
Finite Vector Spaces as Model of Simply-Typed
Lambda-Calculi

Benoı̂t Valiron1 and Steve Zdancewic2

1 PPS, UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France ?

2 University of Pennsylvania, Philadelphia, US??

Abstract. In this paper we use finite vector spaces (finite dimension, over finite
fields) as a non-standard computational model of linear logic. We first define
a simple, finite PCF-like lambda-calculus with booleans, and then we discuss
two finite models, one based on finite sets and the other on finite vector spaces.
The first model is shown to be fully complete with respect to the operational
semantics of the language. The second model is not complete, but we develop an
algebraic extension of the finite lambda calculus that recovers completeness. The
relationship between the two semantics is described, and several examples based
on Church numerals are presented.

1 Introduction

A standard way to study properties of functional programming languages is via denota-
tional semantics. A denotational semantics (or model) for a language is a mathematical
representation of its programs [32], and the typical representation of a term is a func-
tion whose domain and codomain are the data-types of input and output. This paper is
concerned with a non-standard class of models based on finite vector spaces.

The two languages we will consider are based on PCF [27] – the laboratory mouse
of functional programming languages. PCF comes as an extension of simply-typed
lambda-calculus with a call-by-name reduction strategy, basic types and term con-
structs, and can be easily extended to handle specific effects. Here, we define PCFf as
a simple lambda-calculus with pairs and booleans, and PCFalg

f , its extension to linear
combinations of terms.

There has been much work and progress on various denotational models of PCF,
often with the emphasis on trying to achieve full abstraction. The seminal works are
using term models [21], cpos [22] or game semantics [1], while more recent works use
quantitative semantics of linear logic [12] and discuss probabilistic extensions [10] or
non-determinism [6].

As a category, a model for a PCF language is at least required to be cartesian closed
to model internal morphisms and pairing. An expressive class of cartesian closed cat-
egories can be made of models of linear logic, by considering the (co)Kleisli category
stemming from the modality “!”. Although the models that are usually considered are

? Partially supported by the ANR project ANR-2010-BLAN-021301 LOGOI.
?? This work has been funded in part by NFS grant CCF-1421193.

rich and expressive [6,9,10], “degenerate” models nevertheless exist [15,24]. The con-
sequences of the existence of such models of PCF have not been explored thoroughly.

In this paper, we consider two related finitary categories: the category of finite
sets and functions FinSet and the category of finite vector spaces and linear functions
FinVec, i.e. finite-dimensional vector spaces over a finite field. The adjunction between
these two categories is known in the folklore to give a model of linear logic [23], but
the computational behavior of the corresponding coKleisli category FinVec! as a model
of PCF has not been studied until now.

The primary motivation for this work is simple curiosity: What do the vectors inter-
preting lambda calculus terms look like? Though not the focus of this paper, one could
imagine that the ability to encode programming language constructs in the category of
vector spaces might yield interesting applications. For instance, a Matlab-like program-
ming language that natively supports rich datatypes and first-class functions, all with the
same semantic status as “vectors” and “matrices.” A benefit of this design would be the
possibility of “typed” matrix programming, or perhaps sparse matrix representations
based on lambda terms and their semantics. The algebraic lambda calculus sketched in
this paper is a (rudimentary) first step in this direction. Conversely, one could imagine
applying techniques from linear algebra to lambda calculus terms. For instance, finite
fields play a crucial role in cryptography, which, when combined with programming
language semantics, might lead to new algorithms for homomorphic encryption.

The goal here is more modest, however. The objective of the paper is to study how
the two models FinSet and FinVec! fit with respect to the language PCFf and its al-
gebraic extension PCFalg

f . In particular, we consider the usual three gradually more
constraining properties: adequacy, full abstraction and full completeness. A semantics
is adequate if whenever terms of some observable type (Bool for example) are opera-
tionally equivalent then their denotations match. An adequate semantics is “reasonable”
in the sense that programs and their representations match at ground type. The seman-
tics is fully abstract if operational equivalence and equality of denotation are the same
thing for all types. In this situation, programs and their denotations are in correspon-
dence at all types, but the model can contain non-representable elements. Finally, the
semantics is fully complete if moreover, every element in the image of a type A is rep-
resentable by a term in the language. With such a semantics, the set of terms and its
mathematical representation are fully correlated. If a semantics is fully complete, then
it is fully abstract and if it is fully abstract, then it is adequate.
Results. This paper presents the first account of the interpretation of two PCF-like
languages in finite vector spaces. More specifically, we show that the category of finite
sets FinSet forms a fully complete model for the language PCFf , and that the coKleisli
category FinVec! is adequate but not fully-abstract: this model has too many points
compared to what one can express in the language. We present several examples of
the encoding of Church numerals to illustrate the model. We then present an algebraic
extension PCFalg

f of PCFf and show that FinVec! forms a fully complete model for
this extension. We discuss the relationship between the two languages and show how to
encode the extension within PCFf .
Related works. In the literature, finite models for lambda-calculi are commonly used.
For example, Hillebrand analyzes databases as finite models of the simply-typed lambda

calculus [14]. Salvati presents a model based on finite sets [25], while Selinger presents
models based on finite posets [28]. Finally, Solovev [29] relate the equational theory of
cartesian closed categories with the category of finite sets.

More general than vector spaces, various categories of modules over semirings, as
standard models of linear logic have been studied as computational models: sets and
relations [6], finiteness spaces [9], probabilistic coherent spaces [10], etc.

As models of linear logic, finite vector spaces are folklore [23] and appear as side
examples of more general constructions such as Chu spaces [24] or glueing [15]. Com-
putationally, Chu spaces (and then to some extent finite vector spaces) have been used
in connection with automata [24]. Finally, recently finite vector spaces have also been
used as a toy model for quantum computation (see e.g. [16, 26]).

Algebraic lambda-calculi, that is, lambda-calculi with a vectorial structure have
been first defined in connection with finiteness spaces [11,31]. Another approach [2,3]
comes to a similar type of language from quantum computation. The former approach
is call-by-name while the latter is call-by-value. A general categorical semantics has
been developed [30] but no other concrete models have been considered.
Plan of the paper. The paper is shaped as follows. Section 2 presents a finite PCF-
style language PCFf with pairs and booleans, together with its operational semantics.
Section 3 presents the category FinSet of finite sets and functions, and discusses its
properties as a model of the language PCFf . Section 4 describes finite vector spaces
and shows how to build a model of linear logic from the adjunction with finite sets.
Section 4.4 discusses the corresponding coKleisli category as a model of PCFf and
presents some examples based on Church numerals. As PCFf is not fully-abstract,
Section 5 explains how to extend the language to better match the model. Finally, Sec-
tion 6 discusses various related aspects: the relationship between PCFf and its exten-
sion, other categories in play, and potential generalization of fields.

2 A Finite PCF-style Lambda Calculus

We pick a minimal finite PCF-style language with pairs and booleans. We call it PCFf :
it is intrinsically typed (i.e. Church-style: all subterms are defined with their type) and
defined as follows.

