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Abstract

Information-flow type systems are a promising ap-
proach for enforcing strong end-to-end confidentiality
and integrity policies. Such policies, however, are usu-
ally specified in term of static information—data is la-
beled high or low security at compile time. In practice,
the confidentiality of data may depend on information
available only while the system is running

This paper studies language support for run-time
principals, a mechanism for specifying information-flow
security policies that depend on which principals in-
teract with the system. We establish the basic prop-
erty of noninterference for programs written in such
language, and use run-time principals for specify-
ing run-time authority in downgrading mechanisms such
as declassification.

In addition to allowing more expressive security poli-
cies, run-time principals enable the integration of
language-based security mechanisms with other exist-
ing approaches such as Java stack inspection and pub-
lic key infrastructures. We sketch an implementation
of run-time principals via public keys such that princi-
pal delegation is verified by certificate chains.

1. Introduction

Information-flow type systems are a promising ap-
proach for enforcing strong end-to-end confidential-
ity and integrity policies [27]. However, most previ-
ous work on these security-typed languages has used
simplistic ways of specifying policies: the programmer
specifies during program development what data is con-
fidential and what data is public. These information-
flow policies constrain which principals have access ei-
ther directly, or indirectly, to the labeled data.
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In practice, however, policies are more complex—the
principals that own a piece of data may be unknown
at compile time or may change over time, and the se-
curity policy itself may require such run-time informa-
tion to downgrade confidential data. This paper ad-
dresses these shortcomings and studies run-time prin-
cipals in the context of information-flow policies.

Run-time principals are first-class data values repre-
senting users, groups, etc. During its execution, a pro-
gram may inspect a run-time principal to determine
policy information not available when the program was
compiled. The key problem is designing the language
in such a way that the dynamic checks required to
implement run-time principals introduce no additional
covert channels. Moreover, while adding run-time prin-
cipals permits new kinds of security policies, the new
policies should still interact well with the static type
checking.

Run-time principals provide a means of integrating
the policies expressed by the type system with exter-
nal notions of principals such as that from public key
infrastructure (PKI). This integration allows language-
based security mechanisms to interoperate with exist-
ing machinery such as the access control policies en-
forced by a file system or the authentication provided
by an OS.

This paper makes the following three contributions:

e We formalize run-time principals in a simple
security-typed language based on the A-calculus
and show that the type system enforces nonin-
terference, a strong information-flow guarantee.
This type system is intended to serve as a theo-
retical foundation for realistic languages such as
Jif [20] and FlowCaml [29].

e We consider the problems of downgrading and del-
egation in the presence of run-time principals and
propose the concept of run-time authority to tem-
per their use. Declassification, and other opera-
tions that reveal information owned by a run-time
principal, may only be invoked when the principal
has granted the system appropriate rights. These



capabilities must be verified at runtime, leading to
a mechanism reminiscent of (but stronger than)
Java’s stack inspection [33) [32].

e We investigate the implementation of run-time
principals via public key infrastructure. Run-time
principals are represented by public keys, run-time
authority corresponds to digitally signed capabil-
ities, and the delegation relation between princi-
pals can be determined from certificate chains.

As an example of an information-flow policy permit-
ted by run-time principals, consider this program that
manipulates data confidential to both a company man-
ager and to less privileged employees:

1 class C {
2 final principal user = Runtime.getUser();

3 void print(String{user:} s) {...}

4  void printIfManager (String{Manager:} s) {
5 actsFor (user, Manager) {

6 print(s);

7 }

8 1}

This program, written in a Java-like notation, calls
the print routine to display a string on the termi-
nal. The run-time principal user, whose value is de-
termined dynamically (Runtime.getUser), represents
the user that initiated the program. Note that, in ad-
dition to ordinary datatypes such as Java’s String ob-
jects, there is a new basic type, principal; values of
type principal are run-time principals.

Lines 3-4 illustrate how information-flow type sys-
tems constrain information-flows using labels. The ar-
gument to the print method is a String object s that
has the static security label {user:}. In the decentral-
ized label model [21], 22], this annotation indicates that
s is owned by the principal user and that the pol-
icy of user is that no other principals can read the
contents of s. This policy annotation indicates that
Strings passed to the print method are output on
a terminal visible to the principal user. More impor-
tantly, confidential information such as Manager’s pass-
word, which user is not permitted to see, cannot be
passed to the print method (either directly or indi-
rectly). The type system of the programming language
enforces such information-flow policies at compile time
without run-time penalty.

The printIfManager method illustrates how run-
time principals can allow for more expressive security
policies. This method also takes a String as input
but, unlike print, requires the string to have the label
{Manager:}, meaning that the data is owned and read-
able only by the principal Manager. The body of this
method performs a run-time test to determine whether
the user principal that has initiated the program is in

fact acting for the Manager principal. If so, then s is
printed to the terminal, which is secure because the
user has the privileges of Manager. Otherwise s is not
printed. Without such a run-time test, an information-
flow type system would prevent a String{Manager:}
object from being sent to the print routine because
it expects a String{user:} object. Run-time princi-
pals allows such security policies that depend on the
execution environment.

Although this example has been explained in terms
of Java-like syntax, we carry out our formal analysis
of run-time principals in terms of a typed A-calculus.
This choice allows us to emphasize the new features of
run-time principals and to use established proof tech-
niques for noninterference [14] 2, 25, B6]. It should be
possible to extend our results to Java-like languages by
using the techniques of Banerjee and Naumann [6, [7].

The rest of the paper is organized as follows. The
next section describes our language with run-time prin-
cipals, including its type system and the noninterfer-
ence proof. Section Bl considers adding declassification
in the context of run-time principals. Section Hl sug-
gests how the security policies admitted by our lan-
guage may be integrated with traditional public key in-
frastructure and gives an extended example. The last
section discusses related work and conclusions.

2. Information-flow type systems
2.1. Decentralized label model

The security model considered in this paper is a
version of the decentralized label model (DLM) devel-
oped by Myers and Liskov [21] 22]. However, the la-
bels in this paper include integrity constraints in ad-
dition to confidentiality constraints, because integrity
constraints allow robust declassification (see Section B).

Principals and labels Policies in the DLM are de-
scribed in terms of a set of principal names. We use cap-
italized words like Alice, Bob, Manager, etc., to distin-
guish principal names from other syntactic classes of
the language. We use meta-variable X to range over
such names.

