
Run-time Principals in Information-flow Type Systems

Stephen Tse Steve Zdancewic

Technical Report (MS-CIS-03-39)
University of Pennsylvania

Abstract

Information-flow type systems are a promising approach for enforcing strong end-to-end confidentiality
and integrity policies. Such policies, however, are usually specified in term of static information—data
is labeled high or low security at compile time. In practice, the confidentiality of data may depend on
information available only while the system is running

This paper studies language support for run-time principals, a mechanism for specifying information-
flow security policies that depend on which principals interact with the system. We establish the basic
property of noninterference for programs written in such language, and use run-time principals for spec-
ifying run-time authority in downgrading mechanisms such as declassification.

In addition to allowing more expressive security policies, run-time principals enable the integration
of language-based security mechanisms with other existing approaches such as Java stack inspection and
public key infrastructures. We sketch an implementation of run-time principals via public keys such that
principal delegation is verified by certificate chains.

1 Introduction

Information-flow type systems are a promising approach for enforcing strong end-to-end confidentiality and
integrity policies [27]. However, most previous work on these security-typed languages has used simplistic
ways of specifying policies: the programmer specifies during program development what data is confidential
and what data is public. These information-flow policies constrain which principals have access either
directly, or indirectly, to the labeled data.

In practice, however, policies are more complex—the principals that own a piece of data may be unknown
at compile time or may change over time, and the security policy itself may require such run-time information
to downgrade confidential data. This paper addresses these shortcomings and studies run-time principals in
the context of information-flow policies.

Run-time principals are first-class data values representing users, groups, etc. During its execution, a
program may inspect a run-time principal to determine policy information not available when the program
was compiled. The key problem is designing the language in such a way that the dynamic checks required
to implement run-time principals introduce no additional covert channels. Moreover, while adding run-time
principals permits new kinds of security policies, the new policies should still interact well with the static
type checking.

Run-time principals provide a means of integrating the policies expressed by the type system with external
notions of principals such as that from public key infrastructure (PKI). This integration allows language-
based security mechanisms to interoperate with existing machinery such as the access control policies enforced
by a file system or the authentication provided by an OS.

This paper makes the following three contributions:

Stephen Tse (stse@cis.upenn.edu) and Steve Zdancewic (stevez@cis.upenn.edu). This research was supported in part by
NSF grant CCR-0311204, Dynamic Security Policies. Appears in IEEE Symposium on Security and Privacy, 2004.
Last update: March 11, 2004.

1

• We formalize run-time principals in a simple security-typed language based on the λ-calculus and show
that the type system enforces noninterference, a strong information-flow guarantee. This type system is
intended to serve as a theoretical foundation for realistic languages such as Jif [20] and FlowCaml [29].

• We consider the problems of downgrading and delegation in the presence of run-time principals and
propose the concept of run-time authority to temper their use. Declassification, and other operations
that reveal information owned by a run-time principal, may only be invoked when the principal has
granted the system appropriate rights. These capabilities must be verified at runtime, leading to a
mechanism reminiscent of (but stronger than) Java’s stack inspection [33, 32].

• We investigate the implementation of run-time principals via public key infrastructure. Run-time
principals are represented by public keys, run-time authority corresponds to digitally signed capabilities,
and the delegation relation between principals can be determined from certificate chains.

As an example of an information-flow policy permitted by run-time principals, consider this program
that manipulates data confidential to both a company manager and to less privileged employees:

1 class C {

2 final principal user = Runtime.getUser();

3 void print(String{user:} s) {...}

4 void printIfManager(String{Manager:} s) {

5 actsFor (user, Manager) {

6 print(s);

7 }

8 }}

This program, written in a Java-like notation, calls the print routine to display a string on the terminal.
The run-time principal user, whose value is determined dynamically (Runtime.getUser), represents the
user that initiated the program. Note that, in addition to ordinary datatypes such as Java’s String objects,
there is a new basic type, principal; values of type principal are run-time principals.

Lines 3-4 illustrate how information-flow type systems constrain information-flows using labels. The
argument to the print method is a String object s that has the static security label {user:}. In the
decentralized label model [21, 22], this annotation indicates that s is owned by the principal user and
that the policy of user is that no other principals can read the contents of s. This policy annotation
indicates that Strings passed to the print method are output on a terminal visible to the principal user.
More importantly, confidential information such as Manager’s password, which user is not permitted to see,
cannot be passed to the print method (either directly or indirectly). The type system of the programming
language enforces such information-flow policies at compile time without run-time penalty.

The printIfManager method illustrates how run-time principals can allow for more expressive security
policies. This method also takes a String as input but, unlike print, requires the string to have the label
{Manager:}, meaning that the data is owned and readable only by the principal Manager. The body of this
method performs a run-time test to determine whether the user principal that has initiated the program is in
fact acting for the Manager principal. If so, then s is printed to the terminal, which is secure because the user
has the privileges of Manager. Otherwise s is not printed. Without such a run-time test, an information-
flow type system would prevent a String{Manager:} object from being sent to the print routine because
it expects a String{user:} object. Run-time principals allows such security policies that depend on the
execution environment.

Although this example has been explained in terms of Java-like syntax, we carry out our formal analysis
of run-time principals in terms of a typed λ-calculus. This choice allows us to emphasize the new features of
run-time principals and to use established proof techniques for noninterference [14, 2, 25, 36]. It should be
possible to extend our results to Java-like languages by using the techniques of Banerjee and Naumann [6, 7].

The rest of the paper is organized as follows. The next section describes our language with run-time
principals, including its type system and the noninterference proof. Section 3 considers adding declassification
in the context of run-time principals. Section 4 suggests how the security policies admitted by our language

2

may be integrated with traditional public key infrastructure and gives an extended example. The last section
discusses related work and conclusions.

2 Information-flow type systems

2.1 Decentralized label model

The security model considered in this paper is a version of the decentralized label model (DLM) developed
by Myers and Liskov [21, 22]. However, the labels in this paper include integrity constraints in addition to
confidentiality constraints, because integrity constraints allow robust declassification (see Section 3).

Principals and labels Policies in the DLM are described in terms of a set of principal names. We use
capitalized words like Alice , Bob , Manager , etc., to distinguish principal names from other syntactic classes
of the language. We use meta-variable X to range over such names.

To accommodate run-time principals, it is necessary to write policies that refer to principals whose
identities are not known statically. Thus, the policy language includes principal variables, ranged over by
α. Principal variables may be instantiated with principal names, as described below. In the example from
the introduction, Manager is a principal name and the use of user in the label is a principal variable. We
also need sets of principals, s, written as (unordered) comma-separated lists of principals. The empty set
(of principals and other syntactic classes), written ‘·’, will often be elided. In summary:

p ::= X | α s ::= · | p, s

The confidentiality requirements of the DLM are composed of reader policy components of the form
p:s, where p is the owner of the permissions and s is a set of principals permitted by p to read the data.
For example, the component Alice:Bob ,Charles says that Alice ’s policy is that only Bob and Charles (and
implicitly Alice) may read data with this label. The confidentiality part of the label consists of a set of policy
components such that all of their restrictions must be obeyed—the principals able to read the data must be
in the intersection of the reader permissions. For example, a data labeled with the two reader permissions
Alice:Bob ,Charles and Bob:Charles ,Eve will be readable only by Charles and Bob.1

The information-flow type system described below ensures that data with a given confidentiality label
will only flow to destinations that are at least that restrictive. This label model is decentralized in the sense
that each principal may specify reader sets independently.

The integrity part of a label consists of a set of principals that trust the data.2 For integrity, the
information-flow analysis ensures that less trusted data (trusted by fewer principals) is never used where
more trusted data is necessary.

Collecting the descriptions above, we arrive at the following formal syntax for reader policies c, confiden-
tiality policy sets d, and labels l. The integrity part of a label is separated from the confidentiality part by
‘!’:

c ::= p:s d ::= · | c;d l ::= {d!s}

Acts-for hierarchy The decentralized label model also includes delegation embodied by a binary acts-for
relation between principals. This relation is reflexive and transitive, yielding a partial order on principals.
The notation p � q indicates that principal q acts for principal p, or, conversely, that p delegates to q.

The acts-for hierarchy must be taken into account when determining the restrictions imposed by a label.
For example, consider the labels {Alice:!Alice} and {Bob:!Bob}. Ignoring the acts-for hierarchy, these
labels describe data readable and trusted only by Alice and Bob, respectively. However, if the relation

1Or, more precisely, principals that can act for Charles or Bob; see the discussion of the acts-for hierarchy.
2It would be possible to give a version of integrity fully dual to the owners–readers model by using an owners–writers model,

but there do not seem to be compelling reasons to do so [18].

3

Alice � Bob is in the acts-for hierarchy, then data with label {Alice:!Alice} will be readable by Bob—
because Bob acts for Alice , anything Alice can read Bob can too. Note that Bob does not trust the integrity
of data with label {Alice:!Alice}—Alice’s trust in the data does not imply Bob’s trust. Alice does trust
data with label {Bob:!Bob}, again because Bob acts for Alice , anything Bob trusts Alice does too.

An acts-for hierarchy ∆ is a set of p � q constraints. ∆ is closed if it contains no principal variables. To
make it easier to distinguish closed acts-for hierarchies from potentially open ones, we use the notation A
rather than ∆ to mean a closed hierarchy.

We write ∆ ` p � q if principal q acts for principal p according to hierarchy ∆, or formally, if the reflexive,
transitive closure of ∆ contains p � q. The notation ∆ ` s1 � s2 extends this delegation relation to sets of
principals: The set of principals s1 can act for the set of principals s2 if for each principal p ∈ s1 there exists
a principal q ∈ s2 such that p � q.

Furthermore, we assume the existence of the most powerful principal > (called top) that acts for all other
principals. As a result, for all principals p and all hierarchies ∆, we have ∆ ` p � >.

Label lattice The labels of the DLM form a distributive lattice, with join operation given by

{d1!s1} t {d2!s2}
def
= {d1 ∪ d2!s1 ∩ s2}

A label l1 is less restrictive than a label l2 according to an acts-for hierarchy ∆, written ∆ ` l1 v l2, when l1
permits more readers and is at least as trusted. Formally, this relation is defined in according to these two
rules (adapted from Myers and Liskov [22] but extended to include integrity sets):

∀c1 ∈ d1. ∃c2 ∈ d2. ∆ ` c1 v c2 ∆ ` s2 � s1

∆ ` {d1!s1} v {d2!s2}

∆ ` p1 � p2 ∀p′2 ∈ s2. ∃p′1 ∈ s1. ∆ ` p′1 � p′2
∆ ` p1:s1 v p2:s2

We write ∆ ` l1 6v l2 if it is not the case that ∆ ` l1 v l2. This negation is well defined because the
problem of determining the v relation is (efficiently) decidable—it reduces to a graph reachability problem
over the acts-for hierarchy.

The intuition is that the v relation describes legal information flows, and the 6v relation describes the
illegal information flows that should not be permitted in a secure program. According to these rules, the
following example label inequalities hold:

· ` {Alice:Bob!} v {Alice:!}
· ` {Alice:!} 6v {Alice:Bob!}
· ` {!Alice ,Bob} v {!Alice}
· ` {!Alice} 6v {!Alice ,Bob}

Alice � Bob ` {Alice:!} v {Bob:!}
Alice � Bob ` {Bob:!} 6v {Alice:!}

∆ ` {!>} v l (for all ∆ and l)
∆ ` l v {>:!} (for all ∆ and l)

These inequalities show that there is a top-most label {>:!} (owned by >, readable and trusted by no
principals) and that the bottom of the label lattice is {!>} (completely unconstrained readers, trusted by
all principals). Data with a less restrictive label may always be treated as having a more restrictive label.

2.2 λRP and run-time principals

This section describes the language λRP, a variant of the typed λ-calculus with information-flow policies
drawn from the label lattice described above. In order to focus on run-time principals, λRP omits several

4

t ::= ul Secure types
u ::= Base types

1 unit
t + t sum
t → t function
Pp principal
∀α � p. t universal

e ::= Terms
v value
x variable
inl e left injection
inr e right injection
case e v v sum case
e e application
if (e � e) e e if delegation
e [p] instantiation

v ::= Values
* unit
inl v left injection
inr v right injection
λx : t. e function
X principal
Λα � p. e polymorphism

Figure 1: Syntax of types, terms, and values for λRP

features which are important for practical programming. First, all programs in λRP terminate, thus it
precludes termination channels. Second, λRP does not have state, so no information channels may arise
through the shared memory. Third, the analysis presented here does not consider timing channels. The type
system could be extended to remove all of these limitations using known techniques [31, 4, 28, 25, 36].

Security types, base types, program terms and values of the language are defined according to the
grammars in Figure 1. Like in previous information-flow languages, computation in λRP is described by
security-types (t), which are base types (u) annotated with a label (l).

The unit, sum, and function types are standard [23]. There is only one value, written *, of type 1. Sum
values are created by tagging another value v with either the left or right tag: inl v and inr v, respectively.
The case expression branches on the tag of a sum value. Function values, of type t1 → t2 are λ-abstractions
of the form λx : t. e, where x is the formal parameter that is bound within expression e, the body of the
function. Function application is written by juxtaposition of expressions.

