 4 discusses how the integrity constraints can be
used to implement robust declassification and compares that rule with some
alternatives. The paper ends with related work and conclusions.

2 A simple security-typed language

This section briefly sketches a security-typed language called λSEC, whose
grammar is shown in Figure 2. This language is a simplified variant of the
SLam calculus, developed by Heintze and Riecke [7]. A full account of this
language and several extensions are given in the author’s dissertation [28].

In the grammar, ` and pc range over elements of a security lattice, L. The
elements > and ⊥ are the top and bottom elements of L. Points higher in the
lattice represent more confidential information, and points lower in the lattice
represent more public information. The lattice order and join are written v,
and t respectively.

4

Zdancewic

The possible types include the type bool of Boolean values and the types
of functions [pc]s → s. Security types, ranged over by the metavariable s,
are just ordinary types labeled with an element from the security lattice. The
security type of a value describes its confidentiality level. Correspondingly,
values, v, include the Boolean constants for true and false as well as function
values. Expressions include values, primitive Boolean operations such as the
logical “and” operation ∧, function application, and a conditional expression.

The language also includes simple imperative features. The state M con-
sists of a globally scoped collection of memory cells that may contain only
Boolean values. 2 Each cell m` has a security label indicating the confidential-
ity of the data it contains.

For simplicity, we give λSEC a large-step operational semantics. The eval-
uation relation is of the form e, M ⇓ v, M ′, which means that the (closed)
program e evaluates starting in memory state M to a value v and a new mem-
ory state M ′. The definition of the ⇓ relation is completely standard, so we
omit it.

The type system for λSEC is designed to prevent unwanted information
flows. The basic idea is to associate security-labels with the type information
of the program and then take the confidentiality lattice into account when
type checking so as to rule out illegal (downward) information flows.

Because upward information flows are allowed (e.g. low-confidentiality
data may flow to a high-confidentiality memory cell), the lattice ordering is
incorporated as a subtyping relationship [25], written ` s1 ≤ s2. The sub-
typing rules (omitted) establish that ≤ is a reflexive, transitive relation that
obeys the expected contravariance for function types. In addition, the lattice
inequality ` v `′ is lifted to subtyping: ` t` ≤ t`′ . This eliminates the need
for the programmer to make explicit when information flows are permissible.
For example, we can conclude ` bool⊥ ≤ bool> because anywhere a high-
security Boolean can be safely used, a low-security Boolean can also be used.
Intuitively, if the program is sufficiently secure to protect high-security data,
it also provides sufficient security to “protect” low-security data.

There is a subtlety with security types in the presence of mutable state:
There can be implicit flows that leak information about control flow into
the state. Consider the following program, where m⊥ is a memory cell that
contains low-security values and h is a variable of type bool>.

if h then m⊥ := t else m⊥ := f

Here, the problem is that, even though the assignments to m⊥ are individually
secure, which of them occurs depends on high-security data. To prevent such
implicit flows, the type system for λSEC associates a label pc with the program
counter. Intuitively, the program counter label approximates the information
that can be learned by observing that the program has reached a particular

2 Other work [30,16] shows how to treat more complex stores that may contain structured
data and functions.

5

Zdancewic

True Γ [pc] ` t : boolpc

False Γ [pc] ` f : boolpc

Var

Γ(x) = s

Γ [pc] ` x : s t pc

Fun

Γ, x :s1 [pc1] ` e : s2 x 6∈ dom(Γ)

Γ [pc2] ` λx :s1. e : ([pc1]s1 → s2)pc2

Binop

Γ [pc] ` e1 : bool`1 Γ [pc] ` e2 : bool`2

Γ [pc] ` e1 ⊕ e2 : bool(`1t`2)

