
Concise Concrete Syntax

Stephen Tse Steve Zdancewic

University of Pennsylvania

Abstract

We introduce a notion of ordered context-free grammars (OCFGs) with datatype
tags to concisely specify grammars of programming languages. Our work is an ex-
tension of syntax definition formalism (SDF) and concrete datatypes that automate
scanning, parsing, and syntax tree construction. But OCFGs also capture associa-
tivity and precedence at the level of production rules instead of lexical tokens such
that a concrete syntax grammar is succinct enough be an abstract syntax definition.

By expanding and re-indexing grammar symbols, OCFGs can be translated to
grammars for standard lex and yacc such that existing and efficient parsing infras-
tructures can be reused.

We have implemented a Java 5 compiler frontend with OCFGs. The complete
grammar for such a realistic language fits comfortably in two pages of this paper,
showing the practicality of our formalism.

1 Introduction

Algebraic datatypes have been successfully used for formal specifications of ab-
stract syntax and semantics of programming languages. The concrete syntax
of a language, however, is often left out of the formal specification and relies
on adhoc interfaces between the scanner, the parser, and the datatypes of the
abstract syntax. This paper shows that the formal specification of concrete
syntax can also be concisely integrated with the usual notation of datatypes.

As an example, consider the following concrete syntax (on the left) and
abstract syntax (on the right, in OCaml [10]) of the lambda calculus [12]:

e ::= λx.e functions
| e e applications
| x variables

type e = Fun of x * e
| App of e * e
| Var of x

We represent variables as strings x. Note that following details about the
concrete syntax are missing above: (1) functions associate to the right, (2) ap-
plications associate to the left, (3) parentheses delimit terms, and (4) variables
and parenthesized terms have the highest precedence. In fact, incorporating
these constraints is the motivation behind our work.

Tse and Zdancewic

e: e1 { $1 }

e1: e2 { $1 }

| Kfun x_plus_comma Dot e1 { Fun ($2,$4) }

e2: e3 { $1 }

| e2 e3 { App ($1,$2) }

e3: x { Var $1 }

| Lparen e Rparen { Atom $2 }

x_plus_comma: x { [$1] }

| x Comma x_plus_comma { $1 :: $3 }

type e =

| Fun of x list * e

| App of e * e

| Var of x

| Atom of e

rule =

| "(" { Lparen }

| ")" { Rparen }

| "," { Comma }

| "." { Dot }

| "fun" { Kfun }

Fig. 1. Translation for the OCFG for lambda calculus: ocamlyacc parser definition
(left), OCaml type definition (top right), and ocamllex scanner definition (bottom
right). Note the expansion and re-indexing of e in the parser definition.

Here we introduce ordered context-free grammars with datatype tags, or
OCFG for short, by the example. The following is an OCFG for the lambda
calculus (ASCII source code on the left and LATEX rendering on the right):

e: > Fun: ’fun’ x ++ ’,’ ’.’ e
< App: e e
= Var: x
| Atom: ’(’ e ’)’

e ::> fun x+
, . e (Fun)

::< e e (App)
::= x (Var)
| (e) (Atom)

The full notation of OCFGs will be formally introduced in Section 3.1.
Here, the occurrence of more than one binding variable makes this example
a bit more interesting. Incorporating built-in repetitions (similar to the ex-
tended BNF notation), like [x+

,] above, not only simplifies the notation but is
also significant for the correctness of our translation (see Section 3.4).

We translate this extended notion of context-free grammars and datatypes
to definitions for standard scanners, parsers, and ordinary datatypes. This
allows us to reuse the existing and efficient parsing infrastructures.

Expansion and re-indexing Fig. 1 shows the translation for the lambda
calculus. The translation is done in a functional style (in OCaml [10] nota-
tion); the main idea is to expand and re-index grammar symbols to impose
associativity and precedence constraints. For example, expression e is ex-
panded into e1, e2 and e3; the case for functions [fun x+

, . e] is re-indexed to
be [fun x+

, . e1], and the case for applications [e e] is re-indexed to [e2 e3],
while the cases for variables x and atoms [(e)] stay the same.

Programmers can easily understand the mapping from the OCFG above
to the abstract syntax in the top right of Figure 1: ignore all literal tokens
and treat repetitions as lists. The example above shows that the concrete
syntax grammar of a language can be concise enough to be an abstract syntax

2

Tse and Zdancewic

definition (except for some minor artifact like the extra Atom rule for grouping).

We will formally show the set of translation rules for expansion and re-
indexing in Section 3.3. The rules are mostly straightforward but there are
some special cases. Another challenge, which we address in Section 3.5, is code
generation for error diagnosis such that parsing errors are reported uniformly
in terms of OCFGs. Our tool also generates pretty-printers and other generics
operations (such as maps and iterators), but we will not discuss them here.

Contributions Some ideas behind our notation and translation, such as
scanner-less parsing in the syntax definition formalism (SDF) [15] and concrete
datatypes [1], have been individually studied before (see Section 4 for more
related work). Our new contributions are:

(i) for compiler writers, an extension to parsing grammars with simple se-
mantics for connecting different compiler phases, including scanning,
parsing, error diagnoses, and syntax tree constructions;

(ii) for language designers, an extension to datatypes with a concise nota-
tion for specifying both the concrete and abstract syntax of a language,
allowing fast prototyping of compiler frontends.

Specifically, our notation allows associativity and precedence to be spec-
ified per production rule instead of per lexical token. We also pay special
attention to the semantics of repetitions and error diagnosis, to avoid parser
conflicts during re-indexing.

Our formalism allows language designers to focus on high-level concepts
like associativity and precedence instead of symbol expansion and re-indexing.
This greatly improves the readability of a grammar: a concrete syntax speci-
fication is now concise enough to be an abstract syntax definition.

We have implemented the translation for OCaml (using its LALR(1) parser
ocamlyacc) and used OCFGs for a few interpreter projects [18]. Our for-
malism and the translation here are not specific to LR parsing or functional
languages; we have also implemented a Java 5 frontend [17] using Generalized
LR parsing [16,14,8] (see Section 2).