By convention, if the label is omitted from a base type, we take it to be the minimal label, {!>}. For

example, the type 1{!>} can be written 1. We define the type of Booleans with label l to be booll
def
=

(1 + 1)l with values true
def
= inl * and false

def
= inr *. The expression if (e) e1 e2 is encoded as

case e (λx1 :1. e1) (λx1 :1. e2), for some fresh names x1 and x2.
The last two kinds of types, Pp and ∀α � p. t, are the new features related to run-time principals. The

run-time representation of a principal such as Alice may be a public key or some other structured data, but
for now we treat these representations as abstract. The only value of type PAlice is the constant Alice . That
is, Pp is a singleton type [5]; such types have previously been used to represent other kinds of run-time type
information [9]. A program can perform a dynamic test of the acts-for relation between Alice and Bob using
the expression if (Alice � Bob) e1 e2.

The type ∀α � p. t is a form of bounded quantification [23] over principals. This type introduces a
principal variable, and it describes programs for which the static information about principal α is that the
acts-for relation α � p holds. For example, the type t0 = ∀α � Alice . bool{α:!} → bool{α:!} describes
functions whose parameter and return types are Booleans owned by any principal for whom Alice may act.

Term-level expressions bind the principal variable α using the syntax Λα � p. e. If f is such a function
of the type t0 given above, and if the acts-for hierarchy establishes that Bob � Alice , we may call f by
instantiating α with Bob by f [Bob] true. A bound of > in a polymorphic type, as in ∀α � >. t, expresses a
policy parameterized by any principal, because all principals satisfy the constraint p � >. For convenience,

we define the syntactic sugar ∀α. t
def
= ∀α � >. t and Λα. e

def
= Λα � >. e.

This kind of polymorphism over principals, in conjunction with the singleton principal types, provides
a connection between the static type system and the program’s run-time tests of the acts-for hierarchy.
Consider the following program g, which is similar to the printIfManager example in Section 1:

g : ∀α. Pα → (bool{α:!} → 1) → bool{M:!} → 1

g = Λα. λuser :Pα. λprint :bool{α:!} → 1.
λs :bool{M:!}. if (M � user) (print s) *

5

A, (λx : t. e) v −→ A, e{v/x} (E-AppFun)

A, (Λα � p. e) [X] −→ A, e{X/α} (E-PAppAll)

A, case (inl v) v1 v2 −→ A, v1 v (E-CaseInl)

A, case (inr v) v1 v2 −→ A, v2 v (E-CaseInr)

∆; Γ ` e : (t1 + t2)l

∆; Γ ` v1 : (t1 → t)l

∆; Γ ` v2 : (t2 → t)l

∆; Γ ` case e v1 v2 : t t l
(T-Case)

∆; Γ ` e1 : (Pp)l
∆; Γ ` e2 : (Pq)l

∆, p � q; Γ ` e3 : t ∆; Γ ` e4 : t

∆; Γ ` if (e1 � e2) e3 e4 : t t l
(T-IfDel)

A ` X1 � X2

A, if (X1 � X2) e3 e4 −→ A, e3
(E-IfDelYes)

A ` X1 6� X2

A, if (X1 � X2) e3 e4 −→ A, e4
(E-IfDelNo)

∆ ` l
∆; Γ ` X : (PX)l

(T-PName)

∆, α � p; Γ ` e : t α 6∈ dom(∆) ∆ ` l

∆; Γ ` Λα � p. e : (∀α � p. t)l

(T-All)

∆; Γ ` e : (∀α � q. t)l ∆ ` p � q

∆; Γ ` e [p] : t{p/α} t l
(T-PApp)

Figure 2: Evaluation and typing rules

This function is parameterized by the principal variable α. The next parameter is a run-time principal user
that has type Pα, meaning that the static name associated with the run-time principal user is α. The next
two arguments to g are a function called print , which expects an argument owned by α, and a Boolean
value s, owned by the principal M (here abbreviating Manager). The body of g performs a run-time test to
determine whether user acts for M . If so, the first branch of the conditional is taken, and the print function
is applied to the secret s . Otherwise, the unit value * is returned.

2.3 Evaluation and typing rules

The operational semantics for λRP formalizes program evaluation, and the type system keeps track of invari-
ants, which can be statically checked. In this subsection we show that the type system of λRP is sound by
proving the progress and the preservation theorems. The noninterference theorem of λRP uses the soundness
property to establish that program security can be checked statically. Figure 2 shows the rules for evaluation
and typing.

Operational semantics The operational semantics of λRP is standard [23], except for the addition of
the acts-for hierarchy and the if-acts-for test. We use the notation A, e −→ A, e′ to mean that an acts-for
hierarchy A and a program e make a small step of evaluation to become A and e′. The full evaluation of a
program is the reflexive and transitive closure of the small-step evaluation. Note that A is used but never
changed here; Section 3.2 considers run-time modification of A via delegation.

In Figure 2, E-AppFun says that, if an abstraction λx : t. e is applied to a value v, then v is substituted
for x in e. Similarly, by E-PAppAll, if a polymorphic term Λα � p. e is instantiated to a principal X , then
X is substituted for α in e. We use the notation e{v/x} and e{X/α} for capture-avoiding substitutions.

E-CaseInl and E-CaseInr are rules for conditional test of tagged values: If the test condition is left-
injection inl v, the first branch is applied to v. For example, using the Boolean encoding described earlier,

if (true) Alice Bob
def
= case (inl *) (λy :1. Alice) (λy :1. Bob)
−→ (λy :1. Alice) *
−→ Alice

E-IfDelYes and E-IfDelNo, unlike the other rules above, use the acts-for hierarchy A to check delegation
at run-time. If A proves that principal X1 delegates to principal X2, the result of an if-acts-for term is the

6

first branch; otherwise, the result is the second branch.

Type system The type system is similar to those previously proposed [14, 36, 24], except for the addition
of rules for run-time principals. The notation ∆; Γ ` e : t means that a program e has type t under the
hierarchy ∆ and the term environment Γ.

To explain how the type system keeps track of information flow, consider the typing rule T-Case for a
case term. The test condition has type (t1 + t2)l, the first branch must be a function of type t1 → t, and
the second branch must be a function of type t2 → t. This typing rule matches the operational semantics
of E-CaseInl and E-CaseInr mentioned above. The label of the inputs (the test condition and the branches)
will be folded into the label of the output as in t t l. We define t t l = (ul′) t l = u(l′ t l) so that the output
always has a label as high as the input’s label. For all elimination forms (T-App, T-IfDel and T-PApp), this
restriction on the output label is used to rule out implicit information flows [14, 36].

By T-PName, only a principal constant X has type (PX)l. This singleton property ties the static type
information and the run-time identity of principals—if a program expression has type (PX)l it is guaranteed
to evaluate to the constant X . The extra condition ∆ ` l checks that the label l is well-formed under
hierarchy ∆, meaning that all free principal variables of l are contained in ∆.

T-All indicates that a polymorphic term Λα � p. e is well-typed if the body e is well-typed under
hierarchy ∆ extended with the additional delegation α�p. The extra condition α 6∈ dom(∆) ensures the
well-formedness of the environment—α is a fresh variable. T-PApp requires the left term to be a polymorphic
term and that the delegation constraint ∆ ` p � q on the instantiated principal is known statically.

T-IfDel is similar to T-All in that it extends ∆ with α�p, but it does the extension only for the first
branch. This matches the operational semantics of E-IfDelYes and E-IfDelNo mentioned above. Extending
∆ for the first branch reflects the run-time information that the branch is run only when α�p holds at
run-time. For example, when type-checking the program g from above, the function application print s will
be type-checked in a context where M � α. Because M � α ` {M :!} v {α:!} the function application is
permitted—inside the first branch of the if-acts-for, a value of type bool{M:!} can be treated as though it
has type bool{α:!}.

Soundness The following shows the soundness of the type system with respect to the operational seman-
tics.

Theorem 1 (Soundness). (1) Progress: If A ` e : t, then e = v or A, e −→ A, e′. (2) Preservation: If
A ` e : t and A, e −→ A, e′, then A ` e′ : t.

The proof for this theorem is standard for languages with subtyping [23]. Appendix contains the complete
proof, which uses the following substitution lemma. The lemma says that if an open term e has type t, then
the substituted term γδ(e) has the substituted type δ(t)—this result is also needed to prove noninterference
later (Theorem 3 and Lemma 4). Substitution also respects subtyping for types, principals, labels and
policies [30]. The notation δ |= ∆ denotes a substitution δ that assigns each free principal variable α in
hierarchy ∆ to a principal name X . Similarly, A ` γ |= δ(Γ) denotes a term substitution γ that assigns each
free term variable x in environment Γ to a value such that the assignment respects the typing x : t in Γ.

Lemma 2 (Substitution for typing).
If ∆; Γ ` e : t, δ |= ∆, A = δ(∆) and A ` γ |= δ(Γ), then A ` γδ(e) : δ(t).

2.4 Noninterference

This section proves a noninterference theorem [12], which is the first main theoretical result of this paper.
The intuition is that in secure programs, high-security inputs do not interfere with low-security outputs.

Formally, the noninterference theorem states that if a Boolean program e of low security l is closed and
well-typed but contains a free variable x of high security l′, and if values v and v′ have the same type and
security as x, then substituting either v or v′ for x in e will evaluate to the same Boolean value v0. We use
Boolean so that the equivalence of the final values can be observed syntactically. This result means that a
low-security observer cannot use program e to learn information about input x.

7

A ` Γ A ` γ |= Γ A ` γ′ |= Γ
∀(x : t ∈ Γ). A ` γ(x) ∼ζ γ′(x) : t

A ` γ ≈ζ γ′ : Γ
(R-Sub)

A ` l 6v ζ

A ` v ∼ζ v′ : ul
(R-Label)

A, e −→∗ A, v A, e′ −→∗ A, v′

A ` e : t A ` e′ : t A ` v ∼ζ v′ : t

A ` e ≈ζ e′ : t
(R-Term) A ` * ∼ζ * : 1l

(R-Unit)

∀(A ` v2 ∼ζ v′2 : t1). A ` (v v2) ≈ζ (v′ v′2) : t2 t l

A ` v ∼ζ v′ : (t1 → t2)l

(R-Fun) A ` X ∼ζ X : (PX)l (R-PName)

∀(A ` X � p). A ` (v [X]) ≈ζ (v′ [X]) : t t l

A ` v ∼ζ v′ : (∀α � p. t)l

(R-All)
A ` v ∼ζ v′ : t1

A ` inl v ∼ζ inl v′ : (t1 + t2)l

(R-Inl)

Figure 3: Logical relations for types with labels

Theorem 3 (Noninterference). If A; x : ul′ ` e : booll, A ` l′ 6v l, A ` v : ul′ and A ` v′ : ul′ then

A, e{v/x} −→∗ A, v0 iff A, e{v′/x} −→∗ A, v0

The proof requires a notion of equivalence with respect to observers of different security labels. To reason
about equivalence of higher-order functions and polymorphism, we use the standard technique of logical
relations [19]. However, we parameterize the relations with an upper-bound ζ (“zeta”) of the observer’s
security label, capturing the dependence of the terms’ equivalence on the observer’s label.

Logical relations Figure 3 shows the complete definition of the logical relation. We use the notation
A ` γ ≈ζ γ′ : Γ to denote two related substitutions, A ` e ≈ζ e′ : t to denote two related computations, and
A ` v ∼ζ v′ : t to denote two related values. They are parameterized by a type t, an acts-for hierarchy A
and an upper-bound ζ of the observer’s security label.

By R-Subs, two substitutions are related at environment Γ if Γ is closed and if the substitutions assign
all variables in environment Γ to related values. R-Term indicates that two terms are related at type t if
they both have type t and if they evaluate to values which are related at type t.

R-Label is the crucial definition for logical relations with labels. It relates any two values at type ul as
long as the label l is not lower than the observer’s label ζ. If R-Label does not apply, values are related only
by one of the following syntax-directed rules.

By R-Unit, * is related only to itself and, similarly, by R-PName, X is related only to itself (because they
are both singleton types). R-Inl says that two values are related at (t1 + t2)l if they both are left-injections
of the form inl v and inl v′, and if v and v′ are related at t. By R-Fun, two values are related at (t1 → t2)l

if their applications to all values related at t1 are related at t2 t l. Lastly, R-All indicates that two values
are related at (∀α � p. t)l if their instantiations with all principals acting for p are related at t t l.

Using these definitions, we strengthen the induction hypothesis of noninterference so that the theorem
follows as a special case of this substitution lemma. In essence, the lemma states that substitution of related
values yields related results.

Lemma 4 (Substitution for logical relations).
If ∆; Γ ` e : t, δ |= ∆, A = δ(∆) and A ` γ ≈ζ γ′ : δ(Γ), then A ` γδ(e) ≈ζ γ′δ(e) : δ(t).

Proof. We only give a proof sketch here; a complete proof can be found in Appendix. By Lemma 2, the
terms γδ(e) and γ′δ(e) are well-typed. It remains to show that A, γδ(e) −→∗ A, v and A, γ′δ(e′) −→∗ A, v′

and A ` v ∼ζ v′ : δ(t), which we prove by induction on the typing derivations: For T-PName, the result
follows by R-PName because γδ(e) = γ ′δ(e) = X and δ((PX)l) = (PX)δ(l).

8

For T-IfDel, the two terms in the condition are related by the induction hypothesis. By inversion, either
A ` l 6v ζ or they are both related using R-PName. In the former the result follows trivially by R-Label. In
the latter, the test conditions evaluate to X1 and X2. Then, both terms step to the same branch depending
on whether A ` X1 � X2. The result follows because both branches are related by the induction hypothesis.