App

Γ [pc1] ` e1 : ([pc2]s2 → s)` Γ [pc1] ` e2 : s2 ` v pc2

Γ [pc1] ` e1 e2 : s t `

Cond

Γ [pc] ` e : bool` Γ [pc t `] ` ei : s i ∈ {1, 2}
Γ [pc] ` if e then e1 else e2 : s

Deref Γ [pc] ` m` : bool` t pc

Assign

Γ [pc] ` e : bool`′ `′ v `

Γ [pc] ` m` := e : boolpc

Sub

Γ [pc] ` e : s ` s ≤ s′ pc′ v pc

Γ [pc′] ` e : s′

Fig. 3. Typing λSEC

6

Zdancewic

point during the execution. In the example above, the program counter reveals
the value of h, so inside the branches of the conditional, we have pc = >.
To prevent these implicit flows, the labeled semantics requires that pc v `
whenever an assignment to a reference m` occurs in the context with program
counter label pc. This rules out the above example.

Another implicit information flow can arise due to the interaction between
functions and state. For example, consider a function f that takes a Boolean
but only assigns the location m⊥ the constant t. Function f is defined as:

f
def
= λx :bool>. m⊥ := t

This function is perfectly secure and can be used in many contexts, but it can
also be used to leak information. For example, consider the program below:

m` := f;

if h then f t else t;

This program is insecure because f writes to the low-security memory location
m`, but whether f is invoked depends on secret data h. In general, calls to
functions that have side effects (in this case, writes to memory locations) can
leak information in the same way that assignment leaks information about the
program counter.

To detect and rule out such implicit flows, the type system includes effects
in the style of Jouvelot and Gifford [9]. Function types in λSEC include an
additional label; they are of the form [pc]s1 → s2. The label pc is a lower
bound on the labels of any locations that might be written when calling the
function. To call a function of this type in a context where the program counter
has label pc′, the type system requires that pc′ v pc. In the example above,
because f writes to a low security location, f is given the type [⊥]bool> →
bool⊥; however, since pc = > inside the branches of the conditional guarded
by h, the call to f in the above program is ruled out.

These intuitions guide the design of λSEC’s type system, the rules for which
are given in Figure 3. They are judgments of the form Γ [pc] ` e : s, which
says “under the assumptions provided by Γ, the term e is a secure program
that evaluates to a value of type s and does not modify memory cells with
label strictly less than pc.”

Although space prohibits full explanation of the type system (see else-
where [28] for the details), note that λSEC enjoys the usual type soundness
theorems and, more importantly, we can establish the following noninterfer-
ence result.

Theorem 2.1 (Noninterference) Suppose ` 6v ζ. If x : t` [⊥] ` e : boolζ

and ` v1, v2 : t`, then for all M

e{v1/x}, M ⇓ v, M1 ⇔ e{v2/x}, M ⇓ v, M2

where M1 ≈ζ M2.

The notation M1 ≈ζ M2 means that memories M1 and M2 agree on cells

7

Zdancewic

whose labels are v ζ:

M1 ≈ζ M2
def
= ∀m`. (` v ζ) ⇒ M1(m`) = M2(m`)

Thus, the noninterference theorem says that the low-security results (with
label v ζ) computed by a program deemed secure by the type system are not
affected by altering the value of high-security data (with label 6v ζ).

Note that λSEC, as described so far, does not include a declassification
mechanism. Clearly the noninterference theorem will not hold if declassifi-
cation is added—the difficulty is in trying to establish properties related to
noninterference that do hold in the presence of declassification.

3 The decentralized label model

One strategy for dealing with declassification is to limit its use to particular
parts of the program. The decentralized label model (DLM) proposed by Myers
and Liskov [12] adds additional structure to the security lattice in order to do
exactly that.

Central to the DLM is the notion of a principal, which is an entity (e.g.,
user, process, party) that can have a confidentiality or integrity concern with
respect to data. Principals own information-flow policies and are also used to
define the authority possessed by the running program. The authority A at a
point in the program is a set of principals that are assumed to authorize any
action taken by the program at that point—in particular, principals may au-
thorize declassifications of data. Different program points may have different
authority, which must be explicitly granted by the principals in question.