Outline The rest of the paper is organized as follows. Section 2 demon-
strates the practicality of OCFG by specifying a full grammar for Java 5.
Section 3 formally defines OCFG and shows their translations for scanning,
parsing, type definitions, and error diagnosis. Section 4 discusses related work,
and finally Section 5 concludes the paper.

2 Applications

Before diving into formal definitions and translation, this section demonstrates
the practicality of OCFG by specifying a grammar for Java 5.

Fig. 2 and Fig. 3 show that the concrete syntax of such a realistic language

3

Tse and Zdancewic

cunit ::= package? import∗ decl∗

package ::= package name ;
ty ::= ty dimen+ (Tarray)

::= ty targs (Tinst)
::= name (Tname)
| boolean (Tbool)
| byte (Tbyte)
| char (Tchar)
| double (Tdouble)
| float (Tfloat)
| int (Tint)
| long (Tlong)
| short (Tshort)
| void (Tvoid)

wty ::= ty (WildType)
| ? (WildCard)
| ? extends ty (WildExtends)
| ? super ty (WildSuper)

tparams ::= < tparam+
, >

tparam ::= id extend? tinter∗

tinter ::= & ty
targs ::= < wty+

, >
ifelse ::= else stmt
block ::= { stmt∗ }

extend ::= extends ty
extends ::= extends ty+

,
bodies ::= { body∗ }
dimen ::= []

size ::= [exp]
default ::= default exp

arg ::= (exp∗,)
labelexp ::= id = exp

name ::= id+
.

all ::= . *
vdecl ::= id dimen∗ vinit?

vinit ::= = exp
exps ::> exp , exps (ExpsCons)

| exp (ExpsSome)
| (ExpsNil)

mod ::= basicmod (BasicMod)
| @ name (AnnotMark)
| @ name (exp) (AnnotSingle)
| @ name (labelexp+

,) (AnnotMore)

exp ::= { exps } (Array)
::> exp assign exp (Assign)
::> exp ? exp : exp (Cond)
::< exp || exp (Cor)
::< exp && exp (Cand)
::< exp | exp (Or)
::< exp ^ exp (Xor)
::< exp & exp (And)
::< exp == exp (Eq)
| exp != exp (Ne)

::< exp < exp (Lt)
| exp > exp (Gt)
| exp < = exp (Le)
| exp > = exp (Ge)
| exp instanceof ty (Instof)

::< exp < < exp (Shl)
| exp > > exp (Shr)
| exp > > > exp (Ushr)

::< exp + exp (Add)
| exp - exp (Sub)

::< exp * exp (Mul)
| exp / exp (Div)
| exp % exp (Rem)

::> (ty) exp (Cast)
| ++ exp (PreIncr)
| -- exp (PreDecr)
| + exp (Pos)
| - exp (Neg)
| ! exp (Not)
| ~ exp (Inv)

::< exp [exp] (Offset)
| exp . exp (Dot)
| ty . class (ExpClass)
| exp arg (Invoke)
| exp ++ (PostIncr)
| exp -- (PostDecr)

::= targs exp (Inst)
::= this (This)
| super (Super)
| literal (Literal)
| id (Ident)
| (exp) (Atom)
| new ty size+ dimen∗ (NewArr1)
| new ty { exps } (NewArr2)
| new name targs? arg bodies? (NewObj)

Fig. 2. An OCFG for Java 5 (page 1/2): the only missing definitions are literal (char,
float, integer, string), basicmod (abstract, final, native, private, protected,
public, static, strictf, synchronized, transient, volatile), and assign (=,
+=, -=, *=, /=, %=, &=, |=, ^=, < < =, > > =, > > > =).

4

Tse and Zdancewic

can fit comfortably in two pages of space. (Appendix B contains the full ASCII
source code of the grammar for our tool.) We have implemented a compiler
frontend using this grammar and tested against all files in the JDK version
1.5, covering the new features like generics, enumerations, and annotations.

More importantly, the generated type definitions are concise enough to
be used directly for later stages of the compiler such as typechecking. For
example, there is only one kind of expression in our grammar, compared to
22 kinds of expressions in the Java Language Specification (JLS):

AdditiveExp, AndExp, ArrayCreationExp, AssignmentExp, CastExp,
ClassInstanceCreationExp, ConditionalAndExp, ConditionalExp,
ConditionalOrExp, EqualityExp, ExclusiveOrExp, Exp, InclusiveOrExp,
MultiplicativeExp, PostDecrementExp, PostIncrementExp,PostfixExp,
PreDecrementExp, PreIncrementExp, RelationalExp, ShiftExp, UnaryExp

Essentially, the JLS grammar does expansion and re-indexing manually, while
our translation does them automatically. This automation makes our OCFG,
unlike the JLS grammar, resemble an abstract syntax definition.

Our implementation is based on Generalized LR parsing [16] (instead of
LALR) and thus requires the following disambiguation filters [19]. The details
of the parsing technique and the filter construction 1 are beyond the scope of
this paper, but the fact that these filters are specified in term of the datatype
tags of the OCFG further justifies our formalism.

1 If(_,If(_,_,None),Some _)
2 If(_,If(_,_,Some(If(_,_,None))),Some _)
3 If(_,If(_,_,Some(If(_,_,Some(If(_,_,None))))),Some _)
4 Invoke(Atom _,[_]) (* (C)(x); *)
5 Cast(Tname _,Pos _) (* (int)(x) + y; *)
6 Cast(Tname _,Neg _) (* (int)(x) - y; *)
7 Offset(NewArr1 _,_) (* new int[0][0]; *)
8 Assign(Gt _,_,_) (* C<D> x = y; *)
9 Assign(Lt _,_,_) (* C<D<E>> x = y; *)
10 Exp(Gt _) (* C<D> x; *)
11 Exp(Lt _) (* C<D<E>> x; *)
12 ForExp(Gt _::_,_,_,_) (* for (C<D> x;;); *)
13 ForExp(Lt _::_,_,_,_) (* for (C<D<E>> x;;); *)

Our implementation provides predefined rules for common lexical classes
in programming languages: whitespace, newlines, identifiers x, literals for

1 Each filter is an OCaml pattern, matching against the abstract syntax tree. Filters 1-3 are
for the dangling-else statements. For example, the source [if (e1) if (e2) s1 else s2;]
can be parsed as If(e1,If(e2,s1,Some s2),None) or If(e1,If(e2,s1,None),Some s2),
where None and Some are datatype constructors for the optional datatype. Filter 1 will
discard the second tree. Dangling-else statements require an infinite number of filters; our
tool supports only finite filters but it works well in practice. Filters 4-6 disambiguate casting
from parenthesized expressions, while Filter 7 will discard expressions like new int[0][0]
parsed as (new int[0])[0]. The rest are for instantiations of generic classes.

