
Confidentiality and Integrity with Untrusted Hosts:

Technical Report

Steve Zdancewic Andrew C. Myers∗

Cornell University

Abstract

Several security-typed languages have recently been proposed to enforce security properties
such as confidentiality or integrity by type checking. We propose a new security-typed language,
Spl@, that addresses two important limitations of previous approaches.

First, existing languages assume that the underlying execution platform is trusted; this as-
sumption does not scale to distributed computation in which a variety of differently trusted hosts
are available to execute programs. Our new approach, secure program partitioning, translates
programs written assuming complete trust in a single executing host into programs that execute
using a collection of variously trusted hosts to perform computation. As the trust configuration
of a distributed system evolves, this translation can be performed as necessary for security.

Second, many common program transformations do not work in existing security-typed
languages; although they produce equivalent programs, these programs are rejected because of
apparent information flows. Spl@ uses a novel mechanism based on ordered linear continuations
to permit a richer class of program transformations, including secure program partitioning.

This report is the technical companion to [ZM00]. It contains expanded discussion and
extensive proofs of both the soundness and noninterference theorems mentioned in Section 3.3
of that work.

1 Introduction

Stronger protection for the confidentiality (secrecy, privacy) and integrity of data is becoming
increasingly important, because programs containing untrusted code and networks containing un-
trusted hosts are the rule rather than the exception. An approach that has recently been under
investigation is the idea of enforcing static information flow control [DD77] via type systems in
which the types include a security attribute [PO95, VSI96, ML97, HR98, SV98, Mye99, ABHR99].
We call these languages security-typed languages.

Information flow control is attractive because, unlike ordinary access control, it can enforce
end-to-end security policies. These policies require that data be protected even if it is used for
computation by untrusted code: for example, a simple end-to-end confidentiality policy might
require that a particular data item is readable only by a particular set of users—regardless of what

∗E-mail: {zdance,andru}@cs.cornell.edu X
Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory,
Air Force Material Command, USAF, under agreement number F30602-99-1-0533. The U.S. Governement is
authorized to reproduce and distribute reprints for Governement purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsement, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Laboratory, or the U.S. Government.

1

code manipulates the data information derived from it. Thus, security is protected even when a
program comprises many separately developed components.

End-to-end security policies are particularly attractive given current trends in computation.
Increasingly, computations are collaborations between principals with distinct security interests,
and are distributed across a set of hosts. Ordinary web transactions already fit this description,
but we can expect to see more complex, interesting examples with the increasing use of business-
to-business transactions.

Because of the support for end-to-end security policies, static information flow control would
seem to be ideal for enforcing the security of distributed computation. However, existing languages
ignore an important aspect of distributed computation: the hosts on which computation is per-
formed are not universally (or equally) trusted by the participants in the computation. These hosts
may leak or damage data even though the programs that run on them are correct.

For security, any distributed computation should be partitioned so that no participant is re-
quired to place undue trust in a host. For example, data that is confidential to a particular principal
should not be transferred to a host that is not trusted by that principal. This observation applies
even to conventional security mechanisms, of course, where the partitioning is performed manually,
and computations spanning multiple hosts are usually described as separate programs communi-
cating over the network. However, this idea of program partitioning can be used to guide the
automated application of information flow control to decentralized, distributed systems.

This paper proposes a new approach to security in distributed systems, called secure program
partitioning. A program is written in a language in which security policies can be embedded as
type annotations. Although the program is to run on a set of communicating hosts, it need not
contain explicit information about where code runs or about inter-host communication. Given
a set of hosts that are available for execution, a program is then transformed automatically by
partitioning its code across the available hosts while ensuring that security invariants are maintained
by each partition. The key invariant maintained by the partitioning transformation is that a host
manipulates some data only if the host is sufficiently trusted by all principals that have an interest
in the privacy or integrity of that data.

This work makes several contributions towards realizing this new model of security enforcement:

• It introduces the security-typed language Spl@ (pronounced “splat”), which has both a
unlocated variant in which hosts are not mentioned and a located variant in which the host
on which each piece of code runs is explicitly stated. Spl@’s type system validates the
information flows within programs of either form and has been shown sound for the language
with respect to a simple operational semantics.

• We give type-driven rewrite rules that transform a program from the unlocated form to the
located form, partitioning the code among various hosts, while preserving typing. Transfers
of control between the hosts are automatically introduced to ensure that security constraints
are satisfied.

• Spl@ is the first security-typed language with support for continuations. Continuations are
an important linguistic feature for an intermediate language [FSDF93] because they subsume
a variety of control structures and closely model low-level computation: in this language,
they are the only control structure other than conditionals. However, continuations make
acceptably precise bounds on implicit information flow difficult to obtain. This language uses
ordered linear continuations in a novel way to recover this precision.

• Spl@ introduces support for security labels that protect both confidentiality and integrity.
It also permits selective declassification [ML97, ML00] of both security label components.

2

Labels
P = Principals
L = {〈A, B〉 | A, B ⊆ P}

`, pc ∈ L
> def= 〈P, ∅〉
⊥ def= 〈∅, P〉

Hosts
h ∈ H

TP(h) ⊆ P

Figure 1: Syntax for labels and hosts

We demonstrate a coupling between confidentiality and integrity in the presence of such a
declassification mechanism.

This work does not address termination channels or timing channels. Furthermore, communi-
cation between hosts is assumed to be protected and authenticated by encryption; for example,
pairwise private-key encryption will suffice. Section 2.9 discusses assumptions about the run-time
environment further.

Programs are single-threaded, so various covert information flows that can arise in a concurrent
language are not addressed. Termination channels and timing channels are ignored, so programs
can leak one bit of information by failing to terminate, or by controlling their run time. Preven-
tion of information flow is also subject to certain assumptions about the distributed computing
environment.

The remainder of the paper is organized as follows. Section 2 overviews Spl@’s features at
a high level. It then presents the security model and implementation issues. Section 3 illustrates
Spl@’s type system and operational semantics, and Section 4 contains a discussion of the language’s
formal properties, including the proofs of soundness and noninterference. Section 5 describes the
partitioning translation. Sections 6 and 7 finish up with related work and our conclusions.

2 The Spl@ language

This section presents an informal overview of the Spl@ language and sketches how the language
can be used to write programs that may then be securely partitioned. Formal definition of the
typing rules and operational semantics are given in Section 3 and Appendix A.

2.1 Security labels

As in other security-typed languages [VSI96, ML97, SV98], secure values, written bv`, have both
an ordinary value component bv (for base value) and an attached security label `, expressing the
security requirements (confidentiality, integrity or both) for that value. The security labels do not
need to be maintained at run time, because all run-time label checks will succeed in a well-typed
program.

As shown in Figure 1, the lattice of security labels, L, consists of pairs of principals, written
〈A, B〉. We use the meta-variables ` and pc to range over elements of the security lattice, using

3

the latter to suggest that the label is annotating the program counter, as described below. Labels
contain two components: a confidentiality component, A, that controls who is able to view the
labeled data, and an integrity component, B, that controls who is able to affect the labeled data.
The ordering 〈A, B〉 v 〈A′, B′〉 means that a value can be securely relabeled from the label on the
left to that on the right. This is the case if the privacy component A′ restricts the dissemination
of the value at least as much as A did (otherwise the value could go to new places as the result of
a relabeling), and the integrity component B′ claims at most the integrity that B does (otherwise
the integrity of the value might be claimed to increase as the result of relabeling).

The privacy and integrity components of the label are a simplified version of those in the
decentralized label model [ML00], retaining only the notion of ownership needed for selective de-
classification. Both the privacy and integrity components are sets of principals drawn from P, which
represent users, groups, roles, and other entities with authority. In a privacy component, the set
contains the principals that have a stake in the data: they are owners or sources of the data. The
principals are similar to categories in classic multilevel security policies [FLR77], except for their
interaction with declassification. The ordering on privacy components is ordinary set inclusion: the
most restrictive privacy component is the set of all principals P, in which every principal wishes to
control the flow of the data; the least restrictive privacy component is the empty set, in which no
principal cares about the data.

An integrity component is the set of principals that believe the data not to be corrupted. The
ordering relation is reverse set inclusion, because the most restrictive integrity component is the
empty set, in which no principal believes that the data has integrity. Such data can only be used
in contexts where no integrity is required. The least restrictive integrity is the set of all principals
P; since every principal vouches for the integrity of the data, it can be used anywhere.

Given this label structure, the ordering on the security label product lattice is as follows:

A ⊆ A′ B ⊇ B′

〈A, B〉 v 〈A′, B′〉

The set of all principals is written as P; given this label ordering, the least possible label ⊥ and
the greatest possible label > are defined as shown in the figure. We use u and t to denote the
lattice meet and join operators, respectively.

In the located version of the language, hosts may be named explicitly. For each host h in the
finite set of all hosts H, TP(h) a set of principals that trusts that h. This set is used statically to
determine what data and computation can be placed at h.

2.2 The security context

At any given point during execution, the executing code possesses some authority, a set of principals
for which the code is authorized to act. Authority is declared in the program and statements
that require authority, such as the declassify primitive, are checked statically against the declared
authority.

In addition to authority, each program point has an associated program counter label, pc, that
indicates the security label of information on which the program counter depends. Instructions
executed at a program counter labeled pc are restricted so they can only transmit information to
memory locations with labels higher than pc in L. The program counter label allows implicit flows
of information to be controlled conservatively [Mye99].

Together, the authority A and program counter pc constitute a security context for the evalu-
ating code. We write this context as [A, pc].

4

Types
τ ::= int | 1 | σ ref | [A, `](σ, κ) cont
σ ::= τ`

κ ::= 1 | (σ, κ) lcont

Contexts
Γ ::= • | Γ, x :σ
K ::= • | K, y :ρ

Values
bv ::= n | 〈〉 | Lσ@h

| cont@h fB [A, `](x :σ, y :κ) = e
v ::= bv` | x

lv ::= 〈〉 | lcont@h[A, `](x :σ, y :κ) = e

Primops
prim ::= v | v ⊕ v | deref(v)

| declassify(v, `)

Expressions
e ::= let x = prim in e

| let x = (ref(σ) v)` in e

| set v := v in e
| if0 v then e else e

| letlin y = lv in e
| goto v v lv
| lgoto lv v lv

| actsFor (A) then e else e
| setpc (`) in e

| haltσ v

Figure 2: Syntax

5

2.3 Spl@ syntax

The syntax of both the located and unlocated variants of Spl@ is given in Figure 2. The only
syntactic difference between the two is that the host annotation on code (@h) is omitted in the
unlocated variant. An unlocated program is always equivalent to the same program in the located
language, in which annotations locate all code at a universally trusted host (TP(h) = P).

The language is call-by-value, uses continuation-passing style, and includes imperative features
intended to be suitable for intermediate stages in a translation of a high-level language such as Jif
to lower-level, distributed code.

Spl@ permits only primitive expressions, prim, that manipulate constant values v. Expressions,
e, function as statements that return no value. They consist of nested let or letlin expressions
that introduce new variables in a sequence terminated by a transfer of control.

The language has state: programs may create, observe, and modify locations in the store using
the ref, deref, and set primitives respectively. In the located language, the store locations are
situated at the host where the ref primitive was executed. Accesses to a location cause appropriate
communication between the current host and the host of the location. When a program terminates
execution by evaluating the halt expression, the final value and also the contents of the store are
assumed to be visible to principals in accordance with the privacy components of their security
labels.

2.4 Types

The types of the language fall into two syntactic classes: security types (ranged over by σ) and linear
types (ranged over by κ). Security types are the types of ordinary values and consist of a simple
type component (τ) annotated with a security label `. If σ = τ`, then by definition, label(σ) = `.
In a well-typed program, the run-time label of the value of an expression is always bounded above
in the lattice by the label component of that expression’s security type.

The simple types are the types of integer values, int, a unit type 1, references to a security
type, σ ref, and the type of ordinary continuations, [A, pc](σ, κ) cont. Correspondingly, an or-
dinary base value (bv) is an integer n, a unit 〈〉, a memory location Lσ@h, or a continuation
cont@h fB [A, pc](x :σ, y : κ) = e. For simplicity of presentation, we have omitted even standard
type constructors such as pairs and sums, although they could be added easily.