For T-All, γδ(Λα � p. e0) evaluates to Λα � δ(p). γδ(e0) while γ′δ(Λα � p. e0) evaluates to Λα �
δ(p). γ′δ(e0). It remains to show that ∀(A ` X � δ(p)):

A ` ((Λα � δ(p). γδ(e0)) [X])
≈ζ ((Λα � δ(p). γ′δ(e0)) [X]) : δ(t0 t l)

By E-PAppAll, these two applications step to γδ(e0){X/α} = γδ0(e0) and γ′δ(e0){X/α} = γ′δ0(e0), where
δ0 = δ, α 7→ X . The result follows by the induction hypothesis because δ0 |= ∆, α � p.

For T-PApp, the two terms on the left are related by the induction hypothesis. The two principals on
the right are both δ(p1) and, by ∆ ` p1 � p2 and Lemma 2, we have A ` δ(p1) � δ(p2). The result then
follows by the definition of R-All.

For T-Sub, the result follows by Lemma 2 and the following properties of subtyping with respect to
logical relations (which can be proved by induction on the subtyping derivations): (1) If A ` e ≈ζ e′ : t and
A ` t ≤ t′, then A ` e ≈ζ e′ : t′. (2) If A ` v ∼ζ v′ : t and A ` t ≤ t′, then A ` v ∼ζ v′ : t′.

3 Declassification and authority

Although noninterference is useful as an idealized security policy, in practice most programs do intentionally
release some confidential information. This section considers the interaction between run-time principals
and declassification and suggests run-time authority as a practical approach to delimiting the effects of
downgrading.

The basic idea of declassification is to add an explicit method for the programmer to allow information
flows downward in the security lattice. The expression declassify e t indicates that e should be considered
to have type t, which may relax some of the labels constraining e. Declassification is like a type-cast
operation; operationally it has no run-time effect:

A, declassify e t −→ A, e (E-Dcls)

One key issue is how to constrain its use so that the declassification correctly implements a desired
security policy. Ideally, each declassification would be accompanied by formal justification of why its use
does not permit unwanted downward information flows. However, such a general approach reduces to proving
that a program satisfies an arbitrary policy, which is undecidable for realistic programs.

An alternative is to give up on general-purpose declassification and instead build it into appropriate
operations, such as encryption. Doing so essentially limits the security policies that can be expressed, which
may be acceptable in some situations, but is not desirable for general-purpose information-flow type systems.

To resolve these tensions, the original decentralized label model proposed the use of authority to scope
the use of declassification. Intuitively, if Alice is an owner of the data, then her authority is needed to relax
the restrictions on its use. For example, to declassify data labeled {Alice:!} to permit Bob as a reader (i.e.
relax the label to {Alice:Bob!}) requires Alice ’s permission. In the original DLM, a principal’s authority is
statically granted to a piece of code.

Zdancewic and Myers proposed a refinement of the DLM authority model called robust declassification [35,
34]. Intuitively, robust declassification requires that the decision to release the confidential data be trusted by
the principals whose policies are relaxed. In a programming language setting, robustness entails an integrity
constraint on the program-counter (pc) label—the pc label is a security label associated with each program
point; it approximates the information that may be learned by observing that the program execution has
reached the program point. For example, suppose that the variable x has type booll then the pc label at
the program points at the start of the branches v0 and v1 of the conditional expression case x v0 v1 satisfies
l v pc because the branch taken depends on x—observing that the program counter has reached v0 reveals

9

u ::= . . . Base types
[π] t → t function
C capability

π ::= · | π, p . i Authority

e ::= . . . Terms
if (e ⇒ e . i) e e if certify
declassify e t declassify

v ::= . . . Values
X{i} capability

i ∈ I Privileges

Figure 4: λRP with run-time authority

that x is true. If x has low integrity, for example, if it is untrusted by Alice, then l v pc implies that
the integrity of the pc labels in the branches are also untrusted by Alice. Robustness requires that Alice
trusts the pc at the point of her declassification; even if she has granted her authority to this program, no
declassification affecting her policies will be permitted to take place in v0 or v1.

In the presence of run-time principals, however, the story is not so straightforward. To adopt the
authority model, we must find a way to represent a run-time principal’s authority. Similarly, to enforce
robust declassification, we must ensure that at runtime the integrity of the program counter is trusted by
any run-time principals whose data is declassified. At the same time, we would like to ensure backward
compatibility with the static notions of authority and robustness in previous work [35, 34].

3.1 Run-time authority and capabilities

To address downgrading with run-time principals, we use capabilities (unforgeable tokens) to represent the
run-time authority of a principal. The meta-variable i ranges over a set of privilege identifiers I. We are
interested in controlling the use of declassification, so we assume that I contains at least the identifier
declassify, but the framework is general enough to control arbitrary privileges. Below, we consider using
capabilities to regulate other privileged operations, such as delegation.

Figure 4 summarizes the changes to the language needed to support run-time authority. Just as we
separate the static principal names from their run-time representation, we separate the static authority
granted by a principal from its representation. The former, static authority, is written p . i to indicate that
principal p grants permission for the program to use privilege i. For example, a program needs to have the
authority Alice . declassify to declassify on Alice ’s behalf. The latter, run-time authority, is written X{i}
and represents an unforgeable capability created by principal X and authorizing privilege i. Capabilities
have static type C.

A program can test a capability at run time to determine whether a principal has granted it privilege i
using the expression if (e1 ⇒ e2 . i) e3 e4. Here, e1 evaluates to a capability and e2 evaluates to a run-time
principal; if the capability implies that the principal permits i the first branch e3 is taken, otherwise e4 is
taken.

To retain the benefits of robust declassification, we generalize the pc label to be a set of static permissions,
π. The function type constructor must also be extended to indicate a bound on the calling context’s pc.
In our setting, the bound is the minimum authority needed to invoke the function. We write such types
as [π] t1 → t2. For example, if f has type [Alice . declassify] bool{Alice:!} → bool{!>} then the caller
of f must have Alice ’s authority to declassify—f may internally do some declassification of data owned by
Alice . Therefore f , which takes data owned by Alice and returns public data, may reveal information about
its argument. On the other hand, a function of type [Alice . declassify] bool{Bob:!} → bool{!>} cannot
declassify the argument, which is owned by Bob, unless Alice acts for Bob . Note that the types accurately
describe the security-relevant operations that may be performed by the function.

The examples above use only static authority. To illustrate how run-time capabilities are used, consider
this program:

h : ∀α. [·] Pα → [·] C → [·] bool{α:!} → bool{!>}

h = Λα. λuser :Pα. λcap :C. λdata :bool{α:!}.
if (cap ⇒ user . declassify)

(declassify data bool{!>}) false

10

The type of h is parameterized by a principal α, and the authority constraint [·] indicates that no static
authority is needed to call this function. Instead, h takes a run-time principal user (whose static name is α),
a capability cap, and some data private to α. The body of the function tests whether capability cap provides
evidence that user has granted the program the declassify privilege. If so, the first branch is taken and
the data is declassified to the bottom label. Otherwise h simply returns false.

The program h illustrates the use of the declassify e t expression, which declassifies the expression
e of type t′ to have type t, where t′ and t differ only in their security label annotations. The judgment
∆ ` t1 − t2 = s indicates that under the principal hierarchy ∆, the type t1 may be declassified to type
t2 using the authority of the principals in s. We call s the set of declassification requisites. For example,
` bool{Alice:!} − bool{Alice:Bob!} = {Alice}, because Alice ’s authority is needed to add Bob as a reader.
This judgment is used when typechecking the declassify expression:

∆; Γ; π ` e : t2
∆ ` t2 − t1 = s
∆ ` s � π(declassify)

∆; Γ; π ` declassify e t1 : t1
(T-Dcls)

The typing judgments for run-time authority are of the form ∆; Γ; π ` e : t, where π is the set of static
capabilities available within the expression e. Given static capabilities π, we write π(i) for the set of principals
that have granted the permission i; so π(i) = {p | p . i ∈ π}. In the rule T-Dcls, s is the set of principals
whose authority is needed to perform the declassification, therefore the condition ∆ ` s � π(declassify)
says that the set of declassify-granting principals in the static authority is sufficient to act for s.

For robustness, we must ensure that the integrity of the data is reflected in the set of static capabilities
available. To do so, we define an operator π|l, that restricts the capabilities in π to just those whose owners
have delegated to principals present in the integrity portion of the label l. With respect to hierarchy ∆, the
formal definition is:

π|{d!s} = {p . i ∈ π | ∃q ∈ s. ∆ ` p � q}

The restriction operator occurs in the typing rules of branching constructs. For example, this is the modified
form of the case expression:

∆; Γ; π1 ` e : (t1 + t2)l

∆; Γ; π1|l ` v1 : ([π2] t1 → t)l

∆; Γ; π1|l ` v2 : ([π2] t2 → t)l

∆ ` π2 � (π1|l)

∆; Γ; π1 ` case e v1 v2 : t t l
(T-Case)

The rule for capability certification also uses the restriction operator, but it also adds the permission p. i
before checking the branch taken when the capability provides privilege i (e3 below):

∆; Γ; π ` e1 : Cl

∆; Γ; π ` e2 : (Pp)l

∆; Γ; (π, p . i)|l ` e3 : t
∆; Γ; π|l ` e4 : t

∆; Γ; π ` if (e1 ⇒ e2 . i) e3 e4 : t t l
(T-IfCert)

Note that the restriction is applied after the permission is added, to prevent the specious amplification of
rights based on untrustworthy capabilities. At run time, the validity of a capability under the current acts-for
hierarchy determines which branch of the certification expression is taken:

A ` X1{i} ⇒ X2 . i

A, if (X1{i} ⇒ X2 . i) e3 e4 −→ A, e3
(E-CertYes)

A ` X1{i} 6⇒ X2 . i

A, if (X1{i} ⇒ X2 . i) e3 e4 −→ A, e4
(E-CertNo)

11

To verify that a capability grants permission for principal X2 to perform some privileged operation i, the
run-time system determines whether the issuer X1 of the capability acts for the principal X2 wanting to use
the capability: If A ` X2 � X1 then A ` X1{i} ⇒ X2 . i.

Function types capture the static capabilities that may be used in the body of the function, and the
modified rule for typechecking function application requires that the static capabilities π of the calling
context are sufficient to invoke the function:

∆; Γ, x : t1; π ` e : t2 ∆ ` l

∆; Γ; · ` λx : t1. e : ([π] t1 → t2)l

(T-Fun)

∆; Γ; π1 ` e1 : ([π2] t1 → t2)l

∆; Γ; π1 ` e2 : t1 ∆ ` π2 � (π1|l)

∆; Γ; π1 ` e1 e2 : t2 t l
(T-App)

Finer-grained control of declassification can be incorporated into this framework by refining the declassify
privilege identifier with more information, for instance to give upper bounds on the data that may be de-
classified or distinguish between declassify expressions applied for different reasons (see Section 4.2).

3.2 Delegation

Delegation allows the acts-for hierarchy to change during program execution—so far, the operational seman-
tics have been given in terms of a fixed A. When p delegates to q, then q may read or declassify all data
readable or owned by p; therefore, delegation is a very powerful operation that should require p’s permission.

We add a new expression let (e1 � e2) in e3 that allows programmers to extend the acts-for hierarchy
in the scope of the expression e3. Here, e1 and e2 must evaluate to run-time principals. Assuming their
static names are p and q, respectively, the body e3 is checked with the additional assumption that p � q.

Because delegation is a privileged operation, it needs the static authority of principal p. We extend
the set of privileges I to include additional identifiers of the form delegatep�q . The constraint ∆ ` p �
π(delegatep�q) ensures that the capability to extend the acts-for hierarchy has been granted by p:

∆; Γ; π ` e1 : (Pp)l

∆; Γ; π ` e2 : (Pq)l

∆, p � q; Γ; π ` e3 : t
∆ ` p � π(delegatep�q)

∆; Γ; π ` let (e1 � e2) in e3 : t t l
(T-LetDel)

As shown by the following evaluation rule E-LetDel, the body of a let-delegation term is evaluated to a
value under the extended acts-for hierarchy, but the original acts-for hierarchy is restored afterwards. This
ensures that the delegation is local to e3:

(A, X1 � X2), e3 −→ (A, X1 � X2), e
′
3

A, let (X1 � X2) in e3 −→ A, let (X1 � X2) in e′3

3.3 Acquiring capabilities

So far, this paper has not addressed how capability objects are obtained by the running program. Because
capabilities represent privileges conferred to the program by run-time principals, they must be provided by
the run-time system—they represent part of the dynamic execution environment. In practice, capabilities
may be created in a variety of ways: The operating system may create an appropriate set of capabilities after
authenticating a user. If the capabilities are implemented via digital certificates, then they may be obtained
over the network using the underlying PKI. Capabilities may also be generated by the system in response
to user input, for instance after prompting for user confirmation via a secure terminal.

12

To hide the details of the mechanism for producing capabilities, we model the external environment as
a black box E and write E ` X{i} to indicate that environment E produces the capability X{i}. Using the
expression acquire e . i, where e evaluates to a run-time principal, the program can query the environment
to see whether a given capability is available. This operation either returns the corresponding capability
object X{i} or indicates failure by returning *. This behavior is captured by the following typechecking and
evaluation rules (E-AcqNo, not shown, steps to inr * when E 6` X{i}):

∆; Γ; π ` e : (Pp)l

∆; Γ; π ` acquire e . i : (Cl + 1l)l

(T-Acq)

E ` X{i}
A, acquire X . i −→ A, inl X{i}

(E-AcqYes)

A common programming idiom is to obtain a run-time capability using acquire, certify the capability,
and, if both checks succeed, act using the newly acquired abilities:

case (acquire user . declassify)
λcap :C. if (cap ⇒ user . declassify)

(declassify data t) (. . .)
λx :1. . . .