M,N,P ::= x | λx.M |MN | πl(M) | πr(M) | 〈M,N 〉 | ? |
tt | ff | ifM thenN elseP | let ? = M inN

A,B ::= Bool | A→ B | A×B | 1.

Values, including “lazy” pairs (that is, pairs of arbitrary terms, as opposed to pairs of
values), are inductively defined by U, V ::= x | λx.M | 〈M,N 〉 | ? | tt | ff. The
terms consist of the regular lambda-terms, plus specific term constructs. The terms tt
and ff respectively stand for the booleans True and False, while if− then− else−
is the boolean test operator. The type Bool is the type of the booleans. The term ? is the
unique value of type 1, and let ? = − in− is the evaluation of a “command”, that is,
of a term evaluating to ?. The term 〈−,−〉 is the pairing operation, and πl and πr stand
for the left and right projections. The type operator (×) is used to type pairs, while (→)
is used to type lambda-abstractions and functions.

Table 1. Typing rules for the language PCFf .

∆,x : A ` x : A ∆ ` ? : 1 ∆ ` tt, ff : Bool

∆,x : A `M : B

∆ ` λx.M : A→ B

∆ `M : Al ×Ar

∆ ` πi(M) : Ai

∆ `M : A→ B
∆ ` N : A

∆ `MN : B

∆ `M : A
∆ ` N : B

∆ ` 〈M,N 〉 : A×B

∆ `M : Bool
∆ ` N1, N2 : A

∆ ` ifM thenN1 elseN2 : A

∆ `M : 1
∆ ` N : A

∆ ` let ? = M inN : A

A typing judgment is a sequent of the form ∆ ` M : A, where ∆ is a typing
context: a collection of typed variables x : A. A typing judgment is said to be valid
when there exists a valid typing derivation built out of the rules in Table 1.

Note that since terms are intrinsically typed, for any valid typing judgment there is
only one typing derivation. Again because the terms are intrinsically typed, by abuse of
notation when the context is clear we use M : A instead of ∆ `M : A.

Notation 1. When considering typing judgments such as x : A ` M : B and y : B `
N : C, we use categorical notation to denote the composition: M ;N stands for the
(typed) term x : A ` (λy.N)M : C, also written as A M−→ B

N−→ C. We also ex-
tend pairs to finite products as follows: 〈M1,M2, . . . 〉 is the term 〈M1, 〈M2, 〈 . . . 〉 〉 〉.
Projections are generalized to finite products with the notation πi projecting the i-th
coordinate of the product. Types are extended similarly: A × · · · × A, also written as
A×n, is defined as A× (A× (· · ·)).

2.1 Small Step Semantics

The language is equipped with a call-by-name reduction strategy: a term M reduces to
a term M ′, denoted with M → M ′, when the reduction can be derived from the rules
of Table 2. We use the notation→∗ to refer to the reflexive transitive closure of→.

Lemma 2. (1) For any well-typed term M : A, either M is a value or M reduces to
some term N : A. (2) The only closed value of type 1 is ? and the only closed values
of type Bool are tt and ff. (3) The language PCFf is strongly normalizing.

Proof. The fact that the language PCFf is strongly normalizing comes from the fact
that it can be easily encoded in the strongly normalizing language system F [13].

Table 2. Small-step semantics for the language PCFf .

(λx.M)N → M [N/x]
let ? = ? inM → M

πl〈M,N 〉 → M
πr〈M,N 〉 → N

if tt thenM elseN → M
if ff thenM elseN → N

M →M ′

MN →M ′N

M →M ′

πl(M)→ πl(M
′)

M →M ′

πr(M)→ πr(M ′)

M →M ′

ifM thenN1 elseN2 → ifM ′ thenN1 elseN2

M →M ′

let ? = M inN → let ? = M ′ inN

Table 3. Denotational semantics for the language PCFf .

[[∆,x : A ` x : A]]set : (d, a) 7−→ a

[[∆ ` tt : Bool]]set : d 7−→ tt

[[∆ ` ff : Bool]]set : d 7−→ ff

[[∆ ` ? : 1]]set : d 7−→ ?

[[∆ ` 〈M,N 〉 : A×B]]set : d 7−→ 〈 [[M]]set(d), [[N]]set(d) 〉

[[∆ `MN : B]]set : d 7−→ [[M]]set(d)([[N]]set(d))

[[∆ ` πl(M) : A]]set = [[M]]set;πl

[[∆ ` πr(M) : B]]set = [[M]]set;πr

[[∆ ` λx.M : A→ B]]set = d 7−→ (a 7→ [[M]]set(d, a)) [[∆ ` let ? = M inN : A]]set = [[N]]set

[[∆ ` ifM thenN elseP : A]]set = d 7−→
{

[[N]]set(d) if [[M]]set(d) = tt,
[[P]]set(d) if [[M]]set(d) = ff.

2.2 Operational Equivalence

We define the operational equivalence on terms in a standard way. A context C[−] is a
“term with a hole”, that is, a term consisting of the following grammar:

C[−] ::= x | [−] | λx.C[−] | C[−]N |MC[−] | πl(C[−]) | πr(C[−]) | 〈C[−], N 〉 |
〈M,C[−] 〉 | ? | tt | ff | ifC[−] thenN elseP | ifMthenC[−] elseP |
ifM thenNelseC[−] | let ? = C[−] inM | let ? = M inC[−].

The hole can bind term variables, and a well-typed context is defined as for terms. A
closed context is a context with no free variables.

We say that ∆ ` M : A and ∆ ` N : A are operationally equivalent, written
M 'op N , if for all closed contexts C[−] of type Bool where the hole binds ∆, for all
b ranging over tt and ff, C[M]→∗ b if and only if C[N]→∗ b.

2.3 Axiomatic Equivalence

We also define an equational theory for the language, called axiomatic equivalence and
denoted with'ax, and mainly used as a technical apparatus. The relation'ax is defined
as the smallest reflexive, symmetric, transitive and fully-congruent relation verifying the
rules of Table 2, together with the rules λx.Mx 'ax M and 〈πl(M), πr(M) 〉 'ax M .
A relation ∼ is said to be fully-congruent on PCFf if whenever M ∼ M ′, for all
contexts C[−] we also have C[M] ∼ C[N]. The two additional rules are standard
equational rules for a lambda-calculus [17].

Lemma 3. If M : A and M → N then M 'ax N .

3 Finite Sets as a Concrete Model

Finite sets generate the full sub-category FinSet of the category Set: objects are fi-
nite sets and morphisms are set-functions between finite sets. The category is cartesian
closed [29]: the product is the set-product and the internal hom between two sets X and
Y is the set of all set-functions from X to Y . Both sets are finite: so is the hom-set.