To accommodate run-time principals, it is necessary
to write policies that refer to principals whose identi-
ties are not known statically. Thus, the policy language
includes principal variables, ranged over by a. Principal
variables may be instantiated with principal names, as
described below. In the example from the introduction,
Manager is a principal name and the use of user in the
label is a principal variable. We also need sets of princi-
pals, s, written as (unordered) comma-separated lists



of principals. The empty set (of principals and other

syntactic classes), written ‘-, will often be elided. In
summary:
p = X | « s == - | ps

The confidentiality requirements of the DLM are
composed of reader policy components of the form p:s,
where p is the owner of the permissions and s is a
set of principals permitted by p to read the data. For
example, the component Alice: Bob, Charles says that
Alice’s policy is that only Bob and Charles (and im-
plicitly Alice) may read data with this label. The con-
fidentiality part of the label consists of a set of pol-
icy components such that all of their restrictions must
be obeyed—the principals able to read the data must
be in the intersection of the reader permissions. For ex-
ample, a data labeled with the two reader permissions
Alice: Bob, Charles and Bob: Charles, Fve will be read-
able only by Charles and Bobll

The information-flow type system described below
ensures that data with a given confidentiality label will
only flow to destinations that are at least that restric-
tive. This label model is decentralized in the sense that
each principal may specify reader sets independently.

The integrity part of a label consists of a set of
principals that trust the data For integrity, the
information-flow analysis ensures that less trusted
data (trusted by fewer principals) is never used where
more trusted data is necessary.

Collecting the descriptions above, we arrive at the
following formal syntax for reader policies ¢, confiden-
tiality policy sets d, and labels [. The integrity part of
a label is separated from the confidentiality part by ‘!’

| ¢;d I == A{d!'s}

Acts-for hierarchy The decentralized label model
also includes delegation embodied by a binary acts-for
relation between principals. This relation is reflexive
and transitive, yielding a partial order on principals.
The notation p < ¢ indicates that principal ¢ acts for
principal p, or, conversely, that p delegates to q.

The acts-for hierarchy must be taken into account
when determining the restrictions imposed by a label.
For example, consider the labels {Alice: ' Alice} and
{Bob: ! Bob}. Ignoring the acts-for hierarchy, these la-
bels describe data readable and trusted only by Alice

1 Or, more precisely, principals that can act for Charles or Bob;
see the discussion of the acts-for hierarchy.

2 It would be possible to give a version of integrity fully dual to
the owners—readers model by using an owners—writers model,
but there do not seem to be compelling reasons to do so [18].

and Bob, respectively. However, if the relation Alice <
Bob is in the acts-for hierarchy, then data with label
{Alice: ' Alice} will be readable by Bob—because Bob
acts for Alice, anything Alice can read Bob can too.
Note that Bob does not trust the integrity of data with
label {Alice: ! Alice}—Alice’s trust in the data does
not imply Bob’s trust. Alice does trust data with label
{Bob: ! Bob}, again because Bob acts for Alice, any-
thing Bob trusts Alice does too.

An acts-for hierarchy A is a set of p < ¢ constraints.
A is closed if it contains no principal variables. To make
it easier to distinguish closed acts-for hierarchies from
potentially open ones, we use the notation A rather
than A to mean a closed hierarchy.

We write A F p < ¢ if principal ¢ acts for principal p
according to hierarchy A, or formally, if the reflexive,
transitive closure of A contains p < ¢. The notation
A F s1 = s9 extends this delegation relation to sets of
principals: The set of principals s; can act for the set
of principals sg if for each principal p € s; there exists
a principal g € sy such that p < q.

Furthermore, we assume the existence of the most
powerful principal T (called top) that acts for all other
principals. As a result, for all principals p and all hier-
archies A, we have AFp <X T.

Label lattice The labels of the DLM form a dis-
tributive lattice, with join operation given by

{dy ' s1} U {dy ' so} % {dy Udytsy N sy}

A label [ is less restrictive than a label Iy accord-
ing to an acts-for hierarchy A, written A F 1 C o,
when [ permits more readers and is at least as trusted.
Formally, this relation is defined in according to these
two rules (adapted from Myers and Liskov [22] but ex-
tended to include integrity sets):

VClEdl.HCQEdQ.Al—01;CQ A"ngsl
Ak{dllsl} E{dQ'SQ}

AFp <ps Vph€so. Tp) €si. Al <ph

AFpiisg Epaisy

We write A F I3 £ lo if it is not the case that
A FI; C [5. This negation is well defined because the
problem of determining the C relation is (efficiently)
decidable—it reduces to a graph reachability problem
over the acts-for hierarchy.

The intuition is that the C relation describes legal
information flows, and the [Z relation describes the il-
legal information flows that should not be permitted in



a secure program. According to these rules, the follow-
ing example label inequalities hold:

F {Alice: Bob'} T {Alice: '}
F {Alice: '} £ {Alice: Bob!}
F {!Alice, Bob} C {! Alice}
- {VAlice} Z {! Alice, Bob}
Alice < Bob F {Alice:'} T {Bob:'}
Alice < Bob + {Bob:'} [Z {Alice: '}
A {1TrCI (for all A and [)
A F IC{T:1} (for all A and 1)

These inequalities show that there is a top-most la-
bel {T:!} (owned by T, readable and trusted by no
principals) and that the bottom of the label lattice is
{! T} (completely unconstrained readers, trusted by all
principals). Data with a less restrictive label may al-
ways be treated as having a more restrictive label.

2.2. Arp and run-time principals

This section describes the language Arp, a variant
of the typed A-calculus with information-flow policies
drawn from the label lattice described above. In or-
der to focus on run-time principals, Agp omits sev-
eral features which are important for practical pro-
gramming. First, all programs in Agp terminate, thus
it precludes termination channels. Second, Agp does
not have state, so no information channels may arise
through the shared memory. Third, the analysis pre-
sented here does not consider timing channels. The
type system could be extended to remove all of these
limitations using known techniques [31], 4 28| 25 [36].

Security types, base types, program terms and val-
ues of the language are defined according to the gram-
mars in Figure[ll Like in previous information-flow lan-
guages, computation in Arp is described by security-
types (t), which are base types (u) annotated with a
label (7).

The unit, sum, and function types are standard [23].
There is only one value, written *, of type 1. Sum val-
ues are created by tagging another value v with either
the left or right tag: inl v and inr v, respectively. The
case expression branches on the tag of a sum value.
Function values, of type t; — to are A-abstractions of
the form Ax:t. e, where z is the formal parameter that
is bound within expression e, the body of the function.
Function application is written by juxtaposition of ex-
pressions.

By convention, if the label is omitted from a base
type, we take it to be the minimal label, {! T}. For

example, the type 173 can be written 1. We de-

fine the type of Booleans with label [ to be bool; def

(14 1), with values true 4 in1 * and false &

inr *. The expression if (e) e; ey is encoded as
case e (Ax1:1.e1) (Azy1:1. eq), for some fresh names
r1 and xs.

