
Relational Parametricity for a Polymorphic Linear
Lambda Calculus

Jianzhou Zhao, Qi Zhang, and Steve Zdancewic

University of Pennsylvania
{jianzhou,qzh,stevez}@cis.upenn.edu

Abstract. This paper presents a novel syntactic logical relation for a polymor-
phic linear λ-calculus that treats all types as linear and introduces the constructor !
to account for intuitionistic terms, and System F◦—an extension of System F that
uses kinds to distinguish linear from intuitionistic types. We define a logical rela-
tion for open values under both open linear and intuitionistic contexts, then extend
it for open terms with evaluation and open relation substitutions. Relations that
instantiate type quantifiers are for open terms and types. We demonstrate the ap-
plicability of this logical relation through its soundness with respect to contextual
equivalence, along with free theorems for linearity that are difficult to achieve by
closed logical relations. When interpreting types on only closed terms, the model
defaults to a closed logical relation that is both sound and complete with respect
to contextual equivalence and is sufficient to reason about isomorphisms of type
encodings. All of our results have been mechanically verified in Coq.

1 Introduction

In the polymorphic lambda calculus, System F [13], relational parametricity [18] is the
essence of type abstraction. It asserts that a parametrically polymorphic function must
use the same algorithm to compute its result, independently of the instantiated types.

Relational parametricity can be used to derive equivalences involving functional
programs by observing solely the types of those programs, with no knowledge of the
functions’ actual definitions. Wadler [23] refers to these equivalences as the “free the-
orems” associated with particular types. For instance, we can conclude that there is no
closed inhabitant of type ∀α.α in a pure setting. If there were such a term, it must yield
a value of any type at which it is instantiated, but there is no uniform algorithm to com-
pute a value at any type. Therefore, ∀α.α is an empty type. Given a closed polymorphic
function B with type ∀α.α → α → α, for any type τ , B [τ] evaluates to a function
F of type τ → τ → τ . Since B is polymorphic, F cannot depend on its arguments.
Given any closed values V1:τ , V2:τ , F must return one of the arguments directly or
yield a term equivalent to one of the arguments. Therefore we can conclude that B
must behave like one of Λα. λx:α. λy:α. x or Λα. λx:α. λy:α. y.

Linearity and parametricity Bierman et al. [6] used >>-closed [17] logical relations
for the parametricity principle of the programming language Lily—a dual intuitionistic
linear lambda calculus [4] with polymorphic types and recursion. They proved isomor-
phisms of type encodings via relational parametricity properties. In the language with-
out recursion, their model defaults to the standard logical relations (that interpret types

2 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

with pairs of closed terms), while the free theorems obtained by the standard techniques
do not tell the whole story because linearity changes the set of possible well-typed pro-
grams. Consider a linear variant of the Boolean type used above: ∀α.α (α (α.
Here,(is a linear function type. The following standard parametricity holds:

Theorem 1 (Parametricity). If Γ ;∆ ` M :τ , then Γ ;∆ ` M'?
logM ∈ τ .

Here,'?
log denotes a standard logical relation. As in the case for ordinary System F,

this parametricity theorem implies that any closed term M with type ∀α.α(α(α
must behave like either Λα.λa1:α.λa2:α.a1 or Λα.λa1:α.λa2:α.a2. However, the lin-
ear variables a1 and a2 must be used exactly once in the body of M . Therefore, nei-
ther of these expressions is well-typed. More generally, the free theorem of this type
should say that this is an empty type—there are no terms that inhabit it! On the other
hand, the similar type ∀α.!α(!α(!α, in which ! constructs an intuitionistic term, is
still isomorphic to the Booleans. Moreover, analogous examples can be constructed in
System F◦ [16]—a variant of polymorphic linear lambda calculus that uses the kinds,
instead of ! type constructor, to distinguish linear from intuitionistic types. These ob-
servations suggest that there might be a stronger linear parametricity that distinguishes
these cases.

The key idea of this paper is that linearity properties can be properly taken into ac-
count by using open logical relations. There is a large body of work on logical relations
that interprets types as relations R, which are sets of pairs of closed terms with closed
types under empty contexts. Linear type systems, however, restrict the use of variables
of linear types in a non-empty context. Intuitively, if logical relations interpret types by
relations for open terms under non-empty linear contexts, the free theorem associated
with the above type should show that it is void.

Suppose we apply M to open values V1 and V2 with type τ where V1 and V2 are
logically related to themselves under disjoint linear contexts respectively. By the free
theorem we have M [τ]V1 V2 −→∗ V1 or M [τ]V1 V2 −→∗ V2. But neither of the
above evaluations is valid, because the set of free linear variables in a well-formed
expression should be preserved under reduction; in other words, the evaluation should
not consume the set of free linear variables from either V1 or V2. With this stronger
logical relation, we can conclude that there is no such closed M of type ∀α.α(α(
α. However, closed terms with type ∀α.!α (!α (!α still behave like polymorphic
boolean functions because the system ensures that intuitionistic values V1 and V2 cannot
capture linear variables. Section 4.1 formally proves these results, and explains that
the standard logical relations cannot distinguish them. Although Tait [21], Girard [13],
Crary [10] and Hasegawa [14] developed logical relations for open terms, their works
do not support both polymorphism and linearity. We discuss related work in Section 3.

The specific contributions of this paper include:

1. Section 2 gives the type system and operational semantics for PDILL that combines
a term calculus for Plotkin’s dual intuitionistic linear logic [4] with impredicative
polymorphism. We then discuss related work, provide a novel syntactic logical re-
lation that interprets types with pairs of open terms for PDILL in Section 3, and
show that every well-typed expression is related to itself in the interpretation of its
type by this logical relation. This logical relation is sound with respect to contextual

Relational Parametricity for a Polymorphic Linear Lambda Calculus 3

equivalence, and therefore suitable for reasoning about program equivalence. When
interpreting types on only closed terms, it defaults to a standard logical relation that
is both sound and complete with respect to contextual equivalence.

2. In Section 4 we give several applications of this logical relational model: free the-
orems for linearity that are difficult to achieve by standard logical relations, prop-
erties of contextual equivalence, and isomorphisms of type encodings.

3. The results for PDILL also carry over to System F◦ [16]. All of our results (in-
cluding PDILL, System F◦ and System F) are available at http://www.cis.
upenn.edu/~jianzhou/parametricity4linf, and are mechanically ver-
ified in Coq [9] and OTT [20]. We do not only view this formalization as supporting
material, but also as an extensive formalization for polymorphic (linear) languages
in Coq [3]. Section 5 briefly discusses the mechanical proofs and future work.

2 A Brief Introduction to PDILL

Terms M : : = x | a | λa:τ.M | M M ′ | Λα.M | M [τ] | !M | let !x = M inM ′

| 〈M ,M ′〉 | M .1 | M .2 | (M ,M ′) | let (a, a ′) = M inM ′

ValuesV, U : : =λa:τ.M | Λα.M | !M | 〈M ,M ′〉 | (V, V ′)
Types τ, σ : : =α | τ (τ ′ | ∀α.τ | !τ | τ&τ ′ | τ ⊗ τ ′

Intuitionistic contextsΓ, G : : = · | Γ, x :τ | Γ, α Linear contexts∆, D : : = · | ∆, a:τ

Fig. 1. Syntax for PDILL.

In programming languages, linear type systems check the ability to duplicate and to
discard a resource. There are many variants on linear type systems to distinguish linear
from intuitionistic variables [24]. PDILL combines a term calculus for Plotkin’s dual
intuitionistic linear logic [4] with impredicative polymorphism. Figure 1, 2 and 3 give
the syntax, typing rules and evaluation relations for PDILL. Our typing rules take an
intuitionistic context Γ — an ordered list of both type and intuitionistic term variables,
and a linear context ∆ that binds only linear term variables. Intuitionistic variables x
that may be duplicated and discarded, and linear variables a that must be used exactly
once are syntactically different. We encode intuitionistic lambda abstractions λx :τ1.M2

as λa:!τ1.let !x = a inM2 with type !τ1 (τ2.
Typing rules can drop unused variables (weakening) or use a variable more than

once (contraction) from an intuitionistic context Γ , but must use variables exactly once
from a linear context ∆. Linear usage of ∆ holds because T_IVAR allows only an
empty ∆, and T_LVAR takes a linear context that consists of only the variable type-
checked. Rules T_LVAR and T_IVAR permit weakening and contraction by allowing
an arbitrary Γ at the leaves of typing derivations, while rule T_APP duplicates Γ but
splits ∆. T_APP splits ∆ using the operation d, which allows type variables and in-
tuitionistic expression variables to propagate to both sides of an application while re-
stricting linear variables. We treat all types as linear, and use the ! constructor to account

http://www.cis.upenn.edu/~jianzhou/parametricity4linf
http://www.cis.upenn.edu/~jianzhou/parametricity4linf
http://www.cis.upenn.edu/~jianzhou/parametricity4linf
http://www.cis.upenn.edu/~jianzhou/parametricity4linf

4 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

` Γ Γ ` ∆

` ·

` Γ Γ ` τ
x 6∈ dom(Γ)

` Γ, x :τ

` Γ
α 6∈ dom(Γ)

` Γ, α
` Γ
Γ ` ·

Γ ` ∆ Γ ` τ
a 6∈ dom(∆)

Γ ` ∆, a:τ

Γ ` τ
` Γ α ∈ Γ

Γ ` α
Γ ` τ1 Γ ` τ2
Γ ` τ1 (τ2

Γ, α ` τ
Γ ` ∀α.τ

Γ ` τ
Γ `!τ

Γ ` τ Γ ` τ ′

Γ ` τ&τ ′
Γ ` τ Γ ` τ ′

Γ ` τ ⊗ τ ′

Γ ` ∆1 d ∆2 = ∆

` Γ
Γ ` · d · = ·

Γ ` τ Γ ` ∆1 d ∆2 = ∆
a /∈ Γ,∆
Γ ` ∆1, a:τ d ∆2 = ∆, a:τ

Γ ` τ Γ ` ∆1 d ∆2 = ∆
a /∈ Γ,∆
Γ ` ∆1 d ∆2, a:τ = ∆, a:τ

Γ ;∆ ` M :τ

Γ ` (a:τ)