A simple confidentiality label in this model is written {o:r1,r2,...,rn},
meaning that the labeled data is owned by principal o, and that o permits the
data to be read by principals r1 through rn (and, implicitly, o). Such a policy
is sometimes abbreviated {o:~r}, where ~r is the set of readers for the policy.

Data may have multiple owners, each controlling a different component of
its label. For example, the label {o1:r1,r2; o2:r1,r3}, contains two compo-
nents and says that owner o1 allows readers r1 and r2 and owner o2 allows
readers r1 and r3. The interpretation is that all of the policies described by
a label must be obeyed, only r1 will be able to read data with this annota-
tion. Such composite labels arise naturally in collaborative computations: for
example, if x has label {o1:r1,r2} and y has label {o2:r1,r3}, then the sum
x + y has the composite label int{o1:r1,r2; o2:r1,r3}, which expresses the
conservative requirement that the sum is subject to both the policy on x and
the policy on y.

In the lattice, `1 v `2 if the label `1 is less restrictive than the label `2.
Data with label `1 is less confidential than data with label `2—more principals
are permitted to see the data, and, consequently, there are fewer restrictions
on how data with label `1 may be used. For example, {o:r} v {o:} holds
because the left label allows both o and r to read the data, whereas the right

8

Zdancewic

label admits only o as a reader. The bottom of the DLM confidentiality
lattice is the label ⊥ = {} and, when there are n principals o1 through on, the
top of the lattice is the label > = {o1:;...;on:}—all principals claim sole
ownership of the data, so none may read it.

The full definition of v for the decentralized label model is given in Myers’
thesis [11]. His thesis also shows thatv is a pre-order whose equivalence classes
form a distributive lattice. The label join operation combines the restrictions
on how data may be used. As an example, {o:r1,r2} t {o:r1,r3} = {o:r1},
which includes the restrictions of both labels

3.1 Integrity constraints

Integrity constraints are the dual to confidentiality constraints. A confiden-
tiality policy specifies where information may flow to, whereas an integrity
policy specifies where information may flow from.

Integrity policies can also be expressed using the security lattice approach:
high-integrity data has fewer restrictions on how it should be used so should
have a label lower in the security lattice than low-integrity data. Thus, the
simplest non-trivial integrity lattice consists of two labels >, the high-integrity
label, and ⊥, the low-integrity label, but their order is the opposite from the
usual confidentiality label: > v ⊥.

One natural interpretation of an integrity label is a set of principals that
trust the value of a piece of data with the corresponding label. We can extend
the standard confidentiality model with components that specify these simple
integrity constraints. The label {*:p1,...,pn} specifies that principals p1

through pn trust the data—they believe the data to be computed by the
program as written.

In this approach, integrity policies have no owner—the notation “*” is used
to suggest that the owner of the policy does not matter. With this definition,
the integrity label {*:} specifies a piece of data trusted by no principals; it
is the label of completely untrusted data and hence the top of the integrity
lattice. Conversely, if there are n principals p1 through pn, the bottom of the
lattice is the label ⊥ = {*:p1,...,pn}. Data with this label is universally
trusted.

This is a weak notion of integrity; it specifies only which principals trust the
data, not how the data may be modified or what invariants that high-integrity
data must satisfy. However, it is sufficient for the purposes of explaining robust
declassification. One can easily generalize this idea to a richer form that is
more fully dual to the DLM owners–readers model by specifying an owners
and writers of the data [12].

Note that the combined confidentiality and integrity lattice can be con-
structed by taking the product of the two lattices. Such labels combine in-
tegrity and confidentiality components, and they also arise naturally when
computing with many sources of information. For the these extended labels,

9

Zdancewic

the functions C(`) and I(`) respectively extract the confidentiality and in-
tegrity parts of `.

