
Mechanized Verification of Computing
Dominators for Formalizing Compilers

Jianzhou Zhao and Steve Zdancewic

University of Pennsylvania
{jianzhou,stevez}@cis.upenn.edu

Abstract. One prerequisite to the formal verification of modern com-
pilers is to formalize computing dominators, which enable SSA forms,
advanced optimizations, and analysis. This paper provides an abstract
specification of dominance analysis that is sufficient for formalizing mod-
ern compilers; it describes a certified implementation and instance of the
specification that is simple to design and reason about, and also reason-
ably efficient. The paper also presents applications of dominance analy-
sis: an SSA-form type checker, verifying SSA-based optimizations, and
constructing dominator trees. This development is a part of the Vellvm
project. All proofs and implementation have been carried out in Coq.

1 Introduction

Compilers are not always correct due to the complexity of language semantics
and transformation algorithms, the trade-offs between compilation speed and
verifiability, etc. Bugs in compilers can undermine the source-level verification
efforts (such as type systems, static analysis, and formal proofs), and produce
target programs with different meaning from source programs. The CompCert
project [12] first implemented a realistic and mechanically verified compiler with
classic intermediate representations in the Coq proof assistant. The CompCert
compiler generates compact and efficient assembly code for a large fragment of
the C language, and is proved to be more robust than non-verified compilers.

Recently researchers started to formalize and verify modern compilers in the
Vellvm project [14] and in the CompCertSSA project [3]. One crucial component
of modern compilers, such as LLVM and GCC, is computing dominators—on a
control-follow-graph, a node l1 dominates a node l2 if all paths from the entry
to l2 must go through l1 [2]. Dominance analysis allows compilers to represent
programs in the SSA form [6] (which enables many advanced SSA-based opti-
mizations), optimize loops, analyze memory dependency, and parallelize code
automatically, etc. Therefore, one prerequisite to the formal verification of mod-
ern compilers is to formalize computing dominators.

In this paper, we present the formalization of dominance analysis used in
the Vellvm project. To the best of our knowledge, this is the first mechanized
verification of dominator computation for LLVM. Although the CompCertSSA
project [3] also formalized dominance analysis to prove the correctness of a global
value numbering optimization, our results are more general: beyond soundness,
we establish completeness and related metatheory results that can be used in

2 Jianzhou Zhao, Steve Zdancewic

other applications. Because different styles of formalization may also affect the
cost of proof engineering, we also discuss some tradeoffs in the choices of for-
malization. In this work, we evaluate our formalism by applying it to several
applications in Vellvm.

To simplify the formal development, we describe the work in the context of
Vminus, which is a simpler subset of the full LLVM SSA IR formalized in Vellvm,
that still captures the essence of dominance analysis. Our Coq development
formalizes all the claims of the paper for the full Vellvm1. Following LLVM, we
distinguish dominators at the block level and at the instruction level. Given the
former one, we can easily compute the latter one. Therefore, we will focus on
the block-level analysis, and discuss the instruction-level analysis only briefly.

We present the following contributions. Section 2 gives a specification of
computing dominators at the block level. We instantiate the specification by two
algorithms. Section 3 shows the standard dominance analysis [1] (AC). Section 4
presents an extension of AC [5] (CHK) that is easy to implement and verify,
but still fast. We verify the correctness of both algorithms. Section 3.1 provides
a verified depth first search algorithm. Then, Section 5 extends the dominance
analysis to the instruction level, and present several applications used in the
Vellvm project: a type checker for SSA, verifying SSA-based optimizations, and
constructing dominator trees. Section 6 evaluates performance of the algorithms,
and shows that in practice CHK runs nearly as fast as the LLVM’s algorithm.

2 The Specification of Computing Dominators

This section first defines dominators in term of the syntax of Vminus, then gives
an abstract and succinct specification of algorithms that compute dominators.

Syntax of Vminus. Figure 1 gives the syntax of Vminus, focusing on the
syntax of Vminus at the block level. Section 5 will revisit the rest of the syntax.
All code in Vminus resides in top-level functions, whose bodies are composed
of blocks b. Here, b denotes a list of blocks; we use similar notation for other
lists throughout the paper. As in classic compiler representations, a basic block
consists of a label l , a series of instructions insn followed by a terminator tmn
(br and ret) that branches to another block or returns from the function. In the
following, we also use the label of a block to denote the block.

The set of blocks making up the top-level function f constitutes a control-
flow graph (CFG) G = (e, succs) where e is the entry point (the first block) of f ;
succs maps each label to a list of its successors. On a CFG, we use G |= l1 →∗ l2
to denote a path ρ from l1 to l2, and l ∈ ρ to denote that l is in the path ρ. By
wf f, we require that a well-formed function must contain an entry point that
cannot be reached from other blocks, all terminators can only branch to blocks
within f , and that all labels in f are unique. In this paper, we consider only
well-formed functions to streamline the presentation.

1 Available at http://www.cis.upenn.edu/~jianzhou/Vellvm/dominance

http://www.cis.upenn.edu/~jianzhou/Vellvm/dominance
http://www.cis.upenn.edu/~jianzhou/Vellvm/dominance

Mechanized Verification of Computing Dominators 3

Types typ : : = int Instructions insn : : = φ | c | tmn
Constants cnst : : = Int Phi Nodes φ : : = r = phi typ [valj , lj]

j

Values val : : = r | cnst Commands c : : = r := val1 bop val2
Blocks b : : = l φ c tmn Terminators tmn : : = br l | br val l1 l2 | ret typ val

Functions f : : = fun {b} Non-φs φ̂ : : = c | tmn

Fig. 1. Syntax of Vminus.