The last two kinds of types, P, and Vo < p. ¢, are the
new features related to run-time principals. The run-
time representation of a principal such as Alice may be
a public key or some other structured data, but for now
we treat these representations as abstract. The only
value of type P ajice is the constant Alice. That is, P,
is a singleton type [B]; such types have previously been
used to represent other kinds of run-time type informa-
tion [9]. A program can perform a dynamic test of the
acts-for relation between Alice and Bob using the ex-
pression if (Alice < Bob) e es.

The type Ya < p. t is a form of bounded quantifica-
tion [23] over principals. This type introduces a prin-
cipal variable, and it describes programs for which the
static information about principal « is that the acts-
for relation @ < p holds. For example, the type to =
Va = Alice. boolgy. 13 — booly,. 13 describes functions
whose parameter and return types are Booleans owned
by any principal for whom Alice may act.

Term-level expressions bind the principal variable «
using the syntax Aa < p. e. If f is such a function of
the type to given above, and if the acts-for hierarchy es-
tablishes that Bob < Alice, we may call f by instan-
tiating a with Bob by f [Bob] true. A bound of T in
a polymorphic type, as in Vo = T. ¢, expresses a pol-
icy parameterized by any principal, because all prin-
cipals satisfy the constraint p < T. For convenience,

we define the syntactic sugar Va. ¢ ' va =< T.tand

Ac. e & Ao <T.e.

This kind of polymorphism over principals, in con-
junction with the singleton principal types, provides a
connection between the static type system and the pro-
gram’s run-time tests of the acts-for hierarchy. Con-
sider the following program g, which is similar to the
printIfManager example in Section [T}

g : Ya.P,— (boolgy:1y — 1) = boolypyy — 1
g = Aa. duser:P,. Aprint :booliy. 1y — 1.
As:boolypriy. if (M < user) (print s) *

This function is parameterized by the principal vari-
able . The next parameter is a run-time principal user
that has type P,, meaning that the static name as-
sociated with the run-time principal user is a. The
next two arguments to g are a function called print,
which expects an argument owned by «, and a Boolean
value s, owned by the principal M (here abbreviat-
ing Manager). The body of g performs a run-time test
to determine whether user acts for M. If so, the first
branch of the conditional is taken, and the print func-



t =y Secure types e u=
U n= Base types v
1 unit x
t+1 sum inle
t—t function inre
P, principal caseev v
Va <p.t universal ee
if (e<Xe)ee
e [p]

Terms = Values
value * unit
variable inlw left injection
left injection inr v right injection
right injection Ax:t.e function
sum case X principal
application Aa=<p.e polymorphism
if delegation
instantiation

Figure 1: Syntax of types, terms, and values for Agp

tion is applied to the secret s. Otherwise, the unit value
* is returned.

2.3. Evaluation and typing rules

The operational semantics for Agp formalizes pro-
gram evaluation, and the type system keeps track of
invariants, which can be statically checked. In this sub-
section we show that the type system of Agp is sound
by proving the progress and the preservation theorems.
The noninterference theorem of Agrp uses the sound-
ness property to establish that program security can
be checked statically. Figure B shows the rules for eval-
uation and typing.

Operational semantics The operational semantics
of Arp is standard [23], except for the addition of the
acts-for hierarchy and the if-acts-for test. We use the
notation A,e — A, e’ to mean that an acts-for hier-
archy A and a program e make a small step of eval-
uation to become A and e’. The full evaluation of a
program is the reflexive and transitive closure of the
small-step evaluation. Note that A is used but never
changed here; Section considers run-time modifica-
tion of A via delegation.

In Figure @ E-AppFun says that, if an abstraction
Az:t. e is applied to a value v, then v is substituted for
x in e. Similarly, by E-PAppAll, if a polymorphic term
Aa =< p. e is instantiated to a principal X, then X is
substituted for « in e. We use the notation e{v/z} and
e{X/a} for capture-avoiding substitutions.

E-Caselnl and E-Caselnr are rules for conditional
test of tagged values: If the test condition is left-
injection inl v, the first branch is applied to v. For
example, using the Boolean encoding described earlier,

if (true) Alice Bob
= case (inl *) (\y:1. Alice) (Ay: 1. Bob)
—  (Ay:1. Alice) *
—  Alice

E-IfDelYes and E-IfDelNo, unlike the other rules
above, use the acts-for hierarchy A to check delega-
tion at run-time. If A proves that principal X; dele-
gates to principal Xo, the result of an if-acts-for term
is the first branch; otherwise, the result is the second
branch.

Type system The type system is similar to those
previously proposed [14, B6, 24], except for the ad-
dition of rules for run-time principals. The notation
A;T' F e : t means that a program e has type t un-
der the hierarchy A and the term environment I".

To explain how the type system keeps track of infor-
mation flow, consider the typing rule T-Case for a case
term. The test condition has type (t; +t2),, the first
branch must be a function of type t; — ¢, and the sec-
ond branch must be a function of type to — t. This
typing rule matches the operational semantics of E-
Caselnl and E-Caselnr mentioned above. The label of
the inputs (the test condition and the branches) will
be folded into the label of the output as in ¢L1]. We de-
fine tUl = (uy) Ul = w4y so that the output always
has a label as high as the input’s label. For all elimina-
tion forms (T-App, T-IfDel and T-PApp), this restric-
tion on the output label is used to rule out implicit in-
formation flows [T4} [36].

By T-PName, only a principal constant X has type
(Px),. This singleton property ties the static type in-
formation and the run-time identity of principals—if a
program expression has type (Px), it is guaranteed to
evaluate to the constant X. The extra condition A [
checks that the label [ is well-formed under hierarchy
A, meaning that all free principal variables of [ are con-
tained in A.

T-All indicates that a polymorphic term Aa =< p. e is
well-typed if the body e is well-typed under hierarchy A
extended with the additional delegation a=<p. The ex-
tra condition « ¢ dom(A) ensures the well-formedness
of the environment—a« is a fresh variable. T-PApp re-
quires the left term to be a polymorphic term and that



A, (Ax:t. e) v — A e{v/z} (E-AppFun)
A (Aa =<p.e) [ X] — A e{X/a} (E-PAppAll)
A, case (inl v) v1 v2 — A,v; v (E-Caselnl)

A, case (inr v) v1 v2 — A,vo v (E-Caselnr)

AT Fe: (t +t2),

AT o (B — ),

AT Fug:(ta — t),

A;T'Fcaseewvy vg:tUI (T-Case)
AT e :(Py), ATFer:(Py),
Ap=qgltes:t A;T'key:t

(T-IfDel)

A;THif (61562)636411”_”

AF X1 XXy
A7 if (Xl ng) €3 €4 —>.A,€3
AF X1 A Xy

(E-IfDelYes)

A if (X1 = X2)eseq — A, eq (E-IfDelNo)
Akl
ATHX @ (Px), (T-PName)
Aa=xplkFe:t dom(A) A1

e e e (T-All)
ATFAa=<p.e: (YVa=<p.t),
ATke:(Va=<gqt), AFp=

( q-1), p=q (T-PApD)

AT e [p]:t{p/at Ul

Figure 2: Evaluation and typing rules

the delegation constraint A F p < ¢ on the instanti-
ated principal is known statically.