4 Declassification

We can now see how the decentralized label model attempts to control the use
of declassification. First consider the simplest way to add a declassification
operation to a security-typed language. We extend the syntax:

e ::= . . . | declassify(e, `)

The declassify(e, `) expression downgrades the security label in the type of
e to `. To reflect this interpretation, we add the following typing judgment.

Bad-Declassify

Γ [pc] ` e : t`′

Γ [pc] ` declassify(e, `) : t`

This judgment says that a value v with an arbitrary label can be given any
other arbitrary label by declassification. It clearly breaks noninterference be-
cause high-security data can now be made low-security. Declassification is
intended for this purpose, but this rule is too permissive—it can be used at
any point to release confidential information. Consequently, adding such a
rule to λSEC completely invalidates its noninterference theorem. We get no
guarantees about the security of programs that use declassification, and the
program may as well have been written without security types.

The decentralized label model introduces the notion of authority to allow
coarse-grained control over where declassifications may be used. The idea is
to associate a set of principals, the code’s authority, with each portion of the
program. Because the DLM labels include information about which principals
own the policies on the data, it is straightforward to determine which princi-
pals’ policies are being weakened by a given declassify operation. A principal
p’s authority is needed to perform declassifications of data owned by p. For
example, owner o can add a reader r to a piece of data x by declassifying its
label from {o:} to {o:r} using the expression declassify(x, {o:r}).

We use the function auth(`, `′) to determine the set of principals whose
authority is needed to move from label ` to label `′ in the lattice. For example,
auth({o:}, {o:r}) = {o}. In general, when C(`) = {o1:~r1;...;on:~rn} and
C(`′) = {o′1:~r

′
1;...;o

′
m:~r

′
m}, the definition of required authority is:

auth(`, `′) = { o | o = oi = o′j ∧ ~r′j ⊃ ~ri}
To incorporate the DLM notion of authority into the type system, we

extend the security part of the typing context to include A, the set of principals
that have authorized the program being checked. This gives DLM typing
judgments the form Γ [pc, A] ` e : s. We can now give the DLM rule for
declassification.

DLM-Declassify

Γ [pc, A] ` e : t` auth(`, `′) ⊆ A

Γ [pc, A] ` declassify(e, `′) : t`′

10

Zdancewic

In addition, the type of this DLM function should reflect the authority
needed to invoke the function, just as λSEC’s function types include the pc
from the security context. Therefore, the typing rule for functions is:

DLM-Fun

Γ, x :s′ [pc′, A′] ` e : s

Γ [pc, A] ` λx :s′. e : ([A′, pc′]s′ → s)pc

The function type [pc′, A]s′ → s indicates that the function requires authority
A and so may perform declassifications on behalf of the principals in A. The
programmer can delimit where declassifications may take place by constraining
the types assigned to the possible clients of a given function.

The caller of a function must establish that it has the authority necessary
to carry out any of the declassifications that might occur inside the function
call. This requirement is reflected in the function application rule:

DLM-App

Γ [pc, A] ` e : ([pc′, A′]s′ → s)`

Γ [pc, A] ` e′ : s′

A′ ⊆ A ` v pc′

Γ [pc, A] ` e e′ : s

Under this model, the example program from Figure 1 would require
Alice’s authority to run, because auth({Alice:}, {Alice:Bob}) is the set
{Alice}.

One could imagine using authority in other ways. For example, it would be
easy to adjust this type system to allow functions to be endowed with some
fixed authority. This approach would allow some of the authority to come
from a function’s calling context and some authority to belong to the function
itself.

The benefit of this approach is that whenever a program is well typed under
a security context with authority A, it is guaranteed not to leak confidential
information owned by principals not in A.