Definition 1 (Domination (Block-level)). Given G with an entry e,

– A block l is reachable, written G →∗ l , if there exists a path G |= e →∗ l .
– A block l1 dominates a block l2, written G |= l1 �= l2, if for every path ρ

from e to l2, l1 ∈ ρ.
– A block l1 strictly dominates a block l2, written G |= l1 � l2, if for every

path ρ from e to l2, l1 6= l2 ∧ l1 ∈ ρ.

Because the dominance relations of a function at the block level and in its CFG
are equivalent, in the following we do not distinguish f and G . The following
consequence of the definitions are useful to define the specification of computing
dominators. For all labels in G , �= and � are transitive.

Lemma 1.
- If G |= l1 �= l2 and G |= l2 �= l3, then G |= l1 �= l3.
- If G |= l1 � l2 and G |= l2 � l3, then G |= l1 � l3.

However, because there is no path from the entry to unreachable labels, �=
and � relate every label to any unreachable labels.

Lemma 2. If ¬(G →∗ l2), then G |= l1 �= l2 and G |= l1 � l2.

If we only consider the reachable labels in V , � is acyclic.

Lemma 3 (� is acyclic). If G →∗ l , then ¬G |= l � l .

Moreover, all labels that strictly dominate a reachable label are ordered.

Lemma 4 (� is ordered). If G →∗ l3, l1 6= l2, G |= l1 � l3 and G |= l2 � l3,
then G |= l1 � l2 ∨G |= l2 � l1.

2.1 Specification

Coq Notations. We use {} to denote an empty set; use {+}, {<=}, ‘In‘, {\/}
and {/\} to denote set addition, inclusion, membership, union and intersection
respectively. Our developments reuse the basic tree and map data structures
implemented in the CompCert project [12]: ATree.t and PTree.t are trees with
keys of type l and positive respectively; PMap.t is a map with keys of type
positive. We use [] to denote tree and map lookup. succs are defined by trees.
[] returns an empty list when a searched-for key in succs does not exist. [x] is
a list with one element x.

4 Jianzhou Zhao, Steve Zdancewic

Module Type ALGDOM.

Parameter sdom: f →l →set l.

Definition dom f l1 := l1 {+} sdom f l1.

Axiom entry_sound: forall f e, entry f = Some e →sdom f e = {}.

Axiom successors_sound: forall f l1 l2,

In l1 (succs f)[l2] →sdom f l1 {<=} dom f l2.

Axiom complete: forall f l1 l2,

wf f →f |= l1 >> l2 →l1 ‘In‘ (sdom f l2).

End ALGDOM.

Module AlgDom_Properties(AD: ALGDOM).

Lemma sound: forall f l1 l2,

wf f →l1 ‘In‘ (AD.sdom f l2) →f |= l1 >> l2.

(**)

(* Properties: conversion, transitivity, acyclicity, ordering and ... *)

(**)

End AlgDom_Properties.

Fig. 2. The specification of algorithms that find dominators.

Figure 2 gives an abstract specification of algorithms that compute domina-
tors using a Coq module interface ALGDOM. First of all, sdom defines the signature
of a dominance analysis algorithm: given a function f and a label l1, (sdom f l1)
returns the set of strict dominators of l1 in f ; dom defines the set of dominators
of l1 by adding l1 into l1’s strict dominators.

To make the interface simple, ALGDOM only requires the basic properties that
ensure that sdom is correct: it must be both sound and complete in terms
of the declarative definitions (Definition 1). Given the correctness of sdom,
the AlgDom Properties module can ‘lift’ properties (conversion, transitivity,
acyclicity, ordering, etc.) from the declarative definitions to the implementa-
tions of sdom and dom. Section 5 shows how clients of ALGDOM use the properties
proven in AlgDom Properties by examples.

ALGDOM requires completeness directly. Soundness can be proven by two more
basic properties: entry sound requires that the entry has no strict dominators;
successors sound requires that if l1 is a successor of l2, then l2’s dominators
must include l1’s strict dominators. Given an algorithm that establishes the two
properties, AlgDom Properties proves that the algorithm is sound by induction
over any path from the entry to l2.

2.2 Instantiations

In the literature, there is a long history of algorithms that find dominators,
each making different trade-offs between efficiency and simplicity. Most of the
industry compilers, such as LLVM and GCC, use the classic Lengauer-Tarjan
algorithm [11] (LT) that has a complexity of O(E ∗ log(N)) where N and E are
the number of nodes and edges respectively, but is complicated to implement
and reason about. The Allen-Cocke algorithm [1] (AC) based on iteration is
easier to design, but suffers from a large asymptotic complexity. Moreover, LT

Mechanized Verification of Computing Dominators 5

entry

{e,5}

{a,4}

{d,2}

{b,3}

{c,1}

{z,_}

{y,_}

Fig. 3. Postorder.