5

Tse and Zdancewic

decl ::= mod∗ class id tparams? extend? implements? bodies (Class)
| mod∗ interface id tparams? extends? bodies (Iface)
| mod∗ enum id implements? { enumbody } (Enum)
| mod∗ @ interface id bodies (Annot)
| ; (Empty)

body ::= static? block (Init)
| decl (Inner)
| mod∗ tparams? id signat block (Ctor)
| mod∗ tparams? ty id signat ; (MethodNone)
| mod∗ tparams? ty id signat block (MethodSome)
| mod∗ ty vdecl+, ; (Field)

enumbody ::= enumconst+, ,? ;? (EnumNone)
| enumconst+, ,? ; body+ (EnumSome)

enumconst ::= mod∗ id arg? bodies?

import ::= import static? name all? ;
implements ::= implements ty+

,
signat ::= (formals) default? dimen∗ throws?

stmt ::> for (mod∗ ty vdecl+, ; exp? ; exp∗,) stmt (ForDecl)
| for (mod∗ ty id : exp) stmt (ForEach)
| for (exp∗, ; exp? ; exp∗,) stmt (ForExp)
| while (exp) stmt (While)
| if (exp) stmt ifelse? (If)
| id : stmt (Label)

::= assert exp ; (AssertNone)
| assert exp : exp ; (AssertSome)
| block (Block)
| break id? ; (Break)
| case exp : (Case)
| continue id? ; (Continue)
| mod∗ ty vdecl+, ; (Vdecl)
| default : (Default)
| do stmt while (exp) ; (Do)
| exp ; (Exp)
| decl (Local)
| return exp? ; (Return)
| switch (exp) block (Switch)
| synchronized (exp) block (Sync)
| throw exp ; (Throw)
| try block catch∗ finally? (Try)

catch ::= catch (mod∗ ty id) block
finally ::= finally block
throws ::= throws name+

,
formals ::> mod∗ ty id dimen∗ , formals (ArgMore)

::= mod∗ ty id dimen∗ (ArgFix)
| mod∗ ty ... id dimen∗ (ArgVar)
| (ArgNone)

Fig. 3. An OCFG for Java 5 (page 2/2). Appendix B contains the ASCII source.

6

Tse and Zdancewic

Rules r ::= ε | r, x = g | r, x = u
Groups g ::= ε | g c= | g c> | g c<

Cases c ::= ε | c, X : u
Items u ::= ε | u v
Item v ::= q | x | q? | x? | x∗ | x+ | x∗q | x+

q

Fig. 4. Formal grammar of OCFGs.

characters (char), integers (int), floating-point numbers (float), and strings
(string). These predefined rules are sufficient for common languages, but in
the future we plan to add a general mechanism [15] for defining lexical classes.

We have also simplified the grammars by accepting larger languages in the
lexical stage: for example, (1) case, break, catch, and finally statements
can occur syntactically outside switch, for, while, do, and try; (2) super,
this and array initializers are general expressions; and, (3) any modifiers can
be applied to declarations for classes, interfaces, methods and fields.

These fine-grained restrictions can easily be enforced during later stages
of the compiler such as typechecking. Traditionally, concrete syntax has been
specified in obscure ways; we argue that any possible measure should be taken
to keep these specifications elegant and comprehensible to programmers.

3 Ordered context-free grammars with datatype tags

This section formally defines OCFGs and shows their translations for scan-
ning, parsing, type definitions, and error diagnosis. Besides associativity and
precedence, another feature of OCFGs are a restricted form of repetitions for
options and lists. We will show that having repetitions not only simplifies the
notation but is also significant in the semantics.

3.1 Definitions and notations

An ordinary datatype consists of a list of product types with constructor
names. An OCFG supplies also information about the concrete syntax so
that lexical analysis can be automated. The intuition is to order the list of
datatype alternatives into groups by precedence and to annotate such groups
with associativity. Fig. 4 shows the grammar of OCFGs.

A rule r is a list of precedence groups x = g, or an alias of items x = u.
A group of cases is annotated with its associativity: left-associative <, right-
associative >, or non-associative =. Groups inside a rule are ordered with
increasing precedence (following yacc’s convention), while cases inside a group
are unordered and have the same precedence. Both x = g and x = u bind
constructs to identifiers in a mutually recursive fashion (again following yacc’s
convention). The first rule is taken be the starting rule for parsing.

A case c is tagged with a constructor name X and a list of items u. We write
ε for an empty list, x for lower-case identifiers, X for upper-case identifiers,

7

Tse and Zdancewic

and q for quoted literals. We typeset literals in teletype font for readability.
For example, the lambda calculus introduced in Section 1 can be written

in the following notation; this notation is designed mainly to facilitate the
translation definitions in this section.

e = (Fun : fun x+
, . e)> (App : e e)< (Var : x, Atom : (e))=

The keyword fun, the comma and the parentheses are quoted literals in this
example. The object-level identifier x is a predefined rule representing the
set of identifiers in the object-level grammar. Note that we slightly abuse the
notation by writing x for both meta-level and object-level identifiers.