4.1 Robust declassification

Despite the increased control of downgrading offered by the decentralized la-
bel model, there is a weakness in its simple, authority-based approach. The
problem is illustrated once again by the example in Figure 1. Even though
Alice’s authority is necessary for the declassification to be carried out, it is
not sufficient to ensure that her security policy, as encoded in the program is
not violated. The problem is that the decision to perform the declassification
is affected by the contents of paid, which may not be trusted by Alice.

Rather than give authority to the entire function body, it seems more
natural to associate the required authority with the decision to perform the
declassification. The program-counter label at the point of a declassify

expression is already a model of the information used to reach the declassi-

11

Zdancewic

fication. Therefore, to ensure that the decision to do the declassification is
sufficiently trusted, we simply require that the program counter have high
enough integrity.

These intuitions are captured in the following rule for declassification:

Robust-Declassify

Γ [pc] ` e : t` I(`) = I(`′) I(pc) v {*:auth(`, `′)}

Γ [pc] ` declassify(e, `′) : t`′

This approach equates the authority of a piece of code with the integrity
of the program counter at the start of the code, simultaneously simplifying
the typing rules—no authority context A is needed—and strengthening the
restrictions on where declassification is permitted.

This version of declassification rules out the program in Figure 1. To allow
this program to typecheck, the programmer would be forced to add Alice’s
integrity constraint {*:Alice} to the variable paid. Doing so would force the
calculation of paid to depend only on data that Alice deems trustworthy.

The benefit of tying declassification to integrity is that the noninterference
proofs given for the security-typed language say something meaningful for pro-
grams that include declassification. Note that the declassification operation
does not change the integrity of the data being declassified. Projecting the
noninterference result onto the integrity sublattice yields the following lemma
as a corollary. It is a weak guarantee: Intuitively, low-integrity data cannot
interfere with what data is declassified.

Lemma 4.1 (Robust Declassification) Suppose that x : s[⊥] ` e : s′ and
the integrity labels satisfy I(label(s)) 6v I(label(s′)). Then for any values v1

and v2 such that ` vi : s it is the case that e{v1/x} ⇓ v ⇔ e{v2/x} ⇓ v.

This lemma holds regardless of whether e contains declassification opera-
tions. This lemma does not say anything about what high-security informa-
tion might be declassified. Nevertheless, it is better than giving up all security
properties when declassifications are used. Moreover, using the integrity con-
straint still implies the property guaranteed by the DLM authority model: If
Γ [pc] ` e : s and I(pc) 6v {*:p} then e cannot contain any declassifications
on p’s behalf.

One could generalize robust declassification by associating with each dis-
tinct declassification expression in the program a separate principal d and
requiring that I(pc) v {?:d} in the declassification typing judgment. This
constraint allows the programmer to name particular declassifications in se-
curity policies so that, for instance a value with integrity label {?:d1, d2}

could possibly be declassified at points d1 and d2 but not at a declassification
associated with point d3 in the program.

Whether such a generalization would be useful in practice, and how to
precisely characterize the confidentiality properties of the resulting programs
remains for future work.

12

Zdancewic

5 Related work

There has been much recent work in security-typed languages, ranging from
simple calculi [25,7,1,21,24,30,23,8] to full-featured languages [10,31,16,2]. For
a recent survey of this work, see Sabelfeld and Myers’ paper [20].

The simplest and most standard approach to declassification is to restrict
its uses to those performed by a trusted subject, similar to the DLM require-
ment that a function possess the proper authority. This approach does not
address the question of whether an information channel is created. Many
systems have incorporated a more limited form of declassification. Ferrari et
al. [4] augment information flow controls in an object-oriented system with a
form of dynamically-checked declassification called waivers. However, these
efforts provide only limited characterization of the safety of declassification.

Pottier and Conchon [15] argue that access control and information flow
are orthogonal issues, and that the use of declassification mechanisms can
be moderated by access controls. This proposal seems similar to Jif’s use of
authority declarations. Whether access control alone is sufficient in practice
to regulate declassification remains for future research.