stk visited PO l2p po

e[a d] e
e[d]; a[b] e a
e[d]; a[]; b[c d] e a b
e[d]; a[]; b[d]; c[] e a b c (c,1)
e[d]; a[]; b[]; d[b] e a b c d (c,1)
e[d]; a[]; b[]; d[] e a b c d (c,1); (d,2)
e[d]; a[]; b[]; e a b c d (c,1); (d,2); (b,3)
e[d]; a[]; e a b c d (c,1); (d,2); (b,3); (a,4)
e[] e a b c d (c,1); (d,2); (b,3); (a,4); (e,5)

Fig. 4. The DFS execution sequence.

explictly creates dominator trees that provide convenient data structures for
compilers whereas AC needs an additional tree construction algorithm with more
overhead. The Cooper-Harvey-Kennedy algorithm [5] (CHK), extended from AC
with careful engineering, runs nearly as fast as LT in common cases [5,8], but is
still simple to implement and reason about. Moreover, CHK generates dominator
trees implicitly, and provides a faster tree construction algorithm.

Because CHK gives a relatively good trade-off between verifiability and effi-
cency, we present CHK as an instance of ALGDOM. In the following sections, we
first review the AC algorithm, and then study its extension CHK.

3 The Allen-Cocke Algorithm

The Allen-Cocke algorithm (AC) is an instance of the forward worklist-based
Kildall’s algorithm [10] that visits nodes in reverse postorder (PO) [9] (in which
AC converges faster). At the high-level, our Coq implementation of AC works
in three steps: 1) calculate the PO of a CFG by depth-first-search (DFS); 2)
compute strict dominators for PO-numbered nodes in Kildall; 3) finally relate
the analysis results to the original nodes. We omit the 3rd step’s proofs here.

This section first presents a verified DFS algorithm that computes PO, then
reviews Kildall’s algorithm as implemented in the CompCert project [12], and
finally it studies the implementation and metatheory of AC.

3.1 DFS: PO-numbering

DFS starts at the entry, visits nodes as deep as possible along each path, and
backtracks when all deep nodes are visited. DFS generates PO by numbering a
node after all its children are numbered. Figure 3 gives a PO-numbered CFG. In
the CFG, we represent the depth-first-search (DFS) tree edges by solid arrows,
and non-tree edges by dotted arrows. We draw the entry node in a box, and
other nodes in circles. Each node is labeled by a pair with its original label name
on the left, and its PO number on the right. Because DFS only visits reachable
nodes, the PO numbers of unreachable nodes are represented by ‘ ’.

Figure 5 shows the data structures and auxiliary functions used by a typical
DFS algorithm that maintains four components to compute PO. PostOrder

6 Jianzhou Zhao, Steve Zdancewic

Record PostOrder := mkPO { PO_cnt: positive; PO_l2p: LTree.t positive }.

Record Frame := mkFr { Fr_name: l; Fr_scs: list l }.

Definition dfs_F_type : Type := forall (succs: LTree.t (list l))

(visited: LTree.t unit) (po:PostOrder) (stk: list Frame), PostOrder.

Definition dfs_F (f: dfs_F_type) (succs: LTree.t (list l))

(visited: LTree.t unit) (po:PostOrder) (stk: list Frame): PostOrder :=

match find_next succs visited po stk with

| inr po’ ⇒po’

| inl (next, visited’, po’, stk’) ⇒f succs visited’ po’ stk’

end.

Fig. 5. The DFS algorithm.

takes the next available PO number and a map from nodes to their PO numbers
with type positive. succs maps a node to its successors. To facilitate reasoning
about DFS, we represent the recursive information of DFS explicitly by a list of
Frame records that each contains a node Fr name and its unprocessed successors
Fr scs. To prevent the search from revisiting nodes, the DFS algorithm uses
visited to record visited nodes. dfs F defines one recursive step of DFS.

Figure 4 gives a DFS execution sequence (by running dfs F until all nodes
are visited) of the CFG in Figure 3. We use l[l1 · · · ln] to denote a frame with
the node l and its unprocessed successors l1 to ln; (l, p) to denote a node l and
its PO p. Initially the DFS adds the entry and its successors to the stack. At
each recursive step, find next finds the next available node that is the unvisited
node in the Fr scs of the latest node l ′ of the stack. If the next available node
exists, the DFS pushes the node with its successors to the stack, and makes the
node to be visited. find next pops all nodes in front of l ′, and gives them PO
numbers. If find next fails to find available nodes, the DFS stops.

We can see that the straightforward algorithm is not a structural recursion.
To implement the algorithm in Coq, we must show that it terminates. Although
in Coq we can implement the algorithm by well-founded recursion, such designs
are hard to reason about [4]. One possible alternative is implementing DFS
with a ‘strong’ dependent type to specify the properties that we need to reason
about DFS. However, this design is not modular because when the type of DFS
is not strong enough—for example, if we need a new lemma about DFS—we
must extend or redesign its implementation by adding new invariants. Instead,
following the ideas in Coq’Art [4], we implement DFS by iteration and prove its
termination and inductive principle separately. By separating implementation
and specification, the DFS design is modular, and easier to reason about.

Figure 6 presents our design. The top-level entry is iter, which needs a
bounding step n, a fixpoint F and a default value g. iter only calls g when
n reaches zero, and otherwise recursively calls one more iteration of F. If F is
terminating, we can prove that there must exist a final value and a bound n,
such that for any bound k that is greater than or equal to n, iter always stops
and generates the same final value. In other words, F reaches a fixpoint in fewer

Mechanized Verification of Computing Dominators 7

Fixpoint iter (A:Type) (n:nat) (F:A→A) (g:A) : A :=

match n with

| O ⇒g

| S p ⇒F (iter A p F g)

end.