To make the examples in this paper more readable, the labels on unit values, which can transmit
no information, often omitted. To avoid having to parenthesize location values like this: (Lσ@h)`,
we write Lσ

` @h instead.
An ordinary continuation value, denoted by cont@h fB [A, pc](x : σ, y : κ) = e, is a piece of

code (the expression e) located at host h. It accepts a nonlinear argument of type σ and a linear
argument of type κ. The code of the continuation has been granted authority at compile time
to act for the principals in the set B; presumably those principals have reviewed this code and
deemed that it does not violate their security. The notation [A, pc] indicates that this continuation
may only be invoked from a calling context in which authority is known to be at least A and in
which the program counter is labeled with at most pc. These restrictions are indicated by its type,
[A, pc](σ, κ) cont. Ordinary continuations may be recursive: the body of the continuation may
invoke itself using the name f .

2.5 Ordered linear continuations

Continuations are particularly useful for an intermediate language because they subsume a variety
of other control constructs. However, there is a difficulty in supporting continuations in a security-
typed language. With straightforward, sound typing rules, implicit flows arising from branches in

6

letlin k = lcont[∅, pc](x :1, y :1) =
set z := 3 in (∗pc∗)
halt1 〈〉

in
if0 xH then

set y := 1 in (∗pc t H∗)
lgoto k 〈〉 〈〉

else
set y := 2 in (∗pc t H∗)
lgoto k 〈〉 〈〉

Figure 3: Using ordered linear continuations to improve precision.

the control structure can never be eliminated. Consider the following source-level program, which
tests the high-security integer xH and eventually performs the safe assignment to the low-security
reference z:

if0 xH then {y := 1; } else {y := 2; }; z := 3;

Informally, a CPS translation of the above code results in something like the following, where k is
the continuation of the if0 statement:

let k = (λ(). z := 3) in if0 xH then y := 1; k() else y := 2; k()

The problem is that the invocation of the continuation k appears within the branches of the con-
ditional, so to avoid an implicit flow, the simple typing rules of both SLam [HR98] and Jif [Mye99]
conservatively require that k’s body not write to z.

The Spl@ language introduces ordered linear continuations to avoid this loss of precision. Linear
continuations differ from ordinary continuations in that, once introduced, they must be invoked
exactly once in all subsequent control flow paths (unless the program diverges, in which case
the linear continuation may never be invoked). This restriction prevents two different branches
in a program from leaking information by discarding or repeating a continuation. To avoid the
possibility that information could be leaked by invoking two linear continuations in different orders,
Spl@ enforces a stronger property—if used at all, linear continuations that are simultaneously in
scope must be used in the same order in every possible execution of the program. In conjunction,
these two features allow linear continuations to capture the security context in which they are
declared and restore that security context when they are invoked.

Figure 3 shows the example translated using a linear continuations to describe the merge-
point of the two branches, which is allowed because the branches both terminate in jumps to the
continuation k. At k’s invocation the program counter contains no information about which branch
has been taken, so its label can be restored to what it was at the declaration k. The comments
indicate the label of the program counter, assuming it initially starts at label pc. Spl@’s type
system enforces a stack discipline for the ordering of linear continuations which can reflect the
lexical structure of a higher-level source language. Branches encode information about conditional
values into the program counter; linear continuations undo this effect by forcing control back to
a single point. A linear continuation is a first-class merge point in the control-flow graph that
controls implicit flows with greater precision.

There are two types of linear values (lv): linear unit, used only to indicate the lack of a linear
argument to a continuation, and linear continuations themselves. Because a linear continuation

7

restores a captured security context, there are no constraints imposed on that context at the point
of invocation. Therefore the types of linear continuations don’t need to mention a security context,
and have the form (σ, κ) lcont. Linear values and ordinary values are have distinct syntax in
Spl@, and are never allowed in the same syntactic position. For example, the first argument to a
continuation must be an ordinary, nonlinear value of type σ and the second must be a linear value
of linear type κ. Because Spl@ contains explicit syntax for writing down linear continuations, and
their intended meaning is to capture a security context, we must restrict initial programs so that
all linear continuations are introduced via the letlin construct. (Otherwise it would be possible
to write down linear continuations that don’t capture any appropriate context and hence violate
security.)

Linear continuations have another useful property: unlike ordinary values, linear values do not
require security annotations, because there is no way to communicate information by selecting
among several choices of linear continuations.

2.6 Security invariants

The type system of Spl@ maintains a number of security invariants that are desirable in a system of
heterogeneously trusted machines. Type-safety in Spl@ guarantees more than traditional memory
safety and progress; there are also guarantees about authority and security.

In general, integrity constraints on data with label ` originating from a host h are captured by
the requirement that 〈∅, TP(h)〉 v `, that is, the set of principals who trust the data labeled with `

is at most the set of principals who trust h. Dually, the confidentiality requirement on data labeled `
flowing to a host h is expressed by ` v 〈TP(h), ∅〉, which says that the set of principals who own the
data are included in those principals who trust the host h. The integrity constraints are enforced
when data is sent from a host: the goto, lgoto, halt, and assignment operations. Conversely,
privacy constraints appear where information can arrive from another host: the rule for values
(which arrive via substitution), and in the declaration rules for both kinds of continuations. These
constraints apply to the label of the program counter; so 〈∅, TP(h)〉 v pc v 〈TP(h), ∅〉. For a
security label ` that satisfies these conditions, we write ` ` ok @h.

The requirement that 〈∅, TP(h)〉 v pc can be seen by thinking of the operational behavior of
the goto: it effectively transfers control to a (possibly) different host machine. We think of the
values that leave h as being stamped with the security label of the program counter at the point of
the call (this is made explicit in the operational semantics). Because host h is trusted by only the
principals TP(h), the values leaving h should never have more integrity, thus the program counter
is bounded below by the integrity constraint 〈∅, TP(h)〉 v pc.

The type system also maintains the invariant that in every security context, A ⊆ TP(h). This
guarantees that the authority used in the piece of code running on h does not exceed the maximum
authority available to h.

Some simple security properties can be read directly from the operational semantics: for in-
stance, a value with a high security label is never written to a memory location readable by
low-security hosts. It is clear that full Spl@ does not exhibit the noninterference property intro-
duced by Goguen and Meseguer [GM82, GM84] and studied in a programming languages setting
more recently [VSI96, SV98, HR98], because of the presence of declassify and setpc. Because
of the limitations of noninterference, these unsafe operators are important for implementing many
programs and are therefore important to model in the language.

2.7 An interaction between privacy and integrity

One subtle aspect of secure program partitioning is that the declassify operator introduces a
coupling between the integrity and privacy components of security labels in the program. Clearly,

8

let secret = 42〈{root},P〉 in
. . .

let check = cont@h1 check{}[∅,⊥](x : intL, y : 1) = (
let unsafe = cont@h2 unsafe{root}[∅, L](z : 1, y :1) = (

let s = declassify(secret, 〈∅, {root}〉 t L) in (∗ pc = L ∗)
halt〈∅,{root}〉tL s

) in
if0 x then goto unsafe 〈〉 〈〉 (∗ pc = L ∗)

else halt〈∅,{root}〉tL 0
)

Figure 4: The need for pc integrity

the declassify operation is unsafe for the principals whose security is weakened by it; it therefore
requires that the program has the authority of any such principal p at the point of its use. The
security invariant A ⊆ TP(h) then guarantees that the declassification takes place on a suitably
trusted host.

However, there is a another invariant to be maintained. Because the declassify operation is
unsafe for the principal p, the decision to perform the operation should be based on data that p
trusts. This condition is expressed by requiring that the program counter label’s integrity compo-
nent include p, which ensures that the code that affects the decision to declassify is run only on
hosts trusted by p.

Figure 4 shows why this constraint is needed. The program in the figure contains a piece of
code named check that tests its argument x and uses its value to decide whether to invoke some
encapsulated code named unsafe. The unsafe code uses the authority of the principal root to release
the secret value contained in the variable secret (note that the privacy component of the label is
declassified from {root} to ∅). Left unspecified in the program are the label L and the two hosts
h1 and h2. It is clear that the host h2 must be a host that the principal root trusts. What is less
obvious is that root must also trust h1. If the code of check is run on a host that root does not
trust, then that host is in charge of determining whether to invoke unsafe and may do so improperly.
Because the integrity component of pc must include at least the principal root, according to the
condition above, so must the integrity component of L. Therefore, h1 must be trusted by root.
This example shows that integrity must be maintained in order to protect privacy.

2.8 A translation example

Figure 5 gives a small example of a C program and its equivalent in the unlocated version of Spl@.
(We have omitted the label on the ref operations; assume it is ⊥.) The label H = 〈{p1, p2}, {p1}〉
represents a high-security level for secret data, and the label L = 〈∅, {p1}〉 is low-security.

The same code after partitioning might look as shown in Figure 6. Note that code that can
run on the machine low has been moved there. In this simple example, the host high is trusted
by {p1, p2} and low by {p1}. Therefore the data labeled with H is not allowed to move to low
(6 ` H ok @low). Execution begins on high, and proceeds as follows: high → low → high → low.

2.9 Implementation issues

This work assumes a secure network: messages between hosts cannot be intercepted or damaged.
A secure network can be constructed atop an insecure network through well-known encryption
techniques. However, the security of Spl@ also requires that some dynamic checks be performed
by the run-time system when inter-host actions, such as remote reads or writes, are performed.

9

int h1 = 0;
int h2 = 0;
int l1 = 0;
int l2 = 0;
h1 = h2;
h2 = h2 + h1;
l1 = l2;

let h1 = ref (intH) 0 in
let h2 = ref (intH) 0 in
let l1 = ref (intL) 0 in
let l2 = ref (intL) 0 in
let t1 = deref(h2) in
set h1 := t1 in
let t2 = deref(l1) in
let t3 = t1 + t2 in
set h2 := t3 in
let t4 = deref(l2) in
set l1 := t4 in

haltL t4

Source Program Spl@ Program

Figure 5: A simple program

let h1 = ref (intH) 0 in
let h2 = ref (intH) 0 in
letlin lc1 = lcont@low [∅, L](x:1, y:1) = (

let l1 = ref (intL) 0 in
let l2 = ref (intL) 0 in
letlin hc1 = lcont@high [∅, L](x:1, y:1) = (

let t1 = deref(h2) in
set h1 := t1 in
let t2 = deref(l1) in
let t3 = t1 + t2 in
set h2 := t3 in
letlin lc2 = lcont@low [∅, L](x:1, y:1) = (

let t4 = deref(l2) in
set l1 := t4 in

haltL t4
) in

lgoto lc2 〈〉 〈〉
) in

lgoto hc1 〈〉 〈〉
) in

lgoto lc1 〈〉 〈〉

Figure 6: The simple program partitioned into located form

10

To invoke an ordinary continuation with type ([A′, pc′](τ, σ) cont)`, the security context [A, pc]
at the point of the invocation must satisfy the constraints A′ ⊆ A and pct` v pc′. A legal invocation
of the continuation can only come from one of the hosts satisfying the conditions ` pc′ ok @h and
A ⊆ TP(h). This condition is checked dynamically to ensure that an untrusted host does not
simulate a call to the continuation and thus fabricate authority. Legal reads and writes to a store
location whose contents are labeled with ` are also checked dynamically to come only from a host
h such that ` l ok @h.

Enforcing the properties of linear continuations at run time requires one-time capabilities. the
form (lcont@h . . .) is evaluated, the host h constructs a closure object and hands the remote
reference back to the originating host. The call-site must present the capability to invoke the
continuation, after which both the closure and the capability are destroyed.

3 Semantics

This section discusses the novel features of the Spl@ type system and operational semantics. It
also sketches some of the formal properties of the language.

3.1 Type system

The type system for Spl@ is similar to those found in the literature [VSI96, ML97, HR98, SV98,
Mye99]. This section examines some of the more interesting typing rules; the complete set can be
found in Appendix A.

Two separate contexts are maintained for type-checking purposes. We treat Γ as a finite partial
map from nonlinear variables (x and f) to security types, whereas K is an ordered list of pairs
of linear variables (y) and their corresponding types. The two contexts are separated by ‖ in the
typing judgments. The rules maintain the ordering on K: if K = •, (yn :κn), . . . , (y1 :κ1) then the
continuation y1 will be invoked before any of the y2 . . . yn are (if at all). K can be strengthened by
dropping unit variables1. Also, to avoid problems with associativity of the context concatenation
operator, we treat linear contexts as being equivalent up to the rules described in Appendix A.

The first kind of typing judgment is of the form Γ ` v : σ. It determines when the value v
is well-typed, and it captures invariants that are independent of the host on which the value is
residing. These rules are, for the most part, standard. Ordinary values cannot contain free linear
variables because discarding the value would break the linearity constraint.

The rules for linear values are of the form Γ ‖ K ` lv : κ. A linear variable may be mentioned
only if no other linear variables are present in the context.