We can use the category FinSet as a model for our PCF language PCFf . The
denotation of types corresponds to the implicit meaning of the types: [[1]]set := { ? },

[[Bool]]set := { tt, ff }, the product is the set-product [[A×B]]set := [[A]]set × [[B]]set,
while the arrow is the set of morphisms: [[A→ B]]set := FinSet([[A]]set, [[B]]set). The
set {tt, ff} is also written Bool. Similarly, the set {?} is also written 1. The denotation
of a typing judgment x1 : A1, . . . xn : An ` M : B is a morphism [[A1]]set × · · · ×
[[An]]set → [[B]]set, and is inductively defined as in Table 3. The variable d is assumed to
be an element of [[∆]]set, while a and b are elements of [[A]]set and [[B]]set respectively.

This denotation is sound with respect to the operational equivalence.

Lemma 4. If M 'ax N : A then [[M]]set = [[N]]set.

Theorem 5. The model is sound with respect to the operational equivalence: Suppose
that ∆ `M,N : A. If [[M]]set = [[N]]set then M 'op N .

Proof. Suppose that M 6'op N and let ∆ be {xi : Ai}i. Then, because of Lemma 2,
there exists a context C[−] such that C[M] →∗ tt and C[N] →∗ ff. It follows
that (λz.C[z x1 . . . xn])(λx1 . . . xn.M)'ax tt and (λz.C[z x1 . . . xn])(λx1 . . . xn.N)
'ax ff. If the denotations of M and N were equal, so would be the denotations of the
terms (λx1 . . . xn.M) and (λx1 . . . xn.N). Lemmas 3 and 4 yield a contradiction.

FinSet and the language PCFf are somehow two sides of the same coin. Theorems
6 and 7 formalize this correspondence.

Theorem 6 (Full completeness). For every morphism f : [[A]]set → [[B]]set there exists
a valid judgment x : A `M : B such that f = [[M]]set.

Proof. We start by defining inductively on A two families of terms Ma : A and δa :
A→ Bool indexed by a ∈ [[A]]set, such that [[Ma]]set = a and [[δa]]set sends a to tt and
all other elements to ff. For the types 1 and Bool, the terms M?, Mtt and Mff are the
corresponding constants. The term δ? is λx.?, δtt is λx.x while δff is the negation. For
the type A × B, one trivially calls the induction step. The type A → B is handled by
remembering that the set [[A]]set is finite: if g ∈ [[A→ B]]set, the termMg is the lambda-
term with argument x containing a list of if-then-else testing with δa whether x is
equal to a, and returning Mg(a) if it is. The term δg is built similarly. The judgement
x : A `M : B asked for in the theorem is obtained by setting M to (Mf)x.

Theorem 7 (Equivalence). Suppose that ∆ `M,N : A. Then [[M]]set = [[N]]set if and
only if M 'op N .

Proof. The left-to-right implication is Theorem 5. We prove the right-to-left implication
by contrapositive. Assume that [[M]]set 6= [[N]]set. Then there exists a function f : 1→
[[A]]set and a function g : [[B]]set → [[Bool]]set such that the boolean f ; [[M]]set; g is
different from f ; [[N]]set; g. By Theorem 6, the functions f and g are representable by
two terms Nf and Ng . They generate a context that distinguishes M and N : this proves
that M 6'op N .

Corollary 8. Since it is fully complete, the semantics FinSet is also adequate and fully
abstract with respect to PCFf .

Example 9. Consider the Church numerals based over 1: they are of type (1→ 1)→
(1 → 1). In FinSet, there is only one element since there is only one map from 1
to 1. As a consequence of Theorem 7, one can conclude that all Church numerals
λfx.f(f(· · · (fx) · · ·)) of type (1 → 1) → (1 → 1) are operationally equivalent.
Note that this is not true in general as soon as the type is inhabited by more elements.

Example 10. How many operationally distinct Church numerals based over Bool are
there ? From Theorem 7, it is enough to count how many distinct denotations of Church
numerals there are in [[(Bool→ Bool)→ (Bool→ Bool)]]set. There are exactly 4 dis-
tinct maps Bool → Bool. Written as pairs (x, y) when f(tt) = x and f(ff) = y, the
maps tt , tf , ft and ff are respectively (tt, tt), (tt, ff), (ff, tt) and (ff, ff).

Then, if the Church numeral n̄ is written as a tuple (n̄(tt), n̄(tf), n̄(ft), n̄(ff)), we
have the following equalities: 0̄ = (tf , tf , tf , tf), 1̄ = (tt , tf , ft ,ff), 2̄ = (tt , tf , tf ,ff),
3̄ = (tt , tf , ft ,ff), and one can show that for all n ≥ 1, [[n̄]]set = [[¯n+ 2]]set. There are
therefore only 3 operationally distinct Church numerals based on the type Bool: the
number 0̄, then all even non-null numbers, and finally all odd numbers.

4 Finite Vector Spaces

We now turn to the second finitary model that we want to use for the language PCFf :
finite vector spaces. We first start by reminding the reader about this algebraic structure.

4.1 Background Definitions

A field [19] K is a commutative ring such that the unit 0 of the addition is distinct from
the unit 1 of the multiplication and such all non-zero elements of K admit an inverse
with respect to the multiplication. A finite field is a field of finite size. The characteristic
q of a field K is the minimum (non-zero) number such that 1 + · · ·+ 1 = 0 (q instances
of 1). If there is none, we say that the characteristic is 0. For example, the field of real
numbers has characteristic 0, while the field F2 consisting of 0 and 1 has characteristic
2. The order of a finite field is the order of its multiplicative group.

A vector space [18] V over a field K is an algebraic structure consisting of a set
|V |, a binary addition + and a scalar multiplication (·) : K × V → V , satisfying the
equations of Table 6 (taken unordered). The dimension of a vector space is the size
of the largest set of independent vectors. A particular vector space is the vector space
freely generated from a space X , denoted with 〈X〉: it consists of all the formal finite
linear combinations

∑
i αi · xi, where xi belongs to X and αi belongs to K. To define

a linear map f on 〈X〉, it is enough to give its behavior on each of the vector x ∈ X:
the image of

∑
i αi · xi is then by linearity imposed to be

∑
i αi · f(xi).

In this paper, the vector spaces we shall concentrate on are finite vector spaces, that
is, vector spaces of finite dimensions over a finite field. For example, the 2-dimensional
space F2 × F2 consists of the four vectors (0

0) , (0
1) , (1

0) , (1
1) and is a finite vector

space. It is also the vector space freely generated from the 2-elements set {tt, ff}: each
vectors respectively corresponds to 0, tt, ff, and tt + ff.

Once a given finite fieldK has been fixed, the category FinVec has for objects finite
vector spaces over K and for morphisms linear maps between these spaces. The cate-
gory is symmetric monoidal closed: the tensor product is the algebraic tensor product,
the unit of the tensor is I = K = 〈?〉 and the internal hom between two spaces U and
V is the vector space of all linear functions U(V between U and V . The addition and
the scalar multiplication over functions are pointwise.

4.2 A Linear-non-linear Model

It is well-known [20] that the category of finite sets and functions and the category of
finite vector spaces and linear maps form an adjunction

FinSet
F -- FinVec.
G

mm (1)

The functor F sends the set X to the vector space 〈X〉 freely generated from X and
the set-map f : X → Y to the linear map sending a basis element x ∈ X to the base
element f(x). The functor G sends a vector space U to the same space seen as a set,
and consider any linear function as a set-map from the corresponding sets.