Definition wf_stk succs visited stk :=

stk_in_succs succs stk ∧incl visited succs

Program Fixpoint dfs_tmn succs visited po stk

(Hp: wf_stk succs visited stk) {measure (size succs - size visited)}:

{ po’:PostOrder | exists p:nat,

forall k (Hlt: p < k) (g:dfs_F_type),

iter _ k dfs_F g succs visited po stk = po’ } :=

match find_next succs visited po stk with

| inr po’ ⇒po’

| inl (next, visited’, po’, stk’) ⇒
let _ := dfs_tmn succs visited’ po’ stk’ _ in _

end.

Program Definition dfs succs entry : PostOrder :=

fst (dfs_tmn succs empty (mkPO 1 empty) (mkFr entry [succs[entry]]) _).

Fig. 6. Termination of the DFS algorithm.

than n steps. The proof of the existence of n is erasable; the computation part
provides a terminating algorithm, not requiring the bound step at runtime.

In Figure 6, dfs tmn proves DFS termination, which is established by well-
founded recursion over the number of unvisited nodes. This holds because each
iteration the DFS visits more nodes. The invariant that the number of unvis-
ited nodes decreases holds only for well-formed recursion states (wf stk), which
requires that all visited nodes and unprocessed nodes in frames are in the CFG.

To reason about dfs, we defined a well-founded inductive principle for dfs
(See our code). With the inductive principle, we proved the following properties
of DFS that are useful to establish the correctness of AC and CHK.
Variable (succs: ATree.t (list l)) (entry:l) (po:PostOrder).

Hypothesis Hdfs: dfs succs entry = po.

First of all, a non-entry node must have at least one predecessor that has a
greater PO number than the node’s. This is because 1) DFS must visit at least
one predecessor of a node before visiting the node; 2) PO gives greater numbers
to the nodes visited earlier:
Lemma dfs_order: forall l1 p1, l1 <> entry →(PO_l2p po)[l1] = Some p1,

exists l2, exists p2,

In l2 ((make_preds succs)[l1]) ∧(PO_l2p po)[l2] = Some p2 ∧p2 > p1.

(* Given succs, (make_preds succs) computes predecessors of each node. *)

Second, a node is PO-numbered iff the node is reachable:
Lemma dfs_reachable:forall l,(PO_l2p po)[l] <> None <→ (entry,succs)→* l.

Moreover, different nodes do not have the same PO number.
Lemma dfs_inj: forall l1 l2 p,

(PO_l2p po)[l2] = Some p →(PO_l2p po)[l1] = Some p →l1 = l2.

8 Jianzhou Zhao, Steve Zdancewic

Module Kildall (NS: PNODE_SET) (L: LATTICE). Section Kildall.

Variable succs: PTree.t (list positive).

Variable transf : positive →L.t →L.t.

Variable inits: list (positive * L.t).

Record state : Type := mkst { sin: PMap.t L.t; swrk: NS.t }.

Definition start_st := mkst (start_state_in inits) (NS.init succs).

Definition propagate_succ (out: L.t) (s: state) (n: positive) :=

let oldl := s.(sin)[n] in

let newl := L.lub oldl out in

if L.eq newl oldl

then mkst (PMap.set n newl s.(sin)) (NS.add n s.(swrk)) else s.

Definition step (s: state): PMap.t L.t + state :=

match NS.pick s.(swrk) with

| None ⇒inl s.(sin)

| Some(n, rem) ⇒inr (fold_left

(propagate_succ (transf n s.(sin)[n]))

succs[n] (mkst s.(sin) rem))

end.

Variable num : positive.

Definition fixpoint : option (PMap.t L.t):= Iter.iter step num start_st.

End Kildall. End Kildall.

Fig. 7. Kildall’s algorithm.

3.2 Kildall’s algorithm

Figure 7 summarizes the Kildall module used in the CompCert project. The
module is parameterized by the following components: NS that provides the
order to process nodes, and a lattice L that defines top, bot, equality (eq), least
upper bound (lub) and order (ge) of the abstract domain of an analysis; succs
that is a tree that maps each node to its successors; transf that is the transfer
function of Kildall analysis; inits that initializes the analysis. Given the inputs,
state records the iteration states that include sin, which records analysis states
for each node, and a work list swrk containing nodes to process.

The fixpoint implements iterations by Iter.iter—bounded recursion with
a maximal step number (num) [4]. Iter.iter is partial if an analysis does not
stop after the maximal number of steps. A monotone analysis must reach its
fixpoint after a finite number of steps. Therefore, we can alway pick a large
enough number of steps for a monotone analysis.

Initially Kildall’s algorithm calls start st to initialize iteration states. Nodes
not in inits are initialized to be the bottom of L. Then start st adds all nodes
into the worklist and starts loops. step defines the loop body. At step, Kil-
dall’s algorithm checks if there are still unprocessed nodes in the worklist. If the
worklist is empty, the algorithm stops. Otherwise, step picks a node from the
worklist in term of the order provided by NS, and then propagates its informa-
tion (computed by transf) to all the node’s successors by propagate succ. In
propagate succ, the new value of a successor is L.lub of its old value and the

Mechanized Verification of Computing Dominators 9

propagated value from its predecessor. The algorithm only adds a successor into
the worklist when its value is changed.

