
Principals in Programming Languages: Technical Results

Steve Zdancewic Dan Grossman ∗

Cornell University

June 16, 1999

Abstract

This is the companion technical report for “Principals in Programming Languages” [20]. See that
document for a more readable version of these results.

In this paper, we describe two variants of the simply typed λ-calculus extended with a notion of
principal. The results are languages in which intuitive statements like “the client must call open to
obtain a file handle” can be phrased and proven formally.

The first language is a two-agent calculus with references and recursive types, while the second
language explores the possibility of multiple agents with varying amounts of type information. We use
these calculi to give syntactic proofs of some type abstraction results that traditionally require semantic
arguments.

1 Introduction

Programmers often have a notion of principal in mind when designing the structure of a program. Examples
of such principals include modules of a large system, a host and its clients, and, in the extreme, individual
functions. Dividing code into such agents is useful for composing programs. Moreover, with the increasing
use of extensible systems, such as web browsers, databases [6], and operating systems [7, 3, 2], this notion
of principal becomes critical for reasoning about potentially untrusted agents interfacing with host-provided
code.

In this paper, we incorporate the idea of principal into variants of the simply-typed λ-calculus. Doing so
allows us to formalize statements about agent interaction. For instance, a client must call open to obtain a
file handle. As a motivating example, we consider the problem of type abstraction in extensible systems.

Consider a host-provided interface for an abstract type of file handles, fh, and operations to create and
use them:

(* File handle implemented as int *)
abstype fh
open : string → fh
read : fh → int

The principals in this scenario are the host implementation of the interface and its clients. Each princi-
pal’s “view of the world” corresponds to its knowledge regarding fh. In particular, the host knows that
fh = int, while clients do not.

The conventional wisdom is that using abstract datatypes in a type-safe language prevents agents from
directly accessing host data. Instead, a client may only manipulate such data via a host-provided interface.
To formalize this wisdom, it is necessary to prove theorems that say, “agent code can not violate type
abstractions provided by the host”. For instance, a client should not be able to treat an object of type fh as
though it were an integer, even though the host implements it that way.

∗This material is based on work supported in part by the AFOSR grant F49620-97-1-0013, ARPA/RADC grant F30602-
1-0317, and National Science Foundation Graduate Fellowships. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not reflect the views of these agencies.

1

How do we prove such properties? One way of phrasing the result is to say that the agent behaves
parametrically with respect to the type fh. Using this observation, we can encode the agent program in a
language like Girard’s System F [5], the polymorphic λ-calculus [16]:

Λfh.λhost : {open : string → fh, read : fh → int}.agent code

Here, the type fh is held abstract by encoding the agent as a polymorphic function. We can then appeal to
Reynolds’ parametricity results [17] to conclude that the agent respects the host’s interface.

Unfortunately, these representation independence results are proven using semantic arguments based on
a model of the language (see Mitchell’s work [11], for example). We are unaware of any similar results
for languages including multiple features of modern languages, such as references, recursive types, objects,
threads, and control operators.

Our calculus circumvents this problem by syntactically distinguishing between agents with different type
information. We do this by “coloring” host code and client code with different colors and tracking how these
colors intermingle during evaluation. By using different semantics for each principal, we force the client to
respect the abstract types provided by the host. This separation of principals provides hooks that enable us
to prove some type abstraction properties syntactically.

To see why these new mechanisms are useful, consider the evaluation of our agent code when “linked”
against a host implementation:

(Λfh.λhost : τh.agent code) int host code 7−→
(λhost : {int/fh}τh.{int/fh}agent code) host code 7−→
{host code/host}{int/fh}agent code

Where τh = {open : string → fh, read : fh → int}. In this scheme, linking is encoded as application.
In one step of the standard operational semantics, the host-type is substituted throughout the agent code.
It is impossible to talk about the type fh remaining abstract within the client because fh is replaced by int.
After a second step, host code is substituted throughout agent code and all distinctions between principals
are lost.

The next section describes a two-agent setting including recursive types and state sufficient for proving
interesting properties about the file handle example. Detailed proofs of soundness and some abstraction
properties are shown. Section 3 introduces a multiagent calculus without mutable references which provides
for multiple agents and abstract types. We then revisit the safety properties and language extensions of Sec-
tion 2. The final sections conclude with related work and other potential uses for principals in programming
languages.

2 The Two-agent Language

2.1 Syntax

This section describes a variant of the simply-typed λ-calculus with two principals, an agent and a host. The
language maintains a syntactic distinction between host and agent code throughout evaluation. The host
exports one abstract type, t, implemented as type τh.

Figure 1 gives the syntax for the two-agent calculus. Types, τ , include a base type (b), the host’s abstract
type (t), function types, reference types, µ-type variables (α), and recursive types. The terms of the language
are agent terms (A), agent values (Â), host terms (H), and host values (Ĥ). The metavariable xa ranges
over agent variables which are disjoint from host variables, ranged over by xh. The metavariable c ranges
over values of base type.

Heap labels (ξτ), like constants, are not “owned” by either the agent or the host. They are, however,
labeled with the type of the value referred to by the label. The level of abstraction of a given reference is
decided when the reference is created. This means that the host must decide a priori whether a reference to
a value of type τh should be abstract. A reference of type τh ref can never alias a reference of type t ref.

It is helpful to think of terms generated by A and H as having different colors (indicated by the subscripts
a and h respectively) that indicate to which principal each belongs. As observed in the introduction, agent

2

τ ::= t | b | τ → τ ′ | τ ref
| α | µα.τ

A ::= xa | c | ξτ | λxa:τ. A | A A′ |
refτA | !A | A :=A′ |
rollµα.τ A | unrollµα.τ A | pxHqyτ

h

Â ::= c | λxa:τ. A | ξτ | | rollµα.τ Â |
pxĤqyt

h

H ::= xh | c | ξτ | λxh:τ. H | H H ′ |
refτH | !H | H := H ′ |
rollµα.τ H | unrollµα.τ H | pxAqyτ

a

Ĥ ::= c | λxh:τ. H | ξτ | rollµα.τ Ĥ

Figure 1: Two-agent Syntax

and host terms mix during evaluation. To keep track of this intermingling, agent terms contain embedded
host terms of the form pxHqyτ

h. Intuitively, the brackets delimit a piece of h-colored code, where H is exported
to the agent at type τ . Dually, host terms may contain embedded agents.

The type annotations on the embeddings keep track of values of type t during execution. In particular,
a host term of type τh may be embedded in an agent term. If the annotation is t, then the agent has
no information about the form of the term inside the embedding. Thus, an embedding with annotation t
containing a host value is an agent value.

In order to keep track of the host’s extra information about the type t, we introduce an operation ∆h

that converts a type τ with possible occurrences of t to a “concrete” view seen by the host. This operation
essentially substitutes τh for t in τ except under references. The definition of ∆h is:

∆h(b) = b
∆h(t) = τh

∆h(τ → τ ′) = ∆h(τ) → ∆h(τ ′)
∆h(µα.τ) = µα.∆h(τ)

∆h(τ ref) = τ ref

2.2 Notation

Before describing the semantics, we define some convenient notions. Let e range over both agent and host
terms, and let ê range over both agent and host values. The color of e is a if e is an A term; otherwise e’s
color is h. Note that both terms in a syntactically correct application are the same color. Since the host and
agent terms share some semantic rules, we use polychromatic rules to range over both agent and host terms.
The intention is that all terms mentioned in them have the same color –hence the term polychromatic. Such
rules can be thought of as short-hand for two analogous rules, one for each color.

We use κ to range over colors and write κ◦ for the opposite color, so that a◦ = h and h◦ = a. Where
the color of a variable or typing judgment is clear from context or unimportant, we drop the subscript κ to
simplify presentation.

We write {e′/xκ}e for the capture-avoiding substitution of e′ for xκ in e. Note that substitution crosses
embeddings. Terms are equal up to α-conversion, where substituted variables are of the same color.

3

2.3 Two-agent Dynamic Semantics

We model the heap (memory) as a partial function M : Labels → V alues×Agents such that if M is defined
on ξτ , M(ξτ) = (ê, κ) for some value ê of color κ. The static semantics ensure that type annotations on
labels agree with the value in the heap. The heap may contain self-referential data structures.

Figure 2 describes a small-step operational semantics for the two-agent calculus. The transitions are of
the form (M, e) 7−→ (M ′, e′), indicating that in the configuration where the heap has shape M , the term e
steps in one step to e′, possibly updating the heap to M ′. The first three polychromatic rules establish a call-
by-value semantics, while (Pµ3) makes unroll the left inverse of roll. The remainder of the polychromatic
rules allow evaluation to continue when the immediate subterms are not values.

The host and agent dynamic rules, described next, either propagate embeddings in an appropriate fashion,
or mediate access to the heap.

Rules (AH) and (HA) allow evaluation to proceed within embeddings. Inside embeddings, the rules for
the opposite color apply. These “context switches” ensure that terms evaluate in the appropriate context
for their color. If an embedded value is exported to the outer principal at type b, the outer agent can strip
away the embedding and use that value (rules (AConst) and (HConst)).

Rules (AHfn) and (HAfn) maintain the distinction between agent and host code. For example, suppose
the agent contains a host function that is being exported at type τ1 → τ2. In this case the agent does know
that the embedding contains a function, so the agent can apply it to an argument of a suitable type. If
instead the function had been exported at type t, the agent would not have been able to apply it. The
subtlety is that the host type of the function may be more specific than the agent type, such as when τ1 = t.

Thus, (AHfn) converts an embedded host function to an agent function with argument of type τ . The
body of the agent function is an embedding of the host code, except that, as the argument now comes from
the agent, every occurrence of the original argument variable, xh, is replaced by an embedding of the agent’s
argument variable, pxxaqyτ

a. This embedding is exported to the host at type τ , the type the host originally
expected for the function argument. The rule for hosts, (HAfn), is symmetric, except that because the host
may use t as τh, the type of the argument is refined by applying ∆h.

The rule (HStrip) lets the host “open up” an agent value that is really an embedded host value. This
allows the host to use a value that has been embedded abstractly in the agent.

The rules (Aµ) and (Hµ), propagate the embeddings through roll terms when the annotations on the
embedding make this permissible. As with the function annotations, the host rule refines the type.

The agent creates new heap labels using rule (ARef). When the agent dereferences a host’s heap entry,
(A!), the result depends on the last agent to store to that location. If it was the agent, dereferencing returns
the stored value. If the host last wrote to the memory, the contents are returned as an embedded host
value. The level of abstraction is determined by the type annotation on the heap label. This allows the host
to export references to the agent at more abstract types such that dereference preserves the abstraction.
Assignment of an agent value to a location, (AAssn), also marks that heap entry with that agent’s color.
The rule (ALab) is similar to (HStrip) in that the agent pulls out an agent label from within nested
embeddings. Note that the type annotation on the label is forced by the static semantics to be the same as
the annotation on the embedding–in effect, the host and agent must agree about the type of references, even
if the host knows more.

The host versions of the rules for creating labels and manipulating references are similar.
The crucial point is that any attempt by the agent to treat a value of type t as a function, reference,

or constant will lead to a stuck configuration (no rule will apply). More generally, we ensure that any
configuration in which an abstract value appears in an “active position” is stuck. This fact, along with the
stuck configurations of the simply-typed λ-calculus, is enough to prove the safety properties of Section 2.5.

2.4 Two-agent Static Semantics

Figure 3 describes the static semantics for the two-agent calculus. In the type well-formedness rules, Ξ is a
set of µ-type variables currently in scope. The judgment Ξ ` τ istype indicates that τ is a well-formed type
with free variables in Ξ. Implicit in the heap well-formedness and term typing judgments are antecedents
∅ ` τ istype for the types mentioned in the rule.

A heap-type, Ψ, is a set of labels describing M . We think of Ψ as a mapping from labels to their types:
Ψ(ξτ) = τ . The judgment ` M : Ψ says that the heap, M , is well-formed with type Ψ. The rule (HAlab)

4

Polychrome Steps

(P1) (M, e1 e2) 7−→ (M ′, e′1 e2) if (M, e1) 7−→ (M ′, e′1)

(P2) (M, ê e) 7−→ (M ′, ê e′) if (M, e) 7−→ (M ′, e′)

(Pβ) (M, (λx:τ. e) ê) 7−→ (M, {ê/x}e)
(Pµ1) (M, rollτ e) 7−→ (M ′, rollτ e′) if (M, e) 7−→ (M ′, e′)

(Pµ2) (M, unrollτ e) 7−→ (M ′, unrollτ e′) if (M, e) 7−→ (M ′, e′)

(Pµ3) (M, unrollµα.τ rollµα.τ ê) 7−→ (M, ê)

(P!) (M, !e) 7−→ (M ′, !e′) if (M, e) 7−→ (M ′, e′)

(PRef1) (M, refτe) 7−→ (M ′, refτe′) if (M, e) 7−→ (M ′, e′)

(PAssn1) (M, e1 := e2) 7−→ (M ′, e′1 := e2) if (M, e1) 7−→ (M ′, e′1)

(PAssn2) (M, ê := e2) 7−→ (M ′, ê := e′2) if (M, e2) 7−→ (M ′, e′2)

Agent Steps

(AH) (M, pxHqyτ
h) 7−→ (M ′, pxH ′qyτ

h) if (M, H) 7−→ (M ′, H ′)

(AConst) (M, pxcqyb
h) 7−→ (M, c)

(AHfn) (M, pxλxh:τ. Hqyτ1→τ2

h) 7−→ (M, λxa:τ1. px{pxxaqyτ
a/xh}Hqyτ2

h)

(Aµ) (M, pxrollµα.τ Ĥqyµα.τ ′
h) 7−→ (M, rollµα.τ ′ pxĤqy{µα.τ ′/α}τ ′

h)

(ARef) (M, refτ Â) 7−→ (M [ξτ 7→ (Â, a)], ξτ) (ξτ fresh)

(AAssn) (M, ξτ := Â) 7−→ (M [ξτ 7→ (Â, a)], Â)

(A!) (M, !ξτ) 7−→
{

(M, Â) if M(ξτ) = (Â, a)

(M, pxĤqyτ
h) if M(ξτ) = (Ĥ, h)

(ALab) (M, pxξτqyτ ref
h) 7−→ (M, ξτ)

Host Steps

(HA) (M, pxAqyτ
a) 7−→ (M ′, pxA′qyτ

a) if (M, A) 7−→ (M ′, A′)

(HConst) (M, pxcqyb
a) 7−→ (M, c)

(HAfn) (M, pxλxa:τ. Aqyτ1→τ2

a) 7−→ (M, λxh:∆h(τ1). px{pxxhqyτ
h/xa}Aqyτ2

a)

(HStrip) (M, pxpxĤqyt
hqyτh

a) 7−→ (M, Ĥ)

(Hµ) (M, pxrollµα.τ Âqyµα.τ
a) 7−→ (M, rollµα.∆h(τ) pxÂqy{µα.τ/α}τ

a)

(HRef) (M, refτ Ĥ) 7−→ (M [ξτ 7→ (Ĥ, h)], ξτ) (ξτ fresh)

(HAssn) (M, ξτ := Ĥ) 7−→ (M [ξτ 7→ (Ĥ, a)], Ĥ)

(H!) (M, !ξτ) 7−→
{

(M, Ĥ) if M(ξτ) = (Ĥ, h)

(M, pxÂqyτ
a) if M(ξτ) = (Â, a)

(HLab) (M, pxξτqyτ ref
a) 7−→ (M, ξτ)

Figure 2: Two-agent Dynamic Semantics

5

Program

(Prog)
` M : Ψ Ψ; ∅ ` e : τ

` (M, e) : τ

Type Well-Formedness
(Tvar1) Ξ ` t istype (Tconst) Ξ ` b istype

(Tvar2)
Ξ ` α istype

(α ∈ Ξ) (Tµ)
Ξ∪{α} ` τ istype
Ξ ` µα.τ istype

(α 6∈ Ξ)