Γ ; a:τ ` a:τ
T_LVAR

` Γ x :τ ∈ Γ
Γ ; · ` x :τ

T_IVAR

Γ ` τ1 Γ ;∆, a:τ1 ` M2:τ2

Γ ;∆ ` λa:τ1.M2:τ1 (τ2
T_ABS

Γ ;∆1 ` M1:τ11 (τ12
Γ ;∆2 ` M2:τ11
Γ ` ∆1 d ∆2 = ∆3

Γ ;∆3 ` M1 M2:τ12
T_APP

Γ, α;∆ ` M1:τ

Γ ;∆ ` Λα.M1:∀α.τ
T_TABS

Γ ;∆ ` M1:∀α.τ Γ ` τ1
Γ ;∆ ` M1[τ1]:τ{τ1/α}

T_TAPP

Γ ; · ` M :τ

Γ ; · `!M :!τ
T_BANG

Γ ;∆1 ` M1:!τ1 Γ, x :τ1;∆2 ` M2:τ2
Γ ` ∆1 d ∆2 = ∆3

Γ ;∆3 ` let !x = M1 inM2:τ2
T_LET

Γ ;∆ ` M1:τ1
Γ ;∆ ` M2:τ2

Γ ;∆ ` 〈M1,M2〉:τ1&τ2
T_APAIR

Γ ;∆ ` M :τ1&τ2

Γ ;∆ ` M .i :τi
T_PROJI

Γ ;∆1 ` M1:τ1
Γ ;∆2 ` M2:τ2
Γ ` ∆1 d ∆2 = ∆3

Γ ;∆3 ` (M1,M2):τ1 ⊗ τ2
T_PPAIR

Γ ;∆1 ` M1:τ1 ⊗ τ2
Γ ;∆2, a1:τ1, a2:τ2 ` M2:τ
Γ ` ∆1 d ∆2 = ∆3

Γ ;∆3 ` let (a1, a2) = M1 inM2:τ
T_PLET

Fig. 2. Kinding and typing rules for PDILL.

Relational Parametricity for a Polymorphic Linear Lambda Calculus 5

for terms that can be discarded or duplicated. A ! value cannot capture linear variables,
and is used lazily. We have two distinct forms of pairs: (M1,M2) is a muplicative pair
where both components are used eagerly (eliminated via pattern matching using let),
and the free linear variables of M1 and M2 are disjoint; 〈M1,M2〉 is an additive pair
where only one component is used lazily (projected), and the free linear variables of
M1 and M2 are identical. Lemma 1 states that linear contexts∆ contain exactly the free
linear variables in a well-typed expression:

Lemma 1. If Γ ;∆ ` M :τ , then the set of free linear variables in M is dom(∆).

By the preservation lemma and Lemma 1, we also have that the set of free linear
variables in a well-typed term is preserved under reduction:

Lemma 2. If Γ ;∆ ` M :τ , and M −→∗ M ′, then M and M ′ contain the same free
linear variables.

Evaluation ContextsE : : = � | EM | V E | E[τ] | E.1 | E.2 | (E,M) | (V,E)
| let (a, a ′) = E inM | let !x = E inM

M −→ M ′

M −→ M ′

E[M] −→ E[M ′] (Λα.M)[τ] −→ M {τ/α} let !x =!M1 inM2 −→ M2{M1/x}

(λa:τ.M)V ′ −→ M {V ′/a} let (a1, a2) = (V1, V2) inM −→ M {V1/a1}{V2/a2}

Fig. 3. Evaluation relations for PDILL.

3 Parametricity for PDILL

This section presents the main contribution of this paper, namely a syntactic logical
relation for PDILL. Proof by logical relations is a fundamental technique for proving
properties of programming languages. This technique was first developed by Tait [21]
to prove that the simply typed λ-calculus is strongly normalizing, and was adopted by
Girard [13] to prove normalization for System Fω .

Although their logical relations were for open terms via open substitutions, there
are a large number of related works on logical relations that interpret types as relations
for closed terms. Its basic idea is to first define an equivalence relation for closed val-
ues inductively on type structures. The case of arrow types is a typical case where two
closed functions are logically related at the type τ1 → τ2 if they evaluate to values
that are logically related at τ2 with closed arguments that are logically related at τ1.
Logical relations are extended to closed terms with evaluation, and then extended to
open terms via closing substitutions. The fundamental theorem proves that any well-
typed term, under those closing substitutions, is related to itself by the relation induced

6 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

logically by its type. To build logical relations for recursive functions and quantified
types, Pitts [17] developed logical relations based on the notion of >>-closed rela-
tions. Bierman et al. [6] also used >>-closed relations for the parametricity principle
of the programming language Lily—a polymorphic intuitionistic/linear lambda calcu-
lus. Ahmed [1] proposed step-indexed logical relations for recursive and stateful types.
Ahmed et al. [2], Birkedal et al. [8] extended step-indexed logical relations with possi-
ble “worlds” based on Kripke logical relations for increasingly realistic languages.

Crary [10] developed the technique of Kripke logical relations for open terms un-
der open contexts to show the completeness of an equivalence algorithm for terms in
a simply typed λ-calculus. To ensure that a relation holds by adding variables to the
current context, the logical relation is required to be monotone with respect to contexts
analogous to “worlds” in Kripke models. Hasegawa [14] developed a notion of Kripke
logical predicates for two fragments of intuitionistic linear logic (MILL and DILL) in
terms of their category-theoretic models. However these logical relations do not support
both polymorphism and linearity.

Our logical relation first interprets types as relations for pairs of open values, then
extends to logical relations for open terms with evaluation and open relation substitu-
tions. Open relation substitutions map term variables to related open values, and type
variables to relations for open terms. The fundamental theorem shows that a well-typed
term, under open substitutions and evaluation, is related to itself in the interpretation of
its type. Lemma 1 and 2 also prove that the set of the free linear variables in a well-typed
term is equal to its linear context, and preserved under reduction. Section 4 illustrates
how these properties and logical relations eliminate possible inhabitants for a type.

3.1 Definitions

Figure 4 gives a logical relation for PDILL. In the following sections, we shaded the
difference in definitions, lemmas and proofs between our open logical relation and a
closed one. Without shaded parts, the formalism defaults to the setting of a closed log-
ical relation. We abbreviate Γ ;∆ ` M :τ ∧ Γ ;∆ ` M ′:τ to Γ ;∆ ` M ,M ′:τ , and
· ; · ` J to ` J . A type relation substitution, θ, maps type variables to relations R
for pairs of open terms with type τ and τ ′. We use θl and θr to denote relation type
substitutions. γ and δ are intuitionistic and linear open value relation substitutions re-
spectively. We also use γl , γr , δl , and δr to denote relation value substitutions.

Type Substitution Contexts θ : : = · | θ, α 7→(R, τ, τ ′)
Intuitionistic Substitution Contexts γ : : = · | γ, x 7→(V, V ′)
Linear Substitution Contexts δ : : = · | δ, a 7→(V, V ′)

To simplify the definition of substitutions, we require that the domains of substitu-
tions are disjoint from the free variables of types and values in the ranges of substitu-
tions. Thus types and values in substitutions do not reuse any variable in their domains.
We use Γ and ∆ to typecheck the domains of substitutions, and G and D to denote
contexts that typecheck types, relations, and terms in the ranges of θ, γ and δ. Our def-
initions force the variables of G and D to be disjoint from the variables of Γ and ∆.
This simplification has been chosen since all parametricity reasoning in our experience
involves only disjoint variables. We consider the definition of substitutions on types and
values that can reuse variables in domains of substitutions in future work.

Relational Parametricity for a Polymorphic Linear Lambda Calculus 7

G;D ` V ∼ V ′ ∈ τ :θ Related open values

G;D ` V ∼ V ′ ∈ α:θ , OVR_VAR
α 7→(R, τ, τ ′) ∈ θ ∧ (V, V ′) ∈ R

G;D ` λa:τ1.M ∼ λa:τ1.M
′ ∈ τ1 (τ2:θ , OVR_ARR

∀(G;DDD1 ` V :θl(τ1) ∧ G;DDD1 ` V ′:θr (τ1)∧
G;DDD1 ` V ∼ V ′ ∈ τ1:θ ∧ G ` D,DDD1).

G;D,DDD1 ` (λa:τ1.M)V ' (λa:τ1.M
′)V ′ ∈ τ2:θ

G;D ` Λα.M ∼ Λα.M ′ ∈ ∀α.τ :θ , OVR_ALL
∀(R ∈ τ2 ↔ τ ′2 a G).

G;D ` (Λα.M)[τ2] ' (Λα.M ′)[τ ′2] ∈ τ :(θ, α 7→(R, τ2, τ
′
2))

G;D `!M ∼!M ′ ∈!τ :θ , OVR_BANG
G;D ` M ' M ′ ∈ τ :θ

G;D ` 〈M1,M2〉 ∼ 〈M ′1,M ′2〉 ∈ τ1&τ2:θ , OVR_WITH
G;D ` M1 ' M ′1 ∈ τ1:θ ∧ G;D ` M2 ' M ′2 ∈ τ2:θ

G;D ` (V1, V2) ∼ (V ′1 , V
′
2) ∈ τ1 ⊗ τ2:θ , OVR_TENSOR

∃D1D2, G;D1 ` V1 ∼ V ′1 ∈ τ1:θ ∧ G;D2 ` V2 ∼ V ′2 ∈ τ2:θ
∧G ` D1 d D2 = D

G;D ` M ' M ′ ∈ τ :θ Related open terms

G;D ` M :θl(τ) G;D ` M ′:θr (τ) M −→∗ V M ′ −→∗ V ′ G;D ` V ∼ V ′ ∈ τ :θ
G;D ` M ' M ′ ∈ τ :θ

Γ ;∆ ` θ|γ; δ:G;D Open relation substitutions

` G
·; · ` ·|·; ·:G; ·

Γ ;∆ ` θ|γ; δ:G;D1 Γ ` τ G ` D1,DDD2

G;DDD2 ` V ∼ V ′ ∈ τ :θ a /∈ Γ,∆,G, (D1,DDD2)

Γ ;∆, a:τ ` θ|γ; δ, a 7→(V, V ′):G;D1,DDD2

Γ ;∆ ` θ|γ; δ:G;D Γ ` τ
G; · ` V ∼ V ′ ∈ τ :θ x /∈ Γ,∆,G,D
Γ, x :τ ;∆ ` θ|γ, x 7→(V, V ′); δ:G;D

Γ ;∆ ` θ|γ; δ:G;D
R ∈ τ ↔ τ ′ a G α /∈ Γ,∆,G,D
Γ, α;∆ ` θ, α 7→(R, τ, τ ′)|γ; δ:G;D

Γ ;∆ ` θ|γ; δ1 d δ2 = δ:G;D1 dD2 = D Disjoint linear relation substitutions

Γ ; · ` θ|γ; ·:G; ·
Γ ; · ` θ|γ; · d · = ·:G; · d · = ·

Γ ;∆ ` θ|γ; δ1 d δ2 = δ:G;D1 dD2 = D3

Γ ` τ G;D′ ` V ∼ V ′ ∈ τ :θ a /∈ Γ,∆,G, (D3, D
′)

Γ ;∆, a:τ ` θ|γ; (δ1, a 7→(V, V ′)) d δ2 = (δ, a 7→(V, V ′)):G;D1, D
′ dD2 = D3, D

′

Γ ;∆ ` θ|γ; δ1 d δ2 = δ:G;D1 dD2 = D3

Γ ` τ G;D′ ` V ∼ V ′ ∈ τ :θ a /∈ Γ,∆,G, (D3, D
′)

Γ ;∆, a:τ ` θ|γ; δ1 d (δ2, a 7→(V, V ′)) = (δ, a 7→(V, V ′)):G;D1 dD2, D
′ = D3, D

′

Fig. 4. Related open values and terms for PDILL.