Kildall’s algorithm satisfies the following properties:
Variable res: PMap.t L.t.

Hypothesis Hfix: fixpoint = Some res.

First of all, the worklist contains nodes that have unstable successors in the
current state. Formally, each state st preserves the following invariant:
forall n, NS.In n st.(swrk) ∨
(forall s, In s (succs[n]) →L.ge st.(sin)[s] (transf n st.(sin)[n])).

Each iteration may only remove the picked node n from the worklist. If none of
n’s successors’ values are changed, no matter whether n belongs to its successors,
n won’t be added back to the worklist. Therefore, the above invariant holds. This
invariant implies that when the analysis stops, all nodes hold the in-equations:
Lemma fixpoint_solution: forall s,

In s (succs[n]) →L.ge res[s] (transf n res[n]).

The second property of Kildall’s algorithm is monotonicity. At each iteration,
the value of a successor of the picked node can only be updated from oldl to
newl. Because newl is the least upper bound of oldl and out, newl is greater
than or equal to oldl. Therefore, iteration states are always monotonic:
Lemma fixpoint_mono: incr (start_state_in inits) res.

where incr is a pointwise lift of L.ge for corresponding nodes. With monotonic-
ity, we proved that Kildall’s algorithm must terminate (See our code).

3.3 The AC Algorithm

AC instantiates Kildall with PN that picks nodes in reverse PO (by picking
the maximal nodes from the worklist), and LDoms that defines the lattice of
AC. Dominance analysis computes a set of strict dominators for each node. We
represent the domain of LDoms by option (set l). The top and bot of LDoms
are Some nil and None respectively. The least upper bound, order and equality
of LDoms are lifted from set intersection, set inclusion, and set equality to option:
None is smaller than Some x for any x. This design leads to better performance
by providing shortcuts for operations on None. Note that using None as bot does
not make the height of LDoms to be infinite, because any non-bot element can
only contain nodes in the CFG, and the height of LDoms is N .

AC uses the following transfer function and initialization:
Definition transf l1 input := l1 {+} input.

Definition inits := [(e, LDoms.top)].

Initially AC sets the strict dominators of the entry to be empty, and other nodes’
strict dominators to be all labels in the function. The algorithm will iteratively
remove non-strict-dominators from the sets until the conditions below hold (by
Lemma fixpoint mono and Lemma fixpoint solution):
(forall s, In s (succs[n]) →

L.ge (st.(sin))[s] (n{+}(st.(sin))[n])) ∧(st.(sin))[e] = {}.

which proves that AC satisfies entry sound and successors sound.

10 Jianzhou Zhao, Steve Zdancewic

To show that the algorithm is complete, it is sufficient to show that each
iteration state st preserves the following invariant:
forall n1 n2, ∼n1 ‘In‘ st.(sin)[n2] →∼(e, succs) |= n1 >> n2.

In other words, AC only removes non-strict dominators. Initially, AC sets the
entry’s strict dominators to be empty. Because in a well-formed CFG, the entry
has no predecessors, the invariant holds at the very beginning. At each iteration,
suppose that we pick a node n, and updates one of its successors s. Consider a
node n’ not in LDoms.lub st.(sin)[s] (n {+} st.(sin)[n]). If n’ is not in
LDoms.lub st.(sin)[s], then n’ does not strictly dominate s because st holds
the invariant. If n’ is not in (n {+} st.(sin)[n]), then n’ does not strictly
dominate n because st holds the invariant. Appending the path from the entry
to n that bypasses n’ with the edge from n to s leads to a path from the entry
to s that bypasses n’. Therefore, n’ does not strictly dominate s, either.

4 Extension: the Cooper-Harvey-Kennedy Algorithm

The CHK algorithm is based on the following observation: when AC processes
nodes in a reversed post-order (PO), if we represent the set of strict dominators
in a list, and always add a newly discovered strict dominator at the head of the
list (on the left in Figure 9), the list must be sorted by PO. Figure 9 shows the
execution of the algorithm for the CFG in Figure 3.

Because lists of strict dominators are always sorted, we can implement the set
intersection (lub) and the set comparison (eq) of two sorted lists by traversing
the two lists only once. Moreover, the algorithm only calls eq after lub. There-
fore, we can group lub and eq into LDoms.lub together. The following defines a
merge function used by LDoms.lub that intersects two sorted lists and returns
whether the final result is equal to the left one:
Program Fixpoint merge (l1 l2: list positive) (acc:list positive * bool)

{measure (length l1 + length l2)}: (list positive * bool) :=

let ’(rl, changed) := acc in

match l1, l2 with

| p1::l1’, p2::l2’ ⇒
match (Pcompare p1 p2 Eq) with

| Eq ⇒merge l1’ l2’ (p1::rl, changed)

| Lt ⇒merge l1’ l2 (rl, true)

| Gt ⇒merge l1 l2’ (rl, changed)

end

| nil, _ ⇒acc

| _::_, nil ⇒(rl, true)

end.

(* (Pcompare p1 p2 Eq) returns whether p1 = p2, p1 < p2 or p1 > p2. *)

4.1 Correctness

To show that CHK is still correct, it is sufficient to show that all lists are well-
sorted at each iteration, which ensures that the above merge correctly imple-
ments intersection and comparison. First, if a node with number n still maps to
bot, the worklist must contain one of its predecessors that has a greater number.