T-IfDel is similar to T-All in that it extends A
with a=p, but it does the extension only for the first
branch. This matches the operational semantics of E-
IfDelYes and E-IfDelNo mentioned above. Extending
A for the first branch reflects the run-time informa-
tion that the branch is run only when a=p holds at
run-time. For example, when type-checking the pro-
gram ¢ from above, the function application print s
will be type-checked in a context where M =< a. Be-
cause M < akF {M:'} C {«: !} the function applica-
tion is permitted—inside the first branch of the if-acts-
for, a value of type boolgjs.13 can be treated as though
it has type booly,: 3.

Soundness The following shows the soundness of the
type system with respect to the operational semantics.

Theorem 1 (Soundness). (1) Progress: If A& e : t,
thene = v or A,e — A, €’. (2) Preservation: If A+ e :
tand A,e — A, e, then A ¢ : t.

The proof for this theorem is standard for languages
with subtyping [23]. Our companion technical report
contains the complete proof [30], which uses the follow-
ing substitution lemma. The lemma says that if an open
term e has type ¢, then the substituted term ~d(e) has
the substituted type §(¢)—this result is also needed to
prove noninterference later (Theorem Bland Lemma H).
Substitution also respects subtyping for types, princi-
pals, labels and policies [30]. The notation § = A de-
notes a substitution ¢ that assigns each free principal
variable « in hierarchy A to a principal name X. Sim-
ilarly, A F v = (') denotes a term substitution -y

that assigns each free term variable x in environment
I to a value such that the assignment respects the typ-
ingx:tinI.

Lemma 2 (Substitution for typing).
IfATFe:t, 0 EA A=05A) and At v = (),
then A ~yd(e) : 0(t).

2.4. Noninterference

This section proves a noninterference theorem [I2],
which is the first main theoretical result of this paper.
The intuition is that in secure programs, high-security
inputs do not interfere with low-security outputs.

Formally, the noninterference theorem states that if
a Boolean program e of low security [ is closed and well-
typed but contains a free variable x of high security I’,
and if values v and v’ have the same type and security
as x, then substituting either v or v’ for z in e will eval-
uate to the same Boolean value vg. We use Boolean so
that the equivalence of the final values can be observed
syntactically. This result means that a low-security ob-
server cannot use program e to learn information about
input z.

Theorem 3 (Noninterference). If A;z:uy b e :
bool,, AFUZI, At v:uy and AF v : uy then
Aef{v/x} —* Ajvg iff Ae{v'/z} —* A v
The proof requires a notion of equivalence with re-
spect to observers of different security labels. To reason
about equivalence of higher-order functions and poly-
morphism, we use the standard technique of logical re-
lations [T9]. However, we parameterize the relations
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Figure 3: Logical relations for types with labels

with an upper-bound ¢ (“zeta”) of the observer’s se-
curity label, capturing the dependence of the terms’
equivalence on the observer’s label.

Logical relations Figure Bl shows the complete def-
inition of the logical relation. We use the notation
AF v =¢~ : T to denote two related substitutions,
AF e ¢ € :ttodenote two related computations,
and A v ~¢ v : t to denote two related values. They
are parameterized by a type t, an acts-for hierarchy
A and an upper-bound ¢ of the observer’s security la-
bel.

By R-Subs, two substitutions are related at envi-
ronment I' if T" is closed and if the substitutions as-
sign all variables in environment I' to related values.
R-Term indicates that two terms are related at type ¢
if they both have type ¢t and if they evaluate to val-
ues which are related at type t.

R-Label is the crucial definition for logical relations
with labels. It relates any two values at type u; as long
as the label [ is not lower than the observer’s label (. If
R-Label does not apply, values are related only by one
of the following syntax-directed rules.

By R-Unit, * is related only to itself and, similarly,
by R-PName, X is related only to itself (because they
are both singleton types). R-Inl says that two values
are related at (t; + t2), if they both are left-injections
of the form inl v and inl v/, and if v and v’ are related
at t. By R-Fun, two values are related at (t; — t2), if
their applications to all values related at t; are related
at to LI 1. Lastly, R-All indicates that two values are re-
lated at (Vo < p. t), if their instantiations with all prin-
cipals acting for p are related at ¢ U .

Using these definitions, we strengthen the induction
hypothesis of noninterference so that the theorem fol-
lows as a special case of this substitution lemma. In

essence, the lemma states that substitution of related
values yields related results.

Lemma 4 (Substitution for logical relations).
IfATFe:t, 0 EA A=06A)and AF v =¢ v
§(T), then At ~d(e) =¢ v'd(e) : §(t).

Proof. We only give a proof sketch here; a complete
proof can be found in our companion technical re-
port [30]. By Lemma] the terms vd(e) and v'd(e) are
well-typed. It remains to show that A,~vd(e) —* A,v
and A,7'0(e/) —* A v and A F v ~¢ v @ 6(2),
which we prove by induction on the typing derivations:
For T-PName, the result follows by R-PName because
73(e) = 7'3(e) = X and 3((Px),) = (Px)s(-

For T-IfDel, the two terms in the condition are re-
lated by the induction hypothesis. By inversion, either
A F 1 IZ ¢ or they are both related using R-PName.
In the former the result follows trivially by R-Label. In
the latter, the test conditions evaluate to X; and Xs.
Then, both terms step to the same branch depending
on whether A + X7 < X5. The result follows because
both branches are related by the induction hypothe-
sis.

For  T-All, ~§(Aa=<p.ey) evaluates to
Ao = 8(p). ~d(eo) while 7'6(Aa X p.eg) evalu-
ates to Aa < §(p). v'd(ep). It remains to show that
VAF X < 6(p)):

A ((Aa = 6(p). v(eo)) [X])
~¢ (Aa =2 0(p). 7'd(eo)) [X]) : 0(to LIT)

By E-PAppAll, these two applications step to
Y6(eo){X/a} = vdo(eo) and 7'd(eo){X/a} = ~'do(eo),
where 09 = §,« — X. The result follows by the induc-
tion hypothesis because §p = A, a < p.

For T-PApp, the two terms on the left are related
by the induction hypothesis. The two principals on the



right are both §(p1) and, by A F p; < py and Lemma2
we have A F §(p1) < §(p2). The result then follows by
the definition of R-All.