8 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

Two open PDILL values are related at type τ under a relation substitution θ, written
G;D ` V ∼ V ′ ∈ τ :θ and defined inductively on type structures. An intuitionistic
context G and a linear context D contain the free type and term variables in the values
V and V ′. Type variables in indexed types τ are disjoint from the domains of G and D.
θ maps variables in τ to relations with types under contexts G and D.

A relation for each type variable α is defined by looking up relations in substi-
tution contexts θ. Two functions are related if and only if they map related inputs to
related outputs. When testing equivalence on two open function values under a linear
context D, OVR_ARR applies the two functions to arbitrary open related values un-
der a linear context DDD1, which is disjoint from D, and tests if they can normalize to
two related values under a merged linear context D,DDD1. A standard logical relation
does not necessarily require related closed arguments to be well-typed in the arrow type
case. However, the logical relation for PDILL allows only well-typed related open ar-
guments at OVR_ARR because the invariant that reduction preserves the set of free
linear variables is satisfied for only typechecked terms. PDILL ensures that a ! value
cannot capture linear variables in its closure; thus we conclude that DDD1 = · if τ1 is a !
type, since the arguments are well-typed.

The idea of the parametricity of polymorphism is that even when passed completely
different type arguments, logically related type abstractions must behave uniformly, so
they may not use different algorithms for different arguments by analyzing the type
argument. To formalize the independence of type arguments, Reynolds’ approach is to
interpret a type quantifier as an (almost) arbitrary relation that relates two type argu-
ments at which the type quantifier can be instantiated, although a relational interpre-
tation needs to satisfy certain admissibility conditions [17]. Relational interpretations
for type variables are stored in type relation substitutions θ that parameterize logical
relations. At rule OVR_ALL, two type abstractions are related if and only if two type
inputs, which are related by any well-formed relation, generate related outputs with
type substitutions extended by that new relation for type variable α. R ∈ τ2 ↔ τ ′2 a G
defines a well-formed binary relation on open terms with types τ2 and τ ′2 respectively.
τ2 and τ ′2 are under an intuitionistic context G.

In PDILL, the behavior of logically related type abstractions cannot depend on
which linear contexts the arguments with polymorphic types will take, either. Sup-
pose we have related values of type ∀α.α (α under contexts G and D with an
empty relation type substitution. Rule OVR_ALL maps α to R ∈ τ2 ↔ τ ′2 a G.
At rule OVR_ARR, we must choose a pair of related values G;D1 ` V ∼ V ′ ∈
α:(α 7→(R, τ2, τ ′2)) under an arbitrary fresh linear context D1. Rule OVR_VAR re-
quires that (V, V ′) ∈ R. If R is a relation that only takes the linear context D, we
cannot choose the above V and V ′ for an arbitrary D1. Therefore, R ∈ τ ↔ τ ′ a G
does not specify which linear context D to use. For any pair of terms related by R, it
only requires that there exists a linear context that can typecheck them:

G ` τ ∧ G ` τ ′ ∧∀((M ,M ′) ∈ R).∃D, G;D ` M :τ ∧ G;D ` M ′:τ ′

Two values !M and !M ′ are logically related by type !τ if and only if the two sus-
pended terms M and M ′ are related by type τ . Under a linear context D, two values
are logically related by an additive product τ1&τ2 if and only if their components are
logically related under D respectively; two values are logically related by a muplica-

Relational Parametricity for a Polymorphic Linear Lambda Calculus 9

tive product τ1 ⊗ τ2 if and only if D can be split into disjoint D1 and D2, and their
components are related under D1 and D2 respectively.

G;D ` M ' M ′ ∈ τ :θ extends logical relations on open values to well-typed open
terms with evaluation.The well-formedness of open terms ensures that terms use linear
expressions exactly once, and preserves the invariant that reduction does not consume
free linear variables. A relation substitution θ also maps free variables in τ that are
disjoint to the domains of G and D to relations with types under the context G.

Γ ;∆ ` θ|γ; δ:G;D formalizes open relation substitutions. Relation substitutions
θ, γ, and δ map type and term variables in Γ and term variables in ∆ respectively
to open types and values with free variables in G and D. The domains of Γ and ∆
and the domains of G and D are disjoint. Related open values indexed by ! types must
typecheck under an empty linear context and do not introduce free linear variables inD,
not changing D. Adding relations with related types to relation substitutions does not
change D either. However, related open values indexed by linear types can contain free
linear variables, introducing new linear variables in D. When extending the existing
linear context ∆ with a variable a of type τ , we must add a pair of related values under
a linear contextDDD2 that is disjoint from D1, extending D1 to D1,DDD2. The intuitionistic
context G satisfies weakening and contraction properties.

Since linear variables in ∆ must be used exactly once, the corresponding linear re-
lation substitutions should satisfy a similar property. That is, a substitution on a linear
variable must occur exactly once. Lemma 3 formalizes this idea, stating that, in a judg-
ment Γ ;∆ ` θ|γ; δ:G;D, because only related values in δ can contain variables in D,
given that ∆ can be split into ∆1 and ∆2, we can split the linear relation substitution δ
into two linear relation substitutions δ1 and δ2 under D1 and D2 respectively, where D
must be split into D1 and D2. Figure 4 also defines the operation d on δ.

Lemma 3 (Split Linear Relation Substitutions). If Γ ` ∆1 d ∆2 = ∆, and Γ ;∆ `
θ|γ; δ:G;D, then ∃δ1, δ2 , D1, D2 . Γ ;∆ ` θ|γ; δ1dδ2 = δ:G;D1 dD2 = D, Γ ;∆1 `
θ|γ; δ1:G;D1, and Γ ;∆2 ` θ|γ; δ2:G;D2.

Γ ;∆ ` M'logM ′ ∈ τ defines that two well-typed terms with the same type are
logically equivalent if they are related under all open relation substitutions. Γ ;∆ `
M'?

logM
′ ∈ τ defines closed logical equivalence:

Γ ;∆ ` M'logM ′ ∈ τ , Γ ;∆ ` M :τ ∧ Γ ;∆ ` M ′:τ ∧
∀(Γ ;∆ ` θ|γ; δ:G;D). G;D ` θl(γl(δl(M))) ' θr (γr (δr (M ′))) ∈ τ :θ

Γ ;∆ ` M'?
logM

′ ∈ τ , Γ ;∆ ` M :τ ∧ Γ ;∆ ` M ′:τ ∧
∀(Γ ;∆ ` θ|γ; δ). θl(γl(δl(M))) ' θr (γr (δr (M ′))) ∈ τ :θ

3.2 Fundamental Theorem

Theorem 2 shows parametricity, which states that, independent of open relation substi-
tutions for terms, types and relations under contexts Γ and ∆, a well-typed term, via
open substitutions, is related to itself under the same contexts Γ and ∆.

As usual, the proof of parametricity depends on a compositionality lemma (Lemma 4)
for logical relations. Note that R contains a family of logical relations under different
D′’s, but not only the linear context D that σ takes.

10 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

Lemma 4 (Compositionality). G;D ` V ∼ V ′ ∈ σ:(θ, α 7→(R, θl(τ), θr (τ))) iff
G;D ` V ∼ V ′ ∈ σ{τ/α}:θ where R ∈ θl(τ) ↔ θr (τ) a G is a relation such that
(U,U ′) ∈ R iff ∃D′, G;D′ ` U ∼ U ′ ∈ τ :θ.

Theorem 2 (Parametricity). If Γ ;∆ ` M :τ , then Γ ;∆ ` M'logM ∈ τ .

Proof. By induction on the typing derivation, case T_APP relies on Lemma 3, and case
T_TAPP uses Lemma 4.

If the logical relation interprets types by relations for only closed terms, Theorem 2
degrades to Theorem 1. Thus Theorem 2 is a more general result than Theorem 1.

3.3 Soundness & Completeness

This section proves that the logical equivalence Γ ;∆ ` M'?
logM ∈ τ , which inter-

prets types on closed terms, is sound and complete with respect to contextual equiva-
lence. We use these results to show the properties of contextual equivalence in Section 4.
We also prove that the logical equivalence Γ ;∆ ` M'logM ∈ τ , which interprets
types on open relations, is sound with respect to contextual equivalence. Here we state
interesting aspects of the proofs. Further details are available online in our Coq scripts.

The definition of contextual equivalence [17] is based on identifying a type of an-
swers that are observable outcomes of closed programs. To achieve this, we enrich the
system with a base type, Bool, containing two constants, true and false, that serve as
possible answers for a complete computation that is a closed expression of type Bool.
Two values are logically related with type Bool iff they are both true or both false.

Kleene equivalence M'kleeneM ′ is defined for complete computations M and M ′

by requiring that M −→∗ true ∧M ′ −→∗ true or M −→∗ false ∧M ′ −→∗ false.
To define contextual equivalence, we define contexts C as expressions with a single

hole �. Bierman [5] and Crole [11] showed how to define a program context in a linear
setting without polymorphic types. We extend their definitions with polymorphic types.

Typing judgments for contexts have the form Γ ′;∆′ ` C:(Γ ;∆ . τ) τ ′, where
Γ ;∆ . τ indicates the type of the hole. Most typing judgments for contexts are similar
to the typing rules listed in Figure 5 and 6 at [25]. Plugging an expected expression into
a well-formed context produces a well-typed term with type τ ′ under Γ ′ and ∆′.