When written in this way, there appears to be a lot of redundancy in these constructs. However, for the
sake of modularity and flexibility, we separate the introduction of a capability (acquire) from its validation
(the if test) and the use of the conferred privileges (the declassify). A surface language like Jif, would
provide syntactic sugar that combines the first two, the last two, or even all three of these operations.
Treating these features independently also allows more flexibility for the programmer. For instance, the
ability to pass capabilities as a first class objects is important in distributed settings, where one host may
manufacture a capability and send it to a second host that can verify the capability and act using the
privileges (see Section 4.2).

3.4 Soundness

As a second theoretical contribution of this paper, we have extended the soundness result (Theorem 1) in
Section 2 to the full language with authority and capability as follows. A complete proof can be found in
Appendix.

Theorem 5 (Soundness). (1) Progress: If A; ; π ` e : t, then e = v or A, e −→ A, e′. (2) Preservation: If
A; ; π ` e : t and A, e −→ A, e′, then A′; ; π′ ` e′ : t such that A � A′ and π � π′.

We have not proved a noninterference result for λRP with the run-time authority because we are primarily
concerned with regulating declassification, which intentionally breaks noninterference. We conjecture that
well-typed programs not containing declassify or delegation satisfy noninterference following a similar
argument to that given in Section 2.4, but we leave the proof of this claim to future work.

4 PKI and application

4.1 Public key infrastructure

This section considers some possible implementations of run-time principals, concentrating on one interpre-
tation in terms of a public key infrastructure.

If run-time principals are added to an information-flow type system whose programs are intended to
run within a single, trusted execution environment, the implementation is straightforward: The trusted run

13

time maintains an immutable (and persistent) mapping of principal names to unique identifiers, the acts-
for hierarchy is a directed graph with nodes labeled by identifiers, and capabilities can be implemented as
(unforgeable) handles to data structures created by the run-time system—this is the strategy currently taken
by Jif.

If the programs are intended to run in a distributed setting, the implementation becomes more challenging.
Fortunately, the appropriate machinery (principal names, delegation, and capabilities) has already been
developed using public-key cryptography [15, 11]. We can interpret λRP in terms of PKI as follows: run-time
principals are implemented via public keys, the acts-for hierarchy is implemented via certificate chains, and
capabilities are implemented as digitally signed certificates. Formally, we have the following interpretation,
where KX is the public key corresponding to X and K−1

X {[[i]]} is a certificate signed using X ’s private key.
The remaining constructs (the acts-for relation and the privileged operations) are interpreted as tuples:

[[X]] = KX

[[X1 � X2]] = (KX1
, KX2

)
[[X{i}]] = K−1

X {[[i]]}
[[declassify]] = dcls

[[X . i]] = (KX , [[i]])
[[delegateX1�X2

]] = (del, KX1
, KX2

)

(KX2
, KX1

) ∈ [[A]]∗

A ` K−1
X1

{[[i]]} ⇒ (KX2
, [[i]])

The interpretation of the acts-for hierarchy, [[A]]∗, is a binary relation on public keys—the reflexive,
transitive closure of the pointwise interpretation of the delegation pairs. Given these definitions, it is clear how
to interpret the capability verification—we use cryptographic primitives to verify that the digital certificate
is signed by the corresponding public key: verify KX1

K−1
X1

{[[i]]} = [[i]]. Note that in case of reflexive acts-

for, we have KX1
= KX2

and K−1
X1

{[[i]]} ⇒ (KX1
, [[i]]). The implementation uses graph reachability to test for

transitive acts-for relations in A. It is easy to show that the existence of a path in [[A]]∗ implies the existence
of a valid certificate chain.

Now the universally trusted host > behaves as a certificate authority that generates private keys and issues
certificates binding principal names to their corresponding public keys. To satisfy the axiom ∆ ` X � >,
we assume that each host’s run-time is configured with K−1

X {[[X � >]]} and (X,>) ∈ [[A]] for each X—this
information would be acquired by a host when it receives the principal X to key KX binding from the
certificate authority.

This interpretation permits flexibility in specifying security policies. Consider the following program that
takes in two capabilities and some data owned by Alice and attempts to declassify it.

1 λc1 :C. λc2 :C. λx :bool{Alice :!}.
2 if (c1 ⇒ Alice . delegateAlice�Bob)
3 let (Alice � Bob) in
4 if (c2 ⇒ Bob . declassify)
5 declassify x bool{!}

By the typing rule T-Dcls of declassification, line 5 needs the authority p . declassify for some p acting
for Alice because Alice’s policy is being weakened:

` bool{Alice :!} − bool{!} = {Alice}

The PKI implementation justifies the presence of Alice’s authorization. Assume the acts-for hierarchy
A at line 1 is the default hierarchy consisting of only (X,>) pairs. Line 2 uses [[Alice]] = KAlice to verify
the certificate A ` c1 ⇒ (KAlice , [[i]]) where [[i]] = [[Alice . delegateAlice�Bob]] = (del, KAlice , KBob). Since the

acts-for hierarchy is otherwise empty, c1 must be of the form K−1
Alice{[[i]]} or K−1

> {[[i]]}. The first certificate can

14

be validated using only KAlice ; the second can be validated starting from KAlice by checking the certificate
chain K−1

Alice{[[Alice � >]]} ↔ K−1
> {[[i]]}. If one of these chains is valid, line 3 adds the delegation information

into the hierarchy so that (KAlice , KBob) ∈ [[A]].
Similarly, there are two certificates c2 that may justify the static condition

Alice � π(declassify) = Alice � Bob

required by rule T-Dcls. If c2 = K−1
Bob{dcls}, the static condition holds at runtime because we can find the

chain:
K−1
Alice{[[Alice � Bob]]} ↔ K−1

Bob{dcls}

If c2 = K−1
> {dcls} we can find the chain:

K
−1

Alice{[[Alice � Bob]]} ↔ K
−1

Bob{[[Bob � >]]} ↔ K
−1

>
{dcls}

In general, the justification for constraint p1 � π(i) is the existence of some certificate chain of the form:

K
−1

p1
{[[p1 � p2]]} ↔ . . . ↔ K

−1

p
n−1

{[[pn−1 � pn]]} ↔ K
−1

pn
{[[i]]}

4.2 Application to distributed banking

Figure 5 shows a more elaborate example λRP program that implements a distributed banking scenario
in which a customer interacts with their bank through an ATM. The example uses a number of standard
constructs such as integers, pairs, let-binding, and existential types that are not in λRP, but could readily
be added or encoded [23]. The main functions for the ATMs and the Bank are shown, along with the types
of various auxiliary functions.

The static principals are Bank and ATM1 through ATMn , and there are two run-time principals, user
and agent. The principal user is the customer at an ATM; agent is the Bank ’s name for one of the n ATMs
that may connect to the bank server. On the left is the client code for ATMj (a particular ATM), on the
right is the bank server code.

At the ATMj , the customer logs in with the bank card and the password, revealing his identity [user, userid]
and allowing ATMj to act for him (represented by the capability cdel). Then ATMj interacts with user to
obtain his request such as withdrawing $100. This interaction is modeled by the acquire. The ATM client
packs the identities ATMj and userid and the delegation cdel and the request creq certificates into a message.
To send the message over the channel to Bank , ATMj gives up the ownership of the data by declassify-
ing the message to have label {Bank:Bank!}. As a result of the transaction with the bank server, ATMj

obtains the new account balance of the customer. Finally, ATMj prompts to determine whether the user
wants a receipt, which requires a declassification certificate to print. This example makes use of fine-grained
declassify privileges to distinguish between the printing and network send uses of declassification.

The bank server listens over the private channel and receives the message. The listen function also
provides a reply channel so that the balance can be returned to the same ATM. The server determines that
user has logged in to ATMj by verifying cdel, and if so, checks that the request capability is valid. If so, the
server updates its database, and declassifies the resulting balance to be sent back to the ATM. In practice
Bank will also want to log the certificates for auditing purposes.

In the functions request and listen, we assume the existence of a private network between ATMj and
Bank , which can be established using authentication and encryption. Since the network is private, the outgo-
ing data must be readable only by the receiver; and, since the network is trusted, the incoming data has the
integrity of the receiver. The labels of their types faithfully reflect this policy: for example, {Bank:Bank!}
vs. {agent:agent!agent} in the type of request.

Note the run-time authority for declassification and delegation are provided by the customer—they are
acquired by the interaction of ATMj and user. In contrast, in the types of ATMj main and Bank main,
the static capability requirements [ATMj . declassifynet] and [Bank . declassifynet] indicate that the
authorities to declassify to the network must be established from the caller.

15

ATMj main : [ATMj . declassifynet]1 → 1

Bank main : [Bank . declassifynet]1 → 1

request : ∀(agent, user). (Pagent, Puser, C, C){Bank:Bank!}
→ int{agent:agent!agent}

listen : 1 → ∃(agent, user). (Pagent, Puser , C, C, (int{agent:agent!} → 1))
{Bank:Bank!Bank}

login : 1 → (∃user. Puser, C){ATMj :ATMj !}

print : int{!} → 1

get : ∀user. Puser → int{Bank:Bank!}

set : ∀user. Puser → int→ 1

ATMj main = λx : 1.
let [user, (userid, cdel)] = login * in

case (acquire userid . withdraw100)
λcreq : C. let message = [(agent, user),

(ATMj , userid, cdel, creq)] in
let data = declassifynet message

(PATMj
, Puser , C, C){Bank:Bank!}

in

let balance = request [ATMj , user] data in

case (acquire userid . declassifyprt)
λcprt : C. if (cprt ⇒ userid . declassifyprt)

let data = declassifyprt balance int{!} in

print data
· · · // other banking options

Bank main = λx : 1.
let [(agent, user), (agentid, userid,

cdel, creq , reply)] = listen * in

if (cdel ⇒ userid . delegateuser�agent)
let (userid � agentid) in
if (cdel ⇒ userid . withdraw100)
let old = get [user] userid in

let balance = old − 100 in

set [user] userid balance;
let data = declassifynet

balance int{user:user!} in

reply data
· · · // other banking options

Figure 5: A distributed banking example

5 Discussion

5.1 Related work

The work nearest to ours is the Jif project, by Myers et al. [20]. Although the Jif compiler supports run-time
principals, its type system has not been shown to be sound. Our noninterference proof for λRP is a step in
that direction. Jif also supports run-time labels—run-time representations of the label annotations and a
switch label construct that lets programs inspect the labels at runtime. Although it is desirable to support
both run-time labels and run-time principals, the two features are mostly orthogonal.

Although the core λRP presented here is not immediately suitable for use by programmers (more palatable
syntax would be needed), λRP can serve as a typed intermediate representations for languages like Jif.
Moreover, this approach improves on the current implementation of the decentralized label model (DLM)
because Jif does not support declassification of data owned by run-time principals, nor does it provide
language support for altering the acts-for hierarchy. Our separation of static principals from their run-time
representations also clarifies the type checking rules.

The ability to perform acts-for tests at runtime is closely related to intensional type analysis, which
permits programs to inspect the structure of types at runtime. Our use of singleton types like Pp to tie
run-time tests to static types follows the work by Crary, Weirich, and Morrisett [9]. Static capability sets
π in our type system are a form of effects [17], which have also been used to regulate the read and write
privileges in type systems for memory management [8].

The robustness condition on the set of run-time capabilities is very closely related to Java’s stack in-
spection model [33, 32, 10, 26]. In particular, the enable-privilege operation corresponds to our if (e1 ⇒
e2 . i) e3 e4 and the check-privileges operation corresponds to the constraint on π in the declassify rule.
The restriction π|l of capability sets in the type-checking rule for function application corresponds to the

16

taking the intersection of privilege sets in these type systems. However, stack inspection is not robust in the
sense that data returned from an untrusted context can influence the outcome of privileged operations [10].
In contrast, λRP tracks the integrity of data and restricts the capability sets according to the principals’
trust in the data—this is why the restriction π|l appears in the typechecking rule for case expressions.

Banerjee and Naumann [7] have previously shown how to mix stack inspection-style access control
with information-flow analysis. They prove a noninterference result, which extends their earlier work on
information-flow in Java-like languages [6]. Unlike their work, this paper considers run-time principals as
well as run-time access control checks. Incorporating the principals used by the DLM into the privileges
checked by stack inspection allows our type system to connect the information-flow policies to the access
control policy, as seen in the typechecking rule for declassify.

We have proposed the use of public key infrastructure as a natural way to implement the authority needed
to regulate declassification in the presence of run-time principals. Although the interpretation of principals
as public keys and authorized actions as digitally signed certificates is not new, integrating these features in a
language with static guarantees brings new insights to information-flow type systems. This approach should
facilitate the development of software that interfaces with existing access-control mechanisms in distributed
systems [15, 11].

Making the connection between PKI and the label model more explicit may have additional benefits.
Myers and Liskov observed that the DLM acts-for relation is closely related to the speaks-for relation in
the logical formulation of distributed access control by Abadi et al. [3]. Adopting the local names of the
SDSI/SPKI framework [1] may extend the analogy even further.

Lastly, although capabilities mechanism in λRP provides facilities for programming with static and run-
time capabilities, we do not address the problem of revocation. It would be useful to find suitable language
support for handling revocation, such as the work by Jim and Gunter [16, 13], but we leave such pursuits to
future work.