For T-Sub, the result follows by Lemma B and the
following properties of subtyping with respect to log-
ical relations (which can be proved by induction on
the subtyping derivations): (1) If A F e =~ ¢’ : ¢t and
AFt<t,then Aberce :t/. 2JUf AFv~c v ot
and At <t then Al v~ev ¢, O

3. Declassification and authority

Although noninterference is useful as an idealized se-
curity policy, in practice most programs do intention-
ally release some confidential information. This section
considers the interaction between run-time principals
and declassification and suggests run-time authority as
a practical approach to delimiting the effects of down-
grading.

The basic idea of declassification is to add an ex-
plicit method for the programmer to allow information
flows downward in the security lattice. The expression
declassify e t indicates that e should be considered
to have type ¢, which may relax some of the labels con-
straining e. Declassification is like a type-cast opera-
tion; operationally it has no run-time effect:

A,declassifyet — A,e (E-Dcls)

One key issue is how to constrain its use so that the
declassification correctly implements a desired security
policy. Ideally, each declassification would be accom-
panied by formal justification of why its use does not
permit unwanted downward information flows. How-
ever, such a general approach reduces to proving that
a program satisfies an arbitrary policy, which is unde-
cidable for realistic programs.

An alternative is to give up on general-purpose de-
classification and instead build it into appropriate op-
erations, such as encryption. Doing so essentially lim-
its the security policies that can be expressed, which
may be acceptable in some situations, but is not de-
sirable for general-purpose information-flow type sys-
tems.

To resolve these tensions, the original decentralized
label model proposed the use of authority to scope the
use of declassification. Intuitively, if Alice is an owner of
the data, then her authority is needed to relax the re-
strictions on its use. For example, to declassify data
labeled {Alice:!'} to permit Bob as a reader (i.e. re-
lax the label to {Alice: Bob!}) requires Alice’s permis-
sion. In the original DLM, a principal’s authority is
statically granted to a piece of code.

Zdancewic and Myers proposed a refinement of the
DLM authority model called robust declassification [35,
34). Intuitively, robust declassification requires that the
decision to release the confidential data be trusted by
the principals whose policies are relaxed. In a program-
ming language setting, robustness entails an integrity
constraint on the program-counter (pc) label—the pc
label is a security label associated with each program
point; it approximates the information that may be
learned by observing that the program execution has
reached the program point. For example, suppose that
the variable x has type bool; then the pc label at the
program points at the start of the branches vy and
v1 of the conditional expression case = vy v; satis-
fies I C pc because the branch taken depends on x—
observing that the program counter has reached vy re-
veals that x is true. If x has low integrity, for example,
if it is untrusted by Alice, then [ C pc implies that the
integrity of the pc labels in the branches are also un-
trusted by Alice. Robustness requires that Alice trusts
the pc at the point of her declassification; even if she
has granted her authority to this program, no declassi-
fication affecting her policies will be permitted to take
place in vg or wvy.

In the presence of run-time principals, however, the
story is not so straightforward. To adopt the authority
model, we must find a way to represent a run-time prin-
cipal’s authority. Similarly, to enforce robust declassifi-
cation, we must ensure that at runtime the integrity of
the program counter is trusted by any run-time prin-
cipals whose data is declassified. At the same time, we
would like to ensure backward compatibility with the
static notions of authority and robustness in previous
work |35, 34].

3.1. Run-time authority and capabilities

To address downgrading with run-time princi-
pals, we use capabilities (unforgeable tokens) to rep-
resent the run-time authority of a principal. The
meta-variable ¢ ranges over a set of privilege identi-
fiers . We are interested in controlling the use of de-
classification, so we assume that 7 contains at least
the identifier declassify, but the framework is gen-
eral enough to control arbitrary privileges. Below,
we consider using capabilities to regulate other privi-
leged operations, such as delegation.

Figure Bl summarizes the changes to the language
needed to support run-time authority. Just as we sepa-
rate the static principal names from their run-time rep-
resentation, we separate the static authority granted by
a principal from its representation. The former, static
authority, is written p > ¢ to indicate that principal
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Figure 4: Agp with run-time authority

p grants permission for the program to use privilege
i. For example, a program needs to have the author-
ity Alice > declassify to declassify on Alice’s behalf.
The latter, run-time authority, is written X {:} and rep-
resents an unforgeable capability created by principal
X and authorizing privilege ¢. Capabilities have static
type C.

A program can test a capability at run time to deter-
mine whether a principal has granted it privilege ¢ us-
ing the expression if (e; = e2>i) e3 e4. Here, €1 evalu-
ates to a capability and e, evaluates to a run-time prin-
cipal; if the capability implies that the principal per-
mits ¢ the first branch ez is taken, otherwise ey4 is taken.

To retain the benefits of robust declassification, we
generalize the pc label to be a set of static permis-
sions, 7. The function type constructor must also be
extended to indicate a bound on the calling context’s
pc. In our setting, the bound is the minimum au-
thority needed to invoke the function. We write such
types as [r] t1 — t2. For example, if f has type
[Alicerdeclassify] bool{ajice: 13 — boolgTy then the
caller of f must have Alice’s authority to declassify—f
may internally do some declassification of data owned
by Alice. Therefore f, which takes data owned by Alice
and returns public data, may reveal information about
its argument. On the other hand, a function of type
[Alice > declassify] bool{pep:13 — boolgiTy cannot
declassify the argument, which is owned by Bob, un-
less Alice acts for Bob. Note that the types accurately
describe the security-relevant operations that may be
performed by the function.

The examples above use only static authority. To il-
lustrate how run-time capabilities are used, consider
this program:

Yo [] Py — [] C— H bool(y:13 — boolyiTy
= Aa. Auser:P,. Acap:C. Adata:boolyy: 3.
if (cap = user>declassify)
(declassify data booly T3) false

h
h

The type of h is parameterized by a principal «, and
the authority constraint [-] indicates that no static au-
thority is needed to call this function. Instead, h takes
a run-time principal user (whose static name is «),
a capability cap, and some data private to «. The

body of the function tests whether capability cap pro-
vides evidence that user has granted the program the
declassify privilege. If so, the first branch is taken
and the data is declassified to the bottom label. Oth-
erwise h simply returns false.

The program h illustrates the use of the
declassify e t expression, which declassifies the ex-
pression e of type t’' to have type t, where ¢’ and ¢ differ
only in their security label annotations. The judg-
ment A F ¢ — t = s indicates that under the
principal hierarchy A, the type t; may be declassi-
fied to type t2 using the authority of the principals in s.
We call s the set of declassification requisites. For ex-
ample7 = boolgaiice:1y — bo0liAlice: Bob1} = {Ahce}>
because Alice’s authority is needed to add Bob as
a reader. This judgment is used when typecheck-
ing the declassify expression:

A;Tsmhe:ts

A tg — Ifl =S

At s X m(declassify)
A;T; 7+ declassifyet; : ty

(T-Dcls)

The typing judgments for run-time authority are
of the form A;T;w F e : t, where 7 is the set of
static capabilities available within the expression e.
Given static capabilities m, we write m(i) for the set
of principals that have granted the permission ; so
7(i) = {p | pri € w}. In the rule T-Dcls, s is
the set of principals whose authority is needed to per-
form the declassification, therefore the condition A +
s = m(declassify) says that the set of declassify-
granting principals in the static authority is sufficient
to act for s.