This adjunction makes FinVec into a model of linear logic [23]. Indeed, the adjunc-
tion is symmetric monoidal with the following two natural transformations:

mX,Y : 〈X × Y 〉 → 〈X〉 ⊗ 〈Y 〉
(x, y) 7→ x⊗ y,

m1 : 〈1〉 → I
? 7→ 1.

This makes a linear-non-linear category [4], equivalent to a linear category, and is a
model of intuitionistic linear logic [5].

4.3 Model of Linear Logic

The adjunction in Eq. (1) generates a linear comonad on FinVec. If A is a finite vector
space, we define the finite vector space !A as the vector space freely generated from the

Table 4. Modeling the language PCFf in FinVec.

[[∆,x : A ` x : A]]vec : d⊗ ba 7−→ a

[[∆ ` tt : Bool]]vec : d 7−→ tt

[[∆ ` ff : Bool]]vec : d 7−→ ff

[[∆ ` ? : 1]]vec : d 7−→ ?

[[∆ ` 〈M,N 〉 : A×B]]vec : d 7−→ [[M]]vec(d)⊗ [[N]]vec(d)

[[∆ `MN : B]]vec : d 7−→ [[M]]vec(d)([[N]]vec(d))

[[∆ ` πl(M) : A]]vec = [[M]]vec;πl

[[∆ ` πr(M) : B]]vec = [[M]]vec;πr

[[∆ ` λx.M : A→ B]]vec = d 7−→ (ba 7→ [[M]]vec(d⊗ ba))

[[∆ ` let ? = M inN : A]]vec = d 7−→ α · [[N]]vec(d) where [[M]]vec(d) = α · ?.

[[∆ ` ifM thenN elseP : A]]vec = d 7−→ α · [[N]]vec(d) + β · [[P]]set(d)

where [[∆ `M : Bool]]vec(d) = α · tt + β · ff.

set {bv}v∈A: it consists of the space 〈bv | v ∈ A〉. If f : A → B is a linear map, the
map !f : !A → !B is defined as bv 7→ bf(v). The comultiplication and the counit of
the comonad are respectively δA :!A → !!A and εA : !A → A where δA(bv) = bbv
and εA(bv) = v. Every element !A is a commutative comonoid when equipped with the
natural transformations∆A : !A→ !A⊗ !A and ♦A : !A→ I where∆A(bv) = bv⊗bv
and ♦(bv) = 1. This makes the category FinVec into a linear category.

In particular, the coKleisli category FinVec! coming from the comonad is cartesian
closed: the product of A and B is A × B, the usual product of vector spaces, and
the terminal object is the vector space 〈0〉. This coKleisli category is the usual one: the
objects are the objects of FinVec, and the morphisms FinVec!(A,B) are the morphisms
FinVec(!A,B). The identity !A→ A is the counit and the composition of f : !A→ B

and !B → C is f ; g := !A
δA−−→ !!A

!f−→ !B
g−→ C.

There is a canonical full embedding E of categories sending FinVec! on FinSet.
It sends an object U to the set of vectors of U (i.e. it acts as the forgetful functor on
objects) and sends the linear map f : !U → V to the map v 7→ f(bv).

This functor preserves the cartesian closed structure: the terminal object 〈0〉 of
FinVec! is sent to the set containing only 0, that is, the singleton-set 1. The product
space U × V is sent to the set of vectors {〈u, v 〉 | u ∈ U, v ∈ V }, which is exactly the
set-product of U and V . Finally, the function space !U → V is in exact correspondence
with the set of set-functions U → V .

Remark 11. The construction proposed as side example by Hyland and Schalk [15]
considers finite vector spaces with a field of characteristic 2. There, the modality is
built using the exterior product algebra, and it turns out to be identical to the functor we
use in the present paper. Note though, that their construction does not work with fields
of other characteristics.

Remark 12. Quantitative models of linear logic such as finiteness spaces [9] are also
based on vector spaces; however, in these cases the procedure to build a comonad does
not play well with the finite dimension the vector spaces considered in this paper: the
definition of the comultiplication assumes that the space !A is infinitely dimensional.

4.4 Finite Vector Spaces as a Model

Since FinVec! is a cartesian closed category, one can model terms of PCFf as linear
maps. Types are interpreted as follows. The unit type is [[1]]vec := {α · ? | α ∈ K }.
The boolean type is [[Bool]]vec := {

∑
iαi · tt + βi · ff | αi, βi ∈ K }. The product is

the usual product space: [[A×B]]vec := [[A]]vec × [[B]]vec, whereas the arrow type is
[[A→ B]]vec := FinVec(![[A]]vec, [[B]]vec). A typing judgment x1 : A1, . . . , xn : An `
M : B is represented by a morphism of FinVec of type

![[A1]]vec ⊗ · · · ⊗ ![[An]]vec −→ [[B]]vec, (2)

inductively defined as in Table 4. The variable d stands for a base element bu1
⊗. . .⊗bun

of [[∆]]vec, and ba is a base element of [[A]]vec. The functions πl and πr are the left and
right projections of the product.

Note that because of the equivalence between !(A×B) and !A ⊗ !B, the map in
Eq. (2) is a morphism of FinVec!, as desired.

Example 13. In FinSet, there was only one Church numeral based on type 1. In
FinVec!, there are more elements in the corresponding space !(!1(1)((!1(1)
and we get more distinct Church numerals.

Assume that the finite field under consideration is the 2-elements field F2 = {0, 1}.
Then [[1]]vec = 1 = {0 · ?, 1 · ?} = {0, ?}. The space !1 is freely generated from the
vectors of 1: it therefore consists of just the four vectors {0, b0, b?, b0 + b?}. The space
of morphisms [[1→ 1]]vec is the space !1(1. It is generated by two functions: f0

sending b0 to ? and b? to 0, and f? sending bv to v. The space therefore also contains 4
vectors: 0, f0, f? and f0+f?. Finally, the vector space !(!1(1) is freely generated from
the 4 base elements b0, bf0 , bf? and bf0+f? , therefore containing 16 vectors. Morphisms
!(!1(1)((!1(1) can be represented by 2 × 4 matrices with coefficients in F2.

·

(·
·
·
·
·
·
·)

f?

f0

b0 bf0bf?bf0+f?

The basis elements bv are ordered as above, as are the basis el-
ements fw, as shown on the right. The Church numeral 0̄ sends
all of its arguments to the identity function, that is, f?. The
Church numeral 1̄ is the identity. So their respective matrices
are (0 0 0 0

1 1 1 1) and (0 1 0 1
0 0 1 1). The next two Church numerals are

2̄ = (0 0 0 1
0 1 1 1) and 3̄ = (0 1 0 1

0 0 1 1), which is also 1̄. So FinVec! with the field of charac-
teristic 2 distinguishes null, even and odds numerals over the type !1.

Note that this characterization is similar to the FinSet Example 10, except that there,
the type over which the Church numerals were built was Bool. Over 1, Example 9 stated
that all Church numerals collapse.