Two well-formed expressions of the same type are contextually equivalent if, given
any well-formed contextC that is a complete computation when an expected expression
is plugged into, C[M] and C[M ′] are Kleene equivalent:

Γ ;∆ ` M'ctxM ′ ∈ τ , Γ ;∆ ` M :τ ∧ Γ ;∆ ` M ′:τ ∧
∀(·; · ` C:(Γ ;∆ . τ) Bool).C[M]'kleeneC[M ′]

We first prove that logical equivalence is congruent with respect to contexts:

Lemma 5 (Logical Equivalence is Congruent). If Γ ;∆ ` M'logM ′ ∈ τ , and
Γ ′;∆′ ` C:(Γ ;∆ . τ) τ ′, then Γ ′;∆′ ` C[M]'logC[M ′] ∈ τ ′.

Theorem 3 (Soundness). If Γ ;∆ ` M'logM ′ ∈ τ , then Γ ;∆ ` M'ctxM ′ ∈ τ .

Proof. By Lemma 5, and that true and false are not related.

Relational Parametricity for a Polymorphic Linear Lambda Calculus 11

When interpreting relations for only closed terms:

Theorem 4. If Γ ;∆ ` M'?
logM

′ ∈ τ , then Γ ;∆ ` M'ctxM ′ ∈ τ .

A typical approach [17] [1] to proving that a logical relation is complete with respect
to contextual equivalence is via the notion of CIU-equivalence, introduced by Mason
and Talcott [15]. Let evaluation contextsE be a subset of contextsC, and consist of only
holes for closed terms. Two well-formed closed terms M and M ′ are CIU-equivalent if,
given any context E, E[M] and E[M ′] are complete computations, and Kleene equiva-
lent. Given any closing substitution Γ ;∆ ` s|g; d where s maps type variables in Γ to
closed types, g and d map intuitionistic and linear term variables typed in Γ and ∆ to
closed values respectively, we extend it to open terms as follows:

Γ ;∆ ` M'ciuM ′ ∈ τ , Γ ;∆ ` M :τ ∧ Γ ;∆ ` M ′:τ ∧
∀(Γ ;∆ ` s|g; d ∧ ·; · ` E:(·; · . s(τ)) Bool).

E[s(g(d(M)))]'kleeneE[s(g(d(M ′)))]
Given a term M with closing substitutions s, g and d, we can construct a con-

text C such that when M is placed into the hole, C[M] evaluates to the same value
that s(g(d(M))) can reduce to. We can use the context (· · · (· · · (· · · (Λα1 · · ·αn.λx1 :
τ1 · · ·xm : τm.λa1 : τ ′1 · · · al : τ ′l .�) · · · [σi] · · ·) · · ·Vi · · ·) · · ·V ′i · · ·) where s maps αi

to closed type σi, g maps intuitionistic variables xi with type τi to closed terms Vi, and
d maps linear variables ai with type τ ′i to closed terms V ′i . Therefore, we have:

Lemma 6 ('ctx ⊆ 'ciu). If Γ ;∆ ` M'ctxM ′ ∈ τ , then Γ ;∆ ` M'ciuM ′ ∈ τ .

To ensure that our closed logical relations are complete, we will restrict attention to
a certain class of admissible binary relations R that respect CIU-equivalence [1]:

Definition 1 (Admissibility). R ∈ τ2 ↔ τ ′2 is admissible iff it satisfies that if
(M1,M2) ∈ R, ·; · ` M1'ciuM ′1 ∈ τ2, ·; · ` M2'ciuM ′2 ∈ τ ′2, then (M ′1,M

′
2) ∈ R.

Thus we prove that closed logical relations respect CIU-equivalence:

Lemma 7 (Equivalence-Respecting). If Γ ;∆ ` M1'?
logM2 ∈ τ ,

Γ ;∆ ` M1'ciuM ′1 ∈ τ , and Γ ;∆ ` M2'ciuM ′2 ∈ τ , then Γ ;∆ ` M ′1'?
logM

′
2 ∈ τ .

By Theorem 1, Lemmas 6 and Lemma 7, we have:

Theorem 5 (Completeness). If Γ ;∆ ` M'ctxM ′ ∈ τ , then Γ ;∆ ` M'?
logM

′ ∈ τ .

We have thus proved that the relations '?
log, 'ctx and 'ciu coincide with each other.

It remains an open question as to whether 'log is complete.

4 Examples

In this section we present applications of our method. Our reasoning about equiva-
lence and definitions of relations in this section depends on properties of contextual
equivalence that include reflexivity, symmetry, transitivity, βη-reduction, and congru-
ence (see Figure 7 at [25]). Most of these properties are straightforward, following from

12 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

the definition of contextual equivalence and Theorems 3, 4 and 5. With closed logical
relation '?

log, we proved that τ is isomorphic to ∀α.(τ (α)(α, ∀α.(τ1 ((τ2 (
α)) (α encodes τ1 ⊗ τ2, and other type encodings in [23] [7] [16]. This section
is focused on novel applications that open logical relations can prove. We abbreviate
Γ ;∆ ` M'ctxM ′ ∈ τ ∧Γ ;∆ ` M ′'ctxM ′′ ∈ τ to Γ ;∆ ` M'ctxM ′'ctxM ′′ ∈ τ .

4.1 Polymorphic Boolean

A closed term M with type ∀α.α (α (α does not exist, while a closed term with
type ∀α.!α(!α(!α must behave like a polymorphic boolean function.

Given ·; · ` M :∀α.α(α(α, Theorem 2 gives:
∀(R ∈ τ ↔ τ ′ a ·).∀(·;D1 ` V1:τ ∧ ·;D1 ` V ′1 :τ ′ ∧ (V1, V

′
1) ∈ R).

∀(·;D2 ` V2:τ ∧ ·;D2 ` V ′2 :τ ′ ∧ (V2, V
′
2) ∈ R).

M [τ]V1 V2 −→∗ V ∧ M [τ ′]V ′1 V
′
2 −→∗ V ′ ∧ (V, V ′) ∈ R

Here D1 and D2 are disjoint. Consider ·;D1 ` V1:τ and ·;D2 ` V2:τ ; let R be a
relation {(M ,M ′) | ·;D1 ` M'ctxM ′'ctxV1 ∈ τ ∨ ·;D2 ` M'ctxM ′'ctxV2 ∈ τ}.
By the free theorem and properties of 'ctx, ·;D1 ` (M [τ]V1 V2)'ctxV1 ∈ τ ∨ ·;D2 `
(M [τ]V1 V2)'ctxV2 ∈ τ . By regularity of 'ctx, we have
(1) ·;D1 ` M [τ]V1 V2:τ ∨ ·;D2 ` M [τ]V1 V2:τ
However, by typing rules we can also derive
(2) ·;D1, D2 ` M [τ]V1 V2:τ
By Lemma 1 on (1) and (2), dom(D1) = dom(D1, D2) ∨ dom(D2) = dom(D1, D2).
In this case, D1 and D2 can be non-empty and must be disjoint from each other; this
contradicts the above constraint. Thus we conclude that the type ∀α.α (α (α is
empty. The closed logical relation cannot show this contradiction because it requires
that D1 and D2 must be empty. Similarly, we can prove that the types ∀α.α (α (
(α&α) and ∀α.α((α⊗ α) do not have any closed inhabitant.

If a closed term M is of type ∀α.!α(!α(!α, its free theorem is:
∀(R ∈ τ ↔ τ ′ a ·).
∀(·; · ` M1:τ ∧ ·; · ` M ′1:τ

′ ∧ M1 −→∗ V1 ∧ M ′1 −→∗ V ′1 ∧ (V1, V
′
1) ∈ R).

∀(·; · ` M2:τ ∧ ·; · ` M ′2:τ
′ ∧ M2 −→∗ V2 ∧ M ′2 −→∗ V ′2 ∧ (V2, V

′
2) ∈ R).

M [τ] !M1 !M2 −→∗!N ∧ M [τ ′] !M ′1 !M ′2 −→∗!N ′ ∧
N −→∗ V ∧ N ′ −→∗ V ′ ∧ (V, V ′) ∈ R

which only allows us to reason about closed terms, because ! values do not capture
any free linear variables. Given any ·; · `!M1, !M2:!τ , by strong normalization (that
is proved by Theorem 1) there exist values V1 and V2 such that M1 −→∗ V1 and
M2 −→∗ V2. Let R be a relation {(M ,M ′) | ·; · ` M'ctxM ′'ctxV1 ∈ τ ∨ ·; · `
M'ctxM ′'ctxV2 ∈ τ}. The free theorem shows that ·; · ` (M [τ] !M1 !M2)'ctx!M1 ∈
!τ or ·; · ` (M [τ] !M1 !M2)'ctx!M2 ∈!τ , namely that M behaves like a polymorphic
boolean function. We can also derive possible inhabitants of types ∀α.!α (!α (
(!α&!α) and ∀α.!α((!α⊗!α).

4.2 Multiplicative Selection

This section derives closed inhabitants of the type ∀α.α (α ((α ⊗ α). By Theo-
rem 2, this type gives:

Relational Parametricity for a Polymorphic Linear Lambda Calculus 13

∀(R ∈ τ ↔ τ ′ a ·).∀(·;D1 ` V1 :τ ∧ ·;D1 ` V ′1 :τ ′ ∧ (V1, V
′
1) ∈ R).

∀(·;D2 ` V2 :τ ∧ ·;D2 ` V ′2 :τ ′ ∧ (V2, V
′
2) ∈ R).

M [τ]V1 V2 −→∗ (V3, V4) ∧ M [τ ′]V ′1 V
′
2 −→∗ (V ′3 , V

′
4)

∧ (V3, V
′
3) ∈ R ∧ (V4, V

′
4) ∈ R

Here D1 and D2 are disjoint. Consider ·;D1 ` V1 : τ and ·;D2 ` V2 : τ ; let R be a
relation {(M ,M ′) | ·;D1 ` M'ctxM ′'ctxV1 ∈ τ ∨ ·;D2 ` M'ctxM ′'ctxV2 ∈ τ}.
By the free theorem, M [τ]V1 V2 −→∗ (V3, V4) ∧ (V3, V3) ∈ R ∧ (V4, V4) ∈ R. By
the definition of R, ·;D1 ` V3'ctxV1 ∈ τ ∨ ·;D2 ` V3'ctxV2 ∈ τ and ·;D1 `
V4'ctxV1 ∈ τ ∨ ·;D2 ` V4'ctxV2 ∈ τ . By regularity of 'ctx,
(1) ·;D1 ` V3 :τ ∨ ·;D2 ` V3 :τ and ·;D1 ` V4 :τ ∨ ·;D2 ` V4 :τ
By typing rules we also have,
(2) ·;D1, D2 ` (V3, V4) :τ ⊗ τ
By Lemma 1 on (1) and (2),
·;D1 ` V3'ctxV1 ∈ τ ∧ ·;D2 ` V4'ctxV2 ∈ τ and dom(D1, D2) = dom(D1, D2) or
·;D2 ` V3'ctxV2 ∈ τ ∧ ·;D1 ` V4'ctxV1 ∈ τ and dom(D2, D1) = dom(D1, D2) or
·;D1 ` V3'ctxV1 ∈ τ ∧ ·;D1 ` V4'ctxV1 ∈ τ and dom(D1, D1) = dom(D1, D2) or
·;D2 ` V3'ctxV2 ∈ τ ∧ ·;D2 ` V4'ctxV2 ∈ τ and dom(D2, D2) = dom(D1, D2).