Mechanized Verification of Computing Dominators 11

entry

{e,5}

{a,4}

{b,3}

{d,2}{c,1}

Fig. 8. Dominator Trees.

Nodes sin

5 [] [] [] [] [] [] [] [] []
4 · [5] [5] [5] [5] [5] [5] [5] [5]
3 · · [45] [45] [45] [5] [5] [5] [5]
2 · · · [345] [345] [345] [35] [35] [35]
1 · [5] [5] [5] [5] [5] [5] [5] [5]

swrk [54321] [4321] [321] [21] [1] [3] [21] [1] []

Fig. 9. The execution of CHK.

forall n, in_cfg n succs →(st.(sin))[n] = None →
exists p, In p ((make_preds succs)[n]) ∧p > n ∧PN.In p st.(st_wrk).

(* in_cfg checks if a node is in CFG. *)

This invariant holds in the beginning because all nodes are in the worklist. At
each iteration, the invariant implies that the picked node n with the maximal
number in st.(st wrk) is not bot. Suppose it is bot, there cannot be any
node with greater number in the worklist. This property ensures that after each
iteration, the successors of n cannot be bot, and that the new nodes added into
the worklist cannot be bot, because they must be those successors. Therefore,
the predecessors of the remaining bot nodes still in the worklist cannot be n.
Since only n is removed, the rest of the bot nodes still hold the above invariant.

In the algorithm, a node’s value is changed from bot to non-bot when one of
its non-bot predecessors is processed. With the above invariant, we know that
the predecessor must be of larger number. Once a node turns to be non-bot,
no new elements will be added in its set. Therefore, this implies that, at each
iteration, if the value of a node is not bot, then all its candidate strict dominators
must be larger than the node:
forall n sdms, (st.(sin))[n] = Some sdms →Forall (Plt n) sdms.

(* Plt is the less-than of positive. *)

Moreover, a node n is considered as a candidate of strict dominators originally
by tranf that always cons n at the head of (st.(sin))[n]. Therefore, we proved
that the non-bot value of a node is always sorted:
forall n sdms, (st.(sin))[n] = Some sdms →Sorted Plt (n::sdms).

5 Applications

5.1 Type Checker

The first application is the type checker of Vminus. The Vminus language in
Figure 1 is in SSA form [6] in which each variable may be defined only once,
statically, and each use of the variable must be dominated by its definition with
respect to the control-flow graph of the containing function. To maintain these
invariants in the presence of branches and loops, SSA form uses φ-instructions to
merge definitions from different incoming paths. As usual in SSA representation,

12 Jianzhou Zhao, Steve Zdancewic

the φ nodes join together values from a list of predecessor blocks of the control-
flow graph—each φ node takes a list of (value, label) pairs that indicates the value
chosen when control transfers from a predecessor block with the associated label.

To check that a program is in SSA form, we need to extend domination
relations from the block-level to the instruction-level. Instruction positions are
denoted by program counters pc. We write f [pc] = binsnc if insn is at pc of f .

Definition 2 (Domination (Instruction-level)).

– valuses r , val = r.
– insn uses r , ∃val. valuses r ∧ val is an operand of insn.
– A variable r is defined at a program counter pc of f , written f defines r @ pc,

if f [pc] = binsnc and r is the left-hand side of insn.
– In function f , pc1 strictly dominates pc2, written f |= pc1 � pc2, if pc1

and pc2 are at distinct blocks l1 and l2 respectively and f |= l1 � l2; or if pc1

and pc2 are in the same block, and pc1 appears earlier than pc2.
– sdomf (pc) is the set of variables whose definitions strictly dominate pc:
{r|f defines r @ pc′ and f |= pc′ � pc}

Then we check if a program is of SSA form with the following rules:

∀r.(φ̂uses r =⇒ r ∈ sdomf (pc))

f �̀ φ̂ @ pc

∀rj .(valj uses rj =⇒ rj ∈ sdomf (lj . t))
j

f �̀ r = phi typ [valj , lj]
j

The left rule ensures that a non-φ-instruction (c or tmn) can only use the defi-
nitions in the scope of sdomf (pc); the right rule ensures that in φ, an incoming
value must use the definition that strictly dominates the end of the correspond-
ing incoming block where l . t is the program counter at the end of l . Please refer
to [14] for the type safety proofs of Vminus.

5.2 SSA-based Optimizations

The SSA form is good for implementing optimizations because the SSA invari-
ants make def/use information of variables explicit, enforcing fewer mutable
states [2]. An SSA-based transformation is correct if it preserves the semantics
of the original program and its transformed program is still in SSA. Here, we
briefly show how to reason about well-formedness-preservation by examples.

First, we proved that the strict domination relation at the instruction level
still satisfies transitivity and acyclicity.

Lemma 5.
- If f |= pc1 � pc2 and f |= pc2 � pc3, then f |= pc1 � pc3.
- If pc is in a reachable block, then ¬f |= pc � pc.