Compared to an ordinary datatype, which has a tag with a list of types
in the definition (such as [Fun of x * e]), an OCFG has a tag with a list
of concrete tokens and rule identifiers (such as [Fun : fun x+

, . e]). The
grammar also supports these forms of repetitions (similar to the extended
BNF notation):

(i) item q? for zero or one occurrence of q,

(ii) item x? for zero or one occurrence of x,

(iii) item x∗ for zero or more occurrences of x,

(iv) item x+ for one or more occurrences of x,

(v) item x∗q for zero or more occurrences of x separated by q, and,

(vi) item x+
q for one or more occurrences of x separated by q.

Instead of allowing repetitions for general items such as v?, v∗, v+, v∗v and
v+

v , we restrict these forms to only literals and identifiers. We argue that
this restricted form already captures most syntax idioms of programming lan-
guages. More importantly, this restriction substantially simplifies the trans-
lation (to be shown in the next subsections) and improves the readability of
datatype definitions (see Fig. 2 and Fig. 3).

3.2 Translation for types and scanning

The semantics of OCFGs is translated to standard constructs provided by
the lex scanner, the yacc parser, and the ML type definitions, by families of
translation functions. The first two families of functions are:

(i) [[r]]τ , [[g]]τ , [[c]]τ , [[u]]τ , [[v]]τ denote the translations for type definitions,

(ii) [[r]]σ, [[g]]σ, [[c]]σ, [[u]]σ, [[v]]σ denote the translations for scanner definitions.

The translation for parsing and error diagnosis are more involved and will
be discussed in the following subsections. The translations for type and scan-
ner definitions are straightforward. Ignoring associativity and precedence, the
functions [[·]]τ and [[·]]σ simply recurse and construct type definitions according

8

Tse and Zdancewic

to the items in the rule. For brevity, only [[v]]τ is presented here:

[[q]]τ = ε [[x]]τ = x
[[q?]]τ = bool [[x?]]τ = x option
[[x∗]]τ = x list [[x+]]τ = x list
[[x∗q]]τ = x list [[x+

q]]τ = x list

Following the practice in ML, the constructed types do not distinguish non-
empty lists (x+ for one or more occurrences) from possibly-empty lists (x∗ for
zero or more occurrence). A literal q can be recovered directly from the OCFG
and hence requires no representation in the abstract datatype. Similarly, the
representation of a marker q? requires only a Boolean bit of information.

The translation for scanner definitions, on the other hand, collects the
set of all literals in an OCFG and assigns a name to each literal in order to
establish a proper interface between the lex scanner and the yacc parser. We
model such an interface by a naming function σ. For instance, the lambda
calculus has the following naming of literals:

σ, = comma σ(= lparen σ) = rparen σ. = dot σfun = kfun

Given a naming of all symbolic characters, a naming function can be au-
tomatically constructed by concatenation for all symbolic strings. For ex-
ample, in Java, given σ> = rangle and σ= = eq, we can construct σ>>= =
rangle_rangle_eq. Note that keywords are prefixed with the character k to
avoid name collisions.

3.3 Translation of associativity and precedence

The main part of the translation deals with associativity and precedence.
The basic idea behind translating precedence of OCFGs is to expand and
re-index rules with their precedence levels. However, doing so and handling
associativity as well as repetitions at the same time turns out to be nontrivial.
We will first explain the basic translation here and then discuss how to handle
repetitions in the next subsection.

To impose the precedence constraint of an OCFG, each group inside a rule
is stratified into an auxiliary rule indexed by its precedence level such that
cases in the group can recurse only into groups of equal or higher precedence.
For example, the OCFG for the lambda calculus has three precedence groups
e1, e2, and e3. Fig. 1 shows how the singleton cases e1 : e2 and e2 : e3 allow
recursion into groups of higher precedence.

On the other hand, imposing the associativity constraint of an OCFG
requires special handling of the leftmost and rightmost items. Here is where
re-indexing happens. For a left-associative case such as (App : e e)<, the
leftmost item must be the same identifier as the rule being defined; in this
case e. To favor left recursion over right recursion, the leftmost identifier
is re-indexed to be the current group level, while the rightmost identifier is
re-indexed to the next group level. Hence Fig. 1 has the case e2 : e2 e3.

The reasoning for the right-associative case is symmetric. Hence (Fun :

9

Tse and Zdancewic

[[r, x = cα1
1 , . . . , cαn

n , c
αn+1

n+1]]π = [[r]]π
x : x1 { $1 }

x1 : x2 { $1 } | [[c1]]
α1
1,x

...
xn : xn+1 { $1 } | [[cn]]

αn
n,x

xn+1 : [[cn+1]]
αn+1

n+1,x

[[r, x = v1 . . . vn]]π = [[r]]π
[[v1]]π . . . [[vn]]π { ($i | vi 6= q, i = 1, . . . , n) }

[[c,X :v1 v2 . . . vn vn+1]]
<
i,x

= [[c]]<i,x | [[v1]]
0
i,x [[v2]]π . . . [[vn−1]]π [[vn]]

1
i,x { X ($i | vi 6= q, i = 1, . . . , n) }

[[c,X :v1 v2 . . . vn vn+1]]
>
i,x

= [[c]]>i,x | [[v1]]
1
i,x [[v2]]π . . . [[vn−1]]π [[vn]]

0
i,x { X ($i | vi 6= q, i = 1, . . . , n) }

[[c,X :v1 v2 . . . vn vn+1]]
=
i,x

= [[c]]=i,x | [[v1]]π [[v2]]π . . . [[vn−1]]π [[vn]]π { X ($i | vi 6= q, i = 1, . . . , n) }

[[q]]π = σ↑q [[x]]π = x
[[q?]]π = σq_marker [[x?]]π = x_option
[[x∗]]π = x_star [[x+]]π = x_plus
[[x∗q]]π = x_star_σq [[x+

q]]π = x_plus_σq

[[q]]ki,x = σ↑q [[y]]ki,x = (x = y) ? xi+k : y
[[q?]]ki,x = σq_marker [[y?]]ki,x = [[y]]ki,x_option
[[y∗]]ki,x = [[y]]ki,x_star [[y+]]ki,x = [[y]]1i,x_plus
[[y∗q]]

k
i,x = [[y]]ki,x_star_σq [[y+

q]]ki,x = [[y]]1i,x_plus_σq

Fig. 5. Translation [[r]]π, [[c]]αi,x, [[v]]π, [[v]]ki,x for parser definitions.

fun x+
, . e)> is translated to be Kfun x_plus_comma Dot e1. (The trans-

lation of repetitions x+
, will be explained in the next subsection.) For any

associativity, there will be no re-indexing if the leftmost or the rightmost
items are not the same identifier as the rule being defined. This reasoning
covers the non-associative case where the leftmost and the rightmost items
must not be this rule. Hence (Var : x, Atom : (e))= is translated to be
e3 : x | Lparen e Rparen in Fig. 1.