5.2 Conclusions

Information-flow type systems are a promising way to provide strong confidentiality and integrity guarantees.
However, their practicality depends on their ability to interface with external security mechanisms, such
as the access controls and authentication features provided by an operating system. Previous work has
established noninterference only for information-flow policies that are determined at compile time, but such
static approaches are not suitable for integration with run-time security environments.

This paper addresses this problem in three ways: (1) We prove noninterference for an information-flow
type system with run-time principals, which allow security policies to depend on the run-time identity
of users. (2) We show how to soundly extend this language with a robust access-control mechanism, a
generalization of stack inspection, that can be used to control privileged operations such as declassification
and delegation. (3) We sketch how the run-time principals and the acts-for hierarchy of the decentralized
label model can be interpreted using public key infrastructure.

Acknowledgments The authors thank Steve Chong, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie
Weirich and anonymous referees for their helpful suggestions and comments on earlier drafts of this work.

References

[1] M. Abadi. On SDSI’s linked local name spaces. Journal of Computer Security, 6(1-2):3–21, 1998.

[2] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency. In Proc. 26th ACM
Symp. on Principles of Programming Languages (POPL), pages 147–160, San Antonio, TX, Jan. 1999.

[3] M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin. A calculus for access control in distributed
systems. Transactions on Programming Languages and Systems, 15(4):706–734, Sept. 1993.

17

[4] J. Agat. Transforming out timing leaks. In Proc. 27th ACM Symp. on Principles of Programming
Languages (POPL), pages 40–53, Boston, MA, Jan. 2000.

[5] D. Aspinall. Subtyping with Singleton Types. In Computer Science Logic, 1994.

[6] A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement in a java-like
language. In Proc. of the 15th IEEE Computer Security Foundations Workshop, 2002.

[7] A. Banerjee and D. A. Naumann. Using access control for secure information flow in a Java-like language.
In Proc. of the 16th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press,
June 2003.

[8] K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus of capabilities. In
Proc. 26th ACM Symp. on Principles of Programming Languages (POPL), pages 262–275, San Antonio,
Texas, Jan. 1999.

[9] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in type erasure semantics. Journal
of Functional Programming, 12(6):567–600, Nov. 2002.

[10] C. Fournet and A. Gordon. Stack inspection: Theory and variants. In Proc. 29th ACM Symp. on
Principles of Programming Languages (POPL), pages 307–318, 2002.

[11] M. Gasser and E. McDermott. An architecture for practical delegation in a distributed system. In Proc.
IEEE Symposium on Security and Privacy, pages 20–30. IEEE Computer Society Press, 1990.

[12] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symposium on
Security and Privacy, pages 11–20. IEEE Computer Society Press, Apr. 1982.

[13] C. A. Gunter and T. Jim. Generalized certificate revocation. In Proc. 27th ACM Symp. on Principles
of Programming Languages (POPL), pages 316–329, Boston, Massachusetts, Jan. 2000. ACM Press.

[14] N. Heintze and J. G. Riecke. The SLam calculus: Programming with secrecy and integrity. In Proc. 25th
ACM Symp. on Principles of Programming Languages (POPL), pages 365–377, San Diego, California,
Jan. 1998.

[15] J. Howell and D. Kotz. End-to-end authorization. In Proc. USENIX Symp. on Operating Systems
Design and Implementation (OSDI), pages 151–164, 2000.

[16] T. Jim. SD3: a trust management system with certificate revocation. In IEEE Symposium on Security
and Privacy, pages 106–115, 2001.

[17] P. Jouvelot and D. K. Gifford. Algebraic reconstruction of types and effects. In ACM Symposium on
Principles of Programming Languages, pages 303–310, Jan. 1991.

[18] P. Li, Y. Mao, and S. Zdancewic. Information integrity policies. In Proceedings of the Workshop on
Formal Aspects in Security & Trust (FAST), Sept. 2003.

[19] J. C. Mitchell. Foundations for Programming Languages. Foundations of Computing Series. The MIT
Press, 1996.

[20] A. C. Myers, S. Chong, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java information flow. Software
release. Located at http://www.cs.cornell.edu/jif.

[21] A. C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. In Proc. IEEE
Symposium on Security and Privacy, pages 186–197, Oakland, CA, USA, May 1998.

[22] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM Transactions
on Software Engineering and Methodology, 9(4):410–442, 2000.

18

[23] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[24] F. Pottier and S. Conchon. Information flow inference for free. In Proc. 5th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP), pages 46–57, Sept. 2000.

[25] F. Pottier and V. Simonet. Information flow inference for ML. In Proc. 29th ACM Symp. on Principles
of Programming Languages (POPL), Portland, Oregon, Jan. 2002.

[26] F. Pottier, C. Skalka, and S. F. Smith. A Systematic Approach to Static Access Control. In European
Symposium on Programming, 2001.

[27] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

[28] A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential programs. Higher-
Order and Symbolic Computation, 14(1):59–91, Mar. 2001.

[29] V. Simonet. Flow caml in a nutshell. In G. Hutton, editor, Proceedings of the first APPSEM-II workshop,
pages 152–165, Mar. 2003.

[30] S. Tse and S. Zdancewic. Run-time principals in information-flow type systems. Technical Report
MS-CIS-03-39, University of Pennsylvania, 2004.

[31] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal of Computer
Security, 4(3):167–187, 1996.

[32] D. S. Wallach, A. W. Appel, and E. W. Felten. The security architecture formerly known as stack inspec-
tion: A security mechanism for language-based systems. ACM Transactions on Software Engineering
and Methodology, 9(4), Oct. 2000.

[33] D. S. Wallach and E. W. Felten. Understanding Java stack inspection. In Proc. IEEE Symposium on
Security and Privacy, Oakland, California, USA, May 1998.

[34] S. Zdancewic. A type system for robust declassification. In Proceedings of the Nineteenth Conference on
the Mathematical Foundations of Programming Semantics. Electronic Notes in Theoretical Computer
Science, Mar. 2003.

[35] S. Zdancewic and A. C. Myers. Secure information flow and CPS. In Proc. of the 10th European
Symposium on Programming, volume 2028 of Lecture Notes in Computer Science, pages 46–61, Apr.
2001.

[36] S. Zdancewic and A. C. Myers. Secure information flow via linear continuations. Higher Order and
Symbolic Computation, 15(2/3), 2002.

A Syntax

A secure type consists of a base type and a label. A function type [π] t → t is annotated with authority π
as a program counter that keeps track of a privileged operations i (such as declassify and delegate) granted
by principal p. Pp is a singleton type for a dynamic principal p. A capability X{i} of type C represents a
digitally signed certificate of a principal name X granting a privileged operation i.

19

t ::= ul Secure types
u ::= Base types

1 unit
t + t sum
[π] t → t function
Pp principal
C capability
∀α � p. t universal

v ::= Values
* unit
inl v left injection
inr v right injection
λx : t. e function
X principal constant
X{i} capability
Λα � p. e polymorphism

e ::= Terms
v value
x variable
inl e left injection
inr e right injection
case e v v sum case
e e application
if (e � e) e e if delegate
let (e � e) in e let delegate
if (e ⇒ e . i) e e if certify
declassify e t declassify
acquire e . i acquire
e [p] instantiation

20

p ::= Principals
α variable
X name

s ::= · | p, s Principal sets
c ::= · | p : s Policies
d ::= · | c; d Policy sets
l ::= {d!s} Labels

∆ ::= · | ∆, p � p Principal environments
A ::= · | A, X � X Acts-for hierarchies
Γ ::= · | Γ, x : t Term environments
π ::= · | π, p . i Authority
δ ::= · | δ, α 7→ X Principal substitutions
γ ::= · | γ, x 7→ v Term substitutions

i ::= Privileges
declassify declassify
delegatep�p delegate

B Static semantics

B.1 Typing

A label is well-formed ∆ ` l if ∆ contains all free principal variables of the label. During function applications
in T-Case and T-App, we check the precondition of the program counter is satisfied: ` π2 � (π1|l). We also
restrict the program counter to the integrity label of the branch condition ∆; Γ; π1|l such that privileged
operations are robust. ∆ ` t2 − t1 = s computes the declassification requisite which is the set of principals
whose authorities are needed in order to declassify.

21

∆; Γ; π ` e : t Typing

x : t ∈ Γ
∆; Γ; π ` x : t

T-Var

∆ ` l
∆; Γ; π ` * : 1l

T-Unit

∆; Γ; π ` e : t1 ∆ ` l

∆; Γ; π ` inl e : (t1 + t2)l

T-Inl

∆; Γ; π ` e : t2 ∆ ` l

∆; Γ; π ` inr e : (t1 + t2)l

T-Inr

∆; Γ; π1 ` e : (t1 + t2)l ∆; Γ; π1|l ` v1 : ([π2] t1 → t)l
∆ ` π2 � (π1|l) ∆; Γ; π1|l ` v2 : ([π2] t2 → t)l

∆; Γ; π1 ` case e v1 v2 : t t l
T-Case

∆; Γ, x : t1; π ` e : t2 ∆ ` l

∆; Γ; · ` λx : t1. e : ([π] t1 → t2)l

T-Fun

∆; Γ; π1 ` e1 : ([π2] t1 → t2)l ∆; Γ; π1 ` e2 : t1 ∆ ` π2 � (π1|l)

∆; Γ; π1 ` e1 e2 : t2 t l
T-App

∆ ` l
∆; Γ; π ` X : (PX)l

T-PName

∆ ` l
∆; Γ; π ` X{i} : Cl

T-Cap

∆; Γ; π ` e1 : (Pp1
)
l

∆; Γ; π ` e2 : (Pp2
)
l

∆, p1 � p2; Γ; π ` e3 : t ∆; Γ; π ` e4 : t

∆; Γ; π ` if (e1 � e2) e3 e4 : t t l
T-IfDel

∆; Γ; π ` e1 : (Pp1
)
l

∆; Γ; π ` e2 : (Pp2
)
l

∆, p1 � p2; Γ; π ` e3 : t ∆ ` p1 � π(delegatep1�p2
)

∆; Γ; π ` let (e1 � e2) in e3 : t t l
T-LetDel

∆; Γ; π ` e1 : Cl ∆; Γ; π ` e2 : (Pp)l
∆; Γ; (π, p . i)|l ` e3 : t ∆; Γ; π|l ` e4 : t

∆; Γ; π ` if (e1 ⇒ e2 . i) e3 e4 : t t l
T-IfCert

∆; Γ; π ` e : t2 ∆ ` t2 − t1 = s ∆ ` s � π(declassify)

∆; Γ; π ` declassify e t1 : t1
T-Dcls

∆; Γ; π ` e : (Pp)l

∆; Γ; π ` acquire e . i : (Cl + 1l)l

T-Acq

22

∆, α � p; Γ; π ` e : t α 6∈ dom(∆) ∆ ` l

∆; Γ; π ` Λα � p. e : (∀α � p. t)l

T-All

∆; Γ; π ` e : (∀α � p2. t)l ∆ ` p1 � p2

∆; Γ; π ` e [p1] : t t l
T-PApp

∆; Γ; π ` e : t1 ∆ ` t1 ≤ t2
∆; Γ; π ` e : t2

T-Sub

B.2 Substitution

Convention 6 (Capture-avoiding substitution). When we write γ(λx : t. e), it is assumed that x 6∈
dom(γ). When we write δ(∀α � p. t) or δ(Λα � p. e), it is assumed that α 6∈ dom(δ).

We define e•
def
= γδ(e). We define γ(x) = v if x 7→ v ∈ γ, and γ(x) = x otherwise. Similarly, we define

δ(α) = X if α 7→ X ∈ δ, and δ(α) = α otherwise. The � can be instantiated with any of these syntactic
categories: t, u, e, v, p, s, c and d, l, ∆ and Γ. (It cannot be instantiated with A, δ or γ.)

23

�• = � Substitution

(δ, α 7→ X)(�) = δ(�{X/α}) Su-Delta

(γ, x 7→ v)(e) = γ(e{v/x}) Su-Gamma

·• = · Su-Empty

(ul)
• = u•

l• Tsu-UL

(t1 + t2)
• = t•1 + t•2 Tsu-Sum

(t1 → t2)
• = t•1 → t•2 Tsu-Fun

(Pp)
• = Pp• Tsu-PName

(C)• = C Tsu-Cap

(∀α � p. t)• = ∀α � p•. t• Tsu-All

1• = 1 Tsu-Unit

*• = * Esu-Unit

x• = γ(x) Esu-Var

(inl e)• = inl e• Esu-Inl

(inr e)• = inr e• Esu-Inr

(case e v1 v2)
• = case e• v•1 v•2 Esu-Case

(λx : t. e)• = λx : t•. e• Esu-Fun

(e1 e2)
• = e•1 e•2 Esu-App

(X)• = X Esu-PName

(X{i})• = X{i•} Esu-Cap

24

(if (e1 � e2) e3 e4)
• = if (e•1 � e•2) e•3 e•4 Esu-IfDel

(if (e1 ⇒ e2 . e3) e4)• = if (e•1 ⇒ e•2 . e•3) e•4 Esu-IfDel

(let (e1 � e2) in e3)
• = let (e•1 � e•2) in e•3 Esu-IfDel

(declassify e t)• = declassify e• t• Esu-IfDel

(acquire e . i)• = acquire e• . i• Esu-IfDel

(Λα � p. e)• = Λα � p•. e• Esu-All

(e1 [p])• = e•1 [p•] Esu-PApp

α• = δ(α) Lsu-Var

X• = X Lsu-Name

(p, s)• = p•, s• Lsu-PSet

(p : s)• = p• : s• Lsu-Policy

(c; d)• = c•; d• Lsu-CSet

{d!s}• = {d•!s•} Lsu-Label

(∆, p1 � p2)
• = ∆•, p•1 � p•2 Su-PEnv

(Γ, x : t)• = Γ•, x : t• Su-EEnv

(π, p : i)• = π•, p• : i• Su-EEnv

declassify• = declassify Su-Dcls

(delegatep1�p2
)• = delegatep•

1
�p•

2

Su-Del

B.3 Subtyping

Note that we disallow subtyping with singleton principal–allowing it will break type soundness and nonin-
terference.