For robustness, we must ensure that the integrity
of the data is reflected in the set of static capabili-
ties available. To do so, we define an operator |l, that
restricts the capabilities in 7 to just those whose own-
ers have delegated to principals present in the integrity
portion of the label . With respect to hierarchy A, the
formal definition is:

a{d!'sy ={prien | Jg€s. Arp=<q}

The restriction operator occurs in the typing rules of
branching constructs. For example, this is the modified



form of the case expression:
ATy mbEes (t +t2),
ATy |l v : ([me] B — ),
ATy |l g : ([me] ta — 1),
A ) j (7T1|l)
A;T;m b caseevy vg it LI

(T-Case)

The rule for capability certification also uses the re-
striction operator, but it also adds the permission p>1
before checking the branch taken when the capability
provides privilege i (e3 below):

A:Tsmher: G
ATk ezt (Py),
A;T; (mypri)ll-es:t
AsTsr|lbeq it
ATy B if (61 = 62[>i) egeq:tUl

(T-IfCert)

Note that the restriction is applied after the permission
is added, to prevent the specious amplification of rights
based on untrustworthy capabilities. At run time, the
validity of a capability under the current acts-for hier-
archy determines which branch of the certification ex-
pression is taken:

AF X {i} = Xo>i
A, if (Xl{l} = X5 Di) ez eq — A, es

(E-CertYes)

AFXl{Z} #XQD?:
A, if (Xl{l} = X5 Di) ez eq — A, ey

(E-CertNo)

To verify that a capability grants permission for princi-
pal X5 to perform some privileged operation 7, the run-
time system determines whether the issuer X; of the
capability acts for the principal X, wanting to use the
capability: If AF X5 < X3 then A+ X {i} = Xop>i.

Function types capture the static capabilities that
may be used in the body of the function, and the mod-
ified rule for typechecking function application requires
that the static capabilities 7 of the calling context are
sufficient to invoke the function:

AT x:tyymbe:ta AR
ATy F dxty. e (7] 61 — t2), (

T-Fun)

ATy b ey s ([me] 1 — ta),
ATymberity Abm < (mll)

A;Tsmibepes:toll

(T-App)

Finer-grained control of declassification can be in-
corporated into this framework by refining the
declassify privilege identifier with more informa-
tion, for instance to give upper bounds on the data
that may be declassified or distinguish between de-
classify expressions applied for different reasons (see

Section EZ2).

3.2. Delegation

Delegation allows the acts-for hierarchy to change
during program execution—so far, the operational se-
mantics have been given in terms of a fixed A. When
p delegates to ¢, then g may read or declassify all data
readable or owned by p; therefore, delegation is a very
powerful operation that should require p’s permission.

We add a new expression let (e; < e2) in e3 that
allows programmers to extend the acts-for hierarchy in
the scope of the expression e3. Here, e; and es must
evaluate to run-time principals. Assuming their static
names are p and ¢, respectively, the body e3 is checked
with the additional assumption that p < q.

Because delegation is a privileged operation, it needs
the static authority of principal p. We extend the set of
privileges 7 to include additional identifiers of the form
delegate,,. The constraint A b p < m(delegate,,)
ensures that the capability to extend the acts-for hier-
archy has been granted by p:

ATk er: (Py),
ATk eyt (Py),
Ap=gDinkes:t

A b p < m(delegate,,)

A;TsmElet (e < eg)ineg : tU

(T-LetDel)

As shown by the following evaluation rule E-LetDel,
the body of a let-delegation term is evaluated to a value
under the extended acts-for hierarchy, but the original
acts-for hierarchy is restored afterwards. This ensures
that the delegation is local to es:

(A, X1 X Xo),e5 — (A, X1 2 Xp),ef
A, let (X7 < Xo)inez — A, let (X7 <X X3) in e}

3.3. Acquiring capabilities

So far, this paper has not addressed how capabil-
ity objects are obtained by the running program. Be-
cause capabilities represent privileges conferred to the
program by run-time principals, they must be provided
by the run-time system—they represent part of the dy-
namic execution environment. In practice, capabilities
may be created in a variety of ways: The operating sys-
tem may create an appropriate set of capabilities af-
ter authenticating a user. If the capabilities are imple-
mented via digital certificates, then they may be ob-
tained over the network using the underlying PKI. Ca-
pabilities may also be generated by the system in re-
sponse to user input, for instance after prompting for
user confirmation via a secure terminal.

To hide the details of the mechanism for produc-
ing capabilities, we model the external environment as



a black box £ and write £ F X {i} to indicate that envi-
ronment £ produces the capability X {i}. Using the ex-
pression acquire e, where e evaluates to a run-time
principal, the program can query the environment to
see whether a given capability is available. This opera-
tion either returns the corresponding capability object
X{i} or indicates failure by returning *. This behav-
ior is captured by the following typechecking and eval-
uation rules (E-AcqNo, not shown, steps to inr * when

E X{i}):
AsTymb=e: (Py),
A;T;mFacquireei: (C + 1;),

(T-Acq)

EF XA{i}
A,acquire X i — A, inl X{i}

(E-AcqYes)

A common programming idiom is to obtain a run-
time capability using acquire, certify the capability,
and, if both checks succeed, act using the newly ac-
quired abilities:

case (acquire user >declassify)
Acap:C. if (cap = user>declassify)
(declassify data t) (...)
Azl

When written in this way, there appears to be a
lot of redundancy in these constructs. However, for the
sake of modularity and flexibility, we separate the in-
troduction of a capability (acquire) from its valida-
tion (the if test) and the use of the conferred priv-
ileges (the declassify). A surface language like Jif,
would provide syntactic sugar that combines the first
two, the last two, or even all three of these operations.
Treating these features independently also allows more
flexibility for the programmer. For instance, the abil-
ity to pass capabilities as a first class objects is impor-
tant in distributed settings, where one host may man-
ufacture a capability and send it to a second host that
can verify the capability and act using the privileges

(see Section E2).

3.4. Soundness

As a second theoretical contribution of this paper,
we have extended the soundness result (Theorem [I) in
Section Blto the full language with authority and capa-
bility as follows. A complete proof can be found in our
companion technical report [30].

Theorem 5 (Soundness). (1) Progress: If A;;m
e:t, thene =vorAe — Ae'. (2) Preservation: If
Assmhe:tand Aje — A, e, then A'; ;7' F e« t such
that A < A" andm < 7.