Fig. 5 formalizes the ideas above with these translation functions:

(i) [[r]]π, [[v]]π denote the translations for parser definitions of rules and items,

(ii) [[c]]αi,x denotes the translation for parser definitions of a group of cases c
with associativity α and group index i inside the rule x,

(iii) [[v]]ki,x denotes the translation for parser definitions of an item v with

10

Tse and Zdancewic

increment k and group index i inside the rule x.

The function [[r]]π simply stratifies each group of cases and sets up its re-
cursion. Cases are translated respectively by [[c]]<i,x, [[c]]>i,x, and [[c]]=i,x for left,
right, and non-associative groups. The leftmost and the rightmost items are
translated specially with an increment k of zero or one for left or right recur-
sions in [[v]]ki,x. Throughout the paper, we omit the straightforward translations
for the empty list [[ε]].

The critical definition is [[y]]ki,x, which re-indexes the identifier y to xi+k if
x = y, or simply outputs y otherwise. Following the convention of OCaml
yacc, the constructor names of literal items are capitalized using the naming
function σ↑q , which can easily be derived from the original naming function σq.

Trees of the appropriate abstract datatype are automatically constructed
during parsing. Similar to the translation for types [[v]]τ in Section 3.2, we
simply skip literals and put all items together with the constructor name:
X ($i | vi 6= q, i = 1, . . . , n). The semantic actions inside the parse rules in
Fig. 1 show an example of such syntax tree constructions. In yacc, the special
symbol $i refers to the i-th item of the case. For an alias [[r, x = v1 . . . vn]]π
there is no associativity or constructor name; its translation simply recurses
with [[v]]π and constructs a product of non-literal items as its syntax tree.

3.4 Translation of repetitions

Now we translate repetitions and explain why re-indexing becomes tricky. We
write [[r]]ρ, [[g]]ρ, [[c]]ρ, [[u]]ρ and [[v]]ρ to denote the translations of repetitions.
Similar to the translations for the scanner, the translations [[·]]ρ collect the set
of all repetitions q?, x?, x∗, x+, x∗q and x+

q in an OCFG and apply the following
translation of repetitions [[v]]ρπ for parser definitions:

[[q?]]ρπ = σq_marker: ε { false } | σ↑q { true }
[[x?]]ρπ = x_option: ε { None } | x { Some $1 }
[[x∗]]ρπ = x_star: ε { [] } | x_plus { $1 }
[[x+]]ρπ = x_plus: x { [$1] } | x x_plus { $1 :: $2 }
[[x∗q]]

ρ
π = x_star_σq: ε { [] } | x_plus_σq { $1 }

[[x+
q]]ρπ = x_plus_σq: x { [$1] } | x σ↑q x_plus_σq { $1 :: $3 }

Note that x∗ is defined in terms of x+ and thus, when x∗ is added to the
set of repetitions, x+ must be added too. The same applies for x∗q and x+

q . 2

These translations are consistent with the following equations:

v? = ε | v v+ = v | v v+ v∗ = ε | v+

We translate x∗, x+, x∗q and x+
q using right recursion because ML lists

are right-recursive: type ’a list = Nil | Cons of ’a * ’a list. For ef-
ficient parsers with constant stack space, left recursion can be used instead,

2 Another way to define x∗ is x∗ = ε | x x∗, which is independent of x+. For x∗q , however,
the analogous definition x∗q = ε | x q x∗q is wrong (as it wrongly accepts the string x q).

11

Tse and Zdancewic

at the expense of longer definitions and performing list reversals during con-
struction. For example, here is a left-recursive translation of x+:

[[x+]]ρπ = x_plus: x_plus_rev { rev $1 }
x_plus_rev: x { [$1] } | x_plus_rev x { $2 :: $1 }

The following is the reason why re-indexing in Section 3.3 must be spe-
cially adapted to repetition handling. Consider, for example the identifier
term e, which has the same prefix as its repetition term e∗. If repetitions are
user-defined, more complex computations such as nullable sets and next-token
sets [4] are necessary for re-indexing. The built-in repetitions, however, al-
ready capture most syntax idioms; OCFGs can thus be treated syntactically
by assuming that all rules are prefix independent.

For nullable items like x?, x∗ and x∗q, the lookahead sets are the same as the
identifier item x; hence, these items have the same increment k as the identifier
item x (see Fig. 5). Non-empty lists like x+ and x+

q , however, require looking
ahead at the first token of the next element in the list or the separator of the
list in order to decide whether to shift or reduce. Hence, these items always
have increment k = 1, recursing only into the next precedence group.

Since re-indexing may introduce new repetitions like e2_bar_plus, the
overall order of translations must be as follows: first re-index with [[·]]π, then
collect repetition items with [[·]]ρ, and last append the parser definitions of
repetitions with [[v]]ρπ.

One caveat about correctness: the re-indexing algorithm assumes that the
leftmost or the rightmost items are not nullable immediately adjacent to the
recursive identifier. For example, we disallow rules like e : (begin? e end)< or
e : (begin e end?)>. Appendix A further discusses this problem.

3.5 Translation for error diagnosis

The last translation here deals with a practical issue of lexical analysis: gen-
erating high-level and precise error diagnosis. We will show how this can be
done automatically with OCFGs and yacc’s error token.