A memory location Lσ
` @h is a remote pointer to a value of type σ stored on host h. The

pointer itself has been annotated with the security label `. In order for such a location to be
well formed, it must be the case that the data pointed to by the reference is allowed to reside on
h. The security label of σ must have a confidentiality requirement no greater than TP(h), the
maximum confidentiality guaranteed by the machine h. Likewise, the integrity of data pointed to
by the reference can be no better than TP(h), because only those principals in TP(h) trust the
data generated by h. These constraints are captured in the following rules:

` label(σ) ok @h

Γ ` Lσ
` @h : σ ref`

〈∅, TP(h)〉 v ` v 〈TP(h), ∅〉
` ` ok @h

1Note that this is sound because it is impossible for linear unit values to reach an active position during evaluation.

11

Here is the rule for linear continuations:

pc v 〈TP(h), ∅〉
label(σ) v 〈TP(h), ∅〉

Γ, x :σ ‖ y :κ, K [A, pc] @h ` e

Γ ‖ K ` lcont@h[A, pc](x :σ, y :κ) = e : (σ, κ) lcont

The first two conditions require that the labels on the program counter and argument x be public
enough that h is trusted to manipulate them. The linear argument, y, can be thought of as the
tail of the stack of continuations that have yet to be invoked. Intuitively, this judgment says that
the continuation promises to invoke the continuations in K before jumping to the continuation
represented by y, and it is under these assumptions that the body e is checked.

During computation, the substitution operation will cause values to propagate to various hosts.
To prevent secret data from being sent to untrusted hosts, we also require a rule that determines
when it is permissible for a value to be substituted into a located expression. The following rule
expresses this privacy constraint:

Γ ` v : τ` ` v 〈TP(h), ∅〉
Γ @h ` v : τ`

The rules for both linear and nonlinear continuations need to determine when the body of
the continuation is well-typed. The judgments for type-checking code expressions are of the form
Γ ‖ K [A, pc] @h ` e. The remainder of the judgment can be read as “in a context where the
program has at least the authority to act for the principals in A, and the control flow depends on
values of at most security label pc, the code e can be executed on h.”

As an example, consider the following rule for type-checking conditional branches:

Γ @h ` v : int` Γ ‖ K [A, pc t `] @h ` ei 〈∅, TP(h)〉 v pc

Γ ‖ K [A, pc] @h ` if0 v then e1 else e2

This security annotation ` of the integer regulating the branch is propagated to the label of the
program counter when type-checking the branches, reflecting the fact that information about v can
be learned by observing the program counter in either e1 or e2.

The rule for assignment, shown below, checks that the label of the program counter is no more
restrictive than the security label, label(σ), of the values that can be stored in the reference. To
prevent information from being leaked via aliasing, the label ` of the reference value itself may be
no more restrictive than the security label of its contained values [DD77, ML97, HR98].

Γ @h ` v : σ ref` Γ @h ` v′ : σ pc t ` v label(σ) Γ ‖ K [A, pc] @h ` e

Γ ‖ K [A, pc] @h ` set v := v′ in e

Together, these two rules ensure that information learned by branching on an integer cannot be
stored into a low-security memory location.

Linear continuations are introduced with the following typing rule:

Γ ‖ K2 ` lcont@h′[A′, pc′](x′ :σ′, y′ :κ′) = e′ : κ′′

κ′′ = (σ, κ) lcont A′ ⊆ A pc v pc′

Γ ‖ K1, y :κ′′ [A, pc] @h ` e

Γ ‖ K1, K2 [A, pc] @h ` letlin y = lcont@h′[A′, pc′](x′ :σ′, y′ :κ′) = e′ in e

The rule above says that the actual authority declared by the linear continuation (A′) is less than
that available (A) when the continuation is introduced, whereas the declared program counter pc′

12

is more restrictive. These measures ensure that the linear continuation “captures” the security
context (or one more restrictive) at the point of declaration.

Maintaining the ordering property on requires some work. The linear context is split into
two parts, K1 and K2. The body of e is checked under the assumption that continuation y is
invoked before any of the continuations in K1. Because the continuation bound to y invokes the
continuations in K2 before its argument (as seen above in the lcont checking rule), the ordering
relation K1, K2 in subsequent computation will be respected.

Compare the rules for lgoto and goto:

Γ ‖ K2 ` lv1 : (σ, κ) lcont
Γ @h ` v : σ

Γ ‖ K1 ` lv2 : κ

〈∅, TP(h)〉 v pc v label(σ) A ⊆ TP(h)
Γ ‖ K1, K2 [A, pc] @h ` lgoto lv1 v lv2

Γ @h ` v : [A′, pc′](σ, κ) cont`
Γ @h ` v′ : σ pc t ` v label(σ)

Γ ‖ K ` lv : κ

〈∅, TP(h)〉 v pc pc t ` v pc′ A′ ⊆ A ⊆ TP(h)

Γ ‖ K [A, pc] @h ` goto v v′ lv

They both require that the arguments to the continuation be of the right type, and that the
label of the argument to the continuation be more restrictive than the current program counter.
The key differences are the constraints on the security context of the ordinary continuation. The
target of a goto inherits the calling security context, while the target of a lgoto restores the security
context of the point at which it was declared.

The proper ordering of the linear context is maintained in the lgoto rule because lv1 is being
called and promises to invoke its argument after evaluating the continuations in K2. The argument,
lv2 will, in turn, invoke the continuations in K1, hence keeping the order K1, K2.

The key difference between this rule and the one for normal continuations is that the security
label of the calling context does not influence the security label of the body of the linear continu-
ation. This means that when a linear continuation is invoked, the security context is reset to be
that of the point where the continuation was declared.

The last typing judgment form in the language determines when a primitive operation is suitable
for execution on a particular host in a given security context. The most interesting example is the
rule for declassifying values:

Γ @h ` v : τ`′ B ⊆ A `′ u 〈P, B〉 v ` t 〈B, P〉 pc v 〈P, B〉 pc v `

Γ [A, pc] @h ` declassify(v, `) : τ`

This construct allows a set of principals to give up ownership of a piece of data (decrease privacy)
or endorse a piece of untrusted data (increase integrity). The authority of the principals necessary
to perform the declassification (B) must be included in the authority of the current security context.
The relation between `′, the original label of the value, and `, the new label can best be seen as a
combination of two simpler inequalities:

`′ u 〈P, B〉 v ` `′ v ` t 〈B, P〉

The left inequality says that only principals in B can add their endorsement to the integrity of the
data, so that it is now trusted by those principals who originally trusted it plus the members of B.
The right inequality says that only the principals in B may remove their privacy constraints from
the data, all the other privacy interests of the original label must still be observed.

The condition pc v ` implies that it is never possible to declassify a value to below the security
label on the current program counter. Effectively, each value’s label is implicitly joined with the
label of the program counter—the only way to remove the effects of that stamping is to use the
setpc expression to declassify the program counter.

13

The condition pc v 〈B, P〉 says that principals B trust that the program counter has been
computed correctly, as discussed in Section 2.7.

3.2 Operational semantics

The operational semantics for this language are given in full in Appendix B. We mention a few
salient points here. The model is given in terms of a transition relation between machine configu-
rations of the form

〈M [A, pc]@h� e〉
This configuration denotes a program expression e being run on host h with run-time security
context [A, pc] and memory, M .

Memories are finite partial maps from locations to values. A memory M is considered to be well-
formed (written M wf) if for each location Lσ in M ’s domain • ` M(Lσ) : σ and, furthermore, that
M is closed under dereference. That is, if Lσ ∈ Dom(M) and M(Lσ) = L′σ′

then L′σ′ ∈ Dom(M).
The notation M [Lσ 7→ v] is used to denote both update and extension of the partial map. We use
the notation Loc(e) to denote the set of locations appearing in a program e.

The notations e{v/x} and e{lv/y} denote capture-avoiding substitution of ordinary and linear
values.

Evaluation of primitive operations causes no side effects and yields a value. The notation [[⊕]]
is the semantic operation corresponding to ⊕; thus [[+]] is the integer addition operation.

The operational semantics takes the view that values are stamped with their security labels and
these labels are checked at runtime to ensure that no explicit information leaks occur.

4 Soundness and Security

The purpose of this section is to rigorously prove the soundness of Spl@ and show that the fragment
not containing declassify and setpc exhibits non-interference.

The proofs in this paper assume that all typing derivations for values and linear values are in
canonical form—the derivations alternate between subsumption and non-subsumption rules, ending
with a subsumption rule. (It is always possible to put proofs in this canonical form because of the
reflexivity and transitivity of the ≤ relation.) Similarly, we always assume that the linear contexts,
K, are equivalent up to the ≡ relation, and so omit specific equivalence rules unless needed for
clarity. We also adopt the convention that label(τ`) = `.

Ordinary contexts, Γ, are subject to the usual Strengthening, Weakening, and Exchange oper-
ations; however, linear contexts, K, are not.

As mentioned earlier, we must rule out certain well-typed programs that violate security by
starting out with linear continuations that don’t correspond to merge points. For example, we
need to rule out programs such as

if0 h then
lgoto (lcont@h[A,⊥](x :1, y :1) = set l := 0 in . . .) 〈〉 〈〉

else
lgoto (lcont@h[a,⊥](x :1, y :1) = set l := 1 in . . .) 〈〉 〈〉

We thus make the provision that in a well-formed initial program, all linear continuations are
introduced via letlin.

Definition 4.1 (Initial Program) An initial program is an expression e such that Loc(e) = ∅,
and, for each lgoto lv1 v lv2 subexpression of e, lv1 is a variable and lv2 is either a variable or 〈〉.

14

4.1 Soundness

This section proves the soundness theorem for Spl@. The proof is, for the most part, standard,
following in the style of Wright and Felleisen [WF92, WF94]. We omit discussion of the Subject
Reduction and Progress lemmas.

A simple proposition that we shall not prove is the following:

Proposition 4.1 (Base Value Relabeling) If Γ ` bv` : τ` then Γ ` bv`′ : τ`′ .

We shall use the Base Value Relabeling proposition without mentioning it explicitly in the proofs
below.

Lemma 4.1 (Substitution I) Assume Γ @h ` v : σ then

(i) If Γ, x :σ @h′ ` v′ : σ′ then Γ @h′ ` v′{v/x} : σ′.

(ii) If Γ, x :σ ‖ K ` lv : κ then Γ ‖ K ` lv{v/x} : κ.

(iii) If Γ, x :σ [A, pc] @h′ ` prim : σ′ then Γ [A, pc] @h′ ` prim{v/x} : σ′.

(iv) If Γ, x :σ ‖ K [A, pc] @h′ ` e then Γ ‖ K [A, pc] @h′ ` e{v/x}.

Proof: By mutual induction on the (canonical) derivations of (i)–(iv).

(i) By assumption, there exists a derivation of the form

Γ, x :σ ` v′ : σ′′ ` σ′′ ≤ σ′

Γ, x :σ ` v′ : σ′ label(σ′) v 〈TP(h′), ∅〉
Γ, x :σ @h′ ` v′ : σ′

We proceed by cases on the rule used to conclude Γ, x :σ ` v′ : σ′′. In cases [TV1], [TV2], and
[TV3] we have v′{v/x} = v′, and the result follows by Strengthening and derivation above.
In the case of [TV4], we have either x{v/x} = v, which, by assumption, has type σ = σ′′

or x′{v/x} = x′, also of type σ′′. In either case, this information plus the derivation above
yields the desired result. The case of [TV5] follows from inductive hypothesis (iv).

(ii) This cases follows analogously to the case for (i); the rule [TL3] makes use of inductive hy-
pothesis (iv).

(iii) This follows directly from the inductive hypothesis (i).

(iv) Follows by inductive hypotheses (i)–(iv).

2

Note that neither ordinary values nor primitive operations may contain free linear variables.
This means that substitution of a linear value in them has no effect. The following lemma strength-
ens substitution to open linear values and also shows that the ordering on the linear context is
maintained.

Lemma 4.2 (Substitution II) Assume • ‖ K ` lv : κ and that all bound linear variables appear-
ing in lv′ and e are disjoint from K. Furthermore, assume that K contains only linear continuation
types. Then

(i) If Γ ‖ K1, y :κ, K2 ` lv′ : κ′ then Γ ‖ K1, K, K2 ` lv′{lv/y} : κ′.

15

(ii) If Γ ‖ K1, y :κ, K2 [A, pc] @h′ ` e then Γ ‖ K1, K, K2 [A, pc] @h′ ` e{lv/y}.

Proof: By mutual induction on the (canonical) typing derivations of (i) and (ii).