(T →)
Ξ ` τ istype Ξ ` τ ′ istype

Ξ ` τ → τ ′ istype
(Tref)

Ξ ` τ istype
Ξ ` τ ref istype

Heap Well-Formedness
(Hempty) ` ∅ : ∅

(HAlab)
` M : Ψ Ψ[ξτ : τ]; ∅ `a Â : τ

` M [ξτ 7→ (Â, a)] : Ψ[ξτ : τ]
(HHlab)

` M : Ψ Ψ[ξτ : τ]; ∅ `h Ĥ : τ ′ ∆h(τ) = τ ′

` M [ξ 7→ (Ĥ, h)] : Ψ[ξτ : τ]

Polychrome Rules
(Pvar) Ψ; Γ ` x : Γ(x) (Pconst) Ψ; Γ ` c : b

(Papp)
Ψ; Γ ` e : τ ′ → τ Ψ; Γ ` e′ : τ ′

Ψ; Γ ` e e′ : τ
(Plab)

Ψ(ξτ) = τ

Ψ; Γ ` ξτ : τ ref

(Proll)
Ψ; Γ ` e : {µα.τ/α}τ

Ψ; Γ ` rollµα.τ e : µα.τ
(Punroll)

Ψ; Γ ` e : µα.τ

Ψ; Γ ` unrollµα.τ e : {µα.τ/α}τ

Agent Rules

(HinA)
Ψ; Γ `h H : τ ′ ∆h(τ) = τ ′

Ψ; Γ `a pxHqyτ
h : τ

(Afn)
Ψ; Γ[xa : τ ′] `a A : τ

Ψ; Γ `a λxa:τ ′. A : τ ′ → τ

(Aref)
Ψ; Γ `a A : τ

Ψ; Γ `a refτA : τ ref
(Abang)

Ψ; Γ `a A : τ ref

Ψ; Γ ` !A : τ

(Aassn)
Ψ; Γ `a A : τ ref Ψ; Γ `a A′ : τ

Ψ; Γ `a A := A′ : τ

Host Rules

(AinH)
Ψ; Γ `a A : τ

Ψ; Γ `h pxAqyτ
a : ∆h(τ)

(Hfn)
Ψ; Γ[xh : τ ′] `h H : τ

Ψ; Γ `h λxh:τ ′. H : τ ′ → τ
(∆h(τ ′) = τ ′)

(Href)
Ψ; Γ `h H : τ ′ ∆h(τ) = τ ′

Ψ; Γ `h refτH : τ ref
(Hbang)

Ψ; Γ `h H : τ ref

Ψ; Γ ` !H : ∆h(τ)

(Hassn)
Ψ; Γ `h H : τ ref Ψ; Γ `h H ′ : τ ′ ∆h(τ) = τ ′

Ψ; Γ `h H :=H ′ : τ ′

Figure 3: Two-agent Static Semantics

6

ensures that agent heap-values have an appropriate typing. Similarly, (HHlab) says that a host can store
to a heap location a value whose type is a refinement of the annotation on the label. For example, if τh = b
then the agent may store only embedded host constants (i.e. pxcqyt

h) to the location ξt, whereas the host may
store a regular constant (c) to the same location. Upon dereference, the agent will always obtain a constant
embedded at type t (see rule (A!) of the dynamic semantics).

A typing context, Γ, maps variables (of either color) to types. Judgments Ψ; Γ `κ e : τ say that the term
e with color κ is well-formed with type τ relative to heap-type Ψ (for labels occurring in e), and context Γ
(for free variables occurring in e). The polychromatic rules are standard, as is the introduction rule for agent
functions. For host functions, the only difference is that the type annotation for the argument to a function
must be concrete. (We could allow abstract type annotations in the host functions, but then application
would need an additional condition to check that the argument to the function is compatible. Since the host
knows that t = τh, this does not limit expressiveness.)

The rule (Plab) says that heap references always have the type ascribed to the label. The rules for
creating references, performing assignment, and dereferencing a label allow the host to refine the type of the
value being stored or read, while preventing the agent from doing so.

The interesting typing rules are those for embeddings. Rule (HinA) says that an embedded host term,
H , exported to the agent at type τ (which may contain occurrences of t) has type τ if the host is able to
show that the “actual” type of H is ∆h(τ). In other words, the host may hide type information from the
agent by replacing some occurrences of τh with t in the exported type. The rule for agents embedded inside
of host terms, (AinH), is dual in that the host refines the types provided by the agent.

2.5 Safety Properties

In this section, we explore properties of the two-agent calculus including soundness and some type abstraction
theorems. These properties are not intended to be as general or as “realistic” as possible. Rather, they convey
the flavor of some statements that are provable using syntactic arguments.

2.5.1 Two-agent Type Soundness

The following lemmas establish type soundness:

Lemma 2.1 (Canonical Forms) Assuming Ψ; ∅ ` ê : τ , if τ =

• b, then ê = c for some c.

• τ ′ → τ ′′, then ê = λx:τ ′. e′ for some x and e′.

• t, then ê = pxĤqyt
h for some Ĥ of type τh.

• τ ref, then ê = ξτ for some label ξτ .

• µα.τ , then ê = rollµα.τ e′ for some e′ of type {µα.τ/α}τ .

Proof (sketch): By inspection of the dynamic semantics and the form of values. 2

Lemma 2.2 (Substitution) If Ψ; Γ[x : τ ′] ` e : τ and Ψ; ∅ ` e′ : τ ′ and x and e′ have the same color then
Ψ; Γ ` {e′/x}e : τ .

Proof: By induction on the typing derivation for Ψ; Γ[x : τ ′] ` e : τ . Since x and e′ have the same color,
the substitution is syntactically well formed. We proceed by cases on the last rule of the derivation, omitting
those that follow by straightforward induction:

(Pconst) Immediate, since substitution has no effect.

(Pvar) Then e = y and there are two sub-cases:

x = y Then τ = τ ′ and the result follows by assumption.

7

x 6= y Then {e′/x}y = y and by strengthening, since x 6∈ FV (y), and the assumptions we have
Ψ; Γ ` y : τ .

(Plab) Follows immediately since substitution has no effect.

(Afn) Then e = λxa:τ1. A and τ = τ1 → τ2 for some xa, A, τ1, and τ2. Furthermore, it must be
the case that Ψ; Γ[x : τ ′][xa : τ1] `a A : τ2. By the side condition, x 6= xa, so {e′/x}λxa:τ1. A =
λxa:τ1. {e′/x}A. The inductive hypothesis yields Ψ; Γ[xa : τ] `a {e′/x}A : τ2, so by (Afn) the result
follows.

(Hfn) This case is similar to the one above.

2

Lemma 2.3 (Weakening) (i) If Γ′ ⊇ Γ then Ψ; Γ `κ e : τ implies Ψ; Γ′ `κ e : τ .

(ii) If Ψ′ ⊇ Ψ then Ψ; Γ `κ e : τ implies Ψ′; Γ `κ e : τ .

Proof (sketch): By induction on the first typing derivation. 2

Lemma 2.4 (Preservation) If ` M : Ψ, Ψ; ∅ ` e : τ and (M, e) 7−→ (M ′, e′) then for some Ψ′,
Dom(M ′) ⊇ Dom(M), Ψ′ ⊇ Ψ, ` M ′ : Ψ′, and Ψ′; ∅ ` e′ : τ .

Proof: The proof proceeds by cases on the transition step taken. The agent steps do not differ significantly
from the corresponding host-cases, except that the substitution ∆h is unnecessary since the agent can never
refine type information. Since duplicating the proofs is, for the most part, unilluminating, we show as an
example the case for (AHfn); the rest are elided. Similarly, those cases that follow by straightforward
induction and the Weakening Lemma are omitted.

(Pβ) Then e = (λx:τ1. e1)ê for some τ1, e1, ê. By assumption, the last rule used in type-checking e must
be (Papp), so it follows that Ψ; [x : τ1] ` e1 : τ and Ψ; ∅ ` ê : τ1. By Substitution, it follows that
Ψ; ∅ ` {ê/x}e1 : τ , and, since M doesn’t change, the result holds.

(Pµ3) Then e = unrollµα.τ rollµα.τ ê for some ê. The last two rules in the typing derivation must have
been (Proll) followed by (Punroll), thus we have Ψ; ∅ ` ê : {µα.τ/α}τ . Since Ψ; ∅ ` e : {µα.τ/α}τ
and M doesn’t change, we’re done.

(HA) In this case, e = pxAqyτ ′
a for some A and its typing derivation ends in (AinH). We conclude Ψ; ∅ `a A :

τ ′ and that τ = ∆h(τ ′). Furthermore, we know (M, A) 7−→ (M ′, A′), so by the inductive hypothesis:
` M ′ : Ψ′, Ψ′ ⊇ Ψ, Dom(M) ⊆ Dom(M ′), and Ψ′; ∅ `a A′ : τ ′. Thus the result follows by (AinH).

(HConst) By (AinH) and the definition of ∆h, e has type b. By (Pconst), e′ = c has type b. M doesn’t
change, so Ψ′ = Ψ.

(HAfn) Then e = pxλxa:τ1. Aqyτ1→τ2

a . Since e is well-typed there is a derivation of this form:

Ψ; [xa : τ1] `a A : τ2

Ψ; ∅ `a λxa:τ1. A : τ1 → τ2

Ψ; ∅ `h pxλxa:τ1. Aqyτ1→τ2

a : ∆h(τ1 → τ2)

Note that from the definition of ∆h, we have ∆h(τ1 → τ2) = ∆h(τ1) → ∆h(τ2). Also it is easy to
show that ∆h(∆h(τ1)) = ∆h(τ1). Thus it suffices to find the premise of the following derivation:

Ψ; [xh : ∆h(τ1)] `a {pxxhqyτ1

h /xa}A : τ2

Ψ; [xh : ∆h(τ1)] `h px{pxxhqyτ1

h /xa}Aqyτ2

a : ∆h(τ2)

Ψ; ∅ `h λxh:∆h(τ1). px{pxxhqyτ1

h /xa}Aqyτ2

a : ∆h(τ1) → ∆h(τ2)

8

Fortunately, we also have this derivation:

Ψ; [xh : ∆h(τ1)] `h xh : ∆h(τ1) ∆h(τ1) = ∆h(τ1)

Ψ; [xh : ∆h(τ1)] `a pxxhqyτ1

h : τ1

By weakening the premise of the original derivation and using the substitution lemma, we conclude
the premise of the sufficient derivation.

(HStrip) In this case, e = pxpxĤqyt
hqyτh

a , and since, by definition, ∆h(τh) = τh, there is a derivation of the
form:

Ψ; ∅ `h Ĥ : τh ∆h(t) = τh

Ψ; ∅ `a pxĤqyt
h : τh

Ψ; ∅ `h pxpxĤqyt
hqyτh

a : ∆h(τh) = τh

The premise of the derivation is sufficient to complete this case of the proof.

(Hµ) Then e = pxrollµα.τ ′ Âqyµα.τ ′
a . By definition, ∆h(µα.τ) = µα.∆h(τ), so we have the following deriva-

tion:
Ψ; ∅ `a Â : {µα.τ ′/α}τ ′

Ψ; ∅ `a rollµα.τ ′ Â : µα.τ ′

Ψ; ∅ `h pxrollµα.τ ′ Âqyµα.τ ′
a : ∆h(µα.τ ′)

Using the premise above, we also have this derivation:

Ψ; ∅ `a Â : {µα.τ ′/α}τ ′

Ψ; ∅ `h pxÂqy{µα.τ ′/α}τ ′
a : {µα.∆h(τ ′)/α}∆h(τ ′)

Ψ; ∅ `h rollµα.∆h(τ ′) pxÂqy{µα.τ ′/α}τ ′
a : µα.∆h(τ ′)

which follows from applying the definition of ∆h like so: ∆h({µα.τ ′/α}τ ′) = {∆h(µα.τ ′)/α}∆h(τ ′) =
{µα.∆h(τ ′)/α}∆h(τ ′). The result holds because, as already observed, ∆h(µα.τ ′) = µα.∆h(τ ′).

(HRef) Then e = refτ ′Ĥ and τ = τ ′ ref. Since e is well typed, there is a derivation of the form:

Ψ; ∅ `h Ĥ : τ ′′ ∆h(τ ′) = τ ′′

Ψ; ∅ `h refτ ′Ĥ : τ ′ ref

We must show that there exists a Ψ′ ⊇ Ψ such that ` M [ξτ ′ 7→ (Ĥ, h)] : Ψ′ and such that Ψ′; ∅ `h

ξτ ′
: τ ′ ref. Consider Ψ′ = Ψ[ξτ ′

: τ ′]. Then by weakening the premise of the above derivation and
applying the rule (HHlab) we have that ` M [ξτ ′ 7→ (Ĥ, h)] : Ψ[ξτ ′

: τ ′]. The rule (Plab) allows us
to derive the rest of the result.

(Hassn) In this case, e = ξτ := Ĥ . Sine it is well typed there is the following derivation:

Ψ(ξτ) = τ

Ψ; ∅ `h ξτ : τ ref
Ψ; ∅ `h Ĥ : τ ′ ∆h(τ) = τ ′

Ψ; ∅ `h ξτ := Ĥ : τ

Note that since Ψ(ξτ) = τ we have Ψ[ξτ : τ] = Ψ and, by applying (HHlab) to the premises of the
above derivation, we have:

` M : Ψ Ψ[ξτ : τ]; ∅ `h Ĥ : τ ′ ∆h(τ) = τ ′

` M [ξτ 7→ (Ĥ, h)] : Ψ[ξτ : τ]

Which shows that the new heap is well typed under the same Ψ. The premise Ψ; ∅ `h ξτ : τ ref is
what we need to complete this case of the proof.

9

(H!) We have e = !ξτ ′
and since e is well typed, there is this derivation:

Ψ(ξτ ′
) = τ ′

Ψ; ∅ `h ξτ ′
: τ ′ ref

Ψ; ∅ `h !ξτ ′
: ∆h(τ ′)

It follows that τ = ∆h(τ ′). There are two cases depending on the heap contents at label ξτ ′
:

M(ξτ ′
) = (Ĥ, h) The well-typedness of the heap must have been arrived at by an application of rule

(HHlab), which means we have the following derivation:

` M : Ψ Ψ[ξτ ′
: τ ′]; ∅ `h Ĥ : τ ′′ ∆h(τ ′) = τ ′′

` M [ξτ ′ 7→ (Ĥ, h)] : Ψ[ξτ ′
: τ ′]

Since Ψ(ξτ ′
) = τ ′ we have Ψ = Ψ[ξτ ′

: τ ′] and it follows that Ψ; ∅ `h Ĥ : ∆(τ ′), which is exactly
what we want.

M(ξτ ′
) = (Â, a) In this case, the fact that M is well-typed follows from an application of (HAlab)

with this derivation:
` M : Ψ Ψ[ξτ ′

: τ ′]; ∅ `a Â : τ ′

` M [ξτ ′ 7→ (Â, a)] : Ψ[ξτ ′
: τ ′]

As before, we also know that Ψ = Ψ[ξτ ′
: τ ′], so an application of (AinH) to the premise above

yields Ψ; ∅ `h pxÂqyτ ′
a : ∆h(τ ′) which is the desired result.

(Hlab) Here, e = pxξτ ′qyτ ′ ref
a and we have the derivation:

Ψ(ξτ ′
) = τ ′

Ψ; ∅ `a ξτ ′
: τ ′ ref

Ψ; ∅ `h pxξτ ′qyτ ′ ref
a : ∆h(τ ′ ref)

But, the definition of ∆h ensures that ∆h(τ ′ ref) = τ ′ ref. Thus we may use (Plab) with the premise
of the above derivation to conclude that Ψ; ∅ `h ξτ ′

: τ ′ ref. Since M doesn’t change, we’re done.