Consider the following typical SSA-based optimization:

Mechanized Verification of Computing Dominators 13

Original Transformed

e : · · ·
@pc1

br r0 l1 l2
l1 : r3 = phi int[0, e][r5, l1]

@pc2 r4 := r1 ∗ r2
r5 := r3 + r4
r6 := r5 ≥ 100
br r6 l1 l2

l2 : r7 = phi int[0, e][r5, l2]
@pc3 r8 := r1 ∗ r2

r9 := r8 + r7

e : · · ·
r4 := r1 ∗ r2
br r0 l1 l2

l1 : r3 = phi int[0, e][r5, l1]

r5 := r3 + r4
r6 := r5 ≥ 100
br r6 l1 l2

l2 : r7 = phi int[0, e][r5, l1]

r9 := r4 + r7

In the original program, r1 ∗ r2 is a partial common expression for the defini-
tions of r4 and r8, because there is no domination relation between r4 and r8.
Therefore, eliminating the common expression directly is not correct.

We might transform this program in three steps. First, we move the instruc-
tion r4 := r1 ∗ r2 from l1 to the end of e. Because e strictly dominates l1, we
have f |= pc1 � pc2 where pc1 is exactly before e. t; f defines r4 @ pc2. By
Lemma 5, the definition of r4 at pc1 should still strictly dominate all its uses.

We have f |= pc1 � pc3 where f defines r8 @ pc3, because e strictly domi-
nates l2. Then, we can safely replace all the uses of r8 by r4, because the definition
of r4 at pc1 dominates all the uses of r8 (by Lemma 5).

Finally, by Lemma 5, we know that r4 and r8 cannot be equal. Therefore, we
can remove r8, because there are no uses of r8 after the substitution. The final
program after the transformations is shown on the right of the above example.

5.3 Constructing Dominator Trees

In practice, compilers construct dominator trees from dominators, and analyze
or optimize programs by recursion on dominator trees.

Definition 3.

– A block l1 is an immediate dominator of a block l2, written G |= l1 ≫ l2,
if G |= l1 � l2 and (∀G |= l3 � l2,G |= l3 �= l1).

– A tree is called a dominator tree of G if the tree has an edge from l to l ′

iff G |= l ≫ l ′.

Figure 8 shows the dominator tree of a CFG, in which solid edges represent
tree edges, and dotted edges represent non-tree but CFG edges. Formally, a
dominator tree has the inductive well-formed property with which we can
reason about recursion on dominator trees: given a tree node l , 1) l is reachable;
2) l is different from all labels in l ’s descendants; 3) labels of l ’s subtrees are
disjointed; 4) l immediate-dominates its children; 5) l ’s subtrees are well-formed.

Consider the final analysis results of CHK in Figure 9, we can see that for
each node, its list of strict dominators exactly presents a path from root to the
node on the dominator tree. Therefore, we can construct a dominator tree by

14 Jianzhou Zhao, Steve Zdancewic

0%

50%

100%

150%

200%

250%

O
ve

rh
ea

d
ov

er
 L

L
V

M

CHK-tree

CHK

AC-tree

AC

go
compress ijpeg gzip vpr

mesa art
ammp

equake
256.bzip2

parser
twolf

401.bzip2 gcc mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Fig. 10. Analysis overhead over LLVM’s dominance analysis for our extracted analysis.

merging the paths. We proved that the algorithm correctly constructs a well-
formed dominator tree (See our code). For the sake of space, we only present
that each tree edge represents ≫ by showing that for any node l in the final
state, the list of l ’s dominators must be sorted by ≫.

We first show that the list is sorted by �. Consider two adjacent nodes in
the list, l1 and l2, such that l1 < l2. Because of soundness, G |= l1 �= l and
G |= l2 �= l . By Lemma 4, G |= l2 � l1∨G |= l1 � l2. Suppose G |= l1 � l2, by
completeness, l1 must be in the strict dominators computed for l2, and therefore,
be greater than l2. This is a contradiction. Then, we prove that the list is sorted
by ≫. Suppose G |= l3 � l1. By Lemma 1, G |= l3 � l . By completeness, l3
must be in the list. We have two cases: 1) l3 ≥ l2: because the list is sorted by
�, G |= l3 �= l2; 2) l3 ≤ l1: this is a contradiction by Lemma 3.

6 Performance Evaluation

We use Coq extraction to obtain a certified implementation of AC and CHK.
We evaluate the performance of the resultant code on a 1.73 GHz Intel Core i7
processor with 8 GB memory running benchmarks selected from the SPEC CPU
benchmark suite that consist of over 873k lines of C source code.

Figure 10 reports the analysis time overhead (smaller is better) over the
LLVM dominance analysis (which uses LT) baseline. LT only generates domi-
nator trees. Given a dominator tree, the strict dominators of a tree node are
all the node’s ancestors. The second left bar of each group shows the overhead
of CHK, which provides an average overhead of 27.45%. The right-most bar of
each group is the overhead of AC, which provides 36.02% on average.

To study the asymptotic complexity, Figure 11 shows the result of graphs
that elicit the worst-case behavior used in [8]. On average, CHK is 86.59 times
slower than LT. The ‘ ’ indicates that the running time is too long to collect.
For the testcases on which AC stops, AC is 226.14 times slower than LT.

The results of CHK match earlier experiments [8,5]: in common cases, CHK
runs nearly as fast as LT. For programs with reducible CFGs, a forward iteration
analysis in reverse PO halts in no more than 6 passes [9], and most CFGs of the
benchmarks are reducible. The worst-case tests contain huge irreducible CFGs.