(i) The canonical typing derivation for lv′ is:

Γ ‖ K1, y :κ, K2 ` lv′ : κ′′ ` κ′′ ≤ κ′

Γ ‖ K1, y :κ, K2 ` lv′ : κ′

We proceed by cases on the rule used to conclude Γ ‖ K1, y :κ, K2 ` lv′ : κ′′.

[TL1] Then κ′′ = 1 and K1, y :κ, K2 ≡ •. It follows that κ = 1 and all the types mentioned
in K1, K2, and K must be 1 as well. Thus, K = •. By the equivalence rules for linear
contexts, we have K1, K, K2 ≡ K1, K2 ≡ •. It thus follows that 〈〉{lv/y} = 〈〉, and
Γ ‖ K1, K2 ` 〈〉 : κ′′.

[TL2] If lv′ = y and κ′′ = 1 then κ = 1. It follows that K ≡ • ≡ K1, y : 1, K2 ≡ K1, K, K2.
By definition of substitution, lv′{lv/y} = lv and so we have Γ ‖ K1, K2 ` lv : κ′′.
This, plus the fact that κ′′ ≤ κ′ concludes this case. If lv′ = y and κ′′ = κ 6= 1,
it follows that K1, y : κ, K2 ≡ y : κ, and hence K1 ≡ K2 ≡ •. This implies that
K1, K, K2 ≡ K and thus by the assumption that lv = y{lv/y} is well-typed under K,
we have Γ ‖ K1, K, K2 ` lv : κ, and the result follows from the subtyping of κ ≤ κ′.
If lv′ = y′ 6= y then σ = 1 and it follows that K ≡ •. Thus K1, K, K2 ≡ K1, K2.
Furthermore, lv′{lv/y} = lv′ = y′ and we have Γ ‖ K1, K, K2 ` lv′ : κ′′. The result
follows via subtyping.

[TL3] This case follows immediately from inductive hypothesis (ii) using the assumption that
the bound linear variable in the linear continuation is disjoint from K.

(ii) This part of the lemma follows almost immediately from the inductive hypotheses. The inter-
esting cases are [TE5] and [TE7], which must ensure that the ordering on the linear context
is maintained. We show the case for [TE5], as [TE7] uses the same technique.

[TE5] By assumption, there is a derivation of the following form:

Γ ‖ Kb ` lcont@h′′[A′, pc′](x′ :σ′, y′ :κ′) = e′ : κ′′

κ′′ = (σ, κ) lcont A′ ⊆ A pc v pc′

Γ ‖ Ka, y :κ′′ [A, pc] @h′ ` e

Γ ‖ K1, y :κ, K2 [A, pc] @h′ ` letlin y′′ = lcont@h′′[A′, pc′](x′ :σ′, y′ :κ′) = e′ in e

Where K1, y : κ, K2 ≡ Ka, Kb. If y appears in Ka then Ka ≡ K1, y : κ, K−
2 and

Kb ≡ K+
2 where K−

2 , K+
2 ≡ K2. In this case, y can’t appear in Kb and it follows

that e′{lv/y} = e′. Inductive hypothesis (ii) applied to Γ ‖ K1, y :κ, K−
2 [A, pc] @h′ ` e

yields Γ ‖ K1, K, K−
2 [A, pc] @h′ ` e{lv/y}. Thus, an application of rule [TE5] yields

the desired result, as K1, K, K−
2 , K+

2 ≡ K1, K, K2.
The case in which y appears in Kb is similar to the one above, except that K1 is split
into K−

1 and K+
1 . If y appears in neither Ka or Kb then κ = 1 and it follows that K ≡ •,

which also yields the desired result.

2

Lemma 4.3 (Canonical Forms I) If • ` v : σ then

16

(i) If σ = int` then v = n`′ for some integer n and `′ v `.

(ii) If σ = 1` then v = 〈〉`′ for some `′ v `.

(iii) If σ = σ′ ref` then v = Lσ′
`′ @h for some h and `′ v `.

(iv) If σ = [A, pc](σ′, κ) cont` then v = (cont@h fB [A′, pc′](x : σ′′, y : κ′) = e)`′ where `′ v `,
A′ ⊆ A, pc v pc′, ` σ′ ≤ σ′′, and ` κ ≤ κ′.

Proof (sketch): By inspection of the typing rules and the form of values. 2

Lemma 4.4 (Canonical Forms II) If • ‖ • ` lv : κ then

(i) If κ = 1 then lv = 〈〉 or lv = y.

(ii) If κ = (σ, κ′) lcont then lv = lcont@h[A, pc](x :σ′, y :κ′′) = e where ` σ ≤ σ′ and ` κ′ ≤ κ′′.

Proof (sketch): By inspection of the typing rules and the form of linear values. 2

Definition 4.2 (Memory Well-formedness) A memory, M , is a partial finite map from the set
of locations to closed values. M is said to be well formed, written M wf, if the following conditions
hold:

(i) For each Lσ in the domain of M , • ` M(Lσ) : σ.

(ii) M is closed under dereference, that is if M(Lσ) = L′σ′
then M(L′σ′

) is defined.

Definition 4.3 (Locations) For any primitive operation, prim (respectively program, e), let Loc(prim)
(respectively Loc(e)), be the set of all locations Lσ@h appearing in prim (respectively e).

Lemma 4.5 (Primitive Evaluation) If • [A, pc] @h ` prim : σ and M wf and Loc(prim) ⊆
Dom(M) and M [A, pc]@h ` prim ⇓ v then • @h ` v : σ.

Proof: By cases on the evaluation rule used.

[P1] By assumption, we have

• ` bv` : τ` ` τ` ≤ τ ′
`′

• ` bv` : τ ′
`′ `′ v 〈TP(h), ∅〉
• @h ` bv` : τ ′

`′ pc v `′

• [A, pc] @h ` bv` : τ ′
`′

We need to show • @h ` bv`tpc : . It follows from the derivation above that ` v `′, and as
pc v `′ it is the case that ` t pc v `′. Thus we have the inequality τ`tpc ≤ τ ′

`′ , and so the
result follows by subsumption and an application of the rule [TV7].

[P2] This case is similar to the previous one.

[P3] In this case, we assume a derivation of the following form:

• ` Lτ`
`′ @h′ : τ` ref`′ ` τ` ref`′ v τ` ref`′′

• @h ` Lτ`
`′ @h′ : τ` ref`′′ pc v ` t `′′ v 〈TP(h), ∅〉
• [A, pc] @h ` deref(Lτ`

`′ @h′) : τ`t`′′

By the well-formedness of M , M(Lτ`) = bv`′′′ and we also have • ` bv`′′′ : τ`. This implies
that `′′′ v `. We must show that • @h ` bv`′t`′′′tpc : τ`t`′′ but this follows from subsumption
and rule [TV7] because `′ t `′′′ t pc v ` t `′′.

17

[P4] This case follows, as in the first two cases, from the assumption that pc v ` in the preconditions
of rule [TP4] plus subsumption.

2

Lemma 4.6 (Program Counter Label) If Γ ‖ K [A, pc] @h ` e then 〈∅, TP(h)〉 v pc v
〈TP(h), ∅〉

Proof (sketch): By induction on the derivation that e is well-typed. The left inequality follows
from the presence of 〈∅, TP(h)〉 v pc on rules for expressions which end basic blocks. The right
inequality follows from the presence of inequalities of the form pc t ` v label(σ), where σ is
the type of a primitive operation or value typechecked at h. Because the rule for typechecking
values (or primitive expressions) at h includes the condition label(σ) v 〈TP(h), ∅〉 it follows that
pc v 〈TP(h), ∅〉. 2

Lemma 4.7 (Program Counter Variance) If Γ ‖ K [A, pc t `] @h ` e and 〈∅, TP(h)〉 v pc
and `′ v ` then Γ ‖ K [A, pc t `′] @h ` e.

Proof: The proof is by induction on the derivation that e is well-typed. Note that because
pct `′ v pct ` all inequalities involving pct ` on the left of v in the typing rules will still be valid
with pc t `′. To see that inequalities in which pc t ` appear on the right of v still hold, note that
these occur only when the left-hand side is 〈∅, TP(h)〉. Because 〈∅, TP(h)〉 v pc v pc t `′ these
inequalities are still valid as well. 2

Lemma 4.8 (Authority) If Γ ‖ K [A, pc] @h ` e then A ⊆ TP(h).

Proof: By induction on the typing derivation for e. The base cases, halt, goto, and lgoto all
explicitly mention this condition. The remainder of the cases follow immediately by the inductive
hypothesis. 2

Lemma 4.9 (Subject Reduction) If • ‖ K [A, pc] @h ` e, and M wf, and Loc(e) ⊆ Dom(M)
and

〈M [A, pc]@h� e〉 7−→ 〈M ′[A′, pc′]@h′
� e′〉

Then • ‖ K [A′, pc′] @h′ ` e′ and M ′ wf, and Loc(e′) ⊆ Dom(M ′).

Proof: By cases on the transition step taken:

[O1] Because let x = prim in e is well-typed, prim is too. Thus by the Primitive Evaluation
Lemma, prim evaluates to a value v of the same type. Substitution I, part (iv) tells us
that e{v/x} is well-typed. Because M doesn’t change it is still well-formed, and to see
that Loc(e{v/x}) ⊆ Dom(M) consider that the only way Loc(e{v/x}) could be larger than
Loc(let x = prim in e) is if prim is a dereference operation and the memory location contains
another location not in e. This case is covered by the requirement that M be closed under
dereference.

[O2] By assumption, that • ‖ K [A, pc] @h ` let x = (ref(σ) bv`)`′ in e. Working back-
wards through the canonical derivation yields the following antecedents: • ` bv` : τ`, and
` τ` ≤ σ, and label(σ) v 〈TP(h), ∅〉, and pc v label(σ), and pc v `′ v 〈TP(h), ∅〉, and
x :σ ref`′ ‖ K [A, pc] @h ` e. From these we conclude that pc t `′ v `′ v 〈TP(h), ∅〉 and via
[TV3] and [TV7] it follows that • @h ` Lσ

`′tpc@h : σ ref`′ . This fact, plus the well-typedness

18

of e lets us apply Substitution Lemma I, (iv) to conclude • ‖ K [A, pc] @h ` e{Lσ
`′tpc@h/x}.

Now, to see that the conditions on M are maintained, note that if bv is a location, then it
is contained in the set of locations of the entire let expression and thus, by assumption must
occur in the domain of M . This implies that M [Lσ 7→ bv`tpc] is still closed under dereference.
Finally, we must check that • ` bv`tpc : σ, but this follows from subsumption and the facts
that τ` ≤ σ and pc v label(σ).

[O3] This case follows similarly to the previous case.

[O4] Assume that • ‖ K [A, pc] @h ` if0 0` then e1 else e2. It follows that • ` 0` : int`′ and
` v `′ and that `′ v 〈TP(h), ∅〉 and • ‖ K [A, pct `′] @h ` e1. Furthermore, pc v 〈TP(h), ∅〉
and so it follows by the Program Counter Variance Lemma that • ‖ K [A, pc t `] @h ` e1.
Because M doesn’t change and it initially satisfied the well-formedness conditions and the
locations of e1 are a subset of the locations of the entire conditional, M is still valid after the
transition.

[O5] This case is nearly identical to the previous one.

[O6] This case follows from Substitution II, (ii), and the fact that the conditions on M are satisfied
after the substitution. Note that the order of K is preserved by the step.

[O7] This case follows from the well-typedness of the body of the continuation being jumped to,
plus two applications of Substitution I, (iv) and one application of Substitution II, (ii). The
fact that bv`′t`tpc has type σ follows from subsumption and the fact that pc t ` v label(σ).

[O8] This case is similar to the previous case.

[O9] This case follows immediately from the fact that the setpc body is well-typed under pc′. The
memory invariants carry through because the locations of the entire expression are just those
in the body of the setpc.

2

Definition 4.4 A configuration 〈M [A, pc]@h� e〉 is stuck if e is not haltσ v for some value v or
no transition rule applies.

Lemma 4.10 (Progress) If • ‖ • [A, pc] @h ` e and M wf and Loc(e) ⊆ Dom(M), then either
e is of the form haltσ v or there exist M ′, A′, pc′, and e′ such that

〈M [A, pc]@h� e〉 7−→ 〈M ′[A′, pc′]@h′
� e′〉

Proof (sketch): By the Canonical Forms lemmas and inspection of the rules. We must ensure
that conditions such as ` `tpc ok @h on rule [P1] are met by well-typed terms. These follow from
the Program Counter Label lemma and the fact that ` is obtained by typing a value at h, which
implies that ` v 〈TP(h), ∅〉. The conditions on the authority are implied by the Authority lemma.