The interplay between authority and declassification is similar to Java’s
stack inspection security model [27,26,5]. In Java, privileged operations can
require that they be invoked only in the context of some authorization clause,
and, that, dynamically, no untrusted methods are between the authorization
and the use of the privileged operation on the call stack. These constraints on
the run-time stack are similar to the authority constraints used in the decen-
tralized label model, but weaker than the robust declassification mechanism
proposed here. The difference is that the stack-inspection approach does not
track the integrity of data returned by an untrusted piece of code, so untrusted
data might still influence privileged operations.

Using untrusted data to regulate privileged operations is related to buffer
overflow bugs found in C programs. The C libraries assume that strings are
properly delimited and do not check their bounds. (The libraries assume that
the strings have high integrity.) Programs use the libraries without appropri-
ate checks, making them vulnerable to using strings read from an untrusted
source such as the network. Analyses that find such format string vulnerabil-
ities in C [22] are similar to integrity-only information-flow analysis.

Intransitive noninterference policies [19,14,18] generalize noninterference
to describe systems that contain restricted downgrading mechanisms. The
work by Bevier et al. on controlled interference [3] is most similar to this work
in allowing policies for information released to a set of agents.

6 Conclusions

Security-typed languages are a promising and flexible approach to the problem
of protecting confidential data in computer systems. Practical security-typed

13

Zdancewic

languages provide a rich vocabulary for building security policies, which are
enforced by static program analyses. Although strict noninterference is a
valuable starting point for developing information flow policies, it is some-
times necessary to violate noninterference in practice. Therefore, some form
of downgrading mechanism is required.

This paper presents a type system for robust declassification, which is an
attempt to control improper use of downgrading. The main intuition is that
the decision to perform a declassification must be trusted by any principals
whose security policies are weakened by the declassification. This insight leads
naturally to an integrity constraint on the data used to make the decision. In
addition, simple modifications to existing security type systems can implement
robust declassification.

Although this approach is promising, there is still further research nec-
essary to understand how downgrading mechanisms affect information-flow
security policies. For instance, this paper has focused exclusively on declas-
sification, but once integrity constraints are included it is natural to ask how
declassification’s integrity counterpart (called endorsement) should be simi-
larly constrained. In addition, it is not clear how downgrading mechanisms
should interact with polymorphism and mechanisms for describing dynamic
security policies.

6.1 Acknowledgments

Andrew Myers and Andrei Sabelfeld provided insightful observations and en-
gaging discussion in our quest to understand declassification. Many thanks to
Stephanie Weirich for her feedback on earlier drafts of this paper.

References

[1] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A
core calculus of dependency. In Proc. 26th ACM Symp. on Principles of
Programming Languages (POPL), pages 147–160, San Antonio, TX, January
1999.

[2] Anindya Banerjee and David A. Naumann. Secure information flow and pointer
confinement in a java-like language. In Proc. of the 15th IEEE Computer
Security Foundations Workshop, 2002.

[3] William R. Bevier, Richard M. Cohen, and William D. Young. Connection
policies and controlled interference. In Proc. of the 8th IEEE Computer Security
Foundations Workshop, pages 167–176, 1995.

[4] Elena Ferrari, Pierangela Samarati, Elisa Bertino, and Sushil Jajodia.
Providing flexibility in information flow control for object-oriented systems.
In Proc. IEEE Symposium on Security and Privacy, pages 130–140, Oakland,
CA, USA, May 1997.

14

Zdancewic

[5] Cedric Fournet and Andrew Gordon. Stack inspection: Theory and variants.
In Proc. 29th ACM Symp. on Principles of Programming Languages (POPL),
pages 307–318, 2002.

[6] J. A. Goguen and J. Meseguer. Security policies and security models. In
Proc. IEEE Symposium on Security and Privacy, pages 11–20. IEEE Computer
Society Press, April 1982.