We observe that, for any rule, parsing can be aborted immediately after a
literal if the input string does not match the prefix of the rule. Hence we can
insert the special error token provided by the yacc parser in place of the rest
of each rule, and give a high-level description for error diagnosis in terms of
the prefix and the complete rule.

This strategy of placing the error token after a literal not only gives precise
diagnosis but also ensures that we do not introduce additional conflicts in
LALR parsing. Different rules, however, may have the same prefix and hence
we must group rules for error diagnosis by their common prefixes.

Formally we introduce two new helper functions [[c]]p and [[c]]u and extend
the translation [[r]]π for parser definitions in Section 3.3 in Figure 6.

The function [[c]]p collects the set of literal-terminating prefixes for cases
c, while [[c]]u computes the inverse (the set of cases with the prefix u). The

12

Tse and Zdancewic

[[c,X :u]]p = [[c]]p ∪ { u1 q | u = u1 q u2, u2 6= ε }

[[c,X :u]]u = [[c]]u, (u = u1 u2) ? (X : u) : ε

[[r, x = cα1
1 , . . . , cαn

n]]π = ...
| u error { abort u [[c1]]u } | u ∈ [[c1]]p
...
| u error { abort u [[cn]]u } | u ∈ [[cn]]p

Fig. 6. Translation [[c]]p, [[c]]u, and extended [[r]]π for error diagnosis.

translation [[r]]π in Section 3.3 now additionally inserts u error for each prefix
u of the rule ci and makes use of an external function abort that quits the
program with the current parse state (the input file name, the line number,
and the start and end columns).

For example, consider the shift operators in Java (see Figure 2):

e ::> . . .
| exp > > exp (Shr)
| exp > > > exp (Ushr)

After re-indexing the expression to be the eleventh level according to the trans-
lation in Fig. 5, the following additional code is generated for error diagnosis:

exp11: ... | exp11 Rangle Rangle error {

abort "exp ’>’ ’>’ " [

"Shr: exp ’>’ ’>’ exp";

"Ushr: exp ’>’ ’>’ ’>’ exp"

]}

If an expression such as [x >>] with a dangling right angle brackets occur
on the first column of line 3 in file foo.bar, the parser will complain as follows:

foo.bar:03:01: Parse error: premature prefix of possible rules

prefix : exp ’>’ ’>’

rule : Shr: exp ’>’ ’>’ exp

rule : Ushr: exp ’>’ ’>’ ’>’ exp

Such systematic and precise error messages make it easier for programmers
to fix a problem locally. They can also use constructor names like Shr to look
up the context of the rule in the OCFG.

4 Related work

The idea of using associativity and precedence for deterministic parsing dates
back to the work by Aho, Johnson and Ullman in 1973 [5]. However, their
technique applies to lexical tokens, while ours applies to production rules. Var-
ious tricks, such as context-dependent precedence in yacc, are necessary to

13

Tse and Zdancewic

distinguish the minus for negation (unary minus) from the minus for subtrac-
tion (binary minus) in arithmetic rules. Some parse rules, such as lambda
applications e e, do not even have operators to begin with.

Aasa’s work [2] on user-defined syntax is most directly related to our work
in terms of the translation. Her translation, unlike ours, can handle gram-
mars with arbitrary combinations of precedence and associativity. Instead,
our translation handles practical grammars for programming languages; for
example, non-associative rules in such practical grammars always have the
highest precedence. This assumption greatly simplifies our translation, com-
pared to Aasa’s. Her translation is also proven correct with respect to a notion
of precedence-correct parse trees; our work lacks a formal proof of correctness.

Laski [9] proposes ordered context-free grammars with theoretical develop-
ment and a toy implementation. His semantics is based on a modified LALR
algorithm that uses precedence and associativity vectors to resolve conflicts.
We borrow the term OCFG from his work and extend it with datatype tags
in a real implementation. More importantly, our formalism is based on trans-
lation and can reuse existing and efficient parsing infrastructures.

Extending datatypes with concrete syntax has been well-explored [3,11,20],
usually in the context of scanner-less parsers. Scanner-less parsers [15,6,19]
allow a uniform and integrated specification of scanning and parsing, elimi-
nating the cumbersome interface between these two lexical phases.

Automatic construction of syntax trees is supported by many modern
parser generators [11,13]. Our approach is guided by the constructor names
of datatypes and constructs trees in a functional way.

Degano and Priami [7] present a comprehensive comparison of error han-
dling in LR parsers. Our approach of using yacc’s error token so that parse
errors can be given in high-level descriptions of OCFGs seems novel.

5 Conclusion

We have presented the notion of ordered context-free grammars (OCFGs)
with datatype tags to concisely specify grammars of programming languages.
OCFGs capture associativity and precedence at the level of production rules
instead of lexical tokens such that a concrete syntax grammar is succinct
enough be an abstract syntax definition. We have also presented a complete
OCFG grammar for Java 5, showing the practicality of our formalism.

References

[1] A. Aasa. Precedences for conctypes. In Functional programming languages and
computer architecture, 1993.

[2] A. Aasa. Precedences in Specifications and Implementations of Programming
Languages. Theoretical Computer Science, 1995.

14

Tse and Zdancewic

[3] S. R. Adams. Modular Grammars for Programming Language Prototyping.
PhD thesis, University of Southampton, 1991.

[4] A. Aho and J. Ullman. The Theory of Parsing, Translation, and Compiling.
Prentice Hall, 1972.

[5] A. V. Aho, S. C. Johnson, and J. D. Ullman. Deterministic Parsing of
Ambiguous Grammars. In ACM Symposium on Principles of Programming
Languages, 1973.

[6] J. A. Bergstra, T. B. Dinesh, J. Field, and J. Heering. A Complete
Transformational Toolkit for Compilers. In European Symposium on
Programming, 1996.

[7] P. Degano and C. Priami. Comparison of Syntactic Error Handling in LR
Parsers. Software - Practice and Experience, 1995.