2

Theorem 4.1 (Type Soundness) Well-typed programs do not get stuck.

Proof: By induction on the number of transition steps taken, using Subject Reduction and
Progress. 2

19

4.2 Noninterference

This section proves a noninterference result for the subset of Spl@ that excludes declassify and
setpc. The proof is inspired by the preservation-style proof of noninterference used by Volpano and
Smith [SV98], and shares some similarities with the logical-relations style proof given by Heintze
and Riecke [HR98].

Informally, the noninterference result shows that low-security computations are not able to
observe high-security data. Here, “low-security” refers to an arbitrary label ζ or labels v ζ, and
“high-security” values are those whose labels are 6v ζ. At a high level, the proof works by showing
that at each point in the program’s evaluation, the high-security data can be “factored out” of
the computation, and arbitrarily changed. The noninterference result then states that the original
computation and the one with altered high-security data eventually compute the same low-security
integer as output. Furthermore, the memory locations visible to low-security observers (those
location storing data labeled v ζ) will also be indistinguishable at the end of the computation.

It is worth making a few comments about the strength of this result before describing it in more
detail. As with previous noninterference results for call-by-value languages [HR98], the noninter-
ference result holds only for programs which halt regardless of the high-security data. This means
that information about high-security values can affect whether the program terminates. There are
other possible channels that are not captured by this notion of noninterference: high-security values
can alter the amount of time it takes for the program to compute an answer or alter the memory
consumption of the program. We are able to prove noninterference despite these apparent secu-
rity leaks because the language itself provides no means for observing these resources (for instance
access to the system clock, or the ability to detect available memory).

Intuitively, there are two things that we must keep track of to determine whether a program
exhibits the noninterference property. First, values with labels higher than ζ might potentially leak
to a low-security observer. This is addressed in the type system by guaranteeing that the program
counter label is at least as high as the label on any value that has influenced the control flow of
the program, plus checks to make sure that, for instance, high security data is not written into
low-security memory locations. It is easy to verify from the operational and static semantics that
the program counter label is monotonically increasing except in the case that a linear continuation
is invoked. Thus, the second thing which must be carefully regulated is how linear continuations
are used—the ordering property is the crucial feature here.

To capture these two important features, we will use substitutions.

Definition 4.5 (Substitutions) If Γ is any context, then we write γ |= Γ to indicate that γ is a
finite map from variables to closed values such that Dom(γ) = Dom(Γ) and for every x ∈ Dom(Γ)
it is the case that • ` γ(x) : Γ(x).

Similarly, for K a linear context, we write Γ ` k |= K to indicate that k is a finite map of
variables to linear values (possibly with free variables from Γ) with the same domain as K and such
that for every y ∈ Dom(K) we have Γ ‖ • ` k(y) : K(y).

A substitution γ will be applied to an expression e, written γ(e) to indicate the capture-
avoiding substitution of the value γ(x) for free occurrences of x in the expression e for each variable
x ∈ Dom(γ). We use the similar notation k(e) for application of linear substitutions to a term e.

One of the invariants maintained by well-typed programs is that at each evaluation step it is
possible to factor out the relevant high-security values and those linear continuations that reset the
program-counter label to be v ζ.

The idea that the substitutions contain the “relevant” information is contained in the following
definitions. First, we must allow linear continuations which set the program counter label 6v ζ

20

to appear in the term, because, from the low-security point of view, they are not relevant. This
observation motivate the following definition:

Definition 4.6 (lgoto Invariant) A term satisfies the lgoto invariant if for every subexpression
of the form lgoto lv1 v lv2, it is the case that if lvi = (lcont@hi[Ai, pci](. . .) = . . .) then pci 6v ζ.

If k is a substitution containing only low-security continuations, and k(e) is a closed-term such
that e satisfies the lgoto Invariant, then all of the low-security continuations used in k(e) must be
obtained from k. In this way, we ensure that we have factored out all of the relevant continuations.

What does it mean for us to have factored out the appropriate high-security data? Assume
that we wish to show that two e1 and e2 behave the same from the low-point of view. If the
program counter is v ζ, meaning that e1 and e2 can perform actions visible to the low observer,
a necessary condition for them to be equivalent is that they must perform the same computation
on low-security values. Thus, if e1 are allowed to differ in their behavior on high-security data, we
should at least be able to find substitutions γ1 and γ2 such that both substitutions contain only
high-security data and e1 = γ1(e) and e2 = γ2(e). Note that e1 and e2 can both be written in terms
of e, after factoring out the high-security data. On the other hand, if the program counter is 6v ζ,
then no-matter what e1 and e2 do, their actions should not be visible from the low point of view.
If we extend these intuitions to values and memories, we obtain the formal definitions below:

Definition 4.7 (Substitution Equivalence) Γ ` γ1 ≈ζ γ2 and Γ ‖ K ` k1 ≈ζ k2

We write Γ ` γ1 ≈ζ γ2 if and only if γ1, γ2 |= Γ and for every x ∈ Dom(Γ) it is the case
that label(γ1(x)) 6v ζ and label(γ2(x)) 6v ζ. Furthermore, we require that γi(x) satisfy the lgoto
invariant.

We write Γ ‖ K ` k1 ≈ζ k2 if and only if Γ ` k1, k2 |= K and for every y ∈ Dom(K) it is the
case that k1(y) ≡α k2(y) = lcont@h[A, pc](x :σ, y′ :κ) = e and pc v ζ. It is also necessary that e
satisfy the lgoto invariant.

Value Equivalence v1 ≈ζ v2 : σ

We write v1 ≈ζ v2 : σ if and only if there exist Γ, γ1, and γ2 plus terms v′1 ≡α v′2 such that
Γ ` γ1 ≈ζ γ2 and Γ ` v′1 : σ and Γ ` v′2 : σ and v1 = γ1(v′1) and v2 = γ2(v′2). Furthermore, v′i
must each satisfy the lgoto invariant.

Memory Equivalence M1 ≈ζ M2

We write M1 ≈ζ M2 if an only if for all Lσ ∈ Dom(M1) ∪ Dom(M2) if label(σ) v ζ then
Lσ ∈ Dom(M1) ∩Dom(M2) and M1(Lσ) ≈ζ M2(Lσ) : σ. Furthermore, M1 wf and M2 wf.

Note that this equivalence on memories does not say anything about the locations containing
high-security data.

Definition 4.8 (Noninterference Invariant) The noninterference invariant is a predicate
Γ ‖ K ` 〈M1[A1, pc1]@h1 � e1〉 ≈ζ 〈M2[A2, pc2]@h2 � e2〉 which holds if and only if the following
conditions are all met:

(i) There exist substitutions γ1, γ2, k1, and k2 and terms e′1 and e′2 such that e1 = γ1(k1(e′1)) and
e2 = γ2(k2(e′2)).

(ii) Either (a) pc1 = pc2 v ζ and h1 = h2 and e′1 ≡α e′2 or (b) Γ ‖ K [A, pc1] @h ` e′1 and
Γ ‖ K [A′, pc2] @h′ ` e′2 and pci 6v ζ.

21

(iii) Γ ` γ1 ≈ζ γ2

(iv) Γ ‖ K ` k1 ≈ζ k2

(v) Loc(e1) ⊆ Dom(M1) and Loc(e2) ⊆ Dom(M2) and M1 ≈ζ M2.

(vi) Both e′1 and e′2 satisfy the lgoto invariant.

The Noninterference Invariant conditions spell out the intuition above. Clause (i) says that we
can factor the important high-security information and low-security linear continuation out of the
computations. Clause (ii) says that if the programs are evaluating under low-security pc, then the
underlying computations being performed are the same, whereas when the pc is high, it shouldn’t
matter what the two computations do. Clauses (iii), (iv), and (vi) say collectively that we have
factored out the relevant information. Finally, clause (v) says that the memories contain equivalent
information from the low-security perspective.

The strategy for proving Noninterference is to show that evaluation preserves the invariant.
When the program counter is low, equivalent configurations should evaluate in lock-step (modulo
the values of high-security data). After the program has branched on high-security information (or
jumped to a high-security continuation), the two configurations may temporarily get out of sync, but
during that time, they may only affect high-security data. Eventually, when the program counter
drops low again (via a linear continuation) both computations return to lock-step evaluation.

The first lemma we prove shows that the linear continuations do indeed get called in the order
described by the linear context.

Lemma 4.11 (Linear Continuation Ordering) Assume K = yn : kn, . . . , y1 : k1 and each ki is
a linear continuation type and • ‖ K [A, pc] @h ` e. If • ` k |= K then in any well-formed
configuration 〈M [A, pc]@h� k(e)〉 the continuation k(y1) will be invoked before any of the k(yi).

Proof: The operational semantics is valid for open terms and, indeed, Subject Reduction was
proved for open terms. The Progress Lemma, however, does not hold for open terms. Evaluate the
open term e in the configuration 〈M [A, pc]@h� e〉. If the computation diverges, then none of the
yi’s ever reach an active position, and hence are not invoked. Otherwise, the computation must
get stuck (it can’t halt because Subject Reduction implies that all configurations are well-typed,
and the halt expression requires that the linear context be empty). The stuck term must be of the
form lgoto yi v lv, and, because this term is well-typed, rule [TE7] implies that yi = y1. Thus, in
the computation of k(e), the continuation k(y1) is invoked first. 2

Next, we prove that equivalent configurations evaluate in lock-step as long as the program
counter is low.

Lemma 4.12 (Low-pc Step) If Γ ‖ K ` 〈M1[A1, pc]@h�e1〉 ≈ζ 〈M2[A2, pc]@h�e2〉 and pc v ζ

and
〈M1[A1, pc]@h� e1〉 7−→ 〈M ′

1[A
′
1, pc1]@h1 � e′1〉

then
〈M2[A2, pc]@h� e2〉 7−→ 〈M ′

2[A
′
2, pc2]@h2 � e′2〉

and there exist Γ′ and K ′ such that Γ′ ‖ K ′ ` 〈M ′
1[A

′
1, pc1]@h1 � e′1〉 ≈ζ 〈M ′

2[A
′
2, pc2]@h2 � e′2〉.

Proof: Let e1 = γ1(k1(e′′1)) and e2 = γ2(k2(e′′2)) where the substitutions are as described by
the conditions of the Noninterference Invariant. Note that because pc v ζ, clause (ii) implies
that e′′1 and e′′2 must be alpha-equivalent expressions. This means that the only difference in their
operational behavior arises due to the substitutions being supplied, or the different memories. We
proceed by cases on the transition step taken by the first program.

22

[O1] By α-equivalence, each e′′i must be of the form let x = prim in e. Conditions (iv), (v), and
(vi) will hold after the transition step because those parts of the configuration don’t change.
It suffices to find γ ′

i such that e′1 = γ ′
1(k1(e′′1)) and e′2 = γ ′

2(k2(e′′2)) where e′′1 ≡α e′′2 Consider
the evaluation M1[A, pc]@h ` γ1(prim) ⇓ bv`. If ` v ζ then prim cannot contain any free
variables, for otherwise condition (iii) would be violated. Thus, γ1(prim) = prim = γ2(prim),
and because M1 ≈ζ M2 it follows that M2[A′, pc]@h ` γ2(prim) ⇓ bv`. Thus, we take γ ′

1 = γ1,
γ ′

2 = γ2 and e′′i = e{bv`/x}. Condition (iii) holds because it originally did; conditions (i) and
(ii) are easily verified based on the operational semantics and the fact that pc1 = pc2 = pc.

On the other hand, if ` 6v ζ then M2[A′, pc]@h ` γ2(prim) ⇓ bv′`′ where it is also the case
that `′ 6v ζ. (prim either contains a variable, which forces `′ to be high, or prim contains
a value explicitly labeled with a high-label.) It follows that • ` bv` ≈ζ bv′`′ and so we
take γ ′

1 = γ1{x 7→ bv`} and γ ′
2 = γ2{x 7→ bv′`′}. Take e′′i = e. Condition (iii) continues

to hold because the Primitive Evaluation lemma implies that the mapped values have the
correct types and have high-labels. Conditions (i) and (ii) follow from the definition of the
operational semantics and the fact that e ≡α e, respectively.

[O2] Each e′′i must be of the form let x = (ref(σ) vi)` in e where γi(vi) = bvi`i . By condition (ii) it
follows that v1 ≡α v2 and hence that γ1(v1) ≈ζ γ2(v2). We may thus choose M ′

i = Mi[Lσ 7→
γi(vi)] and still maintain that M ′

1 ≈ζ M ′
2, which implies (v). Now, e′i = γi(ki(e{x/Lσ

`tpc@h}))
and from the operational semantics, we have pc1 = pc2 = pc so that both conditions (i) and
(ii) still hold. Conditions (iii), (iv), and (vi) are still satisfied.