(AHfn) In this case, e = pxλxh:τ0. Hqyτ1→τ2

h and the typing derivation is of the form:

Ψ; [xh : τ0] `h H : τ3

Ψ; ∅ `h λxh:τ0. H : τ0 → τ3 ∆h(τ1 → τ2) = τ0 → τ3

Ψ; ∅ `a pxλxh:τ0. Hqyτ1→τ2

h : τ1 → τ2

It suffices to find a derivation of this form for e′:

Ψ; [xa : τ1] `h {pxxaqyτ0

a /xh}H : τ3 τ3 = ∆h(τ2)

Ψ; [xa : τ1] `a px{pxxaqyτ0

a /xh}Hqyτ2

h : τ2

Ψ; ∅ `a λxa:τ1. px{pxxaqyτ0

a /xh}Hqyτ2

h : τ1 → τ2

From the first derivation, it follows that τ3 = ∆h(τ2). Since τ0 = ∆h(τ0), we also have the following
derivation:

Ψ; [xa : τ0] `a xa : τ0

Ψ; [xa : τ0] `h pxxaqyτ0

a : ∆h(τ0) = τ0

By weakening the first premise of the derivation and applying the substitution lemma, we conclude the
first premise of the second derivation, so the result holds.

10

2

Lemma 2.5 (Progress) If ` M : Ψ and Ψ; ∅ ` e : τ , then either e is a value or there exists an e′ such that
(M, e) 7−→ (M ′, e′).

Proof: By structural induction on e. Note that because e is well-typed, e cannot be a variable. We
proceed by cases:

e = c, e = λx:τ. e′, e = ξτ , e = rollµα.τ ê, or e = pxĤqyt
h Then e is a value and the lemma holds.

e = e′e′′ This case follows by straightforward induction in the case that e′ or e′′ is not a value—the transition
is via rule (P1) or (P2). In the case that e′ and e′′ are both values, well-typedness of e and Canonical
Forms yields that e′ = λx:τ. e′′′ and the transition is via rule (Pβ).

e = refτe′ If e′ is not a value, then the transition is via rule (PRef1), otherwise either (Aref) or (Href)
applies, depending on the color of e.

e = !e′ If e′ is not a value, then rule (P!) applies. Otherwise, well typedness of e yields that e′ has type
τ ref for some type τ . Since e′ is a value, Canonical Forms tells us that e′ = ξτ . Either (A!) or (H!)
applies depending on the color of e′.

e = e′ := e′′ If at least one of e′ and e′′ is not a value, then rules (PAssn1) or (PAssn2) apply. If both are
values, then well-typedness of e yields that e′ has type τ ref, and so, by Canonical Forms, e′ = ξτ .
One of (AAssn) or (HAssn) applies, depending on the color of e′.

e = rollµα.τ e′ If e′ is not a value, then (Pµ1) applies.

e = unrollµα.τ e′ If e′ is not a value, then (Pµ2) applies. Otherwise, well-typedness of e and Canonical
Forms yields that e′ = rollµα.τ ê, in which case (Pµ3) applies.

e = pxe′qyτ
κ If e′ is not a value, then, by the inductive hypothesis, either (AH) or (HA) applies. We consider

the remaining cases, assuming that e′ is a value but e is not:

τ = τ ′ ref Here, e′ must be of the form ξτ ′
(by Canonical Forms) and either (ALab) or (HLab)

applies.

τ = b Then e = pxcqyb
κ and one of (AConst) or (HConst) applies, depending on e’s color.

τ = µα.τ Then e = pxrollµα.τ2 êqyµα.τ
κ by Canonical Forms on e′ and it follows that either (Aµ) or

(Hµ) applies.

τ = τ1 → τ2 By Canonical forms, e′ = λx:τ ′. e′′ and either (AHfn) or (HAfn) provides the transition.

κ = a, e′ = pxĤqyt
h In this case, (HStrip) applies.

2

Definition 2.6 (Stuck Terms) A configuration (M, e) is stuck if e is not a value and there is no config-
uration (M ′, e′) such that (M, e) 7−→ (M ′, e′).

Theorem 2.7 (Type Soundness) If Ψ; ∅ ` e : τ and ` M : Ψ then there is no stuck (M ′, e′) such that
(M, e) 7−→∗ (M ′, e′).

Proof: Follows from Preservation and Progress. 2

11

erase(x) = x
erase(c) = c

erase(ξτ) = ξ
erase(λx:τ. e) = λx:{τh/t}τ. erase(e)

erase(e e′) = erase(e) erase(e′)
erase(refτe) = ref{τh/t}τerase(e)
erase(e := e′) = erase(e) := erase(e′)

erase(!e) = !erase(e)
erase(rollµα.τ e) = roll{τh/t}µα.τ erase(e)

erase(unrollµα.τ e) = unroll{τh/t}µα.τ erase(e)
erase(pxeqyτ

κ) = erase(e)

erase(∅) = ∅
erase(M [ξτ 7→ (ê, κ)]) = erase(M)[ξ 7→ erase(ê)]

erase(M, e) = (erase(M), erase(e))

Figure 4: Two-agent erase translation

2.5.2 Two-agent Erasure

Given a term, if we ignore the distinction between colors, erase the embeddings, and replace t with τh, we
have a simply-typed λ-calculus term. Formally, Figure 4 defines the erasure of a two-agent term. (All rules
are polychromatic.) The following lemma states that erasure commutes with evaluation.

Lemma 2.8 (Erasure) Let e be any two-agent term such that Ψ; ∅ ` e : τ . Then (M, e) 7−→∗ (M ′, ê) iff
erase(M, e) 7−→∗ erase(M ′, ê).

Proof (sketch): First prove that substitution commutes with erasure. With that lemma in hand, the
erasure lemma follows by induction on the source derivation. The proof is straightforward and not interesting
so we omit it here. 2

2.5.3 Two-agent Abstraction Properties

Before proving the type abstraction properties, we make a convenient definition, which allows us to perform
substitutions in an open heap:

Definition 2.9 (Pre-Heap) If Γ is a typing context, we say that a finite map P : Labels → (Terms ×
Agents) is a Γ-pre-heap of type Ψ, written Γ ` P : Ψ, if for every label ξτ such that P (ξτ) = (A, a) it is the
case that Ψ; Γ `a A : τ and for every label ξτ such that P (ξτ) = (H, h) it is the case that Ψ; Γ `h H : τ ′ and
∆h(τ) = τ ′.

Note that if Γ = ∅ then a pre-heap is just a normal heap. The difference is that pre-heaps can contain
references to open terms in addition to values. Substitution over a Γ-pre-heap P is as follows: If Ψ; ∅ `κ ê : τ
and Γ ` P : Ψ and Γ(xκ) = τ then {ê/xκ}P is defined by:

• {ê/xκ}∅ = ∅
• {ê/xκ}(P [ξτ ′ 7→ (e, κ′)]) = ({ê/xκ}P)[ξτ ′ 7→ ({ê/xκ}e, κ′)]

Lemma 2.10 (Heap Substitution) If Γ[xκ : τ] ` P : Ψ and Γ(xκ) = τ and Ψ; ∅ `κ ê : τ then Γ `
{ê/xκ}P : Ψ.

We write {e/xκ}(P, e′) for ({e/xκ}P, {e/xκ}e′) whenever such a substitution is appropriate.

12

Definition 2.11 (Reachable Term) A term e′ is reachable from a configuration (M, e) if either

• e′ is a subterm of e

• For any label ξτ , a subterm of e, M(ξτ) = (ê, κ) and e′ is reachable from (M, ê).

Definition 2.12 (Host-free) If no host-term is reachable from the configuration (M, A) then (M, A) is
said to be host-free.

We use the terminology reachable and host-free (defined as above) also for pairs (P, A) where P is a
pre-heap and A is a (not-necessarily-closed) expression.

Lemma 2.13 (Value Abstraction) Let P be a pre-heap such that [xa : t] ` P : Ψ. Let Ĥ and Ĥ ′ be host
values such that Ψ; ∅ `h Ĥ : τh and Ψ; ∅ `h Ĥ ′ : τh. Let A be an agent-term such that Ψ; [xa : t] `a A : τ
and further suppose that (P, A) is host-free and {pxĤqyt

h/xa}A is not a value. Let σ1 = {pxĤqyt
h/xa} and

σ2 = {pxĤ ′qyt
h/xa}. Then there exists a term A′ and a [xa : t]-pre-heap P ′ such that:

1. [xa : t] ` P ′ : Ψ′ where Ψ′ ⊇ Ψ

2. Ψ′; [xa : t] `a A′ : τ

3. (P ′, A′) is host-free

4. σ1(P, A) 7−→ σ1(P ′, A′)

5. σ2(P, A) 7−→ σ2(P ′, A′)

Proof: The proof goes by induction on the derivation that σ1(p, A) transitions. Note that since A is
host-free and Ĥ is a value, the only rules occurring in the derivation are polychromatic or agent-rules. We
can eliminate all of the agent rules except (ARef), (AAssn) and (A!) since Ĥ is a value and there are no
other reachable host-terms. Thus we proceed by cases on each of the remaining rules:

(P1), (P2), (Pµ1), (Pµ2), (P!), (PRef1), (PAssn1), or (PAssn2) These follow by straightforward
induction and the definition of substitution. As an example, we show the case for (P1); the rest are
similar. Since σ1A transitions via rule (P1) and since pxĤqyt

h is a value, A must be of the form A1 A2

where σ1A
1 is not a value. This follows because σ1A = σ1(A1 A2) = (σ1A

1) (σ1A
2) by the definition

of substitution. Furthermore, the typing rule for applications yields that Ψ; [xa : t] `a A1 : τ ′ → τ for
some τ ′. Since A1 is a subterm of A, it follows from the definition of host-free that (P, A1) is host-free.
Thus the inductive hypothesis applies and we conclude that there is a term A′′ and a [xa : t]-pre-heap
P ′′ such that Ψ′′; [xa : t] `a A′′ : τ ′ → τ , (P ′′, A′′) is host-free, σ1(P, A1) 7−→ σ1(P ′′, A′′), and
σ2(P, A1) 7−→ σ2(P ′′, A′′). Let Ψ′ = Ψ′′ and choose P ′ = P ′′ and A′ = (A′′ A2). Claim: P ′ and
A′ satisfy properties 1 through 5. Property 1 holds by the inductive hypothesis and weakening since
Ψ′ = Ψ′′ ⊇ Ψ and P ′ = P ′′. Property 2 follows from the well-typedness of A and the inductive
hypothesis via rule (Papp). Property 3 follows from the inductive hypothesis and the observation
that since A2 is a subterm of A it is host-free. Property 4 is established by an application of (P1) to
the results of the inductive hypothesis: (σ1P, (σ1A

1) (σ1A
2)) 7−→ (σ1P, (σ1A

′′) (σ1A
2)) which equals

(σ1P, σ1(A′′ A2)) which is σ1(P ′, A′). Property 5 follows analogously.

(Pβ) Since it is well-typed, and, in particular, because xa has type t and so can’t appear in the application
position of an agent term, σ1A is of the form σ1((λya:τ. A1) A2) which, if xa 6= ya, equals (by the
definition of substitution) (λya:τ ′. σ1A

1) (σ1A
2), or, if xa = ya, it equals (λya:τ ′. A1) (σ1A

2). In the
former case, the transition step yields {(σ1A

2)/ya}(σ1A
1), which, since xa 6= ya, is σ1({A2/ya}A1),

while in the latter case the transition yields {(σ1A
2)/ya}A1 = σ1({A2/ya}A1. Choose A′ = {A2/ya}A1

and P ′ = P . Again, since P is unchanged, Property 1 holds by assumption. Property 2: This follows
from the Substitution Lemma and the assumption that A is well-typed. Property 3: P ′ is clearly
host-free since P is. A′ has no occurrences of host code since neither A1 nor A2 do and substitution
doesn’t change the color of code. Property 4: follows from observations above about the transition
step. Property 5: This follows analogously to 4 using the observation that σ2A = σ2(λya:τ ′. A1) (σ2A

2)
and following similar calculations of the transition step.

13

(Pµ3) In this case, σ1A is of the form σ1(unrollµα.τ rollµα.τ ′ A1). Take A′ = A1 and P ′ = P . Property 1 is
trivial. Property 2 follows from the well-typedness of A, since the last two steps of the typing derivation
must have been (Proll) followed by (Punroll). We conclude that Ψ; [xa : t] `a A′ : {µα.τ ′/α}τ ′.
Since A′ is a sub-term of A, the configuration (P ′, A′) is host-free, satisfying Property 3. Property 4 is
established via the definition of substitution: (σ1P, σ1A) = (σ1P, unrollµα.τ ′ rollµα.τ ′ (σ1A

1)) which
steps via (Pµ3) to (σ1P, σ1A

1) = σ1(P, A1) which is just σ1(P ′, A′). Similarly we have (σ2P, σ2A) =
(σ2P, unrollµα.τ ′ rollµα.τ ′ (σ2A

1)) which steps via (Pµ3) to (σ2P, σ2A
1) = σ2(P, A1), again, just

σ2(P ′, A′).

(ARef) In this case, σ1A = refτ Â and it follows that A = refτA′′ for some A′′. Since σ1(P, A) steps to
(M, ξτ) for some M and fresh label, ξτ , we choose P ′ = P [ξ 7→ (A′′, a)] and A′ = ξτ . It remains to
verify properties 1 through 5. Property 1: By assumption we have Ψ; [xa : t] `a refτA′′ : τ ref, which
must have been derived by an application of (Aref). It follows that Ψ; [xa : t] `a A′′ : τ . Since P is an
[xa : t]-pre-heap with type Ψ and ξτ 6∈ Dom(P), it follows that [xa : t] ` P [ξ 7→ A′′] : Ψ′ = Ψ[ξτ : τ],
and hence Ψ′ ⊇ Ψ. Property 2: We must show that Ψ′; [xa : t] `a ξτ : τ ref. We may conclude
this via rule (Plab) since Ψ′(ξτ) = τ as constructed above. Property 3: Since P and A′′ are host-
free and the only terms reachable from (P ′, ξτ) are those reachable from (P ′, A′′) plus ξτ (an agent
label), it follows that (P ′, A′) is host-free as well. We verify Property 4 with the following calculation:
σ1(P, A) = (σ1P, σ1A) = (σ1P, σ1(refτA′′)) = (σ1P, refτσ1A

′′) 7−→ ((σ1P)[ξτ 7→ (σ1A
′′, a)], ξτ) =

(σ1(P [ξτ 7→ (A′′, a)]), ξτ) = σ1(P [ξτ 7→ (A′′, a)], ξτ) = σ1(P ′, A′). Property 5 follows via the same
calculation replacing σ1by σ2.

(AAssn) In this case, σ1A = ξτ := Â it follows that A = ξτ :=A′′ where A′′ is host-free. Take A′ = A′′

and choose P ′ = P [ξτ 7→ (A′, a)]. Note that Ψ; [xa : t] `a ξτ :=A′′ : τ must have been derived via
rule (AAssn) and so it follows that Ψ; [xa : t] `a ξτ : τ ref which can be derived only via (Alab).
Thus it must be the case that Ψ(ξτ) = τ . Likewise it must be the case that Ψ; [xa : t] `a A′′ : τ .
We first verify Property 1: By assumption, [xa : t] ` P : Ψ. By the definition of pre-heap and the
type derivation for A′′ = A′, it follows that [xa : t] ` P [ξτ 7→ (A′, a)] : Ψ. Property 2 has already
been observed to be a consequence of the original typing derivation. Property 3 follows since A′ is
host free and the original P was also host-free. We verify Property 4 by the calculation: σ1(P, A) =
σ1(P, ξτ :=A′′) = (σ1P, σ1(ξτ := A′′)) = (σ1P, ξτ := σ1A

′′) 7−→ ((σ1P)[ξτ 7→ (σ1A
′′, a)], σ1A

′′) =
(σ1(P [ξτ 7→ (A′′, a)]), σ1A

′′) = σ1(P [ξτ 7→ (A′′, a)], A′′) = σ1(P ′, A′). Property 5 follows analogously.