Because D1 and D2 can be non-empty in our case, M can only behave like one of
Λα.λa1 :α.λa2 :α.(a1, a2), and Λα.λa1 :α.λa2 :α.(a2, a1). If M is of type ∀α.!α (
!α ((!α⊗!α), D1 and D2 must be empty. Therefore M can be equivalent to one of
Λα.λx1 : !α.λx2 : !α.(x1, x2), Λα.λx1 : !α.λx2 : !α.(x2, x1), Λα.λx1 : !α.λx2 : !α.(x1, x1),
and Λα.λx1 : !α.λx2 : !α.(x2, x2).

4.3 Natural Numbers

This section proves properties of type ∀α.(α (α) (α (α and ∀α.!(α (α) (
α (α. Given a closed term N of type ∀α.(α (α)(α (α. By Theorem 2, this
type gives:
∀(R ∈ τ ↔ τ ′ a ·).∀(·;Dz ` Z :τ ∧ ·;Dz ` Z ′ :τ ′ ∧ (Z,Z ′) ∈ R).
∀(·;Ds ` S :τ (τ ∧ ·;Ds ` S′ :τ ′(τ ′ ∧ ·;Ds ` S ∼ S′ ∈ α(α :θ).

N [τ]S Z −→∗ V ∧ N [τ ′]S′ Z ′ −→∗ V ′ ∧ (V, V ′) ∈ R
Here Ds and Dz are disjoint, and θ = α 7→(R, τ, τ ′). Consider ·;Ds ` S : τ (τ and
·;Dz ` Z :τ ; letR be a relation {(N ,N ′) |∃n. ·;Dsn, Dz ` N'ctxN ′'ctxS

n Z ∈ τ }.
Here S0 = Id, Sn+1 = λa : τ.(rn(S)) (Sn a), ·; ri(Ds) ` ri(S) : τ (τ and Dsn =
r1(Ds), · · · , rn(Ds), where ri is a well-formed renaming that is a finite function from
free linear variables to free linear variables. A renaming is well-formed if it is identical,
or it is bijective from the domain of Ds to a range that is disjoint from Ds. We have
(Z,Z) ∈ R because n can be 0. Suppose (V, V ′) ∈ R, we have that there exists an n
such that ·;Dsn, Dz ` V'ctxV

′'ctxS
n Z ∈ τ where (Dsn, Dz) and Ds are disjoint.

Let rn+1 to be identical, we have ·;Ds,Dsn, Dz ` S V'ctxS V
′'ctxS (Sn Z) ∈ τ for

n+ 1, namely (S V, S V ′) ∈ R. Therefore, we proved that ·;Ds ` S ∼ S′ ∈ α(α :
α 7→(R, τ, τ). By the free theorem, N [τ]S Z −→∗ V and ·;Dsn, Dz ` V'ctxS

n Z ∈
τ for some n . By regularity, we have dom(Ds,Dz) = dom(Dsn, Dz).

Because Ds can be non-empty, N can only behave like Λα.λS : α (α.λZ :
α.(S Z). If N is of type ∀α.!(α (α) (α (α , the free theorem proves that
N encodes natural numbers (it is equivalent to Λα.λx : !(α (α).λZ : α.let !S =

14 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

x inSn Z) because Ds must be empty. We can also prove that the closed inhabitants of
∀α.(α (α)((α (α)(α (α must behave like Λα.λF1 :α (α.λF2 :α (
α.λa :α.(F1 (F2 a)) or Λα.λF1 :α(α.λF2 :α(α.λa :α.(F2 (F1 a)).

5 Discussion

Other formulations of linearity All of these results presented here also carry through
to System F◦ [16]—an extension of System F that uses kinds to distinguish linear from
intuitionistic types. The online technical appendix [25] gives all formation rules. As
expected, values with intuitionistic kind do not capture any linear variables. Open log-
ical relations can easily adapt the definitions from PDILL. At the case of arrow types,
when the well-formed open input values are with type of intuitionistic kind, they must
be under empty linear contexts. We proved similar applications presented in Section 4.

Formalization There have been several formalizations of logical relations in proof
assistants. Schürmann and Sarnat illustrated how to use logical relation arguments in
Twelf by assertion logic [19]. Donnelly and Xi proved strong normalization for System
F using high-order abstract syntax in ATS/LF [12].Vytiniotis and Weirich formalized
System F in Isabelle/HOL using the locally nameless representation [22].

We formalized all results (including PDILL, System F◦ [16] and System F) in Coq.
The development uses the Coq metatheory libraries [3] that combined locally nameless
representation of de Bruijn indices for the bound variables and cofinite quantification
of free variable names in inductive definitions of relations. The whole development
for PDILL represents approximately 75,000 lines (350,000 words) of Coq (excluding
comments). The formalism comprises of 6% of the calculus of PDILL that is extended
from the proofs of type soundness for System F<: [3], 10% of closed logical relations,
17% of open logical relations, 43% of properties for contextual equivalence and appli-
cations, and 24% of supporting definitions and lemmas for logical relations and contex-
tual equivalence. Definitions account for 5% of the source, and infrastructure overhead
accounts for 24% of the source. The size of the formalism for System F◦ is similar.

The logical relations are recursively defined by Program Fixpoint on the size of
types (typ_size) indicated by the keyword measure:

Program Fixpoint G;D ` V ∼ V ′ ∈ τ :θ {measure typ_size τ} : Prop :=
match τ with
· · ·
| τ1 (τ2 =>∃L,∀D1V1V

′
1 , (L]D1 ∧ G;D1 ` V1:θl(τ1) ∧ G;D1 ` V ′1 :θr (τ1)∧
G;D1 ` V1 ∼ V ′1 ∈ τ1:θ ∧ G ` D,D1)⇒

G;D,D1 ` V V1 ' V ′ V ′1 ∈ τ2:θ
end.

At the case of arrow types, to ensure that the domains of substitutions are disjoint from
the free variables of types and values in the ranges of substitutions, we first choose an
L that includes all the existing free variables in the domains of substitutions, and then
pick a fresh linear context D1 that is disjoint from the L.

Aydemir et al. [3] gave the case that renaming is necessary for proofs. The proof
of Theorem 2 is by induction on the typing derivation. At T_APP, we have two in-
duction hypotheses: G;D1 ` V ∼ V ′ ∈ τ1 (τ2:θ and G;D2 ` V1 ∼ V ′1 ∈ τ1:θ

Relational Parametricity for a Polymorphic Linear Lambda Calculus 15

where G ` D1 d D2 = D. To conclude G;D ` V V1 ' V ′ V ′1 ∈ τ2:θ, we need
to apply the first hypothesis to the second one. However, we cannot show that D2

is disjoint from the existential L in the first hypothesis. The proof goes like this: we
first pick a fresh linear context D′2 that is disjoint from L and other existing free vari-
ables, constructing a bijective renaming r from D2 to D′2; by renaming lemmas we
have G;D′2 ` r(V1) ∼ r(V ′1) ∈ τ1:θ; then induction hypotheses give that G;D′ `
V (r(V1)) ' V ′ (r(V ′1)) ∈ τ2:θ where G ` D1 d D′2 = D′; finally renaming lemmas
conclude G;D ` V V1 ' V ′ V ′1 ∈ τ2:θ. In the intuitionistic setting, renaming lemmas
may be derived from properties such as substitution and weakening, while in the linear
setting that disallows weakening, renaming lemmas for each judgment that accounts
for 5% of the source must be proved directly. In future work we would like to allow
substitutions on types and values that can reuse variables in domains of substitutions.
That would remove the L from the formalization of the logical relations, and simplify
the proof, because we do not need renaming lemmas to apply induction hypotheses.

The proof of Lemma 4 requires that the relation such that (U,U ′) ∈ R iff ∃D,
G;D ` U ∼ U ′ ∈ τ :θ has the weakening property on θ. Suppose we extend θ to
(θ, α 7→(R, τ2, τ ′2)). Here α is free to existing variables. However, we do not know
which D the relation takes before picking a free α that can be captured by D because
R is defined for arbitrary linear contexts. α is a type variable, and the domain of D
consists of only term variables. If type and term variables are in different name spaces,
we can always pick an α that is free for D. The metatheory [3] does not support name
spaces separation. We define axioms that assume separate name spaces between type
and term variables. Adding this feature to metatheory libraries is our future work.

An important feature of contexts formalism is that holes are place-holders into
which open terms may be placed, whose free variables may be captured. This cap-
ture feature is defined by close that turns free variable into de Bruijn indices, and lift
that explicitly selects correct de Bruijn indices for bound variables. The infrastructure
lemmas for close and lift account for 14% of the source.

Effects As usual for parametricity properties, our results would need to be modified in
the presence of effects. We expect we can adopt the TT-closed relations [6] in PDILL
to support fixpoints. That paper defines TT-closed relations on closed terms with closed
testing functions, to avoid explicit treatment of holes in contexts. However, to test open
terms, we need testing contexts with holes that capture variables from those open terms.
We also hope to apply open logical relations to other substructural type systems [24].

Acknowledgments. Thanks to Penn PLClub, and particularly Chris Casinghino, Karl
Mazurak for discussion. Assistance in typesetting this work was provided by OTT [20].

References

1. Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In
Lecture Notes in Computer Science, volume 3924, pages 69–83. Springer, 2006.

2. Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation inde-
pendence. SIGPLAN Not., 44(1):340–353, 2009.

16 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

3. Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering formal metatheory. In POPL ’08: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, 2008.

4. Andrew Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Edinburgh
University, 1997.

5. G. M. Bierman. Program equivalence in a linear functional language. J. Funct. Program.,
10(2):167–190, 2000.

6. G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of lily, a polymorphic
linear lambda calculus with recursion. In Proc. of HOOTS, volume 41 of ENTCS. Elsevier,
2000.

7. Lars Birkedal, Rasmus E. Møgelberg, and Rasmus L. Petersen. Linear Abadi and Plotkin
logic. Logical Methods in Computer Science, 2(5:1):1–33, Nov 2006.

8. Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Relational parametricity for refer-
ences and recursive types. In TLDI ’09: Proceedings of the 4th international workshop on
Types in language design and implementation, pages 91–104. ACM, 2009.

9. The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.2),
2009. URL http://coq.inria.fr.

10. Karl Crary. Advanced Topics in Types and Programming Languages, chapter Logical Rela-
tions and a Case Study in Equivalence Checking. MIT Press, 2005.

11. Roy L. Crole. Completeness of bisimilarity for contextual equivalence in linear theories.
Logic Jnl IGPL, 9(1):27–51, 2001.

12. Kevin Donnelly and Hongwei Xi. A formalization of strong normalization for simply-typed
lambda-calculus and System F. Electron. Notes Theor. Comput. Sci., 174(5):109–125, 2007.

13. Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arith mé
tique d’ordre supérieur. Thèse d’état, 1972. Summary in J. E. Fenstad, editor, Scandinavian
Logic Symposium, pp. 63–92, North-Holland, 1971.

14. Masahito Hasegawa. Logical predicates for intuitionistic linear type theories. In Typed
Lambda Calculi and Applications (TLCA ’99), Lecture Notes in Computer Science 1581,
pages 198–213. Springer-Verlag, 1999.

15. Ian Mason and Carolyn Talcott. Equivalence in functional languages with effects. J. Funct.
Program., 1(3):245–285, 1991.

16. Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. Lightweight linear types in system F◦.
In TLDI ’10: Proceedings of the 4th international workshop on Types in language design
and implementation, 2010.

17. Andrew Pitts. Advanced Topics in Types and Programming Languages, chapter Typed Op-
erational Reasoning. MIT Press, 2005.

18. John C. Reynolds. Types, abstraction, and parametric polymorphism. In R.E.A Mason,
editor, Information Processing, pages 513–523. Elsevier Science Publishers B.V., 1983.

19. Carsten Schürmann and Jeffrey Sarnat. Towards a judgmental reconstruction of logical rela-
tion proofs. Technical report, Yale University, 2006.

20. Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strniša. Ott: Effective Tool Support for the Working Semanticist. J. Funct.
Program., 20(1):71–122, 2010.

21. W.W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic
Logic, 32(2):198–212, 1967.

22. Dimitrios Vytiniotis and Stephanie Weirich. Free theorems and runtime type representations.
Electron. Notes Theor. Comput. Sci., 173:357–373, 2007.

23. Philip Wadler. Theorems for free! In Proceedings of the 4th International Symposium on
Functional Programming and Computer Architecture, September 1989.

24. David Walker. Advanced Topics in Types and Programming Languages, chapter Substruc-
tural Type Systems. MIT Press, 2005.

Relational Parametricity for a Polymorphic Linear Lambda Calculus 17

25. Jianzhou Zhao, Qi Zhang, and Steve Zdancewic. Relational parametricity for a polymorphic
linear lambda calculus. Technical report, 2010. Available at http:/www.cis.upenn.
edu/~jianzhou/parametricity4linf.

http:/www.cis.upenn.edu/~jianzhou/parametricity4linf
http:/www.cis.upenn.edu/~jianzhou/parametricity4linf

18 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

Appendix

ContextsC : : = � | if C0 thenM elseM ′ | if M0 thenC elseM ′ | C.1 | C.2
| if M0 thenM elseC′ | λa:τ.C | CM | M C | Λα.C | C[τ ′]
| !C | let !x = C inM | let !x = M inC | (C,M ′) | (M , C′)
| let (a, a ′) = C inM ′ | let (a, a ′) = M inC′ | 〈C,M ′〉 | 〈M , C′〉

Evaluation ContextsE : : = � | if E thenM elseM ′ | EM | V E | E[τ ′]
| E.1 | E.2 | let !x = E inM | (E,M ′)
| (V,E′) | let (a, a ′) = E inM ′

Γ ′;∆′ ` C:(Γ ;∆ . τ) τ ′

Γ ` ∆ Γ ` τ
Γ ;∆ ` �:(Γ ;∆ . τ) τ

Γ ′;∆′2 ` C2:(Γ ;∆ . τ) τ ′1
Γ ′;∆′1 ` M1:τ

′
1 (τ ′2 Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` M1 C2:(Γ ;∆ . τ) τ ′2

Γ ′;∆′, a:τ ′1 ` C:(Γ ;∆ . τ) τ ′2

Γ ′;∆′ ` λa:τ ′1.C:(Γ ;∆ . τ) τ ′1 (τ ′2

Γ ′;∆′1 ` C1:(Γ ;∆ . τ) τ ′1 (τ ′2
Γ ′;∆′2 ` M2:τ

′
1 Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` C1 M2:(Γ ;∆ . τ) τ ′2

Γ ′, α;∆′ ` C:(Γ ;∆ . τ) τ ′

Γ ′;∆′ ` Λα.C:(Γ ;∆ . τ) ∀α.τ ′

Γ ′;∆′ ` C:(Γ ;∆ . τ) ∀α.τ ′ Γ ′ ` σ′

Γ ′;∆′ ` C[σ′]:(Γ ;∆ . τ) τ ′{σ′/α}

Γ ′;∆′1 ` C1:(Γ ;∆ . τ) !τ ′1 Γ ′, x :τ ′1;∆
′
2 ` M2:τ

′
2

Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` let !x = C1 inM2:(Γ ;∆ . τ) τ ′2

Γ ′; · ` C:(Γ ;∆ . τ) τ ′

Γ ′; · `!C:(Γ ;∆ . τ) !τ ′

Γ ′;∆′1 ` M1:!τ
′
1 Γ ′, x :τ ′1;∆

′
2 ` C2:(Γ ;∆ . τ) τ ′2

Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` let !x = M1 inC2:(Γ ;∆ . τ) τ ′2

Γ ′;∆′ ` C:(Γ ;∆ . τ) τ ′1&τ
′
2

Γ ′;∆′ ` C.1:(Γ ;∆ . τ) τ ′1

Γ ′;∆′ ` M1:τ
′
1 Γ ′;∆′ ` C2:(Γ ;∆ . τ) τ ′2

Γ ′;∆′ ` 〈M1, C2〉:(Γ ;∆ . τ) τ ′1&τ
′
2

Fig. 5. Context definitions and typings for PDILL.

Relational Parametricity for a Polymorphic Linear Lambda Calculus 19

Γ ′;∆′1 ` C0:(Γ ;∆ . τ) Bool
Γ ′;∆′2 ` M :τ ′ Γ ′;∆′2 ` M ′:τ ′ Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` if C0 thenM elseM ′:(Γ ;∆ . τ) τ ′

Γ ′;∆′1 ` M0:Bool Γ ′;∆′2 ` C:(Γ ;∆ . τ) τ ′

Γ ′;∆′2 ` M ′:τ ′ Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` if M0 thenC elseM ′:(Γ ;∆ . τ) τ ′

Γ ′;∆′1 ` M0:Bool Γ ′;∆′2 ` C′:(Γ ;∆ . τ) τ ′

Γ ′;∆′2 ` M :τ ′ Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` if M0 thenM elseC′:(Γ ;∆ . τ) τ ′

Γ ′;∆′ ` C1:(Γ ;∆ . τ) τ ′1 Γ ′;∆′ ` M2:τ
′
2

Γ ′;∆′ ` 〈C1,M2〉:(Γ ;∆ . τ) τ ′1&τ
′
2

Γ ′;∆′ ` C:(Γ ;∆ . τ) τ ′1&τ
′
2

Γ ′;∆′ ` C.2:(Γ ;∆ . τ) τ ′2

Γ ′;∆′1 ` C1:(Γ ;∆ . τ) τ ′1
Γ ′;∆′2 ` M2:τ

′
2 Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` (C1,M2):(Γ ;∆ . τ) τ ′1 ⊗ τ ′2

Γ ′;∆′2 ` C2:(Γ ;∆ . τ) τ ′2
Γ ′;∆′1 ` M1:τ

′
1 Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` (M1, C2):(Γ ;∆ . τ) τ ′1 ⊗ τ ′2

Γ ′;∆′1 ` C1:(Γ ;∆ . τ) τ ′1 ⊗ τ ′2 Γ ′ ` ∆′1 d ∆′2 = ∆′3
Γ ′;∆′2, a1:τ

′
1, a2:τ

′
1 ` M2:τ

′

Γ ′;∆′3 ` let (a1, a2) = C1 inM2:(Γ ;∆ . τ) τ ′

Γ ′;∆′1 ` M1:τ
′
1 ⊗ τ ′2

Γ ′;∆′2, a1:τ
′
1, a2:τ

′
2 ` C2:(Γ ;∆ . τ) τ ′ Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` let (a1, a2) = M1 inC2:(Γ ;∆ . τ) τ ′

Fig. 6. Context definitions and typings for PDILL (cont).