[O3] This case follows similarly to the previous two cases.

[O4] In this case, each e′′i is of the form if0 v then ea else eb. Furthermore, γ1(v1) = 0`. In the
case that ` v ζ, it must be the case that γ2(v2) = 0`, otherwise one of conditions (ii) or
(iii) would be violated. The operational semantics thus allow us to choose γ ′

i = γi, k′
i = ki,

M ′
i = Mi, pc1 = pc2 = pc t `, and e′1 = γ1(k1(ea)) and e′2 = γ2(k2(ea)). All of the conditions

hold easily, as pc t ` v ζ.

In the case that ` 6v ζ, it is possible for γ1(v) to equal 0` and γ2(v) to equal n`′ where
n 6= 0. In this case the first compuation takes the the first branch and the second compuation
takes the second branch. However, it must be the case that `′ 6v ζ, so in both computations
the program counter after the step is 6v ζ, and we ma relate the resulting configurations
via part (b) of clause (ii). Concretely, γ ′

i = γi, k′
i = ki, M ′

i = Mi, pc1 = pc t `, pc2 =
pc t `′, e′1 = γ1(k1(ea)) and e′2 is either γ2(k2(ea)) or γ2(k2(eb)). These choices correspond
to the operational semantics, and allow us to verify that all of the Noninterference Invariant
conditions hold.

[O5] This case is nearly identical to the previous one.

[O6] Then each e′′i is of the form letlin y = lcont@h′[A, pc′](x :σ, y′ :κ) = e′ in e. Furthermore,
because the term is well-typed under Γ and K, we have K ≡ K1, K2 such that the continuation
typechecks under K2 and e typechecks under K1, y : (σ′, κ′) lcont. If pc′ 6v ζ, then we simply
take e′i = γi(ki(e{lcont@h′[A, pc′](x :σ, y′ :κ) = e′/y})). If y appears as the target of lgoto,
this satisfies invariant (vi). The rest of the invariants follow from Substitution II part (ii), the
definition of the operational semantics, and the fact that the memories and program counters
do not change.

Otherwise, pc′ v ζ. Let lvi = lcont@h′[A, pc′](x : σ, y′ : κ) = e′{ki(yj)/yj} where the yj

are the members of Dom(K2). Note that lv1 ≡α lv2. Let K ′ be K1, y : (σ′, κ′) lcont and
let k′

i = ki|K1{y 7→ lvi}. This choice of linear contexts satisfies part (iv) of the invariant.

23

As above, the memories don’t change, and the operational semantics justifies the choice of
e′i = γi(k′

i(e)), which is easily seen to satisfy the remaining invariants.

[O7] In this case, each e′′i = goto v v′ lv. It must be the case that γ1(v) = (cont@h′ fB [A, pc′](x :
σ, y : κ) = e)`. If ` v ζ, it follows that v = (cont@h′ fB [A, pc′](x : σ, y : κ) = e′)` where
e′ = γ1(e) because, by invariant (iii), the continuation could not be found in γ1. There
are two cases, depending on whether γ1(v′) has label v ζ or not. If so, then γ1(v′) ≈ζ

γ2(v′). It thus suffices to take Γ′ = Γ, K ′ = K, and leave the substitutions unchanged, for
we have e′i = γi(ki(e{v/f}{γi(v′) t pc t `/x}{lv/y})). If the label of γ1(v′) 6v ζ, we take
Γ′ = Γ, x : σ and γ ′

i = γi{x 7→ γi(v′) t pc t `}. The necessary constraints are then met by
e′i = γ ′

i(ki(e{v/f}{lv/y})).
The other possibility is that ` 6v ζ. From α-equivalence it follows that the label of γ2(v) is
also 6v ζ. Thus, we have pc1 = pc t ` 6v ζ and similarly, pc2 6v ζ. This implies that the
resulting configurations may use part (b) of clause (ii), and hence it does not matter what the
bodies of the continuations being invoked are, as long as the other invariants are maintained.
Clause (v) is easily seen to be satisfied, because the memory does not change. Similarly,
clause (vi) follows by the conditions of clause (iii) of the source configurations. We build the
new value substitutions as in the previous paragraph, depending on the label of γ1(v′). Note
that the same linear substitutions will suffice after the transition, which is evident from the
Substitution Lemma II and the fact that both continuations must consume all of the linear
resources.

[O8] Each e′′i must be of the form lgoto lv v lv′. If lv is a variable, y, then the result follows easily
from the fact that k1(y) ≡α k2(y). We take K ′ to be the prefix of K excluding y (which must
be the last variable in the list, by typing rule [TE7]). Then k′

i = ki|K′ , and the rest of the
invariants follow similarly to the case of normal continuations discussed above.

If lv is not a variable, then by clause (vi) of the invariant, the program counter being jumped
to his 6v ζ, and, by α-equivalence, this holds for both configurations. The rest of the invariants
are seen to hold as in the case for normal continuations, but this time, K ′ = K.

2

Next, we use the ordering lemma to prove that related high-security configurations stay related
by a transition step. The tricky case is when the program counter becomes low.

Lemma 4.13 (High-pc Step) If Γ ‖ K ` 〈M1[A1, pc1]@h1 � e1〉 ≈ζ 〈M2[A2, pc2]@h2 � e2〉 and
pc1, pc2 6v ζ then

〈M1[A1, pc1]@h1 � e1〉 7−→ 〈M ′
1[A

′
1, pc′1]@h′

1 � e′1〉
implies that either e2 diverges or

〈M2[A2, pc2]@h2 � e2〉 7−→∗ 〈M ′
2[A

′
2, pc′2]@h′

2 � e′2〉

and there exist Γ′ and K ′ such that Γ′ ‖ K ′ ` 〈M ′
1[A

′
1, pc′1]@h′

1 � e′1〉 ≈ζ 〈M ′
2[A

′
2, pc′2]@h′

2 � e′2〉

Proof: The proof is by cases on the transition step taken by the first configuration. The intention
is that because pc1 6v ζ and all of the transition rules except [O8] increase the label of the program
counter we may choose zero steps for the second configuration and still show that ≈ζ is preserved.
Condition (ii) of the Noninterference Invariant will hold via part (b). It suffices to show that in
all cases except for [O8] we simply choose Γ′ = Γ and K ′ = K and show that the remainder of

24

the invariants can still be met. This follows easily because all of the values computed, memory
locations written to, and memory locations created must have labels at least as high as pc1 (and
hence 6v ζ). Thus the only memory locations affected are high-security and it follows easily that
M ′

1 ≈ζ M2. Similarly, the conditions on the letlin rule force any linear continuation introduced
by e1 to contain a program counter annotation that is 6v ζ. We may thus substitute it in e1

without violating clause (vi) of the invariant. Thus for all cases except [O8] it is easy to show that
Γ ‖ K ` 〈M ′

1[A
′
1, pc′1]@h′

1 � e′1〉 ≈ζ 〈M2[A2, pc2]@h2 � e2〉 where we pick 0 steps for the second
configuration.

We now consider the case for [O8]. Let e1 = γ1(k1(e′′1)) Then e′′1 = lgoto lv v1 lv1 for some
lv. In the case that lv is not a variable, clause (vi) of the invariant ensures that the program
counter in the body of lv is 6v ζ. We may thus use the trick above of picking 0 steps for the
second configuration, and it easily follows that the resulting configurations are ≈ζ under Γ and
K. If lv is a variable, y, then the typing rule for lgoto guarantees that K = K ′, y : κ. By
assumption, k1(y) = (lcont@h[A, pc](x : σ, y′ : κ′) = e). Where pc v ζ. Assume e2 does not
diverge. Then by the Linear Continuation Ordering Lemma, we have 〈M2[A2, pc2]@h2 � e2〉 7−→∗

〈M ′
2[A

′
2, pc′2]@h′

2� lgoto k2(y) v2 lv2〉. A simple induction on the length of this derivation sequence
shows that M2 ≈ζ M ′

2 because the program counter in this sequence may not become v ζ. We
thus have M ′

1 = M1 ≈ζ M2 ≈ζ M ′
2. By invariant (iv) k2(y) ≡α k1(y). Furthermore, the typing

rules require that label(σ) 6v ζ. Thus we may take Γ′ = Γ, x : σ, γ ′
1 = γ1{x 7→ γ1(v1) t pc1},

γ ′
2 = γ2{x 7→ γ2(v2) t pc2}. We take k′

1 and k′
2 to be the restrictions of k1 and k2 to the domain

of K ′. We may then choose e′1 = γ ′
1(k

′
1(e)) and e′2 = γ ′

2(k
′
2(e)). All of the necessary conditions are

satisfied as is easily verified via the operational semantics, and so we are done. 2

Finally, we put these lemmas together and use induction to obtain the noninterference result.

Theorem 4.2 (Noninterference) Suppose x :σ ‖ y : (intζ , 1) lcont [A, pc] @h ` e and label(σ) 6v
ζ. We also assume that e is an initial program. Further suppose that • ` v1, v2 : σ. Let stop =
lcont@h′[∅, ζ](x : intζ , y :1) = haltintζ

x. Then

〈∅[A, pc]@h � e{v1/x}{stop/y}〉 7−→∗ 〈M1[∅, ζ]@h′
� haltintζ

n`1〉
and

〈∅[A, pc]@h� e{v2/x}{stop/y}〉 7−→∗ 〈M2[∅, ζ]@h′
� haltintζ

m`2〉

implies that M1 ≈ζ M2 and n = m.

Proof: It is easy to verify that

x :σ ‖ y : (intζ , 1) lcont ` 〈∅[A, pc]@h� e{v1/x}{stop/y}〉 ≈ζ 〈∅[A, pc]@h� e{v2/x}{stop/y}〉

by letting γ1 = {x 7→ v1}, γ2 = {x 7→ v2}, and k1 = k2 = {y 7→ stop}. Induction on the length of
the evaluation sequence of the first expression, using the Low- and High-pc Step lemmas plus the
fact that the second evaluation sequence terminates implies that it must be the case that

Γ ‖ K ` 〈M1[∅, ζ]@h′
� haltintζ

n`1〉 ≈ζ 〈M2[∅, ζ]@h′
� haltintζ

m`2〉

Clause (v) of the definition of the Noninterference Invariant implies that M1 ≈ζ M2. Soundness
of the operational semantics implies that `1 v ζ and `2 v ζ. This means, because of clause
(iii) neither n`1 nor m`2 are contained in the range of γ ′

i. Thus, the integer values present in
the halt expressions do not arise from substitution. Because ζ v ζ, clause (ii) then implies that
haltintζ

n`1 ≡α haltintζ
m`2 from which we obtain n = m as desired. 2

25

5 Translation

This section discusses the translation rules for converting an un-located program to one which
contains host annotations.

The source language is obtained from the located variant by making the additional assumption
that there is a single host h, for which TP(h) = P. It is easy to verify that with this additional
assumption, all of the label inequalities involving TP(h) become trivially true. To make it clear
which inference rules and expressions are from the source language, we drop all occurrences of the
@h marker from them.

The goal of the partitioning translation is to find suitable conditions under which it is safe to
locate a particular computation or value at a host. Our approach is to specify a set of nonde-
terministic rewrite rules which are guaranteed to produce valid partitions of the code, and then
design algorithms which apply the rewrite rules based on trade-offs between network communica-
tion overhead and the cost or availability of trusted machines. Note that for some host machine
configurations there may not be a valid partitioning.

The benefit of formalizing the degree to which hosts are trusted in the programming language
is that the typing rules guide the development of a sound partitioning translation. In fact, the
translation rules can be generated nearly automatically from the typing rules of the target language.
Here we describe how to generate an appropriate set of rewrite rules, and illustrate the process with
a few examples.

Secure values translate to themselves with the exception that continuations (both linear and
nonlinear) are translated by locating them on hosts suitable for the translation of their bodies.

Primitive computations must take place on a single host, thus the primitive prim may be located
at a host h if all of the values mentioned in the primitive may be located there and the TP(h) is
such that Γ [A, pc] @h ` prim′ : σ. For example, the rule for translating primitive values is given
by:

Γ ` v : σ =⇒ Γ @h ` v′ : σ
pc′ v label(σ)

Γ [A, pc] ` v : σ

=⇒
Γ [A′, pc′] @h ` v′ : σ

Here, the symbol =⇒ indicates that the source judgment on the left of the arrow translates
to the target judgment on the right, and we drop the @h from source judgments.