We have not proved a noninterference result for Arp
with the run-time authority because we are primar-
ily concerned with regulating declassification, which in-
tentionally breaks noninterference. We conjecture that
well-typed programs not containing declassify or del-
egation satisfy noninterference following a similar ar-
gument to that given in Section EZ4 but we leave the
proof of this claim to future work.

4. PKI and application
4.1. Public key infrastructure

This section considers some possible implementa-
tions of run-time principals, concentrating on one in-
terpretation in terms of a public key infrastructure.

If run-time principals are added to an information-
flow type system whose programs are intended to run
within a single, trusted execution environment, the im-
plementation is straightforward: The trusted run time
maintains an immutable (and persistent) mapping of
principal names to unique identifiers, the acts-for hier-
archy is a directed graph with nodes labeled by identi-
fiers, and capabilities can be implemented as (unforge-
able) handles to data structures created by the run-
time system—this is the strategy currently taken by
Jif.

If the programs are intended to run in a distributed
setting, the implementation becomes more challeng-
ing. Fortunately, the appropriate machinery (principal
names, delegation, and capabilities) has already been
developed using public-key cryptography [15, [TT]. We
can interpret Agp in terms of PKI as follows: run-time
principals are implemented via public keys, the acts-for
hierarchy is implemented via certificate chains, and ca-
pabilities are implemented as digitally signed certifi-
cates. Formally, we have the following interpretation,
where Kx is the public key corresponding to X and
K {[i]} is a certificate signed using X’s private key.
The remaining constructs (the acts-for relation and the
privileged operations) are interpreted as tuples:

[X] = Kx
[[Xl = XQ]] = (KX17KX2)
[XGY = KD
[declassify] = dcls
[X>i = (Kx,[id)

[delegatey <x,] = (del,Kx,,Kx,)

(KX2’KX1) € [[A]]*
AF KA} = (Kx, [1])

The interpretation of the acts-for hierarchy, [A]*,
is a binary relation on public keys—the reflex-



ive, transitive closure of the pointwise interpreta-
tion of the delegation pairs. Given these defini-
tions, it is clear how to interpret the capability
verification—we use cryptographic primitives to ver-
ify that the digital certificate is signed by the cor-
responding public key: verify Kx, K;é{[[i]]} = [i].
Note that in case of reflexive acts-for, we have
Kx, = Kx, and Ky {[i[} = (Kx,, [i]). The implemen-
tation uses graph reachability to test for transitive
acts-for relations in A. It is easy to show that the exis-
tence of a path in [A]* implies the existence of a valid
certificate chain.

Now the universally trusted host T behaves as a
certificate authority that generates private keys and is-
sues certificates binding principal names to their corre-
sponding public keys. To satisfy the axiom A - X < T,
we assume that each host’s run-time is configured with
Ky {[X < T]} and (X, T) € [A] for each X—this in-
formation would be acquired by a host when it receives
the principal X to key Kx binding from the certificate
authority.

This interpretation permits flexibility in specifying
security policies. Consider the following program that
takes in two capabilities and some data owned by Alice
and attempts to declassify it.

1 Ac1:C. Aca:C. Ax:bool{ajice :13-

2 if (¢; = Alice> delegate 4;;..<pob)
3 let (Alice < Bob) in -

4 if (c2 = Bob>declassify)

5 declassify x boolyy

By the typing rule T-Dcls of declassification, line 5
needs the authority p > declassify for some p acting
for Alice because Alice’s policy is being weakened:

F 00l tice :13 — boolgy = { Alice}

The PKI implementation justifies the presence
of Alice’s authorization. Assume the acts-for hierar-
chy A at line 1 is the default hierarchy consisting of
only (X, T) pairs. Line 2 uses [Alice] = Kaice to ver-
ify the certificate A F ¢1 = (Kaiice, [¢]) where [i] =
[Alice > delegateAh-cejBob]] = (del,Katice,KBob)-
Since the acts-for hierarchy is otherwise empty, ¢; must
be of the form K ;- _{[i]} or K7'{[i]}. The first certifi-
cate can be validated using only K gyc¢; the second can
be validated starting from X g3 by checking the cer-
tificate chain K}, {[Alice < T]} < K7'{[i]}. If one
of these chains is valid, line 3 adds the delegation infor-
mation into the hierarchy so that (Kajce,Kpos) € [A].

Similarly, there are two certificates ¢ that may jus-
tify the static condition

Alice < w(declassify) = Alice < Bob

required by rule T-Dcls. If ¢co = Kgib{dcls}, the static
condition holds at runtime because we can find the
chain:

K1 heo ([ Alice < Bob]} < K, {dcls}
If c; = K7 '{dc1s} we can find the chain:
Kaiee L[ Alice X Bob]} < gy {[Bob < T]} < k7' {dcls}

In general, the justification for constraint p; < 7(4) is
the existence of some certificate chain of the form:

Ky {lpr 2 p2]} = oo = K {pn—1 < pul} < K, L[]}

4.2. Application to distributed banking

Figure B shows a more elaborate example Agp pro-
gram that implements a distributed banking scenario
in which a customer interacts with their bank through
an ATM. The example uses a number of standard con-
structs such as integers, pairs, let-binding, and exis-
tential types that are not in Arp, but could readily
be added or encoded [23]. The main functions for the
ATMs and the Bank are shown, along with the types
of various auxiliary functions.

The static principals are Bank and ATM; through
ATM,,, and there are two run-time principals, user and
agent. The principal user is the customer at an ATM;
agent is the Bank’s name for one of the n ATMs that
may connect to the bank server. On the left is the client
code for ATM; (a particular ATM), on the right is the
bank server code.

At the ATM;, the customer logs in with the
bank card and the password, revealing his iden-
tity [user,user;q] and allowing ATM; to act for him
(represented by the capability cqe;). Then ATM; inter-
acts with user to obtain his request such as withdraw-
ing $100. This interaction is modeled by the acquire.
The ATM client packs the identities ATM; and user;q
and the delegation cge; and the request creq cer-
tificates into a message. To send the message over
the channel to Bank, ATM; gives up the ownership
of the data by declassifying the message to have la-
bel {Bank : Bank'}. As a result of the transaction with
the bank server, ATM; obtains the new account bal-
ance of the customer. Finally, ATM; prompts to
determine whether the user wants a receipt, which re-
quires a declassification certificate to print. This
example makes use of fine-grained declassify privi-
leges to distinguish between the printing and network
send uses of declassification.