20 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

Γ ;∆ ` M'ctxM
′ ∈ τ

Γ ;∆ ` M :τ

Γ ;∆ ` M'ctxM ∈ τ

Γ ;∆ ` M'ctxM
′ ∈ τ

Γ ;∆ ` M ′'ctxM ∈ τ

Γ ;∆ ` M'ctxM
′ ∈ τ

Γ ;∆ ` M ′'ctxM
′′ ∈ τ

Γ ;∆ ` M'ctxM ′′ ∈ τ

Γ ;∆ ` M :τ M −→ M ′

Γ ;∆ ` M'ctxM ′ ∈ τ

Γ ;∆ ` M :τ1 (τ2

Γ ;∆ ` λa:τ1.(M a)'ctxM ∈ τ1 (τ2

Γ ;∆ ` M :∀α.τ
Γ ;∆ ` Λα.(M [α])'ctxM ∈ ∀α.τ

Γ ;∆ ` M :!τ

Γ ;∆ ` let !x = M in !x'ctxM ∈ !τ

Γ ;∆ ` M :τ1&τ2

Γ ;∆ ` 〈M .1,M .2〉'ctxM ∈ τ1&τ2

Γ ;∆ ` M :τ1 ⊗ τ2
Γ ;∆ ` let (a1, a2) = M in (a1, a2)'ctxM ∈ τ1 ⊗ τ2

Γ ;∆, a:τ1 ` M'ctxM
′ ∈ τ2

Γ ;∆ ` λa:τ1.M'ctxλa:τ1.M ′ ∈ τ1 (τ2

Γ, α;∆ ` M'ctxM
′ ∈ τ

Γ ;∆ ` Λα.M'ctxΛα.M ′ ∈ ∀α.τ

Γ ;∆1 ` M1'ctxM
′
1 ∈ τ1 (τ2

Γ ;∆2 ` M2'ctxM
′
2 ∈ τ1 Γ ` ∆1 d ∆2 = ∆3

Γ ;∆3 ` M1 M2'ctxM ′1 M ′2 ∈ τ2

Γ ;∆ ` M'ctxM
′ ∈ ∀α.τ ′ Γ ` τ

Γ ;∆ ` M [τ]'ctxM ′[τ] ∈ τ ′{τ/α}
Γ ; · ` M'ctxM

′ ∈ τ

Γ ; · `!M'ctx!M ′ ∈ !τ

Γ ;∆1 ` M1'ctxM
′
1 ∈ !τ1 Γ ` ∆1 d ∆2 = ∆3

Γ, x :τ1;∆2 ` M2'ctxM
′
2 ∈ τ

Γ ;∆ ` let !x = M1 inM2'ctxlet !x = M ′1 inM ′2 ∈ τ

Γ ;∆ ` Mi'ctxM
′
i ∈ τi

Γ ;∆ ` 〈M1,M2〉'ctx〈M ′1,M ′2〉 ∈ τ1&τ2

Γ ;∆ ` M'ctxM
′ ∈ τ1&τ2

Γ ;∆ ` M .i'ctxM ′.i ∈ τi

Γ ;∆1 ` M1'ctxM
′
1 ∈ τ1

Γ ;∆2 ` M2'ctxM
′
2 ∈ τ2 Γ ` ∆1 d ∆2 = ∆3

Γ ;∆ ` (M1,M2)'ctx(M ′1,M
′
2) ∈ τ1 ⊗ τ2

Γ ;∆1 ` M1'ctxM
′
1 ∈ τ1 ⊗ τ2 Γ ` ∆1 d ∆2 = ∆3

Γ ;∆2, a1:τ1, a2:τ1 ` M2'ctxM
′
2 ∈ τ

Γ ;∆ ` let (a1, a2) = M1 inM2'ctxlet (a1, a2) = M ′1 inM ′2 ∈ τ

Fig. 7. Equality for PDILL.

Relational Parametricity for a Polymorphic Linear Lambda Calculus 21

e : : = x | λκx :τ.e | e e ′ | Λα:κ.e | e[τ] | 〈e, e ′〉 | e.1 | e.2 | (e, e ′)
| let (x , x ′) = e in e ′

v , u : : =λκx :τ.e | Λα:κ.e | 〈e, e ′〉 | (v , v ′)
κ : : = ? | ◦
τ : : =α | τ κ→ τ ′ | ∀α:κ.τ | τ&τ ′ | τ ⊗ τ ′

Γ, G : : = · | Γ, x :τ | Γ, α:κ Unrestricted contexts
∆, D : : = · | ∆, x :τ Linear contexts

` Γ Γ ` ∆

` ·

` Γ
α /∈ Γ
` Γ, α:κ

` Γ Γ ` τ :?
x /∈ Γ
` Γ, x :τ

` Γ
Γ ` ·

Γ ` ∆ Γ ` τ :◦
x /∈ Γ,∆
Γ ` ∆, x :τ

Γ ` τ :κ
α:κ ∈ Γ
Γ ` α:κ

Γ ` τ1:κ1 Γ ` τ2:κ2

Γ ` τ1
κ→ τ2:κ

Γ, α:κ ` τ :κ′

Γ ` ∀α:κ.τ :κ′

Γ ` τ :κ Γ ` τ ′:κ′

Γ ` τ&τ ′:◦
Γ ` τ :κ Γ ` τ ′:κ
Γ ` τ ⊗ τ ′:κ

Γ ` τ :?
Γ ` τ :◦

Γ ` ∆1 d ∆2 = ∆ Disjoint linear contexts
` Γ

Γ ` · d · = ·
Γ ` τ : ◦ Γ ` ∆1 d ∆2 = ∆ x /∈ Γ,∆

Γ ` ∆1, x :τ d ∆2 = ∆, x :τ

Γ ` τ : ◦ Γ ` ∆1 d ∆2 = ∆ x /∈ Γ,∆
Γ ` ∆1 d ∆2, x :τ = ∆, x :τ

[Γ ;∆], x :τ c Γ ′;∆′

Γ ` τ : ◦ x /∈ Γ,∆
[Γ ;∆], x :τ c Γ ;∆, x :τ

Γ ` τ : ? x /∈ Γ,∆
[Γ ;∆], x :τ c Γ, x :τ ;∆

Γ ;∆ ` e:τ

Γ ` (x :τ)

Γ ; x :τ ` x :τ

` Γ x :τ ∈ Γ
Γ ; · ` x :τ

Γ ;∆ ` e1:τ1 Γ ;∆ ` e2:τ2

Γ ;∆ ` 〈e1, e2〉:τ1&τ2
[Γ ;∆], x :τ1 c Γ ′;∆′

Γ ′;∆′ ` e:τ2
κ = ? =⇒ ∆ = ·

Γ ;∆ ` λκx :τ1.e:τ1
κ→ τ2

Γ ;∆1 ` e1:τ1
Γ ;∆2 ` e2:τ2
Γ ` ∆1 d ∆2 = ∆3

Γ ;∆3 ` (e1, e2):τ1 ⊗ τ2
Γ ;∆ ` e:τ1&τ2

Γ ;∆ ` e.i :τi

Γ ;∆1 ` e1:τ1
κ→ τ2

Γ ;∆2 ` e2:τ1
Γ ` ∆1 d ∆2 = ∆3

Γ ;∆3 ` e1 e2:τ2

Γ ;∆1 ` e1:τ1 ⊗ τ2
[Γ ;∆2], x1:τ1, x2:τ2 c Γ ′;∆′2
Γ ′;∆′2 ` e2:τ Γ ` ∆1 d ∆2 = ∆3

Γ ;∆3 ` let (x1, x2) = e1 in e2:τ

Γ, α:κ;∆ ` v :τ

Γ ;∆ ` Λα:κ.v :∀α:κ.τ

Γ ;∆ ` e:∀α:κ.τ ′ Γ ` τ :κ
Γ ;∆ ` e[τ]:τ ′{τ/α}

Fig. 8. Syntax, kinding and typing for System F◦.

22 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

e −→ e ′

e1 −→ e ′1

e1 e2 −→ e ′1 e2

e2 −→ e ′2

v1 e2 −→ v1 e ′2 (λκx :τ.e12) v2 −→ e12{v2/x}

(Λα:κ.e)[τ] −→ e{τ/α}
e1 −→ e ′1

e1[τ] −→ e ′1[τ]

e −→ e ′

e.i −→ e ′.i 〈e1, e2〉.i −→ ei

e1 −→ e ′1

(e1, e2) −→ (e ′1, e2)

e2 −→ e ′2

(v1, e2) −→ (v1, e ′2)

let (x1, x2) = (v1, v2) in e −→ e{v1/x1}{v2/x2}

e −→∗ e ′

e −→∗ e

e −→ e ′ e ′ −→∗ e ′′

e −→∗ e ′′

Fig. 9. Operational Semantics for System F◦

Relational Parametricity for a Polymorphic Linear Lambda Calculus 23

θ : : = · | θ, α 7→(R, τ, τ ′) γ : : = · | γ, x 7→(v , v ′) δ : : = · | δ, x 7→(v , v ′)

R ∈ τ ↔ τ ′:κ a G,
G ` τ :κ ∧ G ` τ ′:κ ∧ ∀(e, e ′) ∈ R. ∃D, G;D ` e:τ ∧ G;D ` e ′:τ ′

G;D ` v ∼ v ′ ∈ τ :θ Related open values

G;D ` v ∼ v ′ ∈ α:θ , α 7→(R, τ, τ ′) ∈ θ ∧ (v , v ′) ∈ R

G;D ` λκx :τ1.e ∼ λκx :τ1.e
′ ∈ (τ1

κ→ τ2):θ ,
∀(G;DDD1 ` v :θl(τ1) ∧ G;DDD1 ` v ′:θr (τ1)∧
G;DDD1 ` v ∼ v ′ ∈ τ1:θ ∧ G ` D,DDD1).

G;D,DDD1 ` (λκx :τ1.e) v ' (λκx :τ1.e
′) v ′ ∈ τ2:θ

G;D ` Λα:κ.e ∼ Λα:κ.e ′ ∈ ∀α:κ.τ :θ ,
∀(R ∈ τ2 ↔ τ ′2:κ a G).

G;D ` (Λα:κ.e)[τ2] ' (Λα:κ.e ′)[τ ′2] ∈ τ :(θ, α 7→(R, τ2, τ
′
2))

G;D ` 〈e1, e2〉 ∼ 〈e ′1, e ′2〉 ∈ τ1&τ2:θ ,
G;D ` e1 ' e ′1 ∈ τ1:θ ∧ G;D ` e2 ' e ′2 ∈ τ2:θ

G;D ` (v1, v2) ∼ (v ′1, v
′
2) ∈ τ1 ⊗ τ2:θ ,

∃D1D2, G;D1 ` v1 ∼ v ′1 ∈ τ1:θ ∧ G;D2 ` v2 ∼ v ′2 ∈ τ2:θ∧
G ` D1 d D2 = D

G;D ` e ' e ′ ∈ τ :θ Related open terms

G;D ` e:θl(τ) G;D ` e ′:θr (τ) e −→∗ v e ′ −→∗ v ′ G;D ` v ∼ v ′ ∈ τ :θ

G;D ` e ' e ′ ∈ τ :θ

Γ ;∆ ` θ|γ; δ:G;D Open relation substitutions

` G
·; · ` ·|·; ·:G; ·

Γ ;∆ ` θ|γ; δ:G;D1 Γ ` τ : ◦ G ` D1,DDD2

G;DDD2 ` v ∼ v ′ ∈ τ :θ x /∈ Γ,∆,G, (D1,DDD2)

Γ ;∆, x :τ ` θ|γ; δ, x 7→(v , v ′):G;D1,DDD2

Γ ;∆ ` θ|γ; δ:G;D Γ ` τ :?
G; · ` v ∼ v ′ ∈ τ :θ x /∈ Γ,∆,G,D
Γ, x :τ ;∆ ` θ|γ, x 7→(v , v ′); δ:G;D

Γ ;∆ ` θ|γ; δ:G;D
R ∈ τ ↔ τ ′:κ a G α /∈ Γ,∆,G,D
Γ, α:κ;∆ ` θ, α 7→(R, τ, τ ′)|γ; δ:G;D

Γ ;∆ ` θ|γ; δ1 d δ2 = δ:G;D1 d D2 = D Disjoint linear relation substitutions

Γ ; · ` θ|γ; ·:G; ·
Γ ; · ` θ|γ; · d · = ·:G; · d · = ·

Γ ;∆ ` θ|γ; δ1 d δ2 = δ:G;D1 d D2 = D3

Γ ` τ : ◦ G;D′ ` v ∼ v ′ ∈ τ :θ x /∈ Γ,∆,G, (D3, D
′)

Γ ;∆, x :τ ` θ|γ; (δ1, x 7→(v , v ′)) d δ2 = (δ, x 7→(v , v ′)):G;D1, D′ d D2 = D3, D′

Γ ;∆ ` θ|γ; δ1 d δ2 = δ:G;D1 d D2 = D3

Γ ` τ : ◦ G;D′ ` v ∼ v ′ ∈ τ :θ x /∈ Γ,∆,G, (D3, D
′)

Γ ;∆, x :τ ` θ|γ; δ1 d (δ2, x 7→(v , v ′)) = (δ, x 7→(v , v ′)):G;D1 d D2, D′ = D3, D′

Fig. 10. Related open values and terms for System F◦.