[7] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with
secrecy and integrity. In Proc. 25th ACM Symp. on Principles of Programming
Languages (POPL), pages 365–377, San Diego, California, January 1998.

[8] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure
information flow. In Proc. 29th ACM Symp. on Principles of Programming
Languages (POPL), pages 81–92, January 2002.

[9] Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types and
effects. In ACM Symposium on Principles of Programming Languages, pages
303–310, January 1991.

[10] Andrew C. Myers. JFlow: Practical mostly-static information flow control.
In Proc. 26th ACM Symp. on Principles of Programming Languages (POPL),
pages 228–241, San Antonio, TX, January 1999.

[11] Andrew C. Myers. Mostly-static decentralized information flow control.
Technical Report MIT/LCS/TR-783, Massachusetts Institute of Technology,
Cambridge, MA, January 1999. Ph.D. thesis.

[12] Andrew C. Myers and Barbara Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software Engineering and
Methodology, 9(4):410–442, 2000.

[13] Andrew C. Myers, Nathaniel Nystrom, Lantian Zheng, and Steve
Zdancewic. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[14] Sylvan Pinsky. Absorbing covers and intransitive non-interference. In Proc.
IEEE Symposium on Security and Privacy, 1995.

[15] François Pottier and Sylvain Conchon. Information flow inference for
free. In Proc. 5th ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 46–57, September 2000.

[16] François Pottier and Vincent Simonet. Information flow inference for ML.
In Proc. 29th ACM Symp. on Principles of Programming Languages (POPL),
Portland, Oregon, January 2002.

[17] John C. Reynolds. Syntactic control of interference. In Proc. 5th ACM Symp.
on Principles of Programming Languages (POPL), pages 39–46, 1978.

[18] A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In
Proc. of the 12th IEEE Computer Security Foundations Workshop, 1999.

15

Zdancewic

[19] John Rushby. Noninterference, transitivity and channel-control security
policies. Technical report, SRI, 1992.

[20] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
January 2003.

[21] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-
threaded programs. In Proc. of the 13th IEEE Computer Security Foundations
Workshop, pages 200–214. IEEE Computer Society Press, July 2000.

[22] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting
format string vulnerabilities with type qualifiers. In Proceedings of the 10th
USENIX Security Symposium, 2001.

[23] Geoffrey Smith. A new type system for secure information flow. In Proc. of the
14th IEEE Computer Security Foundations Workshop, pages 115–125. IEEE
Computer Society Press, June 2001.

[24] Dennis Volpano and Geoffrey Smith. Verifying secrets and relative secrecy.
In Proc. 27th ACM Symp. on Principles of Programming Languages (POPL),
pages 268–276. ACM Press, January 2000.

[25] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):167–187, 1996.

[26] Dan S. Wallach, Andrew W. Appel, and Edward W. Felten. The security
architecture formerly known as stack inspection: A security mechanism for
language-based systems. ACM Transactions on Software Engineering and
Methodology, 9(4), October 2000.

[27] Dan S. Wallach and Edward W. Felten. Understanding Java stack inspection.
In Proc. IEEE Symposium on Security and Privacy, Oakland, California, USA,
May 1998.

[28] Stephan A. Zdancewic. Programming Languages for Information Security. PhD
thesis, Cornell University, August 2002.

[29] Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proc.
of 14th IEEE Computer Security Foundations Workshop, pages 15–23, Cape
Breton, Canada, June 2001.

[30] Steve Zdancewic and Andrew C. Myers. Secure information flow via linear
continuations. Higher Order and Symbolic Computation, 15(2/3), 2002.

[31] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.
Secure program partitioning. Transactions on Computer Systems, 20(3):283–
328, 2002.

[32] Lantian Zheng, Stephen Chong, Steve Zdancewic, and Andrew C. Myers.
Building secure distributed systems using replication and partitioning. In IEEE
2003 Symposium on Security and Privacy. ieee, 2003.

16