(A!) In this case, σ1A = !ξτ , which means that A = !ξτ . Since (P, A) is host-free, it must be the case
that P (ξτ) = (A′, a) for some A′. This is the A′ we seek, it also means that the transition step is
determined to be of the first flavor listed in (A!). Let P ′ = P . Then Property 1 follows since P is
unchanged. Property 2 follows by the well-typedness of the pre-heap P . Property 3 holds since ξτ is a
subterm of A which means that A′ is reachable from A and hence (P, A′) is also host-free. Property
4 is established as follows: σ1(P, A) = (σ1P, σ1A) = (σ1P, !ξτ). As noted above, P (ξτ) = (A′, a)
implies that this must step via (A!) to (σ1P, (σ1A

′)) = σ1(P ′, A′). Property 4 follows by a similar
computation.

2

Using the Value Abstraction lemma, we prove the following:

Theorem 2.14 (Independence of Evaluation) Let M be a heap such that ` M : Ψ. Let Ĥ and Ĥ ′ be
host values such that Ψ; ∅ `h Ĥ : τh and Ψ; ∅ `h Ĥ ′ : τh. Let A be an agent-term such that Ψ; ∅ `a λxa:t. A :
t → b and further suppose that (M, λxa:t. A) is host-free. Then:

(M, (λxa:t. A)pxĤqyt
h) 7−→∗ c

iff
(M, (λxa:t. A)pxĤ ′qyt

h) 7−→∗ c

Proof: After one step for each evaluation, the configurations are in a form so that the Value Abstraction
lemma applies. Since that lemma preserves its own preconditions, inductively apply it to the rest of the

14

evaluation. This shows that the two evaluation sequences must be in lock-step, and so halt with the same
value, c. 2

Lemma 2.15 (Constant Embeddings) If ` M : Ψ and Ψ; [xκ : b] ` e : τ then (M, {c/xκ}e) 7−→∗

(M ′, ê) if and only if (M, {pxcqyb
κ◦/xκ}e) 7−→∗ (M ′, ê).

Proof (sketch): The proof goes by induction on the derivation of the evaluation sequence. The idea is to
simply insert (AConst) or (HConst) steps whenever the embedding pxcqyb

κ◦ appears. 2

Theorem 2.16 (Host-provided Values) Suppose M is a heap such that ` M : Ψ. Let Â = λya:b → t. A
be an agent function such that Ψ; ∅ `a Â : τ and (M, Â) is host-free. Further suppose that Ψ; [xh : b] `h

ho : τh and (M, λxh:b. ho) is agent-free. If (M, (λya:b → t. A) pxλxh:b. hoqyb→t
h) 7−→∗ (M ′, A′) then for

any sub-term pxĤqyt
h of A′, there is a constant c and heap M ′′ such that (M ′′, {c/xh}ho) 7−→∗ (M ′′′, Ĥ).

Proof: After one step of evaluation, the configuration is
(M, (λya:b → t. A) λxa:b. px{pxxaqyb

a/xh}hoqyt
h). The following lemma applies because the only reachable

host-embedding is of type t and nearly-agent free (the only freely occurring agent-terms are xa). The lemma
implies that under any sequence of transition steps, the only thing that can happen to a host-embedding is
the substitution of a constant for xa, after which it may take host-transition steps. But this says exactly that
there is some memory configuration M ′′ such that (M ′′, {c/xa}{pxxaqyb

a/xh}ho) 7−→ (M ′′′, Ĥ). Since ho is
agent-free, we have {c/xa}{pxxaqyb

a/xh}ho = {pxcqyb
a/xh}ho. The result follows from the Constant Embeddings

lemma. 2

Lemma 2.17 (Host-Provided Values (step)) Suppose M is a heap such that ` M : Ψ. Let A be a
closed agent term such that:

• If pxHqyτ
h is a host-embedding reachable from (M, A) then τ = t and H is nearly-agent free. That is,

Ψ; [xa : b] `a pxHqyt
h : t, and xa is the only agent-term reachable in (M, H).

• There are no agent colored labels that are reachable from (M, A) which point to host values. That is,
if ξτ is an agent term reachable from (M, A) then M(ξτ) = (Â, a) for some Â.

Further suppose that (M, A) 7−→ (M ′, A′). Then every agent label reachable from (M ′, A′) points to an
agent value, and, in addition, if pxH ′qyτ

h is any host-embedding reachable from (M ′, A′) then τ = t and one
of the following is true:

1. pxH ′qyt
h is reachable from (M, A).

2. H ′ = {c/xa}H where pxHqyt
h is reachable from (M, A).

3. There is some pxHqyt
h reachable from (M, A) and (M, H) 7−→ (M ′, H ′) and H ′ is agent-free.

Proof: Proof by induction on the derivation that (M, A) 7−→ (M ′, A′). We proceed by cases:

(P1) Here, A is of the form A1 A2. From the assumptions, it follows that the only host-embeddings reachable
from (M, A1) also satisfy the requirements for the lemma. We also know that (M, A1) 7−→ (M ′, A3)
for some A3 and that A′ = A3 A2. Let pxH ′qyτ

h be a host-embedding reachable from (M ′, A′) and suppose
it is not reachable from (M, A). By the lemma below, pxH ′qyτ

h must be reachable from (M ′, A3) but
not (M, A).

Lemma 2.18 The set of reachable host-embeddings for (M ′, A2) is also reachable from (M, A).

15

Proof: If an embedding is reachable from A2 it is either a subterm of A2 or reached via some reference
in the heap. Since A2 doesn’t change, the only embeddings that could be affected by the transition
step must have been reached via reference shared with the term A1, which took the transition step.
The heap can change in only two ways: by assignment via rule (AAssn) or (HAssn), in which case
the subterm ξτ := ê must occur in A1 and hence be reachable from (M, A), or by creation of a new
reference ((Aref) or (Href)) which cannot be referred to by A2 because the newly created label is
fresh. 2

The embedding part of the conclusion then follows from the inductive hypothesis, since any new host-
embedding must fall into cases (2) or (3).

Now we must show that any agent-colored label reachable from (M ′, A′) points to an agent value in the
heap. By the inductive hypothesis all agent labels reachable from (M ′, A3) must point to agent values,
so let ξτ be an agent label reachable from (M ′, A2). If ξτ is also reachable from (M ′, A3) we’re done,
so assume it isn’t. If ξτ wasn’t reachable from (M, A1) then the transition step could not affect it and
hence, by assumption it must point to an agent value. If ξτ was reachable from (M, A1) then there
are two possible ways the value may have changed: If (AAssn) was used, then the label still points
to an agent value. The other possibility was that (HAssn) was used, but this can’t happen. Why? If
(HAssn) was applied to ξτ then the term H = ξτ := Ĥ appears as a subterm of A, but then, since
ξτ pointed to an agent value, the host term, which must be in an embedding, is not nearly-agent free.
This contradicts our assumptions about host-embeddings reachable from (M, A). Thus we conclude
that any agent label reachable from (M ′, A′) must point to an agent value.

(P2), (PAssn1), (PAssn2) These cases follow analogously to (P1).

(Pβ) In this case, A = (λya:τ ′. A1) Â. The heap doesn’t change, so let pxH ′qyτ
h be a term reachable from

(M, {Â/ya}A1) and suppose it is not reachable from (M, A). Since the terms changed affected by the
substitution {Â/ya} are exactly those containing free occurrences of ya, any host-embeddings not in A
must be of the form {Â/ya}pxHqyt

h. By assumption, we have Ψ; [xa : b] `a pxHqyt
h : t, and it follows that

ya = xa and consequently, by the Canonical Forms Lemma, Â = c for some constant c. Thus the new
host-term is {c/xa}pxHqyt

h = px{c/xa}Hqyt
h and hence clause 2 of the result is satisfied. Since the heap

doesn’t change and labels reachable from (M ′, A′) are a subset of those reachable from (M, A), the
condition on agent-colored labels is also satisfied.

(Pµ1) In this case we have A = rollτ A1 and that (M, A1) 7−→ (M ′, A2). Since A1 is a subterm of A and
A isn’t an embedding, it follows that any host-embeddings reachable from (M, A1) are also reachable
from (M, A). The result follows trivially from the inductive hypothesis.

(Pµ2), (P!), (PRef1) These follow analogously to the case for (Pµ1).

(Pµ3) The A = unrollµα.τ rollµα.τ A1. Since the heap doesn’t change and all subterms of A1 are subterms
of A, any host-embedding of A1 satisfies clause 1, while agent-colored labels still point to the same
things.

(AH) Then A = pxHqyt
h. Furthermore, (M, H) 7−→ (M ′, H ′). Since (M, H) is closed and nearly-agent free,

it follows that (M, H) is agent-free. A simple argument by induction shows that agent- or host-freeness
is preserved by transition steps. Thus we conclude H ′ is agent-free and so clause 3 is satisfied. Since
H is agent-free, any labels contained in H must point to host values and not agent values. Thus, even
if H transitions via (HAssn), only locations that are already host-colored are affected. This suffices
to show that the agent-colored label property still holds.

(AConst), (AHfn), (Aµ1), and (ALab) All of these cases are eliminated since all embedded host-terms
that appear in A must have label t.

(ARef) Any host-embedding that is reachable from (M [ξτ 7→ (Â, a)], ξτ) is also reachable from (M, refτ Â)
and so satisfies clause 1. The newly created label refers to an agent location, and by assumption all
agent labels reachable from (M, Â) also point to agent values, so that part of the lemma is satisfied.

16

(types) τ ::= t | b | τ1 → τ2

(labels) `i ::= i | `i : `j

(i-terms) ei ::= xi | c | λxi:τ. ei | ei e′i
| fix fi(xi:τ). ei | pxejqyτ

`j

(i-primvals) v̂i ::= c | λxi:τ. ei

(i-values) vi ::= v̂i | pxv̂jqyt
`j

(∆i(t) = t)

Figure 5: Multiagent Syntax

(A!) Then A = !ξτ and by assumption, we have M(ξτ) = (Â, a). From the definition of reachability, it
follows that any host-embedding reachable from (M, M(ξ)) is also reachable from (M, A). Thus
clause 1 is satisfied. Since any agent label reachable from (M, Â) is also reachable from (M, !ξτ) the
condition on agent labels is satisfied.

(AAssn) As in (A!), all host-embeddings reachable from A′ are also reachable from A, satisfying clause
1. Also, since Â is stored as an agent value and every other agent label reachable from (M ′, A′) is
reachable from (M, A), the agent-label condition is met.

2

3 The Multiagent Language

So far, we have described a two-principal setting in which the host has strictly more information than the
agent. Many interesting cases can be modeled in this fashion, but there are times when both principals wish
to hide information or there are more than two agents involved. For example, we need a multiagent setting
to prove safety properties about nested or mutually recursive abstract datatypes.

Another natural generalization is to allow an agent to export multiple abstract types. Once that has
been introduced, agents should be able to share type information.

Generalizing the language these ways has another benefit: we can prove theorems once for a broad class
of systems. The type abstraction properties for an instance of the system follow as corollaries.

Just as in the two-agent case it is straightforward (but tedious) to include products, sums and recursive
types in the multiagent calculus. We also believe we can add state as in the two-agent case. The key technique
is to record which agent last assigned to a location, and do the appropriate embedding on derefernce.
However, we do not incorporate state in the development below.

3.1 Syntax

Figure 5 shows the syntax for the multiagent language. The types include a base type, b, function types,
and type variables ranged over by t, u, and s.

Rather than just two “colors” of terms, we now assume that there are n agents, where n is fixed. In the
syntax, the meta-variables i and j range over {1, . . . , n}.

Agent i’s terms include variables, xi, non-recursive functions, λxi:τ. ei, recursive functions, fix fi(xi:τ). ei,
function applications, ei e′i, and embeddings pxejqyτ

`j
. We include both recursive and non-recursive functions

to simplify the dynamic semantics (see rule (4) in Figure 6).
An embedding containing a j-term is labeled with a list of agents beginning with j for reasons explained

in the discussion of the semantics. We use the notation `j for a non-empty list of agents beginning with j.
If `i and `j are two such lists, then `i:̀ j is `i appended to `j and rev(`i) is the list-reversal of `i.

The goal is a language in which each agent has limited knowledge of type information. Thus, we must
somehow represent what an agent “knows” and ensure that agents sharing information do so consistently.

17

(1)
e0

i
i7−→ e1

i

e0
i e2

i
i7−→ e1

i e2
i

(2)
e0

i
i7−→ e1

i

vi e0
i

i7−→ vi e1
i

(3)
e0

j
j7−→ e1

j

pxe0
jqyτ

`j

i7−→ pxe1
jqyτ

`j

(4) fix fi(xi:τ). ei
i7−→ λxi:τ. {fix fi(xi:τ). ei/fi}ei

(5) λxi:τ. ei vi
i7−→ {vi/xi}ei

(6) pxcqyb
`j

i7−→ c

(7) pxv̂jqyτ
`j

i7−→ pxv̂jqy∆̄i(τ)
`j

(τ 6= ∆i(τ))
(8) pxpxv̂jqyu

`j
qyτ

`k

i7−→ pxv̂jqyτ
`j:`k

(u 6∈ Dom(∆k), τ = ∆i(τ))

(9) pxλxj :τ0. ejqyτ1→τ2

`j

i7−→ λxi:τ1. px{pxxiqyτ0

i:rev(`j)
/xj}ejqyτ2

`j
(xi fresh, τ1 → τ2 = ∆i(τ1 → τ2))

Figure 6: Multiagent Dynamic Semantics: ei
i7−→ e′i

For example, agent i might know that fh = int. Agent j may or may not have this piece of information, but
if j does know the realization of fh, that knowledge must be compatible with what i knows. (It shouldn’t be
the case that j thinks fh = string.)

The consistency of the type information of the language is encapsulated in an “omniscient” map, Φ, that
takes type variables to types. It is a finite map of the following form:

Φ::= ∅ | Φ[t = b] | Φ[t = s], s ∈ Dom(Φ) | Φ[t = s → u], s, u ∈ Dom(Φ)

Intuitively, Φ represents the “real” type alias information in the system. For instance in the situation
above, Φ might be [fh = int]. In practice, Φ could be extracted from the source code of the agents and
checked for consistency.

Accordingly, each principal will know some of the information contained in Φ. For each agent, i, let ∆i

be a subset of Dom(Φ). Each such ∆i determines a map, Φ|∆i obtained by restricting the domain of Φ to
∆i. To simplify notation, we use ∆i(t) for Φ|∆i(t). Continuing the example above, we might have ∆i = {fh}
and ∆j = {}, which says that i knows that fh is implemented as an integer while j does not. Agent i knows
t means t ∈ ∆i.

Note that since ∆i and ∆j are both restrictions of Φ, it is the case that for any t ∈ Dom(∆i)∩Dom(∆j) we
have ∆i(t) = ∆j(t). This restriction is not as prohibitive as it may appear. For example, we can encode the
maps ∆i(t) = s, ∆i(s) = int, ∆j(t) = int by rearranging the functions to be ∆i(s) = t, ∆i(t) = ∆j(t) = int.
This does not work in all cases, however, but it is sufficient to ensure Type Relations property (iii) (see
Lemma 4.5)1.