[8] A. Johnstone, E. Scott, and G. Economopoulos. Generalised parsing: some
costs. In ACM Symposium on Compiler Construction, 2004.

[9] Z. Laski. Ordered Context-Free Grammars. Technical Report 99-18, University
of California, Irvine, 2000.

[10] X. Leroy. The OCaml Programming Language. http://caml.inria.fr.

[11] T. J. Parr and R. W. Quong. ANTLR: A Predicated-LL(k) Parser Generator.
Software - Practice and Experience, 1995.

[12] B. Pierce. Types and Programming Languages. MIT Press, 2002.

[13] A. Ranta. The Labelled BNF Grammar Formalism. Technical report, Chalmers
University of Technology, Sweden, 2003.

[14] J. Rekers. Parser Generation for Interactive Environments. PhD thesis,
University of Amsterdam, 1992, 1992.

[15] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) Parsing of
Programming Languages. In ACM Conference on Programming Language
Design and Implementation, 1989.

[16] M. Tomita. Efficient Parsing for Natural Languages. Kluwer Academic, 1986.

[17] S. Tse. Functional Java Compiler. http://www.cis.upenn.edu/~stse/javac.

[18] S. Tse and S. Zdancewic. Designing a Security-typed Language with Certificate-
based Declassification. In European Symposium on Programming, 2005.

[19] M. G. J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation
Filters for Scannerless Generalized LR Parsers. In Compiler Construction, 2002.

[20] E. Visser. Syntax Denition for Language Prototyping. PhD thesis, University
of Amsterdam, 1997.

15

http://caml.inria.fr
http://www.cis.upenn.edu/~stse/javac

Tse and Zdancewic

A Problems with translation of repetitions

Example A.1 To illustrate why non-empty lists must recurse into the next
precedence group, consider

e : (X1 : e+ $)< (X2 : x)=

for expressions as a list of identifiers x with delimiter $. If we incorrectly
translated e+ to e1_plus (instead of e2_plus with increment k = 1), there
would be a LALR(1) shift-reduce conflict:

e1 : e2 | e1_plus Dollar
e2 : x

e1_plus : e1 | e1 e1_plus

For instance, the strings x$ and x$$ have the same prefix x$. We need
to reduce x as e1 in the rule e1_plus to accept x$, but we need to shift x to
e1 e1_plus in the rule e1_plus to accept x$$. 2

Example A.2 To illustrate the problem of nullable items on the sides, con-
sider

s : (X1 : for s, X2 : if s else?)> (X3 : x)=

for two kinds of right-associative statements: for-statements and if-statements
with an optional marker else at the end. If we simply ignore markers, there
will be a LALR(1) shift-reduce conflict:

s1 : s2 | Kfor s1 | Kif s1 kelse_marker
s2 : x

kelse_marker : ε | Kelse

But, because of the default action of shifting for the longest matches
in yacc, the conflict is harmless, just like the standard shift-reduce con-
flict for dangling-else statements in C or Java. For instance, the string
for if if x else will be parsed correctly as X1 (X2 (X2 (X3 x) true) false),
indicating that the marker else is associated with the second if.

Consider, on the other hand, a rather contrived example:

s : (X1 : s for, X2 : if? s else)< (X3 : x)=

Here we have two kinds of left-associative statements s: for-statements,
and else-statements with an optional literal if as marker at the beginning.
Even if the else-statements recurse with the lowest group s2, there is still a
LALR(1) shift-reduce conflict:

s1 : s2 | s1 Kfor | kif_marker s2 Kelse
s2 : x

kif_marker : ε | Kif

This conflict is harmful and prevents accepting strings like x else: look-
ing at x, the parser shifts to s1 in the rule s1 Kfor, instead of reducing as
kif_marker in the rule kif_marker s2 Kelse, and thus eventually rejects the
string. 2

16

Tse and Zdancewic

B Java 5 grammar (source code)

cunit: package? import* decl*;
package: ’package’ name ’;’;
ty:
= Tarray: ty dimen+
= Tinst: ty targs
= Tname: name
| Tbool: ’boolean’
| Tbyte: ’byte’
| Tchar: ’char’
| Tdouble: ’double’
| Tfloat: ’float’
| Tint: ’int’
| Tlong: ’long’
| Tshort: ’short’
| Tvoid: ’void’;
wty:
= WildType: ty
| WildCard: ’?’
| WildExtends: ’?’ ’extends’ ty
| WildSuper: ’?’ ’super’ ty;
tparams: ’<’ tparam ++ ’,’ ’>’;
tparam: id extend? tinter*;
tinter: ’&’ ty;
targs: ’<’ wty ++ ’,’ ’>’;
ifelse: ’else’ stmt;
block: ’{’ stmt* ’}’;
extend: ’extends’ ty;
extends: ’extends’ ty ++ ’,’;
bodies: ’{’ body* ’}’;
dimen: ’[’ ’]’;
size: ’[’ exp ’]’;
default: ’default’ exp;
arg: ’(’ exp ** ’,’ ’)’;
labelexp: id ’=’ exp;
name: id ++ ’.’;
all: ’.’ ’*’;
vdecl: id dimen* vinit?;
vinit: ’=’ exp;
exps:
> ExpsCons: exp ’,’ exps
| ExpsSome: exp
| ExpsNil:;
mod:
= BasicMod: basicmod;
| AnnotMark: ’@’ name
| AnnotSingle: ’@’ name ’(’ exp ’)’
| AnnotMore: ’@’ name ’(’ labelexp ++ ’,’ ’)’