The strategy for expressions is to provide several rewrite rules corresponding to whether or not
subexpressions can be located on the same host. Consider the source expression let x = prim in
e. In the case that the subexpression e can be located at the same host as prim there is no need
to split the computation across hosts:

Γ [A, pc] ` prim : σ =⇒ Γ [A′, pc′] @h ` prim : σ
Γ, x :σ ‖ K [A, pc] ` e =⇒ Γ, x :σ ‖ K [A′, pc′] @h ` e′

Γ ‖ K [A, pc] ` let x = prim in e
=⇒

Γ ‖ K ′ [A′, pc′] @h ` let x = prim′ in e′

If e cannot be located on the same host as prim, we use a linear continuation to split the
computation across hosts:

26

Γ [A, pc] ` prim : σ =⇒ Γ [A′, pc′] @h ` prim′ : σ

Γ, x :σ ‖ K [A, pc] ` e =⇒ Γ, x :σ ‖ K [A′′, pc′′] @h′ ` e′

A′′ ⊆ A′ ⊆ TP(h) ∩ A pc t 〈∅, TP(h)〉 v pc′ v pc′′ v 〈TP(h′), ∅〉
z 6∈ FV (e) y 6∈ FLV (e)

Γ ‖ K [A, pc] ` let x = prim in e

=⇒
Γ ‖ K [A′, pc′] @h `
let x = prim′ in
letlin k = lcont@h′[A′′, pc′′](z :1pc′ , y :1) =

in
lgoto k 〈〉pc′ 〈〉

The constraints on authority and program counter labels were obtained by assuming typing deriva-
tions for e′ and prim′ and then determining what extra conditions are required for the entire
translated term to type-check. This rule also forces the translated term require no more authority
than the source and that the target’s program counter label be at least as restrictive as the source’s.

Translation rules for all of the expressions can be created in this way, but space limitations
prevent us from including all of them. See Appendix C for several more examples.

This procedure for generating the translation rules guarantees that the resulting term is well-
typed. Furthermore, because no annotations on values are changed, the security properties of the
source program carry over onto the target. Correctness of the translation is easy to show using a
simulation argument: disregarding the host annotations on the target code and memory locations,
a source program transition step corresponds to a sequence of transitions in the translated program.
These observations are captured in the following theorems.

Theorem 5.1 (Translation Preserves Typing) If • ‖ • [A, pc] ` e and

• ‖ • [A, pc] ` e =⇒ • ‖ • [A′, pc′] @h ` e′

then • ‖ • [A′, pc′] @h ` e′ and A′ ⊆ A ∩ TP(h) and pc t 〈∅, TP(h)〉 v pc′.

Theorem 5.2 (Translation Correctness) If • ‖ • [A, pc] ` eS and MS is a well-formed mem-
ory such that Loc(eS) ⊆ Dom(MS) and memory locations in Dom(MS) can be assigned locations
to create the well-formed memory MT , and

• ‖ • [AS, pcS] ` eS =⇒ • ‖ • [AT , pcT] @h ` eT

then
〈MS [AS, pcS]� eS〉 7−→ 〈M ′

S[A′
S, pc′S]� e′S〉

implies that
〈MT [AT , pcT]@h� eT 〉 7−→∗ 〈M ′

T [A′
t, pc′T]@h′

� e′T 〉
and

• ‖ • [A′
S, pc′S] ` e′S =⇒ • ‖ • [A′

T , pc′T] @h′ ` e′T

The substitution model of evaluation presented in this paper is standard for dealing with seman-
tics of high level programs, but allowing variables let-bound on one host to be used on another is
not realistic from the implementation standpoint. Fortunately, closure conversion provides a way of
making explicit the data which must be sent to a remotely located continuation. There is one twist,

27

however, in the security setting: our type system requires that arguments to a continuation on h be
acceptable for the machine h. The problem arises when a continuation located at a high-security
host is syntactically nested within the body of a low-security continuation.

cont@hlo f [A, pc](x :σ, y :κ) = . . . (cont@hhi g [A′, pc′](x′ :σ′, y′ :κ′) = . . . zhi . . .) . . .

If the inner, high-security piece of code (g) mentions a high-security variable(zhi) from some
outer context, the standard closure conversion algorithm will put zhi into the closure for f , even
though this is disallowed by the type system. To circumvent this problem, we intend to use a level
of indirection. Rather than putting zhi in f ’s closure, we will put in a (read-only) reference to zhi.

6 Related work

There are three primary areas of research related to the work described in this paper: enforcement
of information flow policies, systems supporting mobile processes, and systems supporting mobile
code security.

There has been much research on end-to-end security policies for information flow and manda-
tory access control in multilevel secure systems. Most practical systems for enforcing such policies
have opted for dynamic enforcement using a mix of mandatory and discretionary access control.
A classic example is the Orange Book [DOD85], but others [Fen73, Fen74, MR92] have also used
dynamic techniques.

Static analysis of information flow also has a long history, although it has not been as widely
used. Denning [Den76, DD77] originally proposed a language with static checking, but it was never
implemented. Palsberg and Ørbæk developed a simple type system for checking integrity [PO95].
Volpano, Smith and Irvine showed Denning’s rules sound using standard programming language
techniques [VSI96]. Heintze and Riecke [HR98] have shown that security labels can be applied to
a the typed lambda calculus with reference types.Agat shows how to blind certain eliminate covert
timing channels [Aga00] by translation.

Linear language constructs [Wad90, Wad93, Abr93] have been used to regulate resource con-
sumption. Linear continuations have been introduced earlier, but in order to study their category-
theoretic semantics [Fil92]. Riely et al. have developed a notion of partial typing that allows state-
ments to be made about type correctness in a distributed system containing malicious hosts [RH99].

Amoeba and Sprite [DOKT91] are examples of operating systems that provide transparent
distribution of programs to improve performance. Our translation is driven by security needs,
however, and these operating systems do not enforce end-to-end security.

Emerald [BHJL86] and Obliq [Car95] are two examples of transparently distributed program-
ming languages. However, distribution in accordance with information flow policies is not sup-
ported. Modern distributed interface languages such as CORBA [OMG91] or Java RMI [Jav99]
also do not enforce end-to-end policies. while distribution is somewhat transparent, program code
executes on the host at which its object resides. This model allows enforcement of discretionary
access control, but not end-to-end security policies: confidential data may easily leak to untrusted
hosts through which the computation is threaded.

The focus of the work in this paper is on protecting data against untrusted hosts by moving
computation away from them when necessary. A major current thread of ongoing research focuses
on the different problem of protecting hosts from mobile computation. These two threads of research
seem likely to be complementary. The Java bytecode verifier [LY96] is an early and much-used
example of these techniques. More recent work includes Proof Carrying Code [Nec97] and Typed
Assembly Language [MWCG98].

28

7 Conclusions

Security-typed languages are an attractive security approach because of their ability to enforce
end-to-end confidentiality and integrity policies. However, previous work in this area has suffered
from important limitations that prevent practical application. In this paper, we have proposed a
new security-typed language, Spl@, that addresses some of these limitations.

Previous security-typed languages assume that the host executing the program is trusted. In
a single-host system, this assumption is reasonable, but computation increasingly is distributed
across heterogeneously trusted hosts. Computation may be run securely (to the satisfaction of all
participating principals) on a partially trusted host only if certain security invariants are satisfied,
as identified in this paper.

Writing programs in an explicitly distributed form is likely not to scale to more dynamic net-
works and larger numbers of hosts. To address this issue, this paper introduces secure program
partitioning, a new approach to writing secure distributed systems. Programs are compiled to
Spl@ assuming complete trust in a single executing host, and then translated into programs that
contain explicit host locations for various pieces of code.

This fine-grained partitioning would not be possible in previous security-typed languages, be-
cause the programs created by translation in these languages often contain apparent (but non-
existent) information flows. Thus, these languages have an excessively restrictive type system for
information flow. To address this problem, the Spl@ language introduces ordered linear continu-
ations. The type system is designed in such a way that ordered linear continuations can only be
called once and in a fixed order with respect to other linear continuations.

This work is only a first step. Spl@ is a simple calculus that needs to be more expressive.
Support for object types and polymorphism, as in Jif [Mye99], would make the language more
expressive. Many improvements of the rewrite rules are possible, and more investigation of parti-
tioning heuristics is needed.

References

[ABHR99] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core calculus of dependency.
In Proc. 26th ACM Symp. on Principles of Programming Languages (POPL), pages 147–160,
San Antonio, TX, USA, January 1999.

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111:3–57, 1993.

[Aga00] Johan Agat. Transforming out timing leaks. In Proc. 27th ACM Symp. on Principles of Pro-
gramming Languages (POPL), January 2000.

[BHJL86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure in the Emerald
system. Proceedings of the ACM Special Interest Group on Programming Languages, 21(11):78–
86, November 1986. Proc. of OOPSLA ’86, edited by Norman Meyrowitz, September 1986,
Portland, Oregon.

[Car95] Luca Cardelli. A language with distributed scope. In Proc. 22th ACM Symp. on Principles of
Programming Languages (POPL), pages 286–297, San Francisco, CA, January 1995.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of Programs for Secure Information
Flow. Comm. of the ACM, 20(7):504–513, July 1977.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Comm. of the ACM, 19(5):236–
243, 1976.

[DOD85] Department of Defense. Department of Defense Trusted Computer System Evaluation Criteria,
DOD 5200.28-STD (The Orange Book) edition, December 1985.

29

[DOKT91] Fred Douglis, John K. Ousterhout, M. Frans Kaashoek, and Andrew S. Tanenbaum. A compar-
ison of two distributed systems: Amoeba and sprite. ACM Transactions on Computer Systems,
4(4), Fall 1991.

[Fen73] J. S. Fenton. Information Protection Systems. PhD thesis, University of Cambridge, Cambridge,
England, 1973.

[Fen74] J. S. Fenton. Memoryless subsystems. Computing J., 17(2):143–147, May 1974.

[Fil92] Andrzej Filinski. Linear continuations. In Proceedings of the 19th ACM Symposium on Principles
of Programming Languages, 1992.

[FLR77] R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a system de-
sign. Proc. 6th ACM Symp. on Operating System Principles (SOSP), ACM Operating Systems
Review, 11(5):57–66, November 1977.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling
with continuations. In Proceedings of the ACM ’93 Conference on Programming Language
Design and Implementation, Albuquerque, New Mexico, June 1993.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symposium
on Security and Privacy, pages 11–20, April 1982.

[GM84] J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE Symposium on
Security and Privacy, pages 75–86, April 1984.

[HR98] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy and integrity.
In Proc. 25th ACM Symp. on Principles of Programming Languages (POPL), San Diego, Cali-
fornia, January 1998.

[Jav99] JavaSoft. Java remote method invocation. http://java.sun.com/products/jdk/rmi, 1999.

[LY96] T. Lindholm and F. Yellin. The Java Virtual Machine. Addison-Wesley, Englewood Cliffs, NJ,
May 1996.

[ML97] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow control. In
Proc. 17th ACM Symp. on Operating System Principles (SOSP), pages 129–142, Saint-Malo,
France, 1997.

[ML00] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.
ACM Transactions on Software Engineering and Methodology, 2000. To appear.

[MR92] M. D. McIlroy and J. A. Reeds. Multilevel security in the UNIX tradition. Software—Practice
and Experience, 22(8):673–694, August 1992.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly
language. In Proc. 25th ACM Symp. on Principles of Programming Languages (POPL), San
Diego, California, January 1998.

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Proc. 26th ACM
Symp. on Principles of Programming Languages (POPL), San Antonio, TX, USA, January 1999.

[Nec97] George C. Necula. Proof-carrying code. In Proc. 24th ACM Symp. on Principles of Programming
Languages (POPL), pages 106–119, January 1997.

[OMG91] OMG. The Common Object Request Broker: Architecture and Specification, December 1991.
OMG TC Document Number 91.12.1, Revision 1.1.

[PO95] Jens Palsberg and Peter Ørbæk. Trust in the λ-calculus. In Proc. 2nd International Symposium
on Static Analysis, number 983 in Lecture Notes in Computer Science, pages 314–329. Springer,
September 1995.

[RH99] James Riely and Matthew Hennessy. Trust and partial typing in open systems of mobile agents.
In Proceedings of the 26th ACM Symposium on Principles of Programming Languages, pages
93–104, San Antonio, TX, January 1999.

30

[SV98] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded imperative
language. In Proc. 25th ACM Symp. on Principles of Programming Languages (POPL), San
Diego, California, January 1998.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):167–187, 1996.