Each ∆i extends naturally to a map from an arbitrary type τ as follows:

∆i(b) = b

∆i(t) =
{

t t 6∈ Dom(∆i)
∆i(t) t ∈ Dom(∆i)

∆i(τ1 → τ2) = ∆i(τ1) → ∆i(τ2)

Such a ∆i determines a complete partial order, v∆i, on types. We denote the least upper bound of the
sequence τ v∆i ∆i(τ) v∆i ∆2

i (τ) v∆i . . . by ∆̄i(τ). Thus, ∆̄i(τ) is the most concrete view of τ that agent
i is able to determine from its knowledge. For succinctness, we write {∆} for the set {∆1, . . . ,∆n}.

Some key properties of these ∆ maps are summarized below:
1In fact, resorting to this restrictive “omniscient” Φ is unnecessary. It is sufficient for our system to have a set of compatible

∆ maps, where compatible is taken to mean that no collection of agents can relate (in the sense of Figure 8) two incompatible
types (i.e. a base type and an arrow type). The ∆ maps must further satisfy Lemma 3.7. The requirements on the ∆ maps
given here are sufficient, but not necessary to meet these requirements and can probably be considerably relaxed.

18

(const) {∆}; Γ `i c : b

(var) {∆}; Γ `i xi : Γ(xi)

(app)
{∆}; Γ `i ei : τ ′ → τ {∆}; Γ `i e′i : τ ′

{∆}; Γ `i ei e′i : τ

(abs)
{∆}; Γ[xi : τ ′] `i e′i : τ ∆i(τ ′) = τ ′

{∆}; Γ `i λxi:τ ′. e′i : τ ′ → τ
(xi 6∈ Dom(Γ))

(fix)
{∆}; Γ[fi : τ ′ → τ][xi : τ ′] `i e′i : τ ∆i(τ ′ → τ) = τ ′ → τ

{∆}; Γ `i fix fi(xi:τ ′). e′i : τ ′ → τ
(fi, xi 6∈ Dom(Γ))

(embed)
{∆}; Γ `j ej : τ ′ {∆} ` τ ′ .`j:i τ

{∆}; Γ `i pxejqyτ
`j

: ∆̄i(τ)

Figure 7: Multiagent Static Semantics: {∆}; Γ `i ei : τ

Lemma 3.1 (Consistency) For any agents i and j and type variable t, if t ∈ ∆i ∩∆j then ∆i(t) = ∆j(t).

Proof: Immediate from the definition of ∆i and ∆j . 2

Note that ∆i(∆j(τ)) is not necessarily ∆j(∆i(τ)).

Lemma 3.2 (Properties of ∆̄i) For all agents i and types τ and τ ′,

(i) ∆̄i(b) = b

(ii) ∆̄i(τ) = ∆̄i(∆i(τ)) = ∆i(∆̄i(τ))

(iii) ∆̄i(τ → τ ′) = ∆̄i(τ) → ∆̄i(τ ′)

(iv) ∆̄i(τ → τ ′) = τ0 → τ1 for some τ0 and τ1. In particular ∆̄i(τ → τ ′) 6= b

(v) ∆̄i(τ) = τ ⇐⇒ ∆i(τ) = τ

Proof: Immediate from the definition of ∆̄i. 2

The set of i-terms that are values depends on i’s available type information. In addition to the usual
notion of values, given by i-primvals, a j-primval embedded in agent i is a value if i cannot determine any
more type information about the value, i.e. pxv̂jqyt

`j
is a value if ∆i(t) = t.

3.2 Dynamic Semantics

Figure 6 shows the operational semantics for agent i in the multiagent language.
Rules (1), (2), (4) and (5) establish a typical call-by-value semantics. Rule (3) allows evaluation inside

embeddings and distinguishes i transitions from j transitions.
Rule (6) lets agent i pull a constant, exported at base type, out of an embedding. It corresponds to rules

(A2) and (H2) of the two-agent scenario.
As in the two-agent case where the host had more type information than the agent, an agent can use its

knowledge to refine the type of an embedded term. Previously, the substitution {τh/t} in rule (H3) served
this purpose. Now, ∆̄i captures the type refinement information available to agent i. Correspondingly, rule
(7) allows i to refine the type of an embedded value.

Perhaps the most subtle issue is when to allow embeddings to be stripped away. In the two-agent case,
rule (H4) let the host pull out its own value that had been embedded abstractly inside an agent. This was

19

safe because the agent had strictly less information than the host. Now, however, an intermediary agent with
more knowledge could contribute to the evaluation of a term. If we throw away that information by simply
discarding the intermediary’s embedding brackets, it becomes difficult to track the relationship between the
type of the term inside the embedding and the annotation on the embedding.

Thus we use lists of agents as the labels on embeddings. Intuitively, an agent “signs” the term if it
participated in the evaluation. Rule (8) says that if there are nested embeddings, pxpxv̂jqyu

`j
qyτ

`k
, and the inner

embedding, pxv̂jqyu
`j

, is a k-value (that is, u 6∈ Dom(∆k)), then the two embeddings can be collapsed into
one, pxv̂jqyτ

`j:`k
. We lose no information about which agents have participated in the evaluation of the term,

because we append the two lists. The idea, formalized in the next section, is that the type of the term inside
an embedding is related, via the list of agents labeling the embedding, to the type annotation.

The most interesting rule is (9), which is really what tracks the principals. The embedded function is
lifted to the outside. Its argument now belongs to the outer agent, i, instead of the inside agent, j. As such,
it must be given the type that i thinks the argument should have. The body of the function is still a j-term
embedded in an i-term so any occurrence of the new formal argument xi must be embedded as an i-term
inside a j-term. The corresponding type annotation must be the type which j expects the argument to have.
Hence the function body is still abstract to i and when the function is applied, the actual argument will be
held abstract from j. The only remaining issue is the agent list on the formal argument embeddings. Since
the “inside type” and “outside type” have reversed roles, the agent-list must be in reverse order. Intuitively,
the agents which successively provided the function argument type to i must undo their work in the body
of the function which is a j-term.

3.3 Static Semantics

Figure 7 shows the multiagent static semantics. The rules are parameterized by the agent i. The judgment
{∆}; Γ `i ei : τ should be read as, “Under type-maps ∆1, . . . ,∆n in context Γ, agent i can show that ei has
type τ”.

All of the rules except (embed) are essentially standard. The rules (abs) and (fix) have additional
conditions that force an agent to use the most concrete type available for functions internal to the agent.

As alluded to previously, the issue of consistency between agents arises during type checking. For instance,
we don’t want an agent to export an int as a function. Likewise, we don’t want an agent, or collection of
agents, to violate the type abstractions represented by the ∆i’s. Thus we need some way of relating the type
of the expression inside the embedding to the typing annotation on the embedding.

We establish an agent-list indexed family of relations on types, τ .`i τ ′. Judgments of the form {∆} `
τ .`i τ ′, showing when two types may be related by the list `i, are given in Figure 8. These rules say
that τ0 .i1:i2:...:in τn if there exist types τ1, . . . , τn−1 such that agent ik is able to show that τk−1 = τk

for k ∈ {1, . . . , n}. Informally, the agents are able to chain together their knowledge of type information to
show that τ0 = τn.

The (embed) rule uses the .`j :i relation to ensure that the type inside the embedding matches up with
the annotation on the embedding. The agent i is appended to the list because, as the outermost agent, i is
implicitly involved in evaluation of the term.

Why is this somewhat complicated mechanism necessary? To some extent, it’s not. It is clear that
there must be some way of relating the type of a term inside an embedding to the type annotation on the
embedding; otherwise, for example, an agent could export an integer as a string. We could have chosen
to allow nested embeddings to be values, so long as each inner embedding was a value with respect to the
enclosing agent (for example pxpx3qyt

iqys
j would be a k-value if s 6∈ Dom(∆k) and t 6∈ Dom(∆j)). This allows

embeddings to “pile up” in a way that is difficult to deal with syntactically and that complicates the dynamic
semantics.

Instead, we allow rule (8) to collapse two embeddings and push the work of ensuring compatibility onto
the .`i relation. The lists contain all of the agents that have participated in the evaluation of the inner
value because inconsistencies might arise otherwise. Consider three agents, i, j, and k such that ∆i(t) = int,
∆j(s) = t and ∆k = ∅. Then collapsing the properly typed k-term pxpx3qyt

iqys
j to either px3qys

i or px3qys
j violates

the type abstraction properties since neither i nor j knows that s abstracts an int. Alternately, if we were
to use sets of agents, instead of (ordered) lists, the reasonable typing rules become too permissive.

20

(eq)
∆̄i(τ) = ∆̄i(τ ′)
{∆} ` τ .i τ ′

(trans)
{∆} ` τ ′ .`i τ ′′ {∆} ` τ ′′ .`j τ ′

{∆} ` τ .`i:`j τ ′

Figure 8: Type relations: {∆} ` τ .`i τ ′

3.4 Type Soundness

We first need to prove several properties about related types. We can then follow a traditional approach to
syntactic type soundness.

3.4.1 Type Relation Lemmas

Given the collection of ∆’s, we can construct a graph, with edges colored by agents, that captures the relation
between types. In particular, let G({∆}) = (V, E) where V , the vertices, is just the set of all types and E
is a set of colored edges. For each agent i and types τ and τ ′ there is an edge (τ, τ ′)i ∈ E if and only if
either τ = τ ′, ∆i(τ) = τ ′, or ∆i(τ ′) = τ . These edges are undirected, and the notation (τ, τ ′)i indicates that
there is an i-colored edge from τ to τ ′. Wherever {∆} is clear from the context or unimportant, we write G
instead of G({∆}).

Given such a graph, G, a path of length k in the graph from τ to τ ′ is a sequence of k edges in E
(τ0, τ1)i0 , (τ1, τ2)i1 ,. . .,(τ

k−1, τk)ik−1 where τ0 = τ and τk = τ ′ and im is an agent for each m. Since we
will be concerned with paths with particular properties, we also define the notion of an ix0

0 , ix1
1 , . . . , ixk

k -path
from τ to τ ′. If xm ≥ 0 is an integer for each m ∈ {1 . . . k}, and im is an agent for each m ∈ {1 . . . k} then
an ix0

0 , ix1
1 , . . . , ixk

k -path from τ to τ ′ is a path from τ to τ ′ such that the first x0 edges are labeled by agent
i0, the next x1 edges are labeled i1, etc. Similarly, we define a simple path labeled i in G to be a path where
all the edges are labeled by the single agent i, in other words, an ix-path.

Lemma 3.3 (Reflexivity of .) For every τ and `i, {∆} ` τ .`i τ .

Proof: Proof by induction on the length of `i. If |`i| = 1 then `i = i. By definition, ∆̄i(τ) = ∆̄i(τ), so
by the (eq) rule, we have {∆} ` τ .i τ . In the inductive case, |`i| > 1, so `i = i, `j . By the inductive
hypothesis, {∆} ` τ .`j τ and {∆} ` τ .i τ . By the (trans) rule (instantiated with τ), the result follows.

2

Lemma 3.4 (Idempotency in Lists) For all τ , τ ′, agents i, and (possibly empty) lists ` and `′:

i {∆} ` τ .i:i τ ′ iff {∆} ` τ .i τ ′.

ii For all agents lists of the form :̀i:i:̀ ′, {∆} ` τ .`:i:i:`′ τ ′ iff {∆} ` τ .`:i:`′ τ ′

Proof: Part (i): Assume {∆} ` τ .i:i τ ′ then there must exist a τ ′′ such that {∆} ` τ .i τ ′′ and
{∆} ` τ ′′ .i τ ′. These can be derived only by using the (eq) rule, so we have ∆̄i(τ) = ∆̄i(τ ′′) = ∆̄i(τ), so
by another application of (eq), {∆} ` τ .i τ ′. Conversely, assume {∆} ` τ .i τ ′. Then ∆̄i(τ) = ∆̄i(τ ′).
It follows by the (trans) rule by instantiating τ ′′ with τ that {∆} ` τ .i:i τ ′. Part (ii): By induction on
|`| + |`′|. The base case, 0, is part (i). For the inductive case, in either direction, the derivation must end
with (trans). If this rule “splits” the agent list anywhere but “between i : i”, then the result is immediate
from the inductive hypothesis and (trans). So consider the case where the “split” for the forward direction
of the iff is ` : i and i : `′. It can be shown by induction on the derivation that there must exist some τ3

such that {∆} ` τ ′′ .i τ3 and {∆} ` τ3 .`′ τ ′. This allows us to “move the split” by using (trans) with
` : i and i, then a second time with `′, reducing us to a previous case. 2

Lemma 3.5 (Simple Paths) If ∆̄i(τ) = τ ′ then there is a simple path labeled i from τ to τ ′ in G.

21

Proof: From the definition of ∆̄i(τ) there exists a k such that ∆k
i (τ) = τ ′. By induction on k it is easy

to construct a simple path of length k labeled i in G. 2

Lemma 3.6 (Type Relations are Paths) Let {∆} be a consistent set of type maps and let `i = i0 : i1 :
. . . : ik, where i0 = i, be a list of agents. Then for all τ and τ ′, {∆} ` τ .`i τ ′ if and only if there are
non-negative integers x0, x1, . . . , xk such that there is an ix0

0 , ix1
1 , . . . , ixk

k - path from τ to τ ′ in G({∆}).
Proof: Assume that {∆} ` τ .`i τ ′. We proceed by induction on the derivation of this fact. If the last
step in the derivation was (eq) then `i = i and we have ∆̄i(τ) = ∆̄i(τ ′). From the Simple Paths lemma, there
is an in-path from τ to ∆̄i(τ) and an im-path from τ ′ to ∆̄i(τ ′). Since they are equal, there is an in+m-path
from τ to τ ′. If the last step of the derivation was (trans) then `i = `′i : `j for some `′i = i0 : i1 : . . . , im
and `j = im+1 : . . . : ik and there exists a τ ′′ such that {∆} ` τ .`′i τ ′′ and {∆} ` τ ′′ .`j τ ′. By the
inductive hypothesis, there is an ix0

0 , ix1
1 , . . . , ixm

m -path from τ to τ ′′ and an i
xm+1
m+1 , . . . , ixk

k -path from τ ′′ to
τ ′. By concatenating these paths, we get an ix0

0 , ix1
1 , . . . , ixk

k -path from τ to τ ′.
Conversely, assume there is an ix0

0 , ix1
1 , . . . , ixk

k -path from τ to τ ′. We prove by induction on the length
of the path, len =

∑k
m=0 xm, that {∆} ` τ .`i τ ′. For the base case, len = 0. Then it must be that τ = τ ′.

So by reflexivity of ., we are done. For the inductive case, len > 0. Let e be the first edge in the path. It
belongs to some agent im and connects τ with some τ ′′. By the definition of G({∆}) and Lemma 3.2(ii),
∆̄im(τ) = ∆̄im(τ ′′). So by (eq), τ .im τ ′′. By reflexivity of ., we know τ .i0:...:im−1 τ . Furthermore,
there is an ixm−1

m , im+1, . . . ik-path from τ ′′ to τ ′. So by the inductive hypothesis, τ ′′ .im:...:ik
τ ′. By two

invocations of (trans), τ .i0:...:im:im:...:ik
τ ′. By idempotency, we are done.

2

Lemma 3.7 (Type Relations) For all agents i and j and types τ0, τ1, τ2 and τ3:

i If {∆} ` ∆̄i(τ0) .`i τ1 then {∆} ` τ0 .`i τ1.

ii If {∆} ` τ0 .`i τ1 then {∆} ` τ1 .rev(`i) τ0 where rev(`i) means reverse(`i).

iii If {∆} ` τ0 → τ1 .`i τ2 → τ3 then {∆} ` τ0 .`i τ2 and {∆} ` τ1 .`i τ3.