The bank server listens over the private channel and
receives the message. The listen function also provides



Bank_main

ATM;_main : [ATM;>declassify, |1 — 1
: [Bank>declassify, ,]1 — 1

V(agent, US(:’T). (Pagentv Pyser, C, C){Bank:Bank!} — intiagent:agenttagent}
1— El(agent7 USGT)- (Pagent7 Puser; C7 C7 (int{agent:agent!} - 1)){Bank:Bank!Bank}

request
listen
login 1 — (Juser. Pyser, C){ATMJ:ATMJ!}
print int{!} —1
get 1 Vuser. Puser — 1nt{Bank:Bank!'}
set : Yuser.Pyser — int — 1

AT M;_main = Az : 1.
let [user, (user;d, cier)] = login * in
case (acquire user;q > withdrawigo)
ACreq : C. Llet message = [(agent, user),
(ATM;, useriq, Cdel, Creq)] in
let data = declassify, , message
(PATMJ » Puser C, C){Bank:Bank!} in
let balance = request [ATM;, user] data in
case (acquire user;q > declassifyprt)

Acprt + C. if (cpre = useriq Ddeclassifyprt)
let data = declassify,,; balance intgy in

print data
other banking options
g op

Bank_-main = Az : 1.
let [(agent,user), (agent;q, user;q,
Cdel, Creq, T€PLY)] = listen * in
if (cder = useriq > delegate
let (user;q < agent;q) in
if (Cger = user;q>withdrawgg)
let old = get [user] user;q in
let balance = old — 100 in
set [user| user;q balance;
let data = declassify,,,
balance int{user:userty i0
reply data
// other banking options

userjagent)

Figure 5: A distributed banking example

a reply channel so that the balance can be returned to
the same ATM. The server determines that user has
logged in to ATM; by verifying cqer, and if so, checks
that the request capability is valid. If so, the server up-
dates its database, and declassifies the resulting bal-
ance to be sent back to the ATM. In practice Bank
will also want to log the certificates for auditing pur-
poses.

In the functions request and listen, we assume the
existence of a private network between ATM; and
Bank, which can be established using authentication
and encryption. Since the network is private, the out-
going data must be readable only by the receiver; and,
since the network is trusted, the incoming data has the
integrity of the receiver. The labels of their types faith-
fully reflect this policy: for example, {Bank: Bank!'}
vs. {agent:agent'agent} in the type of request.

Note the run-time authority for declassification and
delegation are provided by the customer—they are ac-
quired by the interaction of ATM; and wser. In con-
trast, in the types of AT M;_main and Bank_main, the
static capability requirements [ATM; >declassify,, ;]
and [Bank > declassify, ] indicate that the author-
ities to declassify to the network must be established
from the caller.

5. Discussion
5.1. Related work

The work nearest to ours is the Jif project, by My-
ers et al. [20]. Although the Jif compiler supports run-
time principals, its type system has not been shown to
be sound. Our noninterference proof for Agp is a step
in that direction. Jif also supports run-time labels—
run-time representations of the label annotations and
a switch label construct that lets programs inspect
the labels at runtime. Although it is desirable to sup-
port both run-time labels and run-time principals, the
two features are mostly orthogonal.

Although the core Agp presented here is not immedi-
ately suitable for use by programmers (more palatable
syntax would be needed), Agp can serve as a typed in-
termediate representations for languages like Jif. More-
over, this approach improves on the current implemen-
tation of the decentralized label model (DLM) because
Jif does not support declassification of data owned by
run-time principals, nor does it provide language sup-
port for altering the acts-for hierarchy. Our separation
of static principals from their run-time representations
also clarifies the type checking rules.

The ability to perform acts-for tests at runtime is



closely related to intensional type analysis, which per-
mits programs to inspect the structure of types at run-
time. Our use of singleton types like P, to tie run-time
tests to static types follows the work by Crary, Weirich,
and Morrisett [9]. Static capability sets 7 in our type
system are a form of effects [I7], which have also been
used to regulate the read and write privileges in type
systems for memory management [g].

The robustness condition on the set of run-time ca-
pabilities is very closely related to Java’s stack inspec-
tion model [33, B2, [0, 26]. In particular, the enable-
privilege operation corresponds to our if (eq; = eg >
1) e3 e4 and the check-privileges operation corresponds
to the constraint on 7 in the declassify rule. The
restriction 7|l of capability sets in the type-checking
rule for function application corresponds to the taking
the intersection of privilege sets in these type systems.
However, stack inspection is not robust in the sense
that data returned from an untrusted context can in-
fluence the outcome of privileged operations [10]. In
contrast, Agp tracks the integrity of data and restricts
the capability sets according to the principals’ trust in
the data—this is why the restriction 7|l appears in the
typechecking rule for case expressions.

Banerjee and Naumann [7] have previously shown
how to mix stack inspection-style access control
with information-flow analysis. They prove a non-
interference result, which extends their earlier work
on information-flow in Java-like languages [6]. Un-
like their work, this paper considers run-time principals
as well as run-time access control checks. Incorporat-
ing the principals used by the DLM into the privileges
checked by stack inspection allows our type sys-
tem to connect the information-flow policies to the ac-
cess control policy, as seen in the typechecking rule for
declassify.

We have proposed the use of public key infras-
tructure as a natural way to implement the author-
ity needed to regulate declassification in the presence
of run-time principals. Although the interpretation of
principals as public keys and authorized actions as dig-
itally signed certificates is not new, integrating these
features in a language with static guarantees brings
new insights to information-flow type systems. This
approach should facilitate the development of software
that interfaces with existing access-control mechanisms
in distributed systems [T5, [IT].

Making the connection between PKI and the label
model more explicit may have additional benefits. My-
ers and Liskov observed that the DLM acts-for relation
is closely related to the speaks-for relation in the logi-
cal formulation of distributed access control by Abadi
et al. [3]. Adopting the local names of the SDSI/SPKI

framework [I] may extend the analogy even further.

Lastly, although capabilities mechanism in Agrp pro-
vides facilities for programming with static and run-
time capabilities, we do not address the problem of re-
vocation. It would be useful to find suitable language
support for handling revocation, such as the work by
Jim and Gunter [16, [[3], but we leave such pursuits to
future work.

5.2. Conclusions

Information-flow type systems are a promising way
to provide strong confidentiality and integrity guaran-
tees. However, their practicality depends on their abil-
ity to interface with external security mechanisms, such
as the access controls and authentication features pro-
vided by an operating system. Previous work has estab-
lished noninterference only for information-flow poli-
cies that are determined at compile time, but such
static approaches are not suitable for integration with
run-time security environments.

This paper addresses this problem in three ways:
(1) We prove noninterference for an information-flow
type system with run-time principals, which allow se-
curity policies to depend on the run-time identity of
users. (2) We show how to soundly extend this lan-
guage with a robust access-control mechanism, a gen-
eralization of stack inspection, that can be used to con-
trol privileged operations such as declassification and
delegation. (3) We sketch how the run-time principals
and the acts-for hierarchy of the decentralized label
model can be interpreted using public key infrastruc-
ture.
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