Example 14. The fact that FinVec! with the field of characteristic 2 can be put in
parallel with FinSet when considering Church numerals is an artifact of the fact that
the field has only two elements. If instead one chooses another field K = Fp =
{0, 1, . . . , p − 1} of characteristic p, with p prime, then this is in general not true
anymore. In this case, [[1]]vec = {0, ?, 2 · ?, . . . , (p − 1) · ?}, and !1 (1 has di-
mension p with basis elements fi sending bi·? 7→ ? and bj·? 7→ 0 when i 6= j. It
therefore consists of pp vectors. Let us represent a function f : !1(1 with x0 . . . xp−1
where f(bi·?) = xi · ?. A morphism !(!1(1)((!1(1) can be represented with
a pp × p matrix. The basis elements bx0...xp−1

of !(!1(1) are ordered lexicographi-
cally: b0...00, b0...01, b0...02, . . . , b0...0(p−1), . . . , b(p−1)...(p−1), as are the basis elements
f0, f1, . . . , fp−1.

The Church numeral 0̄ is again the constant function returning the identity, that is,∑
i i ·fi. The numeral 1̄ sends x0 · · · xp−1 onto the function sending bi·? onto xi ·?. The

numeral 2̄ sends x0 · · · xp−1 onto the function sending bi·? onto xxi · ?. The numeral 3̄
sends x0 · · · xp−1 onto the function sending bi·? onto xxxxi

· ?. And so on.
In particular, each combination x0 · · · xp−1 can be considered as a function x :

{0, . . . p − 1} → {0, . . . p − 1}. The sequence (x0, x1, x2, . . .) eventually loops. The
order of the loop is lcm(p), the least common multiple of all integers 1, . . . , p, and for
all n ≥ p − 1 we have xn = xn+lcm(p): there are lcm(p) + p − 1 distinct Church
numerals in the model FinVec! with a field of characteristic p prime.

For p = 2 we recover the 3 distinct Church numerals. But for p = 3, we deduce that
there are 8 distinct Church numerals (the 8 corresponding matrices are reproduced in

Table 5. The 8 Church numerals over type 1 in FinVec! with K = F3.

0 =(
0 0
1 1
2 2

) 1 =(
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 2 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

)
2 + 6n =(

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 0 1 2 1 1 1 1 1 1 0 1 2 2 2 2 1 1 1 0 1 2
0 0 2 0 1 2 0 2 2 1 0 2 1 1 2 1 2 2 2 0 2 2 1 2 2 2 2

) 3 + 6n =(
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 2 2 0 2 2 1 2 2 2 2
0 0 0 1 1 1 0 2 2 0 0 0 1 1 1 1 2 2 0 1 2 1 1 1 2 2 2
0 0 2 0 1 2 0 1 2 0 1 2 1 1 2 2 1 2 0 2 2 0 1 2 0 1 2

)
4 + 6n =(

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 0 2 2 0 1 2 0 1 2
0 0 0 1 1 1 0 1 2 1 1 1 1 1 1 2 1 2 2 0 2 1 1 1 0 1 2
0 0 2 0 1 2 0 2 2 1 0 2 1 1 2 0 2 2 2 1 2 2 1 2 2 2 2

) 5 + 6n =(
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 1 2 2 1 2 2 1 2 2 2 2
0 0 0 1 1 1 0 2 2 0 0 0 1 1 1 0 2 2 0 2 2 1 1 1 2 2 2
0 0 2 0 1 2 0 1 2 0 1 2 1 1 2 1 1 2 0 0 2 0 1 2 0 1 2

)
6 + 6n =(

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 2 2 0 0 2 0 1 2 0 1 2
0 0 0 1 1 1 0 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 0 1 2
0 0 2 0 1 2 0 2 2 1 0 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 2

) 7 + 6n =(
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 2 2
0 0 0 1 1 1 0 2 2 0 0 0 1 1 1 2 2 2 0 0 2 1 1 1 2 2 2
0 0 2 0 1 2 0 1 2 0 1 2 1 1 2 0 1 2 0 1 2 0 1 2 0 1 2

)

Table 5). As there is almost a factorial function, the number of distinct Church numerals
grows fast as p grows: With F5, there are 64 distinct numerals, and with F7 there are
426 distinct numerals.

Example 15. Let us briefly reprise Example 10 in the context of FinVec!. Even with
a field of characteristic 2, the vector space [[(Bool→ Bool)→ (Bool→ Bool)]]vec

is relatively large: Bool has dimension 2 and consists of 4 vectors, !Bool then has
dimension 4 and consists of 16 vectors. The dimension of the homset !Bool(Bool

is 8, and it contains 28 = 256 vectors. Using the representation of the two previous
examples, a Church numeral is then a matrix of size 256× 8.

Let us represent a function !Bool(Bool as a tuple (xkij)i,j,k lexicographically
ordered x0

00, x
1
00, x

0
01, x

1
01, x

0
10, x

1
10, x

0
11, x

1
11, representing the map sending bi·tt+j·ff to

x0
ij · tt+ x1

ij · ff. These form the basis elements of the range of the matrix. The domain
of the matrix consists of all the 256 combinations of 0/1 values that these can take.
Ordered lexicographically, they form the basis of the domain of the matrix.

As before, the Church numeral 0̄ is constant while 1̄ is the identity. The numeral 2̄
sends each of the 8-tuples (xkij)i,j,k to the 8-tuple (x0

x0
a,b,x

1
a,b
, x1
x0
a,b,x

1
a,b

)a,b∈{0,1}, and
so forth. So for example, the negation sending ba·tt+b·ff to a · ff + b · tt is the 8-tuple
(0, 0, 1, 0, 0, 1, 1, 1) and is sent by 2̄ to the tuple (0, 0, 0, 1, 1, 0, 1, 1) which is indeed
the identity.

If one performs the calculation, one finds out that in FinVec!, over the type Bool,
there are exactly 15 distinct Church numerals. The numerals 0̄, 1̄ and 2̄ are uniquely
determined, and then the semantics distinguishes the equivalence classes {i+12n | n ∈
N}, for i = 3, 4, . . . 14.

4.5 Properties of the FinVec Model

As shown in the next results, this semantics is both sound and adequate with respect
to the operational equivalence. Usually adequacy uses non-terminating terms. Because
the language is strongly normalizing, we adapt the notion. However, because there are
usually more maps between [[A]]vec and [[B]]vec than between [[A]]set and [[B]]set (as
shown in Examples 13, 14 and 15), the model fails to be fully abstract.

Lemma 16. If M 'ax N : A then [[M]]vec = [[N]]vec.

Theorem 17. If ∆ `M,N : A and [[M]]vec = [[N]]vec then M 'op N .

Proof. The proof is similar to the proof of Theorem 5 and proceeds by contrapositive,
using Lemmas 2, 2, 3 and 16.

Theorem 18 (Adequacy). Given two closed terms M and N of type Bool, [[M]]vec =
[[N]]vec if and only if M 'op N .