Mechanized Verification of Computing Dominators 15

Instance Analysis Times (s)

Name Vertices Edges LT CHK CHK-tree AC AC-tree

idfsquad 6002 10000 0.08 10.54 24.87
ibfsquad 4001 6001 0.14 11.38 13.16 12.43 30.00
itworst 2553 5095 0.14 8.47 11.22 19.16 69.72
sncaworst 3998 3096 0.19 17.03 32.08 205.07 740.53

Fig. 11. Worst-case behavior.

Different from these experiments, AC does not provide large overhead, because
we use None to represent bot, which provides shortcuts for set operations.

As shown in Section 5.3, CHK computes dominator trees implicitly, while AC
needs additional costs to create dominator trees. Figure 10 and Figure 11 also
report the performance of the dominator tree construction. CHK-tree stands for
the algorithm that first computes dominators by CHK, and then runs the tree
construction defined in Section 5.3. AC-tree stands for the algorithm that first
computes dominators by AC, sorts strict dominators for each node, and then
runs the same tree construction. For common programs, on average, CHK-tree
provides an overhead 40.00% over the baseline; AC-tree provides an overhead
78.20% over the baseline (gcc’s overhead is 361.23%). The additional overhead
of AC-tree is from its sorting algorithm. For worst-case programs, on average,
CHK-tree is 104.48 times slower than LT. For the testcases on which AC-tree
stops, on average, AC-tree is 738.24 times slower than LT.

These results indicate that CHK makes a good trade-off between simplicity
and efficiency.

7 Related Work

Machine-checked formalizations. The Vellvm project [14] uses dominance
analysis to design a type checker of LLVM bitcode in SSA form. This paper ex-
tends and generalizes the implementation and metatheory in the Vellvm project.
The CompCertSSA project [3] improves the CompCert compiler by creating a
verified SSA-based middle-end. They also formalize the AC algorithm to vali-
date SSA construction and GVN passes, and prove the soundness of AC. We
implement both AC and CHK—an extension of AC in a generic way, and prove
they are both sound and complete. We also provide the corresponding dominator
tree constructions, and evaluate performance.
Informal formalizations. Georgiadis and Tarjan [7] propose an almost linear-
time algorithm that validates if a tree is a dominator tree of a CFG. Although
the algorithm is fast, it is nearly as complicated as the LT algorithm, and it re-
quires a substantial amount of graph theory. Ramalingam [13] proposes another
dominator tree validation algorithm by reducing validating dominator trees to
validating loop structures. However, in practice, most of modern loop identifi-
cation algorithms used in LLVM and GCC are based on dominance analysis to
find loop headers and bodies.

16 Jianzhou Zhao, Steve Zdancewic

8 Conclusion

This paper provided an abstract specification of dominance analysis that is cru-
cial for compiler design/verification and program analysis. We implemented and
certified an instance of the specification that has a good trade-off between ef-
ficiency and simplicity. We also presented several applications of the analysis:
a type checker for the SSA form; verifying SSA-based optimizations; and con-
structing dominator trees. This development is a part of the Vellvm project.
However, our work might be used in other compiler verification projects [3].

Acknowledgments We thank Santosh Nagarakatte and Milo Martin whose valuable

discussions and technical input helped us carry out this research. This research was

sponsored in part by NSF grant CCF-1065116. The views and conclusions contained in

this document are those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the U.S. Government.

References

1. F. E. Allen and J. Cocke. Graph theoretic constructs for program control flow
analysis. Technical report, IBM T.J. Watson Research Center, 1972.

2. A. W. Appel. Modern Compiler Implementation in C: Basic Techniques. Cam-
bridge University Press, 1997.

3. G. Barthe, D. Demange, and D. Pichardie. A formally verified SSA-based middle-
end - Static Single Assignment meets CompCert. In ESOP ’12, 2012.

4. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions, 2004.

5. K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm.
Available online at www.cs.rice.edu/~keith/Embed/dom.pdf, 2000.

6. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13:451–490, 1991.

7. L. Georgiadis and R. E. Tarjan. Dominator tree verification and vertex-disjoint
paths. In SODA ’05, pages 433–442, 2005.

8. L. Georgiadis, R. F. Werneck, R. E. Tarjan, and D. I. August. Finding dominators
in practice. In ESA ’04, pages 677–688, 2004.

9. J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms.
J. ACM, 23(1):158–171, Jan. 1976.

10. G. A. Kildall. A unified approach to global program optimization. In POPL ’73,
pages 194–206, 1973.

11. T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow-
graph. ACM Trans. Program. Lang. Syst., 1:121–141, 1979.

12. X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

13. G. Ramalingam. On loops, dominators, and dominance frontiers. ACM Trans.
Program. Lang. Syst., 24(5):455–490, 2002.

14. J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the
LLVM intermediate representation for verified program transformations. In POPL
’12, 2012.

www.cs.rice.edu/~keith/Embed/dom.pdf

	Mechanized Verification of Computing Dominators for Formalizing Compilers
	Introduction
	The Specification of Computing Dominators
	Specification
	Instantiations

	The Allen-Cocke Algorithm
	DFS: PO-numbering
	Kildall's algorithm
	The AC Algorithm

	Extension: the Cooper-Harvey-Kennedy Algorithm
	Correctness

	Applications
	Type Checker
	SSA-based Optimizations
	Constructing Dominator Trees

	Performance Evaluation
	Related Work
	Conclusion