exp:
= Array: ’{’ exps ’}’
> Assign: exp assign exp
> Cond: exp ’?’ exp ’:’ exp
< Cor: exp ’||’ exp
< Cand: exp ’&&’ exp
< Or: exp ’|’ exp
< Xor: exp ’^’ exp
< And: exp ’&’ exp
< Eq: exp ’==’ exp
| Ne: exp ’!=’ exp
< Lt: exp ’<’ exp
| Gt: exp ’>’ exp
| Le: exp ’<’ ’=’ exp
| Ge: exp ’>’ ’=’ exp
| Instof: exp ’instanceof’ ty
< Shl: exp ’<’ ’<’ exp
| Shr: exp ’>’ ’>’ exp
| Ushr: exp ’>’ ’>’ ’>’ exp
< Add: exp ’+’ exp
| Sub: exp ’-’ exp
< Mul: exp ’*’ exp
| Div: exp ’/’ exp
| Rem: exp ’%’ exp
> Cast: ’(’ ty ’)’ exp
| PreIncr: ’++’ exp
| PreDecr: ’--’ exp
| Pos: ’+’ exp
| Neg: ’-’ exp
| Not: ’!’ exp
| Inv: ’~’ exp
< Offset: exp ’[’ exp ’]’
| Dot: exp ’.’ exp
| ExpClass: ty ’.’ ’class’
| Invoke: exp arg
| PostIncr: exp ’++’
| PostDecr: exp ’--’
= Inst: targs exp
= This: ’this’
| Super: ’super’
| Literal: literal
| Ident: id
| Atom: ’(’ exp ’)’
| NewArr1: ’new’ ty size+ dimen*
| NewArr2: ’new’ ty ’{’ exps ’}’
| NewObj: ’new’ name targs? arg bodies?;

17

Tse and Zdancewic

decl:
= Class: mod* ’class’ id tparams? extend? implements? bodies
| Iface: mod* ’interface’ id tparams? extends? bodies
| Enum: mod* ’enum’ id implements? ’{’ enumbody ’}’
| Annot: mod* ’@’ ’interface’ id bodies
| Empty: ’;’;
body:
= Init: ’static’? block
| Inner: decl
| Ctor: mod* tparams? id signat block
| MethodNone: mod* tparams? ty id signat ’;’
| MethodSome: mod* tparams? ty id signat block
| Field: mod* ty vdecl ++ ’,’ ’;’
enumbody:
= EnumNone: enumconst ++ ’,’ ’,’? ’;’?
| EnumSome: enumconst ++ ’,’ ’,’? ’;’ body+
enumconst: mod* id arg? bodies?;
import: ’import’ ’static’? name all? ’;’;
implements: ’implements’ ty ++ ’,’;
signat: ’(’ formals ’)’ default? dimen* throws?;
stmt:
> ForDecl: ’for’ ’(’ mod* ty vdecl ++ ’,’ ’;’ exp? ’;’ exp ** ’,’ ’)’ stmt
| ForEach: ’for’ ’(’ mod* ty id ’:’ exp ’)’ stmt
| ForExp: ’for’ ’(’ exp ** ’,’ ’;’ exp? ’;’ exp ** ’,’ ’)’ stmt
| While: ’while’ ’(’ exp ’)’ stmt
| If: ’if’ ’(’ exp ’)’ stmt ifelse?
| Label: id ’:’ stmt
= AssertNone: ’assert’ exp ’;’
| AssertSome: ’assert’ exp ’:’ exp ’;’
| Block: block
| Break: ’break’ id? ’;’
| Case: ’case’ exp ’:’
| Continue: ’continue’ id? ’;’
| Vdecl: mod* ty vdecl ++ ’,’ ’;’
| Default: ’default’ ’:’
| Do: ’do’ stmt ’while’ ’(’ exp ’)’ ’;’
| Exp: exp ’;’
| Local: decl
| Return: ’return’ exp? ’;’
| Switch: ’switch’ ’(’ exp ’)’ block
| Sync: ’synchronized’ ’(’ exp ’)’ block
| Throw: ’throw’ exp ’;’
| Try: ’try’ block catch* finally?;
catch: ’catch’ ’(’ mod* ty id ’)’ block;
finally: ’finally’ block;
throws: ’throws’ name ++ ’,’;
formals:
> ArgMore: mod* ty id dimen* ’,’ formals
= ArgFix: mod* ty id dimen*
| ArgVar: mod* ty ’...’ id dimen*
| ArgNone:;

18

Tse and Zdancewic

literal:
| Char: char
| Long: long
| Int: int
| Float: float
| Str: string;

basicmod:
| Abstract: ’abstract’
| Final: ’final’
| Native: ’native’
| Private: ’private’
| Protected: ’protected’
| Public: ’public’
| Static: ’static’
| Strictfp: ’strictfp’
| Synchronized: ’synchronized’
| Transient: ’transient’
| Volatile: ’volatile’;

assign:
= Set: ’=’
| AddSet: ’+=’
| SubSet: ’-=’
| MulSet: ’*=’
| DivSet: ’/=’
| RemSet: ’%=’
| AndSet: ’&=’
| OrSet: ’|=’
| XorSet: ’^=’
| ShlSet: ’<’ ’<’ ’=’
| ShrSet: ’>’ ’>’ ’=’
| UshrSet: ’>’ ’>’ ’>’ ’=’;

- stmt: ’If (_, _, If (_,_,_,None), Some _)’;
- stmt: ’If (_, _, If (_,_,_,Some (If (_,_,_,None))), Some _)’;
- stmt: ’If (_, _, If (_,_,_,Some (If (_,_,_, Some (If (_,_,_,None))))), Some _)’;
- exp: ’Invoke (_, Atom _, [_])’;
- exp: ’Cast (_, Tname _, Pos _)’;
- exp: ’Cast (_, Tname _, Neg _)’;
- exp: ’Offset (_, NewArr1 _, _)’;
- exp: ’Assign (_, Gt _, _, _)’;
- exp: ’Assign (_, Lt _, _, _)’;
- stmt: ’Exp (_, Gt _)’;
- stmt: ’Exp (_, Lt _)’;
- stmt: ’ForExp (_, Gt _::_, _, _, _)’;
- stmt: ’ForExp (_, Lt _::_, _, _, _)’;

19

	Introduction
	Applications
	Ordered context-free grammars with datatype tags
	Definitions and notations
	Translation for types and scanning
	Translation of associativity and precedence
	Translation of repetitions
	Translation for error diagnosis

	Related work
	Conclusion
	References
	Problems with translation of repetitions
	Java 5 grammar (source code)