Proof: Unless mentioned otherwise, the proof in each case proceeds by induction on the derivation that
{∆} ` τ .`i τ ′.

i If the last rule in the derivation was (eq) then `i = i and ∆̄i(∆̄i(τ0)) = ∆̄i(τ1), but since ∆̄i(τ0) =
∆̄i(∆̄i(τ0)), we also conclude that ∆̄i(τ0) = ∆̄i(τ1). The result follows via the (eq) rule. Otherwise,
the last rule must have been (trans), so `i = `′i:`j for some `′i and `j and there exists a τ ′′ such that
{∆} ` ∆̄i(τ0) .`′i τ ′′ and {∆} ` τ ′′ .`j τ1. By the inductive hypothesis, we have {∆} ` τ0 .`′i τ ′′ so
by an application of the (trans) rule, the result follows.

ii If the last rule of the derivation was (eq) then `i = i and ∆̄i(τ0) = ∆̄i(τ1) Since rev(`i) = rev(i) = i,
the result holds by another application of (eq). Otherwise the last rule in the derivation is (trans),
in which case `i = `′i:`j and there exists a τ ′′ such that {∆} ` τ0 .`′i τ ′′ and {∆} ` τ ′′ .`j τ1. Two
applications of the inductive hypothesis yield {∆} ` τ1 .rev(`j) τ ′ and {∆} ` τ ′ .rev(`′i) τ0. Since
rev(`i) = rev(`′i : `j) = rev(`j), rev(`′i), by the (trans) rule we have the desired result.

iii Assume {∆} ` τ0 → τ1 .`i τ2 → τ3. If the last rule used in the derivation was (eq) then `i = i and
we have ∆̄i(τ0 → τ1) = ∆̄i(τ2 → τ3). It follows from the definition of ∆̄i that ∆̄i(τ0) = ∆̄i(τ2) and
∆̄i(τ1) = ∆̄i(τ3). Thus by two applications of (eq), the result follows. Otherwise the last rule used in
the derivation was (trans), in which case `i = `′i : `j from some `′i and `j. Also, there exists a type τ
such that {∆} ` τ0 → τ1 .`′i τ and {∆} ` τ .`j τ2 → τ3. There are two cases, depending on whether
τ = τ ′ → τ ′′ or τ = t.

In the first case, the inductive hypothesis immediately yields {∆} ` τ0 .`′i τ ′ and {∆} ` τ ′ .`j τ2,
so by using the (trans) rule, we conclude {∆} ` τ0 .`′i:`j

τ2. Similar reasoning shows that {∆} `
τ1 .`′i:`j

τ3.

22

We now show that the second case need not occur. It suffices to show that if there is an ix0
0 , . . . , ixm

m -
path from τ0 → τ1 to τ2 → τ3, then there exists an ix0

0 , . . . , ixm
m -path from τ0 → τ1 to τ2 → τ3 that has

no variable nodes. This is sufficient: If the new “no-variable” path has no nodes other than τ0 → τ1

and τ2 → τ3 then there is a one-edge path and we can just use (eq). Else there is an intermediate
node τ4 → τ5 and we split the path into “before” and “after” the first time this node is reached. By
Relations are Paths, we are now in the first case.

Now suppose t is the first variable encountered on the original path. We know that the node in the
path before the first t occurrence is some τ6 → τ7. Also, we know the path must eventually reach
another arrow type node (since it ends at one). We show that the next arrow type node reached must
be τ6 → τ7. Assume for contradiction the next arrow type node reached is different. Then there is a
variable-only path in G({∆}) from t to some other arrow type node. Then there is a cycle-free path
to the other node. This path must have interior nodes which are distinct variables t1, . . . , tn. But the
definition of G({∆}) and consistency demand that Φ(t1) = t since Φ(t) = τ6 → τ7. Similarly, it must
be that Φ(t2) = t1 and so on inductively. But then Φ(tn) = tn−1. This means an edge from tn to an
arrow node must violate consistency. Contradiction.

Since the path must cycle from τ6 → τ7, we can eliminate all edges in-between (and just take the self-
loop instead). Hence we can remove the first occurrence of a variable node from the path. Inductively,
we can remove all variables.

2

3.4.2 Preservation and Progress

Lemma 3.8 (Canonical Forms) If {∆}; ∅ `i vi : τ then:

• If τ = b, then vi = c.

• If τ = τ1 → τ2, then vi = λxi:τ1. ei for some xi and ei.

• If τ = t, then t 6∈ ∆i and vi = pxv̂jqyt
`j

for some v̂j and `j.

Proof: By inspection of the static semantics, the form of values, and Lemma 3.2. 2

Lemma 3.9 (Concreteness of Types) For any i, if {∆}; Γ `i ei : τ then τ = ∆i(τ).

Proof: Easily shown induction on the derivation that {∆}; Γ `i ei : τ , using Lemma 3.2 as necessary.
2

Lemma 3.10 (Substitution) For all agents i and j, if {∆}; Γ[xj : τ ′] `i ei : τ and {∆}; Γ `j ej : τ ′, then
{∆}; Γ `i {ej/xj}ei : τ .

Proof: By induction on the typing derivation for {∆}; Γ[xj : τ ′] `i ei : τ . There are several cases,
depending on the last rule applied in the derivation:

(const) Immediate since substitution has no effect and xj 6∈ FV (c).

(var) Then ei = xi for some xi and there are two possibilities:

xi 6= xj Then {ej/xj}xi = xi and by strengthening (since xj 6∈ FV (xi)) and the assumptions,
{∆}; Γ `i xi : τ .

xi = xj Then i = j and {ej/xj}xj = ej . By (var), τ ′ = τ . The result follows.

(app) Then ei = e′i e′′i for some e′i and e′′i and {∆}; Γ[xj : τ ′] `i e′i : τ ′′ → τ and {∆}; Γ[xj : τ ′] `i e′′i : τ ′.
By two applications of the inductive hypothesis, we also have {∆}; Γ `i {ej/xj}e′i : τ ′′ → τ and
{∆}; Γ `i {ej/xj}e′′i : τ ′′. The result follows by (app) and the definition of substitution.

23

(abs) Then it must be that ei = λxi:τ2. e′i and τ = τ2 → τ3, for some xi, e′i, τ2, and τ3. Furthermore, it
must be the case that {∆}; Γ[xj : τ ′][xi : τ2] `i e′i : τ3. By the bound variable convention, xj 6= xi, so
{ej/xj}λxi:τ2. e′i = λxi:τ2. {ej/xj}e′i. The inductive hypothesis yields {∆}; Γ[xi : τ2] `i {ej/xj}e′i : τ3,
and we conclude via the (abs) rule that {∆}; Γ `i λxi:τ2. {ej/xj}e′i : τ2 → τ3. The result follows from
the definition of substitution.

(fix) Argument is completely analogous to previous case.

(embed) Then ei = pxekqyτ2

`k
for some k, ek, `k and τ2. Furthermore, it must be the case that {∆}; Γ[xj :

τ ′] `k ek : τ3, {∆} ` τ3 .`k:i τ2, and τ = ∆̄i(τ2) for some τ3. By the inductive hypothesis,
{∆}; Γ `k {ej/xj}ek : τ3, so by the (embed) rule we conclude that {∆}; Γ `i px{ej/xj}ekqyτ2

`k
: τ . The

result follows from the definition of substitution.

2

Lemma 3.11 (Preservation) For all agents i, if {∆}; ∅ `i ei : τ and ei
i7−→ e′i then {∆}; ∅ `i e′i : τ .

Proof: By induction on the derivation that ei
i7−→ e′i. The interesting cases are (7), (8), and (9). Rules

(1), (2), (3) follow directly from the inductive hypothesis and the static semantics. Rules (4) and (5) follow
from the Substitution Lemma (which applies because of Concreteness of Types) along with the (abs) and
(fix) rules. Rule (6) follows directly from the static semantics. We consider the other cases separately:

(7) Since ei typechecks, we must have a derivation as follows:

(embed)
{∆}; ∅ `j v̂j : τ0 {∆} ` τ0 .`j:i u

{∆}; ∅ `i pxv̂jqyu
`j

: ∆̄i(u)

Since ∆̄i(u) equals ∆̄i(∆i(u)), we have via the (eq) rule that {∆} ` u .i ∆̄i(u). Thus by (trans)
it follows that {∆} ` τ0 .`j:i:i ∆̄i(u) and we can remove the second i by idempotency. We can now
derive:

(embed)
{∆}; ∅ `j v̂j : τ0 {∆} ` τ0 .`j:i ∆̄i(u)

{∆}; ∅ `i pxv̂jqy∆̄i(u)
`j

: ∆̄i(u)

The conclusion is the desired result.

(8) Since ei typechecks, we must have a derivation as follows:

(embed)

(embed)
{∆}; ∅ `j v̂j : τ0 {∆} ` τ0 .`j,k u

{∆}; ∅ `k pxv̂jqyu
`j

: ∆̄k(u)
{∆} ` ∆̄k(u) .`k,i τ

{∆}; ∅ `i pxpxv̂jqyu
`j

qyτ
`k

: ∆̄i(τ)

Furthermore, u 6∈ ∆k, so ∆̄k(u) = u. Thus by using the (trans) rule, we have {∆} ` τ0 .`j:k:`k:i τ .
And since `k begins with agent k, idempotency proves that {∆} ` τ0 .`j:`k:i τ , which yields the
following derivation:

(embed)
{∆}; ∅ `j v̂j : τ0 {∆} ` τ0 .`j:`k:i τ

{∆}; ∅ `i pxv̂jqyτ
`j:`k

: ∆̄i(τ)

The conclusion is the desired result.

24

(9) Since ei typechecks, we must have a derivation as follows:

(embed)
(abs)

{∆}; [xj : τ0] `j ej : τ3 ∆j(τ0) = τ0

{∆}; ∅ `j λxj :τ0. ej : τ0 → τ3 {∆} ` τ0 → τ3 .`j:i τ1 → τ2

{∆}; ∅ `i pxλxj :τ0. ejqyτ1→τ2

`j
: ∆̄i(τ1 → τ2)

Since the side condition gives us that, ∆i(τ1 → τ2) = τ1 → τ2, we know from the definition of ∆i

that ∆̄i(τ1) = ∆i(τ1) = τ1 and similarly for τ2. From the Type Relations Lemma and the right hand
premise of the (embed) step, we conclude that {∆} ` τ0 .`j :i τ1 and {∆} ` τ3 .`j:i τ2. Now notice
that the reverse of `j : i is i :reverse(tail(`j)):j which we shall write `′ : j. So by the Type Relations
Lemma, {∆} ` τ1 .`′:j τ0. Thus we can derive:

(embed)
(var) {∆}; [xi : τ1] `i xi : τ1 {∆} ` τ1 .`′:j τ0

{∆}; [xi : τ1] `j pxxiqyτ0

`′ : ∆̄j(τ0)

In fact, {∆}; [xi : τ1] `j pxxiqyτ0

`′ : τ0 since the original derivation above provides ∆j(τ0) = τ0. It also
provides {∆}; [xj : τ0] `j ej : τ3. Since xi is fresh, we may conclude {∆}; [xi : τ1][xj : τ0] `j ej : τ3.
So by the substitution lemma, {∆}; [xi : τ1] `j {pxxiqyτ0

`′ /xj}ej : τ3. Thus we can derive:

(abs)

(embed)
{∆}; [xi : τ1] `j {pxxiqyτ0

`′ /xj}ej : τ3 {∆} ` τ3 .`j :i τ2

{∆}; [xi : τ1] `i px{pxxiqyτ0

`′ /xj}ejqyτ2

`j
: ∆̄i(τ2)

∆i(τ1) = τ1

{∆}; ∅ `i λxi:τ1. px{pxxiqyτ0

`′ /xj}ejqyτ2

`j
: τ1 → ∆̄i(τ2)

Since ∆̄i(τ2) = τ2, the conclusion is the desired result.

2

Lemma 3.12 (Progress) For all i, if {∆}; ∅ `i ei : τ then either ei is some value, vi, or there exists an e′i
such that ei

i7−→ e′i.

Proof: By induction on the structure of ei. There are several cases:

ei = xi This case is impossible since {∆}; ∅ 0i xi : τ for any τ .

ei = c Since c is a value, we are done.

ei = λxi:τ0. e′i Again, ei is a value, so the lemma holds.

ei = fix fi(xi:τ0). e′i Rule (4) applies, so we can take a step.

ei = e0
i e

2
i By the inductive hypothesis, e0

i is either a value or there exists some e1
i such that e0

i
i7−→ e1

i . If
the latter holds, then by operational semantics rule (1) we have ei

i7−→ e1
i e2

i . Otherwise, e0
i is a value,

vi, and another application of the inductive hypothesis gives us that e2
i is either a value or there exists

e1
i such that e2

i
i7−→ e1

i . In the second case, rule (2) applies so ei takes a step.

The remaining case is when e0
i = vi and e2

i = v′i for some values vi and v′i. Because ei is well typed,
Canonical Forms guarantees that vi = λxi:τ ′. e′i for some e′i. Thus rule (5) of the operational semantics
applies, and ei takes a step.

ei = pxejqyτ1

`j
By the well typing of ei, the last rule used in the typing derivation must have been (embed).

Thus we have {∆}; ∅ `j ej : τ0 and {∆} ` τ0 .`j:i τ1. Then by the inductive hypothesis, ej is either a
value or there is some e′j such that ej

i7−→ e′j . In the latter case, rule (3) of the operational semantics
applies, and we conclude that ei takes a step.

The other possibility is that ej = vj for some value vj . By the Canonical Forms lemma, there are three
cases based on τ0.

25

xi = x
c = c

λxi:τ. ei = λx:Φ(τ). ei

fix fi(xi:τ). ei = fix f(x:Φ(τ)). ei

e1
i e2

i = e1
i e2

i

pxejqyτ
`j

= ej

Figure 9: Definition of Erasure ei

τ0 = t Then vj = pxv̂kqyt
`k

and t 6∈ ∆j for some v̂k and `k, so by rule (8), ei takes a step to pxv̂kqyτ1

`k:`j
.

τ0 = b Then vj = c. If τ1 = b then ei
i7−→ c by rule (6) of the operational semantics. The only other

possibility is that τ1 = t for some type variable t (otherwise ei wouldn’t typecheck). If t ∈ ∆i

then rule (7) applies and ei
i7−→ pxv̂jqy∆̄i(t)

`j
, otherwise ei is the value pxcqyt

`j
.

τ0 = τ2 → τ3 Then vj = λxj :τ2. e′j . If ∆i(τ1) 6= τ1, then rule (7) applies. Else if τ1 = t then ei is a
value. Else τ1 is a most-concrete arrow type, so rule (9) applies.

2

Definition 3.13 (Stuck Term) A term ei is stuck if there does not exist a term e′i such that ei
i7−→ e′i.

Theorem 3.14 (Type Safety) If {∆}; ∅ `i ei : τ then there is no stuck e′i such that ei
i7−→∗ e′i.

Proof: Follows directly from the Preservation and Progress Lemmas. 2

3.4.3 Erasure

We use embeddings to prove safety properties such as those in the next section, but the cost seems to be
dynamic rules (3), (6), (7), (8), and (9). Worse yet, in a language with recursion, agent lists might grow
arbitrarily large. This section essentially shows that embeddings are only a proof technique. If a program
evaluates to a constant, we can simply erase all embeddings and the program will still evaluate to the same
constant.