25

∆ ` p � p Acts-for

∆ ` p � p A-Refl

∆ ` p1 � p2 ∆ ` p2 � p3

∆ ` p1 � p3 A-Trans

∆ ` p � > A-Top

p1 � p2 ∈ ∆

∆ ` p1 � p2 A-Constr

fv(l) ⊆ dom(∆)

∆ ` l Ok-Label

ul t l′ = ul t l′ J-UL

∆ ` u ≤ u′ ∆ ` l v l′

∆ ` ul ≤ u′
l′ St-UL

∆ ` u ≤ u Base Subtyping

∆ ` u ≤ u St-Refl

∆ ` u ≤ u′ ∆ ` u′ ≤ u′′

∆ ` u ≤ u′′ St-Trans

∆ ` t1 ≤ t′1 ∆ ` t2 ≤ t′2
∆ ` (t1 + t2) ≤ (t′1 + t′2) St-Sum

∆ ` t′1 ≤ t1 ∆ ` t2 ≤ t′2
∆ ` (t1 → t2) ≤ (t′1 → t′2) St-Fun

∆ ` p′ � p ∆, α � p′ ` t ≤ t′

∆ ` (∀α � p. t) ≤ (∀α � p′. t′) St-All

B.4 Declassification and models

∆ ` t2 − t1 = s computes the declassification requisite which is the set of principals whose authorities are
needed in order to declassify.

The notation δ |= ∆ denotes a substitution δ that assigns each free principal variable α in hierarchy ∆
to a principal name X . Similarly, A ` γ |= δ(Γ) denotes a term substitution γ that assigns each free term
variable x in environment Γ to a value such that the assignment respects the typing x : t in Γ.

26

∆ ` t − t = s Declassification requisite

∆ ` u − u′ = s1 ∆ ` l − l′ = s2

∆ ` ul − u′
l′ = s1 ∪ s2

D-UL

∆ ` 1− 1 = · D-Unit

∆ ` t1 − t′1 = s1 ∆ ` t2 − t′2 = s2

∆ ` (t1 + t2) − (t′1 + t′2) = s1 ∪ s2
D-Sum

∆ ` t′1 − t1 = s1 ∆ ` t2 − t′2 = s2

∆ ` (t1 → t2) − (t′1 → t′2) = s1 ∪ s2
D-Fun

∆ ` Pp − Pp = · D-PName

∆, α � p ` t − t′ = s

∆ ` (∀α � p. t) − (∀α � p. t′) = s
D-All

s′ = {p | ∆ ` d2(p) � d1(p), ∆ ` d1(p) 6� d2(p)}

∆ ` {d1!s}− {d2!s} = s′
D-Label

∆ ` γ |= Γ ESubs model

∆ ` · |= · Em-Nil

∆ ` γ |= Γ ∆; Γ; π ` v : t

∆ ` γ, x 7→ v |= Γ, x : t Em-Cons

δ |= ∆ PSubs model

· |= · Pm-Nil

δ |= ∆ ∆ ` p1 � p2

δ, α 7→ p1 |= ∆, α � p2 Pm-Var

δ |= ∆

δ |= ∆, X � p2 Pm-Name

fv(Γ) ⊆ dom(∆)

∆ ` Γ EEnv Ok

C Dynamic semantics

At run-time, E-IfDelYes checks if delegation from X1 to X2 is satisfiable in the acts-for hierarchy A. E-LetDel
adds delegation to the hierarchy. E-IfCertYes cryptographically verifies if a certificate is valid. E-AcqYes
enquires the external environment E if a principal p is granting the privileged operation i.

27

A, e −→ A, e Evaluation

A, e −→ A, e′

A, inl e −→ A, inl e′
E-Inl

A, e −→ A, e′

A, inr e −→ A, inr e′
E-Inr

A, e −→ A, e′

A, case e v1 v2 −→ A, case e′ v1 v2
E-Case

A, case (inl v) v1 v2 −→ A, v1 v E-CaseInl

A, case (inr v) v1 v2 −→ A, v2 v E-CaseInr

A, e1 −→ A, e′1
A, e1 e2 −→ A, e′1 e2

E-App1

A, e −→ A, e′

A, v e −→ A, v e′
E-App2

A, (λx : t. e) v −→ A, e{v/x} E-AppFun

A, e1 −→ A, e′1
A, if (e1 � e2) e3 e4 −→ A, if (e′1 � e2) e3 e4

E-IfDel1

A, e2 −→ A, e′2
A, if (v � e2) e3 e4 −→ A, if (v � e′2) e3 e4

E-IfDel2

A ` X1 � X2

A, if (X1 � X2) e3 e4 −→ A, e3
E-IfDelYes

A ` X1 6� X2

A, if (X1 � X2) e3 e4 −→ A, e4
E-IfDelNo

28

A, e2 −→ A, e′2
A, let (v � e2) in e3 −→ A, let (v � e′2) in e3

E-LetDel1

A, e1 −→ A, e′1
A, let (e1 � e2) in e3 −→ A, let (e′1 � e2) in e3

E-LetDel2

(A, X1 � X2), e3 −→ (A, X1 � X2), e
′
3

A, let (X1 � X2) in e3 −→ A, let (X1 � X2) in e′3
E-LetDel

A, let (X1 � X2) in v −→ A, v
E-LetDelV

A, e1 −→ A, e′1
A, if (e1 ⇒ e2 . i) e3 e4 −→ A, if (e′1 ⇒ e2 . i) e3 e4

E-IfCert1

A, e2 −→ A, e′2
A, if (v ⇒ e2 . i) e3 e4 −→ A, if (v ⇒ e′2 . i) e3 e4

E-IfCert2

A ` X1{i} ⇒ X2 . i

A, if (X1{i} ⇒ X2 . i) e3 e4 −→ A, e3
E-IfCertYes

A ` X1{i} 6⇒ X2 . i

A, if (X1{i} ⇒ X2 . i) e3 e4 −→ A, e4
E-IfCertNo

A, e −→ A, e′

A, declassify e t −→ A, e′ E-Dcls1

A, declassify v t −→ A, v E-Dcls2

A, e −→ A, e′

A, acquire e . i −→ A, acquire e′ . i
E-Acq

E ` X{i}
A, acquire X . i −→ A, inl X{i}

E-AcqYes

E 6` X{i}

A, acquire X . i −→ A, inr *
E-AcqNo

A, e −→ A, e′

A, e [X] −→ A, e′ [X]
E-PApp

A, (Λα � p. e) [X] −→ A, e{X/α} E-PAppAll

A, e −→∗ A, e Multistep eval

A, v −→∗ A, v EM-Refl

A, e −→ A, e′ A, e′ −→∗ A, e′′

A, e −→∗ A, e′′ EM-Trans

29

D Theorems

This section proves the soundness of the language with respect to the operational semantics: progress and
preservation theorems. The main lemma is substitution for typing and subtyping. Canonical forms, inversion
and weakening are standard for languages with subtyping.

Lemma 7 (Canonical forms).

1. If A; ; π ` v : (t1 + t2)l, then v = inl v1 or v = inr v2

2. If A; ; π ` v : ([π2] t1 → t2)l, then v = λx : t. e.

3. If A; ; π ` v : (PX)l, then v = X.

4. If A; ; π ` v : Cl, then v = X{i}.

5. If A; ; π ` v : (∀α � p. t)l, then v = Λα � p′. e.

6. If A; ; π ` v [p] : t, then p = X.

Theorem 8 (Progress). If A; ; π ` e : t, then e = v or A, e −→ A, e′.

Proof. By induction on typing derivations:

• T-Var:
x : t ∈ ·

A; ; π ` x : t

But · cannot contain x : t, and hence this case does not apply.

• T-Unit:
` l

A; ; π ` * : 1l

e is a value.

• T-Inl:

A; ; π ` e1 : t1 ` l

A; ; π ` inl e1 : (t1 + t2)l

By IH on e1,

1. e1 = v: e = inl v is a value.

2. A, e1 −→ A, e′1: by E-Inl, e′ = inl e′1.

• T-Inr: symmetric to T-Inl.

• T-Case:

A; ; π ` e0 : (t1 + t2)l A; ; π ` v1 : ([π2] t1 → t0)l A; ; π ` v2 : ([π2] t2 → t0)l A ` π2 � (π|l)

A; ; π ` case e0 v1 v2 : t0 t l

By IH on e0,

1. A, e0 −→ A, e′0: by E-Case, e′ = case e′0 v1 v2.

2. e0 = v: by Lemma 7 (canonical forms),

(a) e0 = inl v0: by E-CaseInl, e′ = v1 v0.

(b) e0 = inr v0: by E-CaseInr, e′ = v2 v0.

• T-Fun:

A; x : t1;` e0 : t2 x 6∈ dom(·) ` l

A; ; π ` λx : t1. e0 : [·] t1 → t2

e is a value.

30

• T-App:

A; ; π ` e1 : ([π2] t1 → t2)l A; ; π ` e2 : t1 A ` π2 � (π|l)

A; ; π ` e1 e2 : t2 t l

By IH on e1 and e2,

1. A, e1 −→ A, e′1: by E-App1, e′ = e′1 e2.

2. e1 = v and A, e2 −→ A, e′2: by E-App2, e′ = v e′2.

3. e1 = v1 and e2 = v2: by Lemma 7 (canonical forms), e1 = λx : t. ′e0 and then by E-AppFun,
e′ = e0{v2/x}.

• T-PName:
` l

A; ; π ` X : (PX)l

e is a value.

• T-Cap:
` l

A; ; π ` X{i} : Cl

e is a value.

• T-IfDel:

A; ; π ` e1 : (Pp1
)
l

A; ; π ` e2 : (Pp2
)
l

A, p1 � p2; ; π ` e3 : t0 A; ; π ` e4 : t0

A; ; π ` if (e1 � e2) e3 e4 : t0 t l

By IH on e1 and e2,

1. A, e1 −→ A, e′1: by E-IfDel1, e′ = if (e′1 � e2) e3 e4.

2. e1 = v and A, e2 −→ A, e′2: by E-IfDel2, e′ = if (v � e′2) e3 e4.

3. e1 = v1 and e2 = v2: by Lemma 7 (canonical forms),

(a) e1 = X1, e2 = X2 and A ` X1 � X2: by E-IfDelYes, e′ = e3.

(b) e1 = X1, e2 = X2 and A ` X1 6� X2: by E-IfDelNo, e′ = e4.

• T-LetDel:

A; ; π ` e1 : (Pp1
)
l

A; ; π ` e2 : (Pp2
)
l

A, p1 � p2; ; π ` e3 : t0 A ` p1 � π(delegatep1�p2
)

A; ; π ` let (e1 � e2) in e3 : t0 t l

By IH on e1 and e2,

1. A, e1 −→ A, e′1: by E-LetDel1, e′ = let (e′1 � e2) in e3.

2. e1 = v and A, e2 −→ A, e′2: by E-LetDel2, e′ = let (v � e′2) in e3.

3. e1 = v1 and e2 = v2: by Lemma 7 (canonical forms), e1 = X1 and e2 = X2. Then, by IH on e3,
we have e′ = let (X1 � X2) in e′3 (by E-LetDel), or we have e′ = v (by E-LetDelV).

• T-IfCert:

A ` e1 : Cl A ` e2 : (Pp)l
A; ; (π, p . i)|l ` e3 : t0 A; ; π|l ` e4 : t0

A ` if (e1 ⇒ e2 . i) e3 e4 : t0 t l

By IH on e1 and e2,

1. A, e1 −→ A, e′1: by E-IfCert1, e′ = if (e′1 ⇒ e2 . i) e3 e4.

2. e1 = v and A, e2 −→ A, e′2: by E-IfCert2, e′ = if (v ⇒ e′2 . i) e3 e4.

3. e1 = v1 and e2 = v2: by Lemma 7 (canonical forms),

(a) e1 = X{i}, e2 = X and A ` X1{i} ⇒ X2 . i: by E-IfCertYes, e′ = e3.

(b) e1 = X , e2 = X and A ` X1{i} 6⇒ X2 . i: by E-IfCertNo, e′ = e4.

• T-Dcls:

A ` e0 : t2 A ` t2 − t1 = s A ` s � π(declassify)

A ` declassify e0 t1 : t1

By E-Dcls1 or E-Dcls2.

31

• T-Acq:

A; ; π ` e0 : (Pp)l

A; ; π ` acquire e0 . i : (Cl + 1l)l

By IH on e0,

1. A, e0 −→ A, e′0: by E-Acq, e′ = acquire e′0 . i.

2. e0 = v: by Lemma 7 (canonical forms), e0 = X{i}. Then, either

(a) E ` X{i}: by E-AcqYes, e′ = inl X{i}.

(b) E 6` X{i}: by E-AcqNo, e′ = inr *.

• T-All:

A, α � p ` e0 : t0 α 6∈ dom(A) ` l

A; ; π ` Λα � p. e0 : (∀α � p. t0)l

e is a value.