Proof. The left-to-right direction is Theorem 17. For the right-to-left direction, since
the terms M and N are closed of type Bool, one can choose the context C[−] to be
[−], and we have M →∗ b if and only if N →∗ b. From Lemma 2, there exists such a
boolean b: we deduce from Lemma 3 thatM 'ax N . We conclude with Lemma 16.

Remark 19. The model FinVec! is not fully abstract. Indeed, consider the two valid
typing judgments x : Bool ` tt : Bool and x : Bool ` ifx then tt else tt : Bool.
The denotations of both of these judgments are linear maps ![[Bool]]vec → [[Bool]]vec.
According to the rules of Table 4, the denotation of the first term is the constant function
sending all non-zero vectors b− to tt.

For the second term, suppose that v ∈ ![[Bool]]vec is equal to
∑
i γi · bαi·tt+βi·ff.

Let ν =
∑
i γi(αi + βi). Then since [[x : Bool ` x : Bool]]vec(v) = ν, the denotation

of the second term is the function sending v to ν · [[x : Bool ` tt : Bool]]vec(v), equal
to ν · tt from what we just discussed. We conclude that if v = b0, then ν = 0: the
denotation of x : Bool ` ifx then tt else tt : Bool sends b0 to 0.

Nonetheless, they are clearly operationally equivalent in PCFf since their deno-
tation in FinSet is the same. The language is not expressive enough to distinguish be-
tween these two functions. Note that there exists operational settings where these would
actually be different, for example if we were to allow divergence.

Remark 20. Given a term A, another question one could ask is whether the set of
terms M : A in PCFf generates a free family of vectors in the vector space [[A]]vec.
It turns out not: The field structure brought into the model introduces interferences,
and algebraic sums coming from operationally distinct terms may collapse to a repre-
sentable element. For example, supposing for simplicity that the characteristic of the
field is q = 2, consider the terms Ttt,tt, Tff,ff, Ttt,ff and Tff,tt defined as Ty,z =
λx.ifx then y else z, all of types Bool → Bool. They are clearly operationally dis-
tinct, and their denotations live in !Bool(Bool. They can be written as a 2 × 4
matrices along the bases (b0, btt, bff, btt+ff) for the domain and (tt, ff) for the range.
The respective images of the 4 terms are (0 1 1 0

0 0 0 0) , (0 0 0 0
0 1 1 0), (0 1 0 1

0 0 1 1), (0 0 1 1
0 1 0 1) and

clearly, [[Ttt,tt]]
vec = [[Tff,ff]]

vec + [[Ttt,ff]]
vec + [[Tff,tt]]

vec.
So if the model we are interested in is FinVec!, the language is missing some struc-

ture to correctly handle the algebraicity.

5 An Algebraic Lambda Calculus

To solve the problem, we extend the language PCFf by adding an algebraic structure
to mimic the notion of linear distribution existing in FinVec!. The extended language

Table 6. Rewrite system for the algebraic fragment of PCFalg
f .

α ·M + β ·M → (α+ β) ·M M +N → N +M (M +N) + P →M + (N + P)

α ·M +M → (α+ 1) ·M 0 ·M → 0 1 ·M →M α · (M +N)→ α ·M + α ·N
M +M → (1 + 1) ·M α · 0→ 0 0 +M →M α · (β ·M)→ (αβ) ·M

PCFalg
f is a call-by-name variation of [2, 3] and reads as follows:

M,N,P ::= x | λx.M |MN | πl(M) | πr(M) | 〈M,N 〉 | ? | tt | ff |
ifM thenN elseP | let ? = M inN | 0 |M +N | α ·M,

A,B ::= 1 | Bool | A→ B | A×B.

The scalar α ranges over the field. The values are now U, V ::= x |λx.M | 〈M,N 〉 |
? | tt | ff | 0 |U + V |α · U.. The typing rules are the same for the regular constructs.
The new constructs are typed as follows: for all A, ∆ ` 0 : A, and provided that
∆ ` M,N : A, then ∆ ` M + N : A and ∆ ` α ·M : A. The rewrite rules are
extended as follows.
1) A set of algebraic rewrite rules shown in Table 6. We shall explicitly talk about
algebraic rewrite rules when referring to these extended rules. The top row consists of
the associativity and commutativity (AC) rules. We shall use the term modulo AC when
referring to a rule or property that is true when not regarding AC rules. For example,
modulo AC the term ? is in normal form and α ·M + (N +α ·P) reduces to α · (M +
P) +N . The reduction rules from Γ will be called non-algebraic.
2) The relation between the algebraic structure and the other constructs: one says
that a construct c(−) is distributive when for all M,N , c(M + M) → c(M) + c(N),
c(α ·M) → α · c(M) and c(0) → 0. The following constructs are distributive: (−)P ,
if (−) thenP1 elseP2, πi(−), let ? = (−) inN , and the pairing construct factors:
〈M,N 〉 + 〈M ′, N ′ 〉 → 〈M +M ′, N +N ′ 〉, α · 〈M,N 〉 → 〈α ·M,α ·N 〉 and
0A×B → 〈 0A, 0B 〉.
3) Two congruence rules. If M →M ′, then M +N →M ′+N and α ·M → α ·M ′.

Remark 21. Note that if (M1 +M2)(N1 +N2) reduces to M1(N1 +N2) +M2(N1 +
N2), it does not reduce to (M1 + M2)N1 + (M1 + M2)N2. If it did, one would get
an inconsistent calculus [3]. For example, the term (λx.〈x, x 〉)(tt + ff) would reduce
both to 〈 tt, tt 〉+〈 ff, ff 〉 and to 〈 tt, tt 〉+〈 ff, ff 〉+〈 tt, ff 〉+〈 ff, tt 〉. We’ll come
back to this distinction in Section 6.3.

The algebraic extension preserves the safety properties, the characterization of val-
ues and the strong normalization. Associativity and commutativity induce a subtlety.

Lemma 22. The algebraic fragment of PCFalg
f is strongly normalizing modulo AC.

Proof. The proof can be done as in [3], using the same measure on terms that decreases
with algebraic rewrites. The measure, written a, is defined by a(x) = 1, a(M +N) =
2 + a(M) + a(N), a(α ·M) = 1 + 2a(M), a(0) = 0.

Lemma 23 (Safety properties mod AC). A well-typed term M : A is a value or, if not,
reduces to some N : A via a sequence of steps among which one is not algebraic.

Lemma 24. Any value of type 1 has AC-normal form 0, ? or α · ?, with α 6= 0, 1.

Lemma 25. Modulo AC, PCFalg
f is strongly normalizing.

Proof. The proof is done by defining an intermediate language PCFf int where scalars
are omitted. Modulo AC, this language is essentially the language λ−wLK→ of [7], and
is therefore SN. Any term of PCFalg

f can be re-written as a term of PCFf int . With
Lemma 23, by eliminating some algebraic steps a sequence of reductions in PCFalg

f

can be rewritten as a sequence of reductions in PCFf int . We conclude with Lemma 22,
saying there is always a finite number of these eliminated algebraic rewrites.