[Wad90] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, Proga-
rmming Concepts and Methods, Sea of Galilee, Israel, April 1990. North Holland. IFIP TC 2
Working Conference.

[Wad93] Philip Wadler. A taste of linear logic. In Mathematical Foundations of Computer Science,
volume 711 of Lecture Notes in Computer Science. Springer-Verlag, August-September 1993.

[WF92] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Technical
Report TR91-160, Rice University, June 1992.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, 1994. Preliminary version in Rice TR 91-160.

[ZM00] Steve Zdancewic and Andrew C. Myers. Confidentiality and integrity with untrusted hosts.
Submitted for publication, 2000.

A Typing rules

` σ ≤ σ′

` τ ≤ τ

A ⊆ A′ `′ v ` ` σ′ ≤ σ ` κ′ ≤ κ

[A, `](σ, κ) cont ≤ [A′, `′](σ′, κ′) cont

` τ ≤ τ ` v `′

` τ` ≤ τ ′
`′

` σ ≤ σ′ ` σ′ ≤ σ′′

` σ ≤ σ′′

` κ ≤ κ′

` κ ≤ κ

` σ′ ≤ σ ` κ′ ≤ κ

(σ, κ) lcont ≤ (σ′, κ′) lcont

` κ ≤ κ′ ` κ′ ≤ κ′′

` κ ≤ κ′′

31

K ≡ K′

(K1, K2), K3 ≡ K1, (K2, K3) y :1 ≡ •

•, K ≡ K K, • ≡ K

K1 ≡ K2

K2 ≡ K1

K1 ≡ K2 K2 ≡ K3

K1 ≡ K3

K1 ≡ K′
1

K1, K2 ≡ K′
1, K2

K2 ≡ K′
2

K1, K2 ≡ K1, K
′
2

Γ ` v : σ

[TV1] Γ ` n` : int`

[TV2] Γ ` 〈〉` : 1`

[TV3]
` label(σ) ok @h

Γ ` Lσ
` @h : σ ref`

[TV4]
Γ(x) = σ

Γ ` x : σ

[TV5]

f, x 6∈ Dom(Γ)
pc v 〈TP(h), ∅〉

label(σ) v 〈TP(h), ∅〉
σ′ = [A, pc](σ, κ) cont`

Γ, f :σ′, x :σ ‖ y :κ [A ∪ B, pc] @h ` e

Γ ` (cont@h fB [A, pc](x :σ, y :κ) = e)` : σ′

[TV6]
Γ ` v : σ ` σ ≤ σ′

Γ ` v : σ′

Γ @h ` v : σ

[TV7]
Γ ` v : τ` ` v 〈TP(h), ∅〉

Γ @h ` v : τ`

32

Γ ‖ K ` lv : κ

[TL1] Γ ‖ • ` 〈〉 : 1

[TL2] Γ ‖ y :κ ` y : κ

[TL3]

x 6∈ Dom(Γ), y 6∈ Dom(K)
pc v 〈TP(h), ∅〉

label(σ) v 〈TP(h), ∅〉
Γ, x :σ ‖ y :κ, K [A, pc] @h ` e

Γ ‖ K ` lcont@h[A, pc](x :σ, y :κ) = e : (σ, κ) lcont

[TL4]
Γ ‖ K ` lv : κ ` κ ≤ κ′

Γ ‖ K ` lv : κ′

[TL5]
Γ ‖ K ` lv : κ K ≡ K′

Γ ‖ K′ ` lv : κ

Γ [A, pc] @h ` prim : σ

[TP1]
Γ @h ` v : σ pc v label(σ)

Γ [A, pc] @h ` v : σ

[TP2]
Γ @h ` v : int` Γ @h ` v′ : int`′ pc v ` t `′

Γ [A, pc] @h ` v ⊕ v′ : int`t`′

[TP3]
Γ @h ` v : σ ref ` pc v label(σ) t ` v 〈TP(h), ∅〉

Γ [A, pc] @h ` deref(v) : σ t `

[TP4]
Γ @h ` v : τ`′ B ⊆ A `′ u 〈P, B〉 v ` t 〈B, P〉 pc v 〈P, B〉 pc v `

Γ [A, pc] @h ` declassify(v, `) : τ`

33

Γ ‖ K [A, pc] @h ` e

[TE1]
Γ [A, pc] @h ` prim : σ Γ, x :σ ‖ K [A, pc] @h ` e

Γ ‖ K [A, pc] @h ` let x = prim in e

[TE2]
Γ @h ` v : σ pc v ` v 〈TP(h), ∅〉 pc v label(σ) Γ, x :σ ref ` ‖ K [A, pc] @h ` e

Γ ‖ K [A, pc] @h ` let x = (ref(σ) v)` in e

[TE3]
Γ @h ` v : σ ref` Γ @h ` v′ : σ pc t ` v label(σ) Γ ‖ K [A, pc] @h ` e

Γ ‖ K [A, pc] @h ` set v := v′ in e

[TE4]
Γ @h ` v : int` Γ ‖ K [A, pc t `] @h ` ei 〈∅, TP(h)〉 v pc

Γ ‖ K [A, pc] @h ` if0 v then e1 else e2

[TE5]

Γ ‖ K2 ` lcont@h′[A′, pc′](x′ :σ′, y′ :κ′) = e′ : κ′′

κ′′ = (σ, κ) lcont A′ ⊆ A pc v pc′

Γ ‖ K1, y :κ′′ [A, pc] @h ` e

Γ ‖ K1, K2 [A, pc] @h ` letlin y = lcont@h′[A′, pc′](x′ :σ′, y′ :κ′) = e′ in e

[TE6]

Γ @h ` v : [A′, pc′](σ, κ) cont`
Γ @h ` v′ : σ pc t ` v label(σ)

Γ ‖ K ` lv : κ
〈∅, TP(h)〉 v pc pc t ` v pc′ A′ ⊆ A ⊆ TP(h)

Γ ‖ K [A, pc] @h ` goto v v′ lv

[TE7]

Γ ‖ K2 ` lv1 : (σ, κ) lcont
Γ @h ` v : σ

Γ ‖ K1 ` lv2 : κ
〈∅, TP(h)〉 v pc v label(σ) A ⊆ TP(h)

Γ ‖ K1, K2 [A, pc] @h ` lgoto lv1 v lv2

[TE8]

B ⊆ A pc u 〈P, B〉 v pc′ t 〈B, P〉
Γ ‖ K [A, pc′] @h ` e ` pc′ ok @h

Γ ‖ K [A, pc] @h ` setpc (pc′) in e

[TE9]
Γ @h ` v : σ 〈∅, TP(h)〉 v pc v label(σ) A ⊆ TP(h)

Γ ‖ • [A, pc] @h ` haltσ v

[TE10]
Γ ‖ K [A, pc] @h ` e K ≡ K′

Γ ‖ K′ [A, pc] @h ` e

34

B Operational semantics

[P1]
` ` t pc ok @h

M [A, pc]@h ` bv` ⇓ bv`tpc

[P2]
` ` t `′ t pc ok @h

M [A, pc]@h ` n` ⊕ n′
`′ ⇓ (n[[⊕]]n′)`t`′tpc

[P3]
M(Lσ) = bv`′ ` ` t `′ t pc ok @h

M [A, pc]@h ` deref(Lσ
` @h′) ⇓ bv`t`′tpc

[P4]
B ⊆ A `′ u 〈P, B〉 v ` t 〈B, P〉 pc v 〈P, B〉 ` ` t pc ok @h

M [A, pc]@h ` declassify(bv`′ , `) ⇓ bv`tpc

[O1]
M [A, pc]@h ` prim ⇓ v

〈M [A, pc]@h� let x = prim in e〉 7−→ 〈M [A, pc]@h� e{v/x}〉

[O2]
` label(σ) ok @h ` t pc v label(σ) Lσ 6∈ Dom(M)

〈M [A, pc]@h� let x = (ref(σ) bv`)`′ in e〉 7−→ 〈M [Lσ 7→ bv`tpc][A, pc]@h� e{Lσ
`′tpc@h/x}〉

[O3]
` t `′ t pc v label(σ) Lσ ∈ Dom(M)

〈M [A, pc]@h� set Lσ
` @h′ := bv`′ in e〉 7−→ 〈M [Lσ 7→ bv`t`′tpc][A, pc]@h� e〉

[O4] 〈M [A, pc]@h� if0 0` then e1 else e2〉 7−→ 〈M [A, pc t `]@h � e1〉

[O5] 〈M [A, pc]@h� if0 n` then e1 else e2〉 7−→ 〈M [A, pc t `]@h � e2〉 (n 6= 0)

[O6] 〈M [A, pc]@h� letlin y = lv in e〉 7−→ 〈M [A, pc]@h� e{lv/y}〉

[O7]

A′ ∪ B ⊆ TP(h′) ` pc′ ok @h′

〈M [A, pc]@h� goto (cont@h′ fB [A′, pc′](x :σ, y :κ) = e)` bv`′ lv〉
7−→

〈M [A′ ∪ B, pc′]@h′
� e{(cont@h′ fB [A′, pc′](x :σ, y :κ) = e)`/f}{bv`′t`tpc/x}{lv/y}〉

[O8]

A′ ⊆ TP(h′) ` pc′ ok @h′

〈M [A, pc]@h� lgoto (lcont@h′[A′, pc′](x :σ, y :κ) = e) bv` lv〉
7−→

〈M [A′, pc′]@h′
� e{bv`tpc/x}{lv/y}〉

[O9]
B ⊆ A pc u 〈P, B〉 v pc′ t 〈B, P〉 ` ` ok @h

〈M [A, pc]@h� setpc (pc′) in e〉 7−→ 〈M [A, pc′]@h� e〉

35

C Example translation rules

Γ ` x : σ =⇒ Γ ` x : σ

Γ ` 〈〉` : 1` =⇒ Γ ` 〈〉` : 1`

pc′ v 〈TP(h), ∅〉
label(σ) v 〈TP(h), ∅〉

σ′ = [A, pc](σ, κ) cont` A′ ⊆ A
Γ, f :σ′, x :σ ‖ y :κ [A ∪ B, pc] ` e =⇒ Γ, f :σ′, x :σ ‖ y :κ [A′ ∪ B, pc′] @h ` e′

Γ ` (cont fB [A, pc](x :σ, y :κ) = e)` : σ′

=⇒
Γ ` (cont@h fB [A′, pc′](x :σ, y :κ) = e′)` : σ′

pc′ v 〈TP(h), ∅〉
label(σ) v 〈TP(h), ∅〉

Γ, x :σ ‖ y :κ, K [A, pc] ` e =⇒ Γ, x :σ ‖ y :κ, K [A′, pc′] @h ` e′

Γ ‖ K ` lcont[A, pc](x :σ, y :κ) = e : (σ, κ) lcont
=⇒

Γ ‖ K ` lcont@h[A′, pc′](x :σ, y :κ) = e′ : (σ, κ) lcont

Γ ‖ K2 ` lv1 : (σ, κ) lcont =⇒ Γ ‖ K2 ` lv′1 : (σ, κ) lcont
Γ ` v : σ =⇒ Γ @h ` v′ : σ

Γ ‖ K1 ` lv2 : κ =⇒ Γ ‖ K1 ` lv′2 : κ
pc t 〈∅, TP(h)〉 v pc′ v label(σ) A′ ⊆ TP(h) ∩ A

Γ ‖ K1, K2 [A, pc] ` lgoto lv1 v lv2

=⇒
Γ ‖ K1, K2 [A′, pc′] @h ` lgoto lv′1 v′ lv′2

ki, yi 6∈ FLV (ei) xi 6∈ FV (ei)
Ai ⊆ A′ ⊆ TP(hi) ∩ A pc v pc′ v pci t ` v 〈TP(hi), ∅〉

A ⊆ TP(hi) pc t ` v 〈TP(hi), ∅〉 Γ @h ` v : int`

Γ ‖ K [A, pc t `] ` ei =⇒ Γ ‖ K [Ai, pci t `] @hi ` e′i
Γ ‖ K [A, pc] ` if0 v then e1 else e2

=⇒
Γ ‖ K [A′, pc′] @h `
if0 v then

letlin k1 = lcont@h1[A1, pc1](x1 :1pc, y1 :1) = e′1 in
lgoto k1 〈〉pc′ 〈〉

else
letlin k2 = lcont@h2[A2, pc2](x2 :1pc, y2 :1) = e′2 in

lgoto k2 〈〉pc′ 〈〉

(i ∈ {1, 2})

36