More formally, we establish equivalence with the simply-typed λ-calculus by showing that embedding-
erasure commutes with evaluation and constants correspond to constants. The target language has no
embeddings and its semantics includes exactly those rules of the source language which do not explicitly
mention embeddings, namely (1), (2), (4), and (5). Let ei mean the erasure of ei. Let −7−→ mean one step
in the target language. Assume that if xi and yj are variables in a term then x 6= y (α-convert as necessary).
The definition of erasure is given in Figure 9. Notice that the definition depends on the implicit omniscient
map Φ; we must know all type information to erase properly. If we erased to an untyped language, this
would not be necessary.

Lemma 3.15 (Source and Target Evaluation Correspondence) If ei
i7−→ e′i then either ei = e′i or

ei
−7−→ e′i.

Proof: By induction on the source derivation. Proceeding by cases on the last rule of the derivation:

(1) Then ei = e0
i e2

i and e0
i

i7−→ e1
i . By induction, either e0

i = e1
i (in which case e′i = e1

i e2
i = ei) or

e0
i

−7−→ e1
i (in which case ei

−7−→ e1
i e2

i = e′i).

26

(2) Similar to argument for (1).

(3) Then ei = pxejqyτ
`j

and ej
j7−→ e′j . By induction, either ej = e′j (in which case ei = ej = e′j = pxe′jqyτ

`j
= e′i)

or ej
−7−→ e′j (in which case ei = ej

−7−→ e′j = pxe′jqyτ
`j

= e′i).

(4) We use the following substitution lemma:

Lemma 3.16 Substitution commutes with erasure, i.e.{vi/xi}ei = {vi/xi}ei.

Proof: By structural induction on ei:

xi Immediately reduces to vi = vi.

yi Immediately reduces to y = y.

e1
i e2

i Immediate from the inductive hypothesis since both substitution and erasure distribute across
application.

pxejqyτ
`j

Immediate from the inductive hypothesis since both substitution and erasure cross agent bound-
aries.

λyi:τ. e′i If xi = yi, then substitution has no effect and the result is immediate. Else by the inductive
hypothesis, {vi/xi}e′i = {vi/xi}e′i. So λy:Φ(τ). {vi/xi}e′i = λy:Φ(τ). {vi/xi}e′i. Finally, since
xi 6= yi, this means {vi/xi}λyi:τ. e′i = {vi/xi}λyi:τ. e′i.

fix fi(yi:τ). e′i Argument is completely analogous to previous case.

2

The result is immediate since e′i = {vi/xi}e′′i and ei
−7−→ {vi/x}e′′i where e′′i is the body of the source

function.

(5) Follows from the substitution lemma proved in the previous case.

(6),(7),(8) In all three cases, it is immediate from the definition of erasure that ei = e′i.

(9) Here ei = pxλxj :τ0. ejqyτ1→τ2

`j
and e′i = λxi:τ1. px{pxxiqyτ0

l′ /xj}ejqyτ2

`j
. By the definition of erasure, ei =

λx:Φ(τ0). ej and e′i = λx′:Φ(τ1). px{pxxiqyτ0

l′ /xj}ejqyτ2

`j
. By the substitution lemma proved in case (4),

and the definition of erasure, e′i = λx′:Φ(τ1). {x′/x}ej. That is, ei is α-equivalent to e′i so long as
Φ(τ0) = Φ(τ1).
We prove this type equivalence using the machinery of the previous section. Augment G({∆}) with
edges for Φ, an omniscient agent. By the definition of Φ, if (τ, τ ′)i is an edge, then there is now a
(τ, τ ′)Φ edge. Since we assume ei is well-formed, the static semantics guarantees τ0 .` τ1 for some `
(using the Type Relations Lemma to relate parts of related arrow types). So by Relations are Paths,
there is some path from τ0 to τ1. So there is a simple Φ path. So τ0 .Φ τ1. This can only be derived
by (eq), the premise of which is the desired result: Φ(τ0) = Φ(τ1).

2

Lemma 3.17 (Type Refinement Terminates) If ei = pxejqyτ
`j

and evaluation of ej terminates (there

exists vj such that ej
j7−→∗ vj), then evaluation of ei terminates.

Proof: Consider the evaluation of ei. By the dynamic semantics, rule (3) will first be applied until we
have the term pxvjqyτ

`j
. At this point, by Progress, one of rules (6), (7), (8), or (9) must apply. For rules (6)

or (9), we reach a value in one step. For rule (8), in one step one of rules (7), (8), or (9) will apply. For rule
(7), in one step one of rules (8), or (9) will apply. Rule (7) applies at most once because ∆̄i(τ) = ∆i(∆̄i(τ)).
Finally rule (8) cannot apply forever because it makes a smaller inside term. 2

27

Lemma 3.18 (Correspondence of Divergence) If ei diverges (has an infinite evaluation sequence), then
ei diverges.

Proof: We prove the contrapositive: if evaluation of ei terminates, then evaluation of ei terminates. By
Lemma 3.15 and induction on the number of evaluation steps, if ei

−7−→∗ v then ei
i7−→∗ e′i such that e′i = v.

Now by definition of erasure, e′i must be a vj enclosed in some finite number of embeddings. (This is because
if ei contains an application or fix expression, it cannot erase to a value.) Now by induction on the number
of embeddings, using Lemma 3.17 at each step, we conclude that evaluation of e′i terminates. Therefore,
evaluation of ei terminates. 2

Theorem 3.19 If ei
i7−→∗ vi, then ei

−7−→∗ vi. If ei diverges (has an infinite length evaluation sequence),
then ei diverges.

Proof: The first part follows from Lemma 3.15 and induction on the number of source evaluation steps.
The second part is Lemma 3.18. 2

Corollary 3.20 If {∆}; ∅ `i ei : b and ei
i7−→∗ vi, then ei

−7−→∗ vi.

Proof: By type soundness, canonical forms, the preceding theorem, and the definition of erasure. 2

3.5 Safety Theorems

Definition 3.21 (Agents(ei)) Let Agents(ei) be the agent names that appear anywhere in ei (including i
itself).

Definition 3.22 (j-free) A term ei is said to be j-free if j 6∈ Agents(ei).

Definition 3.23 (Nearly j-free) A term ei is said to be nearly j-free if the only subterms of ei labeled
with agent j are variables.

Note that if follows from the definition that if ei is nearly j-free, and it does contain j-variables, then
those variables are free. In particular, in order for ei to typecheck, all j-variables occurring in ei must be
bound in the context.

Definition 3.24 (Oblivious to a Type) A set of agents A is oblivious to t if ∀i ∈ A. ∆i(t) = t and
∀i ∈ A. ∀s 6= t. ∆i(s) 6= t.

Theorem 3.25 (Value Abstraction) Let j be any agent. For agent i 6= j, let ϕ(ei) mean:

1 {∆}; [xj : ∆̄j(t)] `i ei : τ for some τ

2 ei is nearly j-free

3 Agents(ei) \ {j} are oblivious to t

4 If pxxjqyτ
`j

is a subterm of ei then τ = t.

Let i 6= j be any agent. Let ei be a term such that ϕ(ei), and let v̂j and v̂′j be j-primvals such that
{∆}; ∅ `i pxv̂jqyt

j : t and {∆}; ∅ `i pxv̂′jqyt
j : t. Then

{v̂j/xj}ei
i7−→ e1

i = {v̂j/xj}e′i
iff

{v̂′j/xj}ei
i7−→ e2

i = {v̂′j/xj}e′i
Furthermore, ϕ(e′i).

28

Proof: First note that by the static semantics and the concreteness of types lemma, it must be the case
that {∆}; ∅ `j v̂j : ∆̄j(t) and {∆}; ∅ `j v̂′j : ∆̄j(t).

Suppose {v̂j/xj}ei
i7−→ e1

i = {v̂j/xj}e′i. By the soundness of the operational semantics, and the obser-
vation above, it follows that part 1 of property ϕ holds for e′i.

Let σ be the substitution {v̂j/xj} and σ′ be the substitution {v̂′j/xj}. Note that since ei is nearly j-free,
every subterm of ei is also nearly j-free. Similarly, since Agents(ei) \ {j} is oblivious to t, for any subterm
e′′i of ei Agents(e′′i) \ {j} is also oblivious to t. Similarly, property 4 holds for all subterms of ei. We use
these facts in the inductive cases below.

We now show by induction on the structure of ei that σ′ei
i7−→ e2

i = σ′e′i and ϕ(ei). (The other direction
of the implication is exactly symmetric.)

ei = c This case is impossible, since there is no transition step.

ei = λyi:τ ′. e′′i This case is also impossible.

ei = fix fi(yi:τ ′). e′′i Since ei is nearly j-free, i 6= j and it follows that xj 6= fi and xj 6= yi, so the definition
of substitution yields σei = σ(fix fi(yi:τ ′). e′′i) = fix fi(yi:τ ′). σe′′i . The only transition rule applicable
is rule (5), which yields fix fi(yi:τ ′). σe′′i

i7−→ λyi:τ ′. {fix fi(yi:τ ′). σe′′i /fi}σe′′i . We can pull the sub-
stitution out front (again since the variables aren’t equal) to obtain σ(λyi:τ ′. {fix fi(yi:τ ′). e′′i /fi}e′′i).
So taking e′i = λyi:τ ′. {fix fi(yi:τ ′). e′′i/fi}e′′i , we obtain σei

i7−→ σe′i. A similar derivation using σ′

in place of σ above also yields σ′ei
i7−→ σ′e′i.

Notice that Agents(e′i) = Agents(ei), so the oblivious condition still holds. Similarly, since e′′i is nearly
j-free, so is e′i. Since the subterms of e′′i satisfy item 4 of ϕ, so must e′i.

ei = ea
i eb

i There are three possible transitions steps taken by terms of this form, corresponding to rules (1),
(2), and (4). Note that it follows immediately from (app) that {∆}; [xj : ∆̄j(t)] `i ea

i : τ ′′ → τ and
{∆}; [xj : ∆̄(t)] `i eb

i : τ ′′ for some τ ′′. We consider each case separately.

(1) σei = σ(ea
i eb

i) = σea
i σeb

i . Similarly, σ′ei = σ′(ea
i eb

i) = σ′ea
i σ′eb

i . Since (1) was used, we have
σea

i
i7−→ ea′

i . The inductive hypothesis applies, so ea′
i = σeA

i and σ′ea
i

i7−→ σ′eA
i . Using rule

(1) again, we have σei
i7−→ σeA

i σeb
i ,but σeA

i σeb
i = σ(eA

i eb
i) by the definition of substitution.

Similarly, σ′ei
i7−→ σ′(eA

i eb
i), so the first result holds. Furthermore, by induction, we have ϕ(eA

i),
it was already observed that ϕ(eb

i), so we conclude ϕ(e′i) also holds. Likewise, Agents(e′i) \ {j}
are oblivious to t.

(2) This follows analogously to the previous subcase.

(4) Then ei = λyi:τ ′. e′′i vi and, as before, i 6= j so we have yi 6= xj . Calculating, we have
σei = σ(λyi:τ ′. e′′i vi) = λyi:τ ′. σe′′i (σvi) = λyi:τ ′. (σe′′i) vi which transitions via rule (4) to
{vi/yi}(σe′′i) = σ({vi/yi}e′′i). Thus we have σei

i7−→ σ({vi/yi}e′′i). A similar calculation using σ′

in place of σ shows that σ′ei
i7−→ σ′({vi/yi}e′′i), which is the desired result. Taking e′i = {vi/yi}e′′i ,

conditions 2 through 4 hold since vi and e′′i are subterms of ei.

ei = pxekqyτ ′
`k

In this case, the transition rule applied must be one of (3), (6) through (9). In case (6) the
expression is closed, so substitution has no effect and the result holds trivially. We consider each of
the remaining cases separately.

(3) In this case, k 6= j since the only occurrences of j subterms in ei must be the variable xj , which has
been replaced by a value. From the definition of substitution, σei = σpxekqyτ ′

`k
= pxσekqyτ ′

`k
. Since σek

takes a step to e1
k = σe′k, the inductive hypothesis applies and we conclude that σ′ek

k7−→ σ′e′k.
Applying rule (3), we obtain σ′pxekqyτ ′

`k
= pxσ′ekqyτ ′

`k

i7−→ pxσ′e′kqyτ ′
`k

= σ′pxe′kqyτ ′
`k

. By induction, ϕ(e′k)
holds, so it follows immediately that ϕ(e′i) = ϕ(pxe′kqyτ ′

`k
) holds too.

(7) Calculating, we have: σpxekqyτ ′
`k

= pxσekqyτ ′
`k

= pxv̂kqyτ ′
`k

which steps via rule (7) to pxv̂kqy∆̄i(τ
′)

`k
=

pxσekqy∆̄i(τ
′)

`k
= σpxekqy∆̄i(τ

′)
`k

. Thus τ ′ 6= ∆̄i(τ ′), and hence τ ′ 6= t. By assumption, this implies that

29

k 6= j, so property 4 is preserved. Note that since σek is a value, so is σ′ek. This allows us to
calculate similarly that σ′pxekqyτ ′

`k

i7−→ σ′pxekqy∆̄i(τ
′)

`k
. Since near j-freeness and oblivious to t don’t

depend on the typing annotation we’re done.

(8) Since v̂j is a j-primval, ei must be of the form pxpxehqyu
`h

qyτ
`k

such that σeh is a h-primval. It follows
that σ′eh is also a h-primval. We use the fact that substitutions commute with embeddings to cal-
culate: σpxpxehqyu

`h
qyτ

`k
= pxσpxehqyu

`h
qyτ

`k
= pxpxσehqyu

`h
qyτ

`k
which transitions to pxσehqyτ

`h:`k
= σpxehqyτ

`h:`k
.

Under the assumption that u 6∈ Dom(∆k). We can then do the similar calculation for σ′ to obtain
σ′pxpxehqyu

`h
qyτ

`k

i7−→ σ′pxehqyτ
`h:`k

. As above, since near j-freeness and oblivious to t don’t depend on
the typing annotation on embeddings, conditions 2 and 3 hold. To show condition 4, note that k
can’t equal j, and so it remains to check two cases: h = j and h 6= j.
In the first case, by assumption, u = t and since k 6= j it follows that τ = t, so property 4 is
preserved across the step.
In the second case, h 6= j and the fact that eh is a primval, imply that ei contains no embeddings
labeled by `j and neither does e′i. Property 4 holds vacuously.

(9) In this case, τ ′ = τ1 → τ2 and ek = λxk:τ0. e′k. Since τ1 → τ2 6= t it must be the case
that j 6= k and hence xj 6= xk. We calculate: σpxλxk:τ0. e′kqyτ1→τ2

`k
= pxσ(λxk:τ0. e′k)qyτ1→τ2

`k
=

pxλxk:τ0. σe′kqyτ1→τ2

`k
which steps via (9) to

λxi:τ1. px{pxxiqyτ0

`′ /xk}σe′kqyτ2

`k
= λxi:τ1. σpx{pxxiqyτ0

`′ /xk}e′kqyτ2

`k
= σ(λxi:τ1. px{pxxiqyτ0

`′ /xk}e′kqyτ2

`k
)

A similar calculation shows that σ′pxλxk:τ0. e′kqyτ1→τ2

`k

i7−→ σ′(λxi:τ1. px{pxxiqyτ0

`′ /xk}e′kqyτ2

`k
). Since

i 6= j, near j-freeness is preserved. The agents of e′i = λxi:τ1. px{pxxiqyτ0

`′ /xk}e′kqyτ2

`k
are the same

as for ei, so they are oblivious as well. The embedding subterms of e′i are either subterms of ei,
in which case they obey property 4, or labeled by either k or i, neither of which equal j, thus
property 4 of ϕ holds for e′i, and we’re done.