5.1 Operational Equivalence

As for PCFf , we define an operational equivalence on terms of the language PCFalg
f .

A context C[−] for this language has the same grammar as for PCFf , augmented with
algebraic structure: C[−] ::= α · C[−] | C[−] +N |M + C[−] | 0.

For PCFalg
f , instead of using closed contexts of type Bool, we shall use contexts

of type 1: thanks to Lemma 24, there are distinct normal forms for values of type 1,
making this type a good (and slightly simpler) candidate.

We therefore say that ∆ ` M : A and ∆ ` N : A are operationally equivalent,
written M 'op N , if for all closed contexts C[−] of type 1 where the hole binds ∆, for
all b normal forms of type 1, C[M]→∗ b if and only if C[N]→∗ b.

5.2 Axiomatic Equivalence

The axiomatic equivalence on PCFalg
f consists of the one of PCFf , augmented with

the added reduction rules.

Lemma 26. If M : A and M → N then M 'ax N .

5.3 Finite Vector Spaces as a Model

The category FinVec! is a denotational model of the language PCFalg
f . Types are inter-

preted as for the language PCFf in Section 4.4. Typing judgments are also interpreted
in the same way, with the following additional rules. First, [[∆ ` 0 : A]]vec = 0. Then
[[∆ ` α ·M : A]]vec = α · [[∆ `M : A]]vec. Finally, we have [[∆ `M +N : A]]vec =
[[∆ `M : A]]vec + [[∆ ` N : A]]vec.

Remark 27. With the extended term constructs, the language PCFalg
f does not share

the drawbacks of PCFf emphasized in Remark 19. In particular, the two valid typing
judgments x : Bool ` tt : Bool and x : Bool ` ifx then tt else tt : Bool are now
operationally distinct. For example, if one chooses the context C[−] = (λx.[−])0, the
term C[tt] reduces to tt whereas the term C[ifx then tt else tt] reduces to 0.

Lemma 28. If M 'ax N : A in PCFalg
f then [[M]]vec = [[N]]vec.

Theorem 29. Let ∆ ` M,N : A be two valid typing judgments in PCFalg
f . If

[[M]]vec = [[N]]vec then we also have M 'op N .

Proof. The proof is similar to the proof of Theorem 5: Assume M 6'op N . Then
there exists a context C[−] that distinguishes them. The call-by-name reduction pre-
serves the type from Lemma 23, and C[M] and C[N] can be rewritten as the terms
(λy.C[y x1 . . . xn])λx1 . . . xn.M and (λy.C[y x1 . . . xn])λx1 . . . xn.N , and these are
axiomatically equivalent to distinct normal forms, from Lemmas 25 and 26. We con-
clude from Lemmas 26 and 28 that the denotations of M and N are distinct.

5.4 Two Auxiliary Constructs

Full completeness requires some machinery. It is obtained by showing that for every
type A, for every vector v in [[A]]vec, there are two terms MA

v : A and δAv : A→ 1 such
that [[MA

v]]vec = v and [[δAv]]vec sends bv to ? and all other b−’s to 0.
We first define a family of terms expi : 1 → 1 inductively on i: exp0 = λx.?

and expi+1 = λx.let ? = x in expi(x). One can show that [[expi(α · ?)]]vec = αi · ?.
Then assume that o is the order of the field. Let iszero : 1→ 1 be the term expo. The
denotation of iszero is such that [[izero(α · ?)]]vec = 0 if α = 0 and ? otherwise.

The mutually recursive definitions of δAv and MA
v read as follows.

At type A = 1. The term M1
α·? is simply α · ?. The term δ1α·? is λx.iszero(x−α · ?).

At type A = Bool. As for the type 1, the term MBool
α·tt+β·ff is simply α · tt +

β · ff. The term δBoolα·tt+β·ff is reusing the definition of δ1: it is the term λx.let ? =

δ1α·?(ifx then ? else 0) in δ1β·?(ifx then 0 else ?).

At type A = B × C. If v ∈ [[A]]vec = [[B]]vec × [[C]]vec, then v = 〈u,w 〉, with
u ∈ [[B]]vec and w ∈ [[C]]vec. By induction, one can construct MB

u and MC
w : the term

MB×C
v is 〈MB

u ,M
C
w 〉. Similarly, one can construct the terms δBu and δCw : the term

δB→Cv is λx.let ? = δBu πl(x) in δCw πr(x).

At type A = B → C. Consider f ∈ [[A]]vec = ![[B]]vec ([[C]]vec. The domain of
f is finite-dimensional: let {bui

}i=1...n be its basis, and let wi be the value f(bui
).

Then, using the terms δBui
and MC

wi
, one can define MB→C

v as the term
∑
i λx.let ? =

δBui
x inMC

wi
. Similarly, one can construct δCwi

and MB
ui

, and from the construction in
the previous paragraph we can also generate δC

×n

〈w1,...wn 〉 : C×n → Bool. The term

δB→Cv is then defined as λf.δC
×n

〈w1,...wn 〉 〈 f M
B
u1
, . . . , f MB

u1
〉.

5.5 Full Completeness

We are now ready to state completeness, whose proof is simply by observing that any
v ∈ [[A]]vec can be realized by the term MA

v : A.

Theorem 30 (Full completeness). For any type A, any vector v of [[A]]vec in FinVec! is
representable in the language PCFalg

f .

Theorem 31. For all M and N , M 'op N if and only if [[M]]vec = [[N]]vec.

A corollary of the full completeness is that the semantics FinVec is also adequate
and fully abstract with respect to PCFalg

f .

6 Discussion

6.1 Simulating the Vectorial Structure

As we already saw, there is a full embedding of category E : FinVec! ↪→ FinSet. This
embedding can be understood as “mostly” saying that the vectorial structure “does not
count” in FinVec!, as one can simulate it with finite sets. Because of Theorems 7 and 31,
on the syntactic side algebraic terms can also be simulated by the regular PCFf .

In this section, for simplicity, we assume that the field is F2. In general, it can be any
finite size provided that the regular lambda-calculus PCFf is augmented with q-bits,
i.e. base types with q elements (where q is the characteristic of the field).

Definition 32. The vec-to-set encoding of a type A, written VtoSA, is defined induc-
tively as follows: VtoS(1) = Bool, VtoS(Bool) = Bool × Bool, VtoS(A × B) =
VtoS(A)×VtoS(B), and VtoS(A→ B) = VtoS(A)→ VtoS(B).

Theorem 33. There are two typing judgments x : A ` φvec
A : VtoS(A) and x :

VtoS(A) ` φ̄vec
A : A, inverse of each other, in PCFalg

f such that any typing judgment

x : A ` M : B can be factored into A
φvec
A−−−→ VtoS(A)

M̃−→ VtoS(B)
φ̄vec
B−−−→ B, where

M̃ is a regular lambda-term of PCFf .