• T-PApp:

A; ; π ` e0 : (∀α � p. t0)l

A; ; π ` e0 [p] : t0 t l

By IH on e0,

1. A, e0 −→ A, e′0: by E-PApp, e′ = e′0 [p].

2. e0 = v: by Lemma 7 (canonical forms), e0 = Λα � p. e1 and p = X . Then, by E-PAppAll,
e′ = e1{X/α}.

• T-Sub:

A; ; π ` e0 : t1 A ` t1 ≤ t2
A; ; π ` e0 : t2

By IH on e0.

Lemma 9 (Inversion).

1. If ∆; Γ; π ` inl v : (t1 + t2)l, then ∆; Γ; π ` v : t1.

2. If ∆; Γ; π ` inr v : (t1 + t2)l, then ∆; Γ; π ` v : t2.

3. If ∆; Γ; π ` λx : t1. e : (t1 → t2)l, then ∆; Γ, x : t1 ` e : t2.

4. If ∆; Γ; π ` Λα � p. e : (∀α � p. t)l, then ∆, α � p; Γ; π ` e : t.

Proof. By normalizing the typing derivations (collapsing multiple applications of T-Sub into one application
of T-Sub).

Lemma 10 (Weakening).

1. If ∆; Γ; π ` e : t, then ∆, p1 � p2; Γ, x : t′; π, p . i ` e : t.

2. If π1 � π2 and π2 � π3, then π1 � π3.

Lemma 11 (Substitution for join). δ(t t l) = δ(t) t δ(l)

Lemma 12 (Substitution for subtyping).

1. If ∆ ` t1 ≤ t2, δ |= ∆ and A = δ(∆), then A ` δ(t1) ≤ δ(t2)

2. If ∆ ` l1 v l2, δ |= ∆ and A = δ(∆), then A ` δ(l1) v δ(l2)

3. If ∆ ` c1 v c2, δ |= ∆ and A = δ(∆), then A ` δ(c1) v δ(c2)

4. If ∆ ` p1 � p2, δ |= ∆ and A = δ(∆), then A ` δ(p1) � δ(p2)

32

5. If ∆, α � p ` t1 ≤ t2 and ∆ ` p′ � p, then ∆{p′/α} ` t1{p
′/α} ≤ t2{p

′/α}.

6. If ∆, α � p ` l1 v l2 and ∆ ` p′ � p, then ∆{p′/α} ` l1{p
′/α} v l2{p

′/α}.

7. If ∆, α � p ` c1 v c2 and ∆ ` p′ � p, then ∆{p′/α} ` c1{p
′/α} v c2{p

′/α}.

8. If ∆, α � p ` p1 � p2 and ∆ ` p′ � p, then ∆{p′/α} ` p1{p
′/α} � p2{p

′/α}.

The last four rules are special cases of the first four. The first four rules are used in proving Lemma 18
(substitution for logical relations), while the last four are used in proving Lemma 13 (substitution for typing).
Similarly, substitution also respects subtyping for base types, principal sets, and policy sets.

Lemma 13 (Substitution for typing).

1. If ∆; Γ; π ` e : t, δ |= ∆, A = δ(∆) and A ` γ |= δ(Γ), then A; ; π ` γδ(e) : δ(t).

2. If ∆; Γ, x : t′; π ` e : t and ∆; Γ; π ` v : t′, then ∆; Γ; π ` e{v/x} : t.

3. If ∆, α � p; Γ; π ` e : t, then ∆{X/α}; Γ{X/α}; π{X/α} ` e{X/α} : t{X/α}.

The last two rules are special cases of the first. The first rule is used in proving Lemma 18 (substitution
for logical relations), while the last two are used in proving Theorem 14 (preservation).

Theorem 14 (Preservation). If A; ; π ` e : t and A, e −→ A, e′, then A′; ; π′ ` e′ : t such that A � A′

and π � π′.

Proof. By induction on the typing derivations:

• T-Var:
x : t ∈ Γ

A; ; π ` x : t

e has no evaluation rule, hence this case does not apply.

• T-Unit:
` l

A; ; π ` * : 1l

e has no evaluation rule, hence this case does not apply.

• T-Inl:

A; ; π ` e1 : t1 ` l

A; ; π ` inl e1 : (t1 + t2)l

There is one possible evaluation rule, E-Inl:

A, e1 −→ A, e′1
A, inl e1 −→ A, inl e′1

By IH on e1, we have A′; ; π′ ` e′1 : t1. The result follows by T-Inl.

• T-Inr: symmetric to T-Inl.

• T-Case:

A; ; π ` e0 : (t1 + t2)l A; ; π|l ` v1 : ([π2] t1 → t0)l A; ; π|l ` v2 : ([π2] t2 → t0)l A ` π2 � (π|l)

A; ; π ` case e0 v1 v2 : t0 t l

There are three possible evaluation rules:

1. E-Case:

A, e0 −→ A, e′0
A, case e0 v1 v2 −→ A, case e′0 v1 v2

By IH on e0, we have A′; ; π′ ` e′0 : (t1 + t2)l. The result follows by Lemma 10 (weakening) and
T-Case.

2. E-CaseInl: A, case (inl v) v1 v2 −→ A, v1 v

By Lemma 9 (inversion), A; ; π ` v : t1. The result follows by Lemma 10 (weakening) and T-App.

33

3. E-CaseInr: symmetric to E-CaseInl.

• T-Fun:

A; x : t1; π ` e0 : t2 ` l

A; ; π ` λx : t1. e0 : ([π] t1 → t2)l

e has no evaluation rule, hence this case does not apply.

• T-App:

A; ; π1 ` e1 : ([π2] t1 → t2)l A; ; π1 ` e2 : t1 A ` π2 � (π1|l)

A; ; π1 ` e1 e2 : t2 t l

There are three possible evaluation rules:

1. E-App1:

A, e1 −→ A, e′1
A, e1 e2 −→ A, e′1 e2

By IH on e1, we have A′; ; π′ ` e′1 : ([π2] t1 → t2)l. The result follows by Lemma 10 (weakening)
and T-App.

2. E-App2: similar to E-App1.

3. E-AppFun: A, (λx : t1. e0) v −→ A, e0{v/x}

By Lemma 9 (inversion), ∆; Γ, x : t1 ` e0 : t2. Then, by Lemma 13 (substitution for typing),
A; ; π ` e0{v/x} : t2. The result follows by T-Sub.

• T-PName:
` l

A; ; π ` X : (PX)l

e has no evaluation rule, hence this case does not apply.

• T-Cap:
` l

A; ; π ` X{i} : Cl

e has no evaluation rule, hence this case does not apply.

• T-IfDel:

A; ; π ` e1 : (Pp1
)
l

A; ; π ` e2 : (Pp2
)
l

A, p1 � p2; ; π ` e3 : t0 A; ; π ` e4 : t0

A; ; π ` if (e1 � e2) e3 e4 : t0 t l

There are four possible evaluation rules:

1. E-IfDel1:

A, e1 −→ A, e′1
A, if (e1 � e2) e3 e4 −→ A, if (e′1 � e2) e3 e4

By IH on e1, we have A′; ; π′ ` e′1 : (PX1
)l. The result follows by Lemma 10 (weakening) and

T-IfDel.

2. E-IfDel2: similar to E-IfDel1.

3. E-IfDelYes:

A ` X1 � X2

A, if (X1 � X2) e3 e4 −→ A, e3

Let A′ = A, p1 � p2. The result follows by Lemma 10 (weakening) and T-Sub.

4. E-IfDelNo: similar to E-IfDelYes.

• T-LetDel:

A; ; π ` e1 : (Pp1
)
l

A; ; π ` e2 : (Pp2
)
l

A; ; π ` e3 : t0

A; ; π ` let (e1 � e2) in e3 : t0 t l

There are four possible evaluation rules:

1. E-LetDel1:

A, e2 −→ A, e′2
A, let (v � e2) in e3 −→ A, let (v � e′2) in e3

By IH on e1, we have A′; ; π′ ` e′1 : (Pp1
)
l
. The result follows by Lemma 10 (weakening) and

T-LetDel.

2. E-LetDel2: similar to E-LetDel1.

34

3. E-LetDel: similar to E-LetDel1.

4. E-LetDel: by Lemma 10 (weakening) and T-Sub.

• T-IfCert:

A; ; π ` e1 : Cl A; ; π ` e2 : (Pp)l
A; (π, p . i)|l ` e3 : t0 A; ; π|l ` e4 : t0

A; ; π ` if (e1 ⇒ e2 . i) e3 e4 : t0 t l

There are four possible evaluation rules:

1. E-IfCert1:

A, e1 −→ A, e′1
A, if (e1 ⇒ e2 . i) e3 e4 −→ A, if (e′1 ⇒ e2 . i) e3 e4

By IH on e1, we have A′; ; π′ ` e′1 : Cl. The result follows by Lemma 10 (weakening) and T-IfCert.

2. E-IfCert2: similar to E-IfCert1.

3. E-IfCertYes:

A ` X1{i} ⇒ X2 . i

A, if (X1{i} ⇒ X2 . i) e3 e4 −→ A, e3

Let π′ = π, p . i. The result follows by T-Sub.

4. E-IfCertNo: similar to E-IfCertYes.

• T-Dcls:

A; ; π ` e0 : t2 A ` t2 − t1 = s A ` s � π(declassify)

A; ; π ` declassify e0 t1 : t1

There is two possible evaluation rule

1. E-Dcls1:

A, e′0 −→ A, e′

A, declassify e0 t −→ A, e0

By IH on e0, we have A′; ; π′ ` e′0 : t2. The result follows by Lemma 10 (weakening) and T-Dcls.

2. E-Dcls: A, declassify v t0 −→ A, v. Assume we only declassify a label at the top-level type,
that is A ` tl′ − tl = s, where t2 = tl′ and t1 = tl. Since we can assign any label to the top-level
type of a value (according to T-Unit, T-Inl, T-Inr, T-Fun, T-PName, T-Cap and T-All), we can
change the type of v from A; ; π ` v : tl′ to A; ; π ` v : tl.

If we declassify a label inside the structure of a type (in particular, the parameter type of a
function), we need to weaken the theorem such that evaluation preserves types only in the erasure
semantics. That is, if A; ; π ` e : t and A, bec −→ A, be′c, then A; ; π ` be′c : t, where b·c is the
type-erasure function. We omit the proof for this general case here.

• T-Acq:

A; ; π ` e0 : (Pp)l

A; ; π ` acquire e0 . i : (Cl + 1l)l

There are three possible evaluation rules:

1. E-Acq:

A, e0 −→ A, e′0
A, acquire e0 . i −→ A, acquire e′0 . i

By IH on e0, we have A′; ; π′ ` e′0 : Cl. The result follows by Lemma 10 (weakening) and T-Acq.

2. E-AcqYes:
E ` X{i}

A, acquire X . i −→ A, inl X{i}

By T-Cap and T-Inl.

3. E-AcqNo: similar to E-AcqYes.

• T-All:

∆, α � p; Γ; π ` e0 : t0 α 6∈ dom(∆) ` l

A; ; π ` Λα � p. e0 : (∀α � p. t0)l

e has no evaluation rule, hence this case does not apply.

35

• T-PApp:

A; ; π ` e0 : (∀α � p2. t0)l A ` p1 � p2

A; ; π ` e0 [p1] : t0 t l

There are two possible evaluation rules:

1. E-PApp:

A, e0 −→ A, e′0
A, e0 [X] −→ A, e′0 [X]

By IH on e0, we have A′; ; π′ ` e′0 : (∀α � p. t0)l. The result follows by Lemma 10 (weakening)
and T-PApp.

2. E-PAppAll: A, (Λα � p. e0) [X] −→ A, e0{X/α}

By Lemma 9 (inversion), ∆; Γ, α ` e0 : t0 t l. Then, by Lemma 13 (substitution for typing),
A; ; π ` e0{X/α} : t0. The result follows by Lemma 10 (weakening) and T-Sub.

• T-Sub:

A; ; π ` e0 : t1 A ` t1 ≤ t2
A; ; π ` e0 : t2

By IH on e0.

Proposition 15 (Join order). ∆ ` l1 v l1 t l2.

Proposition 16 (Join commutativity). l1 t l2 = l2 t l1.

E Noninterference

This section proves the main result of the paper: noninterference theorem. The main lemmas are substitution
for logical relations and subtyping for logical relations. The intuition is that in secure programs, high-security
inputs do not interfere with low-security outputs.

The proof requires a notion of equivalence with respect to observers of different security labels. To
reason about equivalence of higher-order functions and polymorphism, we use the standard technique of
logical relations [19]. However, we parameterize the relations with an upper-bound ζ of the observer’s
security label, capturing the dependence of the terms’ equivalence on the observer’s label.

The definitions and the theorems for this section are only for the core calculus–no authority, capability,
declassification or delegation. Extending the result to the full calculus is left for future work.

36

A ` Γ A ` γ |= Γ A ` γ′ |= Γ
∀(x : t ∈ Γ). A ` γ(x) ∼ζ γ′(x) : t

A ` γ ≈ζ γ′ : Γ R-Subs

A, e −→∗ A, v A, e′ −→∗ A, v′

A ` e : t A ` e′ : t A ` v ∼ζ v′ : t

A ` e ≈ζ e′ : t R-Term

A ` v ∼ζ v : t Related values

A ` l 6v ζ

A ` v ∼ζ v′ : ul R-Label

A ` * ∼ζ * : 1l
R-Unit

A ` v ∼ζ v′ : t1

A ` inl v ∼ζ inl v′ : (t1 + t2)l R-Inl

A ` v ∼ζ v′ : t2

A ` inr v ∼ζ inr v′ : (t1 + t2)l R-Inr

∀(A ` v2 ∼ζ v′2 : t1). A ` (v v2) ≈ζ (v′ v′2) : t2 t l

A ` v ∼ζ v′ : (t1 → t2)l R-Fun

A ` X ∼ζ X : (PX)l R-PName

∀(A ` X � p). A ` (v [X]) ≈ζ (v′ [X]) : t t l

A ` v ∼ζ v′ : (∀α � p. t)l R-All

Lemma 17 (Subtyping for logical relations).