2

Corollary 3.26 (Independence of Evaluation) If

1 {∆}; ∅ `i λxi:t. ei : t → b

2 {∆}; ∅ `i pxv̂jqyt
j : t

3 {∆}; ∅ `i pxv̂′jqyt
j : t

and ei is j-free and Agents(ei) are oblivious to t then: (λxi:t. ei) pxv̂jqyt
j 7−→∗ c iff (λxi:t. ei) pxv̂′jqyt

j 7−→∗ c

Proof (sketch): By induction on the length of the evaluation sequence using the Value Abstraction theorem.
2

Definition 3.27 (h-terms) • Let ej be an h-term if j = h or ej = pxekqyτ
`k

and h ∈ `k.

• Let ej be a non-h-term if j 6= h or ej = pxekqyτ
`k

and ∃i. i ∈ `k and i 6= h.

• Let ej be a both-term if it is an h-term and a non-h-term.

• Let ej be an h-embedding if it is an h-term embedded in a non-h-term.

• Let ej be a non-h-embedding if it is a non-h-term embedded in an h-term.

• For pxekqyτ
`k

let τ be the outside type and let the type of ek in some static derivation be the inside type.

Theorem 3.28 (Host Provided Values) Let h be a distinguished agent, the host, and let i 6= h be any
other agent. Let e0

i be an i-term. Let τi be any base type (the input type, provided by agent i) and let τh be
any other type (the implementation type, known only to the host). Assume the following:

30

• ∆h(t) = τh = ∆h(τh).

• Agents(e0
i) \ {h} are oblivious to t and for all s 6= t, ∆h(s) 6= t.

• {∆}; ∅ `i λpi:τi → t. e0
i : τ

• For all subterms e′ of e0
i , if e′ is an h-embedding or a both-term, then t does not occur positively in its

outside type; if e′ is a non-h-embedding or a both-term, then t does not occur negatively in its inside
type.

• fh = λxh:τi. eh be a pure h term such that {∆}; ∅ `h fh : τi → τh. It is the h-value imple-
menting the function pi provided to i. Note that {∆}; ∅ `i pxfhqyτi→t

h : τi → t. It follows by rule
(9) that pxfhqyτi→t

h
i7−→ λxi:τi. px{pxxiqyτi

i /xh}ehqyt
h. Let fi = λxi:τi. px{pxxiqyτi

i /xh}ehqyt
h and let e′h =

{pxxiqyτi

i /xh}eh.

• {fi/pi}e0
i = ei i7−→∗ e′i

Then if v is a value of type t which is a subterm of e′i, v is of the form pxv̂hqyt
` for a value v̂h obtained by

applying fh to a suitable argument.

The next two lemmas provide what we need to prove the theorem.

Lemma 3.29 (Preservation of Host Provided Terms) Let ϕ(e) mean that for all subterms e′ of e:

1 If e′ is an h-embedding or a both-term, then one of the following is true:

(a) t does not occur positively in the outside type of e′.

(b) The embedding is pxe′hqyt
h.

(c) e′ = pxe′′hqyt
`h

and ∃vi : τi. fi vi
i7−→∗ pxe′′hqyt

`′ .

2 If e′ is a non-h-embedding or a both-term, then the typing derivation of e assigns an inside type to e′

in which t does not occur negatively.

Assume the same system that is assumed for the theorem.
For all i, if ϕ(ei) and ei

i7−→ e′i, then ϕ(e′i).

Proof: By induction on the dynamic derivation. Last rule is:

(1) By induction.

(2) By induction.

(3) Let ei = pxekqyτ
`k

i7−→ pxe′kqyτ
`k

. By induction, ϕ(e′k). It remains to verify the term pxe′kqyτ
`k

itself. Since
the inside type and outside type do not change, every case is immediate except the possibility that ei

is an h-embedding or both-term and t appears positively in τ . Since ek is closed, ∃vi : τi such that
fi vi

i7−→∗ pxekqyt
h. (So k = h.) Since ek

k7−→ e′k, we conclude via rule (3) that fi vi
i7−→∗ pxe′kqyt

h.

(4) Follows from the following substitution lemma: If ϕ(ei) and ϕ(vi) for some value vi, then ϕ({vi/yi}ei).
Let σ = {vi/yi} be the substitution. Proof by structural induction on ei:

ei = c Substitution has no effect, so the result is immediate.

ei = yi Then σ(ei) = vi, and the result holds by assumption.

ei = y′
i 6= yi Then Substitution has no effect, trivial.

ei = λy′
i:τ. e

′
i By BVC, yi 6= y′

i, so σ(ei) = σ(λy′
i:τ. e

′
i) = λy′

i:τ. σ(e′i) Since ϕ(ei) implies ϕ(e′i), we
conclude by induction that ϕ(σ(e′i)). The outermost term satisfies ϕ vacuously, since it’s not an
embedding, therefore we conclude ϕ(λy′

i:τ. σ(e′i)).

ei = fix fi(y′
i:τ). e′i This follows analogously to the previous case.

31

ei = e0
i e1

i This follows immediately from two applications of the inductive hypothesis and the fact
that the outermost term of the resulting substitution is not an embedding.

ei = pxekqyτ
`k

Then σ(ei) = σ(pxekqyτ
`k

) = pxσ(ek)qyτ
`k

. Since ϕ(ei) implies ϕ(ek), it follows by induction that
ϕ(σ(ek)). Thus the only subterm that needs to be checked is pxσ(ek)qyτ

`k
itself. Since substitution

doesn’t change types, conditions 1(a) and 2 follow immediately. The remaining case occurs when
t occurs positively in τ . Since ϕ(ei), we have τ = t. In the case that ek = e′h, its only free
variable is xi. If yi = xi, then σ(ek) = σ(e′h) = σ({pxxiqyτi

i /xh}eh) = {pxviqyτi

i /xh}eh. Notice that
fi vi transitions in one step by (4) to {pxviqyτi

i /xh}eh, so 1(c) is satisfied. If yi 6= xi then the
substitution has no effect and 1(b) is still satisfied. The only other possibility is that ei satisfied
1(c), in which case ek is closed and hence substitution has no effect. Thus in all cases, we conclude
ϕ(σ(ei)).

(5) All of the subterms of e′i are subterms of ei with the exception of ei itself. Since e′i is not an embedding,
the conditions hold trivially for it and we’re done.

(6) Let ei = pxpxv̂hqyu
`h

qyτ
`k

i7−→ pxv̂hqyτ
`h:`k

By the constraints on the system, if τ contains t, then u = τ = t.
(Otherwise some ∆(u) contains t.) The result is immediate if τ does not contain t, so assume it does.
By the system, static semantics, and canonical forms, v̂h must be of type τi, which is devoid of t’s. So
the inside type cannot have a negative occurrence of t. If h 6∈ `k, then we’re done because appending
non-h agents cannot violate ϕ(e′i) since the inside type has no negative occurrence of t. To see that
h cannot occur in `k, note that ek 6= e′h. Furthermore, since fh accepts only base values, any term
stepped to by fh v must be a pure h term. This rules out the possibility that ei satisfies 1(c), and so
the only possibility is that h does not occur in `k.

(7) Immediate because for all s and k, ∆k(s) 6= t.

(8) Immediate.

(9) Let ei = pxλxj :τ0. ejqyτ1→τ2

`j

i7−→ λxi:τ1. px{pxxiqyτ0

i:rev(tl(`j))
/xj}ejqyτ2

`j
= e′i

If ei is a both term, then t does not occur positively in τ1 → τ2 and t does not occur positively in τ0

(since the inside type must be τ0 → τ3 for some τ3). The t doesn’t occur positively in τ2 or negatively
in τ1. This immediately verifies e′i and the body of the function, so long as the embedded term is
verified. We know ϕ(ej). We need a substitution lemma analogous to the one above but tailored to
substitutions of the form pxxiqyτ0

`i
. The key observation is that the types prohibit {pxxiqyτ0

i:rev(tl(`j))
/xj}ej

from being e′h, or the result of fi vi for any vi. Thus it is sufficient to show ϕ(pxxiqyτ0

i:rev(tl(`k))). Since t

does not occur positively in τ0, it suffices to show that t does not occur negatively in the type of xi.
That type is τ1, so we are done.

If ei is an h-embedding and not a both-term, then t does not occur positively in τ1 → τ2 (see that the
other cases are not possible) and τ0 does not contain t at all (since k = h). This is stronger than what
we assumed in the previous case, so apply that argument.

If ei is a non-h-embedding and not a both-term, then t does not occur at all in τ1 → τ2 (by the
side-condition for rule 5 which gives rule 7 precedence) and does not occur positively in τ0. Again,
this is stronger than what we assumed in the both-term case.

2

Lemma 3.30 (t values are h-embeddings) Assume the system of the theorem. If v is a value of type t
and a subterm of ei, then v is h-term embedded in a non-h-term with a τi for the embedded term.

Proof: Follows directly from the system and the static semantics. 2

The theorem follows from the lemmas and claiming that if a value is produced by check, then it is
permissible (applying f to it produces true).

32

4 Future Work

4.1 Polymorphism

Type abstraction and polymorphism are closely related. Indeed, the example encoding of an agent in the
introduction used polymorphism to achieve type abstraction. However, the two are different. The key
distinction seems to be one of scope. Our type abstractions are globally scoped and statically known.
Polymorphism allows locally scoped type abstractions which can be instantiated many times at run-time.

There are several approaches to adding polymorphism to the multiagent calculus, none of which we have
fully explored. One is to simply add polymorphism, keeping the type variables for polymorphism and agents
disjoint. The necessary additions seem to be straightforward.

A different avenue is to encode polymorphism using the embeddings of the multiagent calculus. The idea
is to represent the body of a polymorphic function, Λα. ei as an agent with no information about the type
variable α. When such a function is applied to a type τ , a new agent, j, that knows α = τ is “spawned”
with the body ei embedded inside it. The type system prevents the body of the function from breaking the
type abstraction, while the “wrapper” agent, j, provides a way to recover the type information when the
function returns.

4.2 Beyond Type Abstraction

Type abstraction is one application of formalizing the notion of principal. The difference between agents in
this calculus is what type-information is available to them. There are many other dimensions along which
this idea can be extended. We can use essentially the same mechanism to formalize foreign function calls,
where each agent uses a different set of operational rules. For example, we could give some agents a call-by-
name semantics, allowing a mixture of eager and lazy evaluation. For less similar languages, the embeddings
express exactly where foreign data conversions and calling conventions need to occur.

The ∆i’s capture an agent’s view of its environment. In this paper we restricted our attention to type
information, but this too can potentially be extended. The ∆i’s could represent arbitrary capabilities, con-
trolling access to resources in the environment. Suitable rules in the operational semantics would propagate
which capabilities are available. The ability to update the ∆i’s could be reflected into the language itself,
yielding a dynamic system in which a principal could grant or revoke capabilities to other agents at run-time.

5 Related Work

Perhaps the closest work to ours is Leroy and Rouaix’s investigation into the safety properties of typed applets
[9]. They use a λ-calculus augmented with state in order to prove theorems similar to Theorem 2.16. They
too distinguish between the execution environment code and applet code, similar to our use of principals,
but they consider only the two-agent case and take a less syntactic approach.

There has been much work on representation independence and parametric polymorphism, as pioneered
by Strachey [18] and Reynolds [17]. Such notions have been incorporated into programming languages such
as SML and Haskell [10, 14] and studied extensively in Girard’s system F [5].

Abadi, Cardelli, and Curien have taken a syntactic approach to parametricity by formalizing the logical
relations arguments used in such proofs [1]. More recently, Crary has proposed the use of singleton types
as a means of proving parametricity results without resorting to the construction of models [4]. Pierce and
Sangiorgi [15] have studied parametricity in a polymorphic variant of the π-calculus; they too are concerned
with multiple views of the same value and point out some interesting interactions between abstraction and
aliasing.

None of the above work (except Leroy and Rouaix’s) explicitly involves the notion of principal. Our
syntactic separation of agents is similar to Nielson and Nielson’s Two-Level λ-calculus [13]. There they are
concerned with binding time analysis, so the two principals’ code is inherently not mixed during evaluation.
A notion of principal also arises in the study of language based security, where privileged agents may not
leak information to unprivileged ones. See, for example, Heinze and Reicke’s work on the SLam calculus [8],
Volpano and Smith’s work on type-based security [19], or Myers’ JFlow system [12].

33

6 Conclusion

We have created a multiagent calculus in which the notion of principal is made explicit in the language. This
syntactic distinction allows us to track agent code during evaluation, giving syntactic proofs of interesting
type abstraction properties. Our hope is that these techniques will scale to realistic, hard to model languages.

References

[1] Mart́in Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric polymorphism. In Principles of
Programming Languages, volume 20, pages 157–167, January 1993.

[2] Godmar Back, Patrick Tullmann, Leigh Stoller, Wilson C. Hseih, and Jay Lepreau. Java operating systems:
Design and implementation. Technical Report UUCS-98-015, University of Utah, August 1998.

[3] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc Fiuczynski, David Becker, Susan
Eggers, and Craig Chambers. Extensibility, safety and performance in the SPIN operating system. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems Principles, Copper Mountain, CO, December 1995.

[4] Karl Crary. A simple proof technique for certain parametricity results. Technical Report CMU-CS-98-185,
Carnegie Mellon University, December 1998.

[5] Jean-Yves Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.

[6] Michael Godfrey, Tobias Mayr, Praveen Seshadri, and Thorsten von Eicken. Secure and portable database
extensibility. In Proceedings of the 1997 ACM-SIGMOD Conference on the Management of Data, pages 390–
401, Seattle, WA, June 1998.

[7] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu, and Thorston von Eiken. Implementing
multiple protection domains in Java. In 1998 USENIX Annual Technical Conference, New Orleans, LA, June
1998.

[8] Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy and integrity. In Conference
Record of the Twenty-Fifth Annual ACM Symposium on Principles of Programming Languages, pages 365–377.
ACM Press, 1998.

[9] Xavier Leroy and François Rouaix. Security properties of typed applets. In Principles of Programming Languages,
January 1998.

[10] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML (Revised).
The MIT Press, 1997.

[11] J.C. Mitchell. On the equivalence of data representations. In V. Lifschitz, editor, Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages 305–330. Academic Press,
1991.

[12] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Proceedings of the 26th ACM
Symposium on Principles of Programming Languages, pages 228–241, San Antonio, TX, January 1999.

[13] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages. Number 34 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1992.

[14] John Peterson, Kevin Hammond, Lennart Augustsson, Brian Boutel, Warren Burton, Joseph Fasel, An-
drew D. Gordon, John Hughes, Paul Hudak, Thomas Johnsson, Mark Jones, Erik Meijer, Simon Pey-
ton Jones, Alastair Reid, and Philip Wadler. Report on the programming language Haskell, version 1.4.
http://www.haskell.org/report.

[15] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus. Technical
Report MS-CIS-99-10, University of Pennsylvania, April 1999. (Summary in POPL ’97).

[16] John C. Reynolds. Towards a theory of type structure. In Programming Symposium, volume 19 of Lecture Notes
in Computer Science, pages 408–425. Springer-Verlag, Paris, France, April 1974.

[17] John C. Reynolds. Types, abstraction, and parametric polymorphism. In R.E.A Mason, editor, Information
Processing, pages 513–523. Elsevier Science Publishers B.V., 1983.

[18] C. Strachey. Fundamental concepts in programming languages. Unpublished Lecture Notes, Summer School in
Computer Programming, August 1967.

[19] Dennis Volpano and Geoffrey Smith. A type-based approach to program security. In Proceedings of TAPSOFT
’97, Colloquium on Formal Approaches to Software Engineering, Lille, France, April 1997.

34

[20] Steve Zdancewic, Dan Grossman, and Greg Morrisett. Principals in programming languages: A syntactic proof
technique. In Proceedings of the 4th ACM SIGPLAN International Conference on Functional Programming,
Paris, France, September 1999.

35