Proof. The two terms φvec
A and φ̄vec

A are defined inductively on A. For the definition of
φvec
Bool we are reusing the term δv of Section 5.4. The definition is in Table 7

6.2 Categorical Structures of the Syntactic Categories

Out of the language PCFf one can define a syntactic category: objects are types and
morphisms A → B are valid typing judgments x : A ` M : B modulo operational
equivalence. Because of Theorem 7, this category is cartesian closed, and one can easily
see that the product of x : A ` M : B and x : A ` N : C is 〈M,N 〉 : B × C, that

Table 7. Relation between PCFf and PCFalg
f

φvec
1 = let ? = δ0x in tt + let ? = δ?x in ff φ̄vec

1 = ifx then 0 else ?
φvec
Bool = let ? = δ0x in 〈 tt, tt 〉 + let ? = δttx in 〈 tt, ff 〉

+ let ? = δffx in 〈 ff, tt 〉+ let ? = δtt+ffx in 〈 ff, ff 〉
φ̄vec
Bool = if (πlx) then (if (πrx) then 0 else tt)else (if (πrx) then ff else tt + ff)

φvec
B×C = 〈x;πl;φ

vec
B , x;πr;φvec

C 〉,
φ̄vec
B×C = 〈x;πl; φ̄

vec
B , x;πr; φ̄vec

C 〉,
φvec
B→C = λy.x(y; φ̄vec

B);φvec
C ,

φ̄vec
B→C = λy.x(y;φvec

B); φ̄vec
C .

the terminal object is ? : 1, that projections are defined with πl and πr, and that the
lambda-abstraction plays the role of the internal morphism.

The language PCFalg
f almost defines a cartesian closed category: by Theorem 31,

it is clear that pairing and lambda-abstraction form a product and an internal hom.
However, it is missing a terminal object (the type 1 doesn’t make one as x : A ` 0 : 1
and x : A ` ? : 1 are operationally distinct). There is no type corresponding to the
vector space 〈0〉. It is not difficult, though, to extend the language to support it: it is
enough to only add a type 0. Its only inhabitant will then be the term 0: it make a
terminal object for the syntactic category.

Finally, Theorem 33 is essentially giving us a functor PCFalg
f → PCFf corre-

sponding to the full embedding E. This makes a full correspondence between the two
models FinSet and FinVec!, and PCFf and PCFalg

f , showing that computationally
the algebraic structure is virtually irrelevant.

6.3 (Co)Eilenberg-Moore Category and Call-by-value

From a linear category with modality ! there are two canonical cartesian closed cate-
gories: the coKleisli category, but also the (co)Eilenberg-Moore category: here, objects
are still those of FinVec, but morphisms are now !A→ !B.

According to [30], such a model would correspond to the call-by-value (or, as
coined by [8] call-by-base) strategy for the algebraic structure discussed in Remark 21.

6.4 Generalizing to Modules

To conclude this discussion, let us consider a generalization of finite vector spaces to
finite modules over finite semi-rings.

Indeed, the model of linear logic this paper uses would work in the context of a finite
semi-ring instead of a finite field, as long as addition and multiplication have distinct
units. For example, by using the semiring {0, 1} where 1 + 1 = 1 one recover sets
and relations. However, we heavily rely on the fact that we have a finite field K in the
construction of Section 5.4, yielding the completeness result in Theorem 30.

This particular construction works because one can construct any function between
any two finite vector spaces as polynomial, for the same reason as any functionK → K
can be realized as a polynomial.

References

1. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Inf. and Comp.,
163:409–470, 2000.

2. P. Arrighi, A. Dı́az-Caro, and B. Valiron. A type system for the vectorial aspects of the
linear-algebraic lambda-calculus. In Proc. of DCM, 2011.

3. P. Arrighi and G. Dowek. Linear-algebraic λ-calculus. In Proc. of RTA, pages 17–31, 2008.
4. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. Technical report,

Cambridge U., 1994.
5. G. Bierman. On Intuitionistic Linear Logic. PhD thesis, Cambridge U., 1993.

6. A. Bucciarelli, T. Ehrhard, and G. Manzonetto. A relational semantics for parallelism and
non-determinism in a functional setting. A. of Pure and App. Logic, 163:918–934, 2012.

7. P. de Groote. Strong normalization in a non-deterministic typed lambda-calculus. In Logical
Foundations of Computer Science, volume 813, pages 142–152, 1994.

8. A. Dı́az-Caro. Du Typage Vectoriel. PhD thesis, U. de Grenoble, 2011.
9. T. Ehrhard. Finiteness spaces. Math. Str. Comp. Sc., 15:615–646, 2005.

10. T. Ehrhard, M. Pagani, and C. Tasson. The computational meaning of probabilistic coherence
spaces. In Proc. of LICS, 2011.

11. T. Ehrhard and L. Regnier. The differential lambda-calculus. Th. Comp. Sc., 309:1–41, 2003.
12. J.-Y. Girard. Linear logic. Th. Comp. Sc., 50:1–101, 1987.
13. J.-Y. Girard, Y. Lafont, and P. Taylor. Proof and Types. CUP, 1990.
14. G. G. Hillebrand. Finite Model Theory in the Simply Typed Lambda Calculus. PhD thesis,

Brown University, 1991.
15. M. Hyland and A. Schalk. Glueing and orthogonality for models of linear logic. Th. Comp.

Sc., 294:183–231, 2003.
16. R. P. James, G. Ortiz, and A. Sabry. Quantum computing over finite fields. Draft, 2011.
17. J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic. CUP, 1994.
18. S. Lang. Algebra. Springer, 2005.
19. R. Lidl. Finite fields, volume 20. CUP, 1997.
20. S. Mac Lane. Categories for the Working Mathematician. Springer, 1998.
21. R. Milner. Fully abstract models of typed lambda-calculi. Th. Comp. Sc., 4:1–22, 1977.
22. G. Plotkin. LCF considered as a programming language. Th. Comp. Sc., 5:223–255, 1977.
23. V. R. Pratt. Re: Linear logic semantics (barwise). On the TYPES list, February 1992.

http://www.seas.upenn.edu/∼sweirich/types/archive/1992/msg00047.html.
24. V. R. Pratt. Chu spaces: Complementarity and uncertainty in rational mechanics. Technical

report, Stanford U., 1994.
25. S. Salvati. Recognizability in the simply typed lambda-calculus. In Logic, Language, Infor-

mation and Computation, pages 48–60. 2009.
26. B. Schumacher and M. D. Westmoreland. Modal quantum theory. In Proc. of QPL, 2010.
27. D. S. Scott. A type-theoretic alternative to CUCH, ISWIM, OWHY. Th. Comp. Sc., 121:411–

440, 1993.
28. P. Selinger. Order-incompleteness and finite lambda reduction models. Th. Comp. Sc.,

309:43–63, 2003.
29. S. Soloviev. Category of finite sets and cartesian closed categories. J. of Soviet Math., 22(3),

1983.
30. B. Valiron. A typed, algebraic, computational lambda-calculus. Math. Str. Comp. Sc.,

23:504–554, 2013.
31. L. Vaux. The algebraic lambda-calculus. Math. Str. Comp. Sc., 19:1029–1059, 2009.
32. G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