24 Jianzhou Zhao, Qi Zhang, Steve Zdancewic

Contexts C : : = � | if C0 then e else e ′ | if e0 thenC else e ′ | if e0 then e elseC ′

| λκx :τ.C | C e | e C | Λα:κ.C | C [τ ′] | 〈C , e ′〉 | 〈e,C ′〉 | C .1
| C .2 | (C , e ′) | (e,C ′) | let (x , x ′) = C in e ′ | let (x , x ′) = e inC ′

U : : = λκx :τ.C | Λα:κ.C | 〈C , e ′〉 | 〈e,C ′〉 | (C , e ′) | (e,C ′)

Evaluation Contexts E : : = � | if E then e else e ′ | E e | v E | E [τ ′] | E .1 | E .2
| (E , e ′) | (v ,E ′) | let (x , x ′) = E in e ′

Γ ′;∆′ ` C :(Γ ;∆ . τ) τ ′

Γ ` ∆ Γ ` τ :κ
Γ ;∆ ` �:(Γ ;∆ . τ) τ

Γ ′;∆′1 ` C0:(Γ ;∆ . τ) Bool
Γ ′;∆′2 ` e:τ ′ Γ ′;∆′2 ` e ′:τ ′ Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` if C0 then e else e ′:(Γ ;∆ . τ) τ ′

Γ ′;∆′1 ` e0:Bool Γ ′;∆′2 ` C :(Γ ;∆ . τ) τ ′ Γ ′;∆′2 ` e ′:τ ′ Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` if e0 thenC else e ′:(Γ ;∆ . τ) τ ′

Γ ′;∆′1 ` e0:Bool Γ ′;∆′2 ` e:τ ′ Γ ′;∆′2 ` C ′:(Γ ;∆ . τ) τ ′ Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` if e0 then e elseC ′:(Γ ;∆ . τ) τ ′

[Γ ′;∆′], x :τ ′1 c Γ
′′;∆′′ Γ ′′;∆′′ ` C :(Γ ;∆ . τ) τ ′2 κ = ? =⇒ ∆′ = ·
Γ ′;∆′ ` λκx :τ ′1.C :(Γ ;∆ . τ) τ ′1

κ→ τ ′2

Γ ′, α:κ;∆′ ` U :(Γ ;∆ . τ) τ ′

Γ ′;∆′ ` Λα:κ.U :(Γ ;∆ . τ) ∀α:κ.τ ′

Γ ′;∆′2 ` C2:(Γ ;∆ . τ) τ ′1
Γ ′;∆′1 ` e1:τ

′
1

κ→ τ ′2 Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` e1 C2:(Γ ;∆ . τ) τ ′2

Γ ′;∆′ ` C :(Γ ;∆ . τ) τ ′1&τ
′
2

Γ ′;∆′ ` C .1:(Γ ;∆ . τ) τ ′1

Γ ′;∆′ ` C :(Γ ;∆ . τ) ∀α:κ.τ ′ Γ ′ ` σ′:κ
Γ ′;∆′ ` C [σ′]:(Γ ;∆ . τ) τ ′{σ′/α}

Γ ′;∆′ ` C :(Γ ;∆ . τ) τ ′1&τ
′
2

Γ ′;∆′ ` C .2:(Γ ;∆ . τ) τ ′2

Γ ′;∆′ ` e1:τ
′
1 Γ ′;∆′ ` C2:(Γ ;∆ . τ) τ ′2

Γ ′;∆′ ` 〈e1,C2〉:(Γ ;∆ . τ) τ ′1&τ
′
2

Γ ′;∆′1 ` C1:(Γ ;∆ . τ) τ ′1
κ→ τ ′2

Γ ′;∆′2 ` e2:τ
′
1 Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` C1 e2:(Γ ;∆ . τ) τ ′2

Γ ′;∆′ ` C1:(Γ ;∆ . τ) τ ′1 Γ ′;∆′ ` e2:τ
′
2

Γ ′;∆′ ` 〈C1, e2〉:(Γ ;∆ . τ) τ ′1&τ
′
2

Γ ′;∆′1 ` C1:(Γ ;∆ . τ) τ ′1
Γ ′;∆′2 ` e2:τ

′
2 Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` (C1, e2):(Γ ;∆ . τ) τ ′1 ⊗ τ ′2

Γ ′;∆′2 ` C2:(Γ ;∆ . τ) τ ′2
Γ ′;∆′1 ` e1:τ

′
1 Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` (e1,C2):(Γ ;∆ . τ) τ ′1 ⊗ τ ′2

Γ ′;∆′1 ` C1:(Γ ;∆ . τ) τ ′1 ⊗ τ ′2 Γ ′ ` ∆′1 d ∆′2 = ∆′3
[Γ ′;∆′2], x1:τ

′
1, x2:τ

′
2 c Γ

′′;∆′′2 Γ ′′;∆′′2 ` e2:τ
′

Γ ′;∆′3 ` let (x1, x2) = C1 in e2:(Γ ;∆ . τ) τ ′

Γ ′;∆′1 ` e1:τ
′
1 ⊗ τ ′2 [Γ ′;∆′2], x1:τ

′
1, x2:τ

′
2 c Γ

′′;∆′′2
Γ ′′;∆′′2 ` C2:(Γ ;∆ . τ) τ ′ Γ ′ ` ∆′1 d ∆′2 = ∆′3

Γ ′;∆′3 ` let (x1, x2) = e1 inC2:(Γ ;∆ . τ) τ ′

Fig. 11. Context definitions and typings for System F◦.

Relational Parametricity for a Polymorphic Linear Lambda Calculus 25

Γ ;∆ ` e'ctxe
′ ∈ τ

Γ ;∆ ` e:τ

Γ ;∆ ` e'ctxe ∈ τ

Γ ;∆ ` e'ctxe
′ ∈ τ

Γ ;∆ ` e ′'ctxe ∈ τ

Γ ;∆ ` e'ctxe
′ ∈ τ

Γ ;∆ ` e ′'ctxe
′′ ∈ τ

Γ ;∆ ` e'ctxe ′′ ∈ τ

Γ ; · ` e:τ1
κ→ τ2

Γ ; · ` λκx :τ1.(e x)'ctxe ∈ τ1
κ→ τ2

Γ ;∆ ` e:τ e −→ e ′

Γ ;∆ ` e'ctxe ′ ∈ τ

Γ ; · ` e:∀α:κ.(τ1
κ′
→ τ2)

Γ ; · ` Λα:κ.λκ′x :τ1.(e[α] x)'ctxe ∈ ∀α:κ.(τ1
κ′
→ τ2)

Γ ;∆ ` e'ctxe
′ ∈ τ1&τ2

Γ ;∆ ` e.i'ctxe ′.i ∈ τi

Γ ;∆ ` e:τ1 ⊗ τ2
Γ ;∆ ` let (x1, x2) = e in (x1, x2)'ctxe ∈ τ1 ⊗ τ2

[Γ ;∆], x :τ1 c Γ ′;∆′ Γ ′;∆′ ` e'ctxe
′ ∈ τ2 κ = ? =⇒ ∆ = ·

Γ ;∆ ` λκx :τ1.e'ctxλκx :τ1.e ′ ∈ τ1
κ→ τ2

Γ, α:κ;∆ ` v'ctxv
′ ∈ τ

Γ ;∆ ` Λα:κ.v'ctxΛα:κ.v ′ ∈ ∀α:κ.τ

Γ ;∆ ` ei'ctxe
′
i ∈ τi

Γ ;∆ ` 〈e1, e2〉'ctx〈e ′1, e ′2〉 ∈ τ1&τ2

Γ ;∆1 ` e1'ctxe
′
1 ∈ τ1

κ→ τ2
Γ ;∆2 ` e2'ctxe

′
2 ∈ τ1 Γ ` ∆1 d ∆2 = ∆3

Γ ;∆3 ` e1 e2'ctxe ′1 e ′2 ∈ τ2

Γ ;∆ ` e'ctxe
′ ∈ ∀α:κ.τ ′ Γ ` τ :κ

Γ ;∆ ` e[τ]'ctxe ′[τ] ∈ τ ′{τ/α}

Γ ;∆1 ` e1'ctxe
′
1 ∈ τ1

Γ ;∆2 ` e2'ctxe
′
2 ∈ τ2 Γ ` ∆1 d ∆2 = ∆3

Γ ;∆ ` (e1, e2)'ctx(e ′1, e
′
2) ∈ τ1 ⊗ τ2

Γ ;∆ ` e:τ1&τ2

Γ ;∆ ` 〈e.1, e.2〉'ctxe ∈ τ1&τ2

Γ ;∆1 ` e1'ctxe
′
1 ∈ τ1 ⊗ τ2 Γ ` ∆1 d ∆2 = ∆3

[Γ ;∆2], x1:τ1, x2:τ2 c Γ ′;∆′2 Γ ′;∆′2 ` e2'ctxe
′
2 ∈ τ

Γ ;∆ ` let (x1, x2) = e1 in e2'ctxlet (x1, x2) = e ′1 in e ′2 ∈ τ

Fig. 12. Equality for System F◦.

	Relational Parametricity for a Polymorphic Linear Lambda Calculus
	Jianzhou Zhao, Qi Zhang, Steve Zdancewic
	Introduction
	A Brief Introduction to PDILL
	Parametricity for PDILL
	Definitions
	Fundamental Theorem
	Soundness & Completeness

	Examples
	Polymorphic Boolean
	Multiplicative Selection
	Natural Numbers

	Discussion