1. If A ` e ≈ζ e′ : t and A ` t ≤ t′, then A ` e ≈ζ e′ : t′.

2. If A ` v ∼ζ v′ : t and A ` t ≤ t′, then A ` v ∼ζ v′ : t′.

3. If A ` v ∼ζ v′ : ul and A ` l v l′, then A ` v ∼ζ v′ : ul′ .

4. If A ` v ∼ζ v′ : ul and A ` u ≤ u′, then A ` v ∼ζ v′ : u′
l.

Proof. Part (1): By T-Sub, the result terms are well-typed. By IH of Part (2), their evaluated values are
related. The result then follows by R-Term.

Part (2): by St-UL, Part (3) and Part (4).
Part (3): by Lst-trans and R-Label.
Part (4): by induction on the subtyping derivations:

• St-Refl: A ` u ≤ u

The result trivially follows because u = u′.

37

• St-Trans:

A ` u ≤ u′ A ` u′ ≤ u′′

A ` u ≤ u′′

The result follows by IH.

• St-Sum:

A ` t1 ≤ t′1 A ` t2 ≤ t′2
A ` (t1 + t2) ≤ (t′1 + t′2)

By the inversion of R-Sum with A ` v ∼ζ v′ : (t1 + t2)l, either

1. R-Label with A ` l 6v ζ: the result follows by R-Label.

2. R-Inl with v = inl v0, v′ = inl v′
0 and A ` v0 ∼ζ v′0 : t1: by IH of Part (2) with A ` t1 ≤ t′1, we

have A ` v0 ∼ζ v′0 : t′1. The result follows by R-Inl.

3. R-Inr: symmetric to the previous case.

• St-Fun:

A ` t′1 ≤ t1 A ` t2 ≤ t′2
A ` (t1 → t2) ≤ (t′1 → t′2)

By R-Fun, we need to show that ∀A ` v2 ∼ζ v′2 : t′1,

A ` (v v2) ≈ζ (v′ v′2) : t′2 t l

By IH of Part (2) with A ` t′1 ≤ t1, we have A ` v2 ∼ζ v′2 : t1. By the inversion of R-Fun with
A ` v ∼ζ v′ : (t1 → t2)l, we have A ` (v v2) ≈ζ (v′ v′2) : t2 t l. By St-UL with A ` t2 ≤ t′2 and
A ` l v l, we have A ` t2 t l ≤ t′2 t l. Then, the results follows by IH of Part (1).

• St-All:

A ` p′ � p ∆, α � p′ ` t0 ≤ t′0
A ` (∀α � p. t0) ≤ (∀α � p′. t′0)

By R-All, we need to show that ∀A ` X � p′,

A ` (v [X]) ≈ζ (v′ [X]) : t′0 t l

By the inversion of R-All with A ` v ∼ζ v′ : (∀α � p. t0)l, we have A ` (v [X]) ≈ζ (v′ [X]) : t0 t l. By
St-UL with A ` t0 ≤ t′0 and A ` l v l, we have A ` t0 t l ≤ t′0 t l. By IH of Part (2), we have A ` v ∼ζ

v′ : (∀α � p. t′0)l. By J-UL and St-All with A ` p′ ≤ p, we have A ` (∀α � p. t′0)l ≤ (∀α � p′. t′0)l.
Then, the results follows by IH of Part (1).

Lemma 18 (Substitution for logical relations). If ∆; Γ ` e : t, δ |= ∆, A = δ(∆) and A ` γ ≈ζ γ′ :
δ(Γ), then

A ` γδ(e) ≈ζ γ′δ(e) : δ(t)

Proof. Let us name the assumptions:

1. ∆; Γ ` e : t (Z-Type)

2. δ |= ∆ (Z-DModel)

3. A = δ(∆) (Z-IfDel)

4. A ` γ ≈ζ γ′ : δ(Γ) (Z-RSubs)

By Lemma 13 (Part 1), the whole terms are well-typed. It remains to show that A, γδ(e) −→∗ A, v and
A, γ′δ(e′) −→∗ A, v′ and

A ` v ∼ζ v′ : t

which we prove by induction on the typing derivations.

38

• T-Var:
x : t ∈ Γ

∆; Γ ` x : t

The result follows by Z-RSubs and R-Subs.

• T-Unit:
∆ ` l

∆; Γ ` * : 1l

By Esu-Unit, γδ(e) = γ ′δ(e) = *. Their evaluated values are related by EM-Refl and R-Unit. The
result then follows by R-Term.

• T-Inl:

∆; Γ ` e1 : t1 ∆ ` l

∆; Γ ` inl e1 : (t1 + t2)l

By Esu-Inl, Tsu-Inl and Lemma 11 (substitution for join),

γδ(inl e1) = inl γδ(e1) (1)

γ′δ(inl e1) = inl γ′δ(e1) (2)

δ((t1 + t2)l) = (δ(t1) + δ(t2))δ(l) (3)

By IH on e1, we have A ` γδ(e1) ≈ζ γ′δ(e1) : δ(t1) with A, γδ(e1) −→
∗ A, v and A, γ′δ(e1) −→

∗ A, v′.
By EM-Trans and E-Inl, we have A, inl γδ(e1) −→

∗ A, inl v and A, inl γ ′δ(e1) −→
∗ A, inl v′. The

result follows by (1)-(3), R-Inl and R-Term.

• T-Inr: symmetric to T-Inl.

• T-Case:

∆; Γ ` e0 : (t1 + t2)l ∆; Γ ` v1 : (t1 → t0)l ∆; Γ ` v2 : (t2 → t0)l

∆; Γ ` case e0 v1 v2 : t0 t l

By IH on e0, v1 and v2,

1. A ` γδ(e0) ≈ζ γ′δ(e0) : δ((t1 + t2)l) with A, γδ(e0) −→
∗ A, v0 and A, γ′δ(e0) −→

∗ A, v′0

2. A ` γδ(v1) ≈ζ γ′δ(v1) : δ((t1 → t0)l) with A, γδ(v1) −→
∗ A, γδ(v1) and A, γ′δ(v1) −→

∗ A, γ′δ(v1)

3. A ` γδ(v2) ≈ζ γ′δ(v2) : δ((t2 → t0)l) with A, γδ(v2) −→
∗ A, γδ(v2) and A, γ′δ(v2) −→

∗ A, γ′δ(v2)

By Esu-Case and EM-Trans with E-Case,

γδ(case e0 v1 v2) = case γδ(e0) γδ(v1) γδ(v2)

γ′δ(case e0 v1 v2) = case γ′δ(e0) γ′δ(v1) γ′δ(v2)

A, case γδ(e0) γδ(v1) γδ(v2) −→∗ A, case v0 γδ(v1) γδ(v2)

A, case γ′δ(e0) γ′δ(v1) γ′δ(v2) −→∗ A, case v′
0 γ′δ(v1) γ′δ(v2)

By Tsu-Sum and the inversion of A ` v0 ∼ζ v′0 : δ((t1 + t2)l), either

1. R-Label with A ` l 6v ζ: by R-Label and R-Term.

2. R-Inl with v0 = inl v and v′
0 = inl v′ with A ` v ∼ζ v′ : δ(t1): by EM-Trans with E-CaseInl,

A, case v0 γδ(v1) γδ(v2) −→
∗ A, γδ(v1) v

A, case v′
0 γ′δ(v′1) γ′δ(v′2) −→

∗ A, γ′δ(v′1) v′

By Esu-App, Tsu-Fun, Lemma 11 (substitution for join) and R-Fun, we have

A ` (γδ(v1) v) ≈ζ (γ′δ(v′1) v′) : δ(t0 t l)

By R-Term, we have related values for the two application terms. By EM-Trans, we have related
values for the result terms.

39

3. R-Inr with v0 = inr v and v′
0 = inr v′: symmetric to the previous case.

• T-Fun:

∆; Γ, x : t1 ` e0 : t2 x 6∈ dom(Γ) ∆ ` l

∆; Γ ` λx : t1. e0 : (t1 → t2)l

x 6∈ dom(γ) because x 6∈ dom(Γ).

By Esu-Fun, Tsu-Fun and Lemma 11 (substitution for join),

γδ(λx : t1. e0) = λx :δ(t1). γδ(e0) (1)

γ′δ(λx : t1. e0) = λx :δ(t1). γ′δ(e0) (2)

δ((t1 → t2)l) = (δ(t1) → δ(t2))δ(l) (3)

δ(t2) t δ(l) = δ(t2 t l) (4)

By (1)-(4), EM-Refl, R-Fun and R-Term, it remains to show that ∀A ` v ∼ζ v′ : δ(t1),

A ` ((λx :δ(t1). γδ(e0)) v) ≈ζ ((λx :δ(t1). γ′δ(e0)) v′) : δ(t2 t l)

By EM-Trans with E-AppFun,

A, (λx :δ(t1). γδ(e0)) v −→∗ A, γδ(e0){v/x} (5)

A, (λx :δ(t1). γ′δ(e0)) v′ −→∗ A, γ′δ(e0){v
′/x} (6)

Let γ0 = γ, x 7→ v and γ′
0 = γ′, x 7→ v′ such that

γδ(e0){v/x} = γ0δ(e0) (7)

γ′δ(e0){v/x} = γ′
0δ(e0) (8)

A ` γ0 ≈ζ γ′
0 : δ(Γ, x : t1) (9)

By IH with Z-DModel and Z-IfDel and (9), A ` γ0δ(e0) ≈ζ γ′
0δ(e0) : δ(t2 t l). Then, the result follows

by (5)-(8) and R-Term.

• T-App:

∆; Γ ` e1 : (t1 → t2)l ∆; Γ ` e2 : t1

∆; Γ ` e1 e2 : t2 t l

By IH on e1 and e2,

1. A ` γδ(e1) ≈ζ γ′δ(e1) : δ((t1 → t2)l) with A, γδ(e1) −→
∗ A, v1 and A, γ′δ(e1) −→

∗ A, v′1

2. A ` γδ(e2) ≈ζ γ′δ(e2) : δ(t1) with A, γδ(e2) −→
∗ A, v2 and A, γ′δ(e2) −→

∗ A, v′2

The result then follows by R-Fun and R-Term.

• T-PName:
∆ ` l

∆; Γ ` X : (PX)l

By Esu-PName and Tsu-PName, γδ(e) = γ ′δ(e) = X and δ((PX)l) = (Pδ(X))l
. The result then follows

by EM-Refl, R-PName and R-Term.

• T-IfDel:

∆; Γ ` e1 : (Pp1
)
l

∆; Γ ` e2 : (Pp2
)
l

∆, p1 � p2; Γ ` e3 : t0 ∆; Γ ` e4 : t0

∆; Γ ` if (e1 � e2) e3 e4 : t0 t l

By IH on e1, e2, e3 and e4,

1. A ` γδ(e1) ≈ζ γ′δ(e1) : δ((Pp1
)
l
) with A, γδ(e1) −→

∗ A, v1 and A, γ′δ(e1) −→
∗ A, v′1

2. A ` γδ(e2) ≈ζ γ′δ(e2) : δ((Pp2
)
l
) with A, γδ(e2) −→

∗ A, v2 and A, γ′δ(e2) −→
∗ A, v′2

40

3. A ` γδ(e3) ≈ζ γ′δ(e3) : δ(t0) with A, γδ(e3) −→
∗ A, v3 and A, γ′δ(e3) −→

∗ A, v′3
4. A ` γδ(e4) ≈ζ γ′δ(e4) : δ(t0) with A, γδ(e4) −→

∗ A, v4 and A, γ′δ(e3) −→
∗ A, v′4

By Esu-Case and EM-Trans with E-Case,

γδ(if (e1 � e2) e3 e4) = if (γδ(e1) � γδ(e2)) γδ(e3) γδ(e4)

γ′δ(if (e1 � e2) e3 e4) = if (γ′δ(e1) � γ′δ(e2)) γ′δ(e3) γ′δ(e4)

A, if (γδ(e1) � γδ(e2)) γδ(e3) γδ(e4) −→∗ A, if (v1 � v2) γδ(e3) γδ(e4)

A, if (γ′δ(e1) � γ′δ(e2)) γ′δ(e3) γ′δ(e4) −→∗ A, if (v′
1 � v′2) γ′δ(e3) γ′δ(e4)

By Tsu-PName and the inversion of A ` v1 ∼ζ v′1 : δ((Pp1
)
l
) and A ` v2 ∼ζ v′2 : δ((Pp2

)
l
), either

1. R-Label with A ` l 6v ζ: by R-Label, we have related values for the result terms.

2. R-PName, R-PName with v1 = v1 = δ(p1), v2 = v′2 = δ(p2): if A ` δ(p1) � δ(p2), then by
EM-Trans with E-IfDel3,

A, if (v1 � v2) γδ(e3) γδ(e4) −→
∗ A, γδ(e3)

A, if (v′
1 � v′2) γ′δ(e3) γ′δ(e4) −→

∗ A, γ′δ(e3)

Otherwise, if A ` δ(p1) 6� δ(p2), then by EM-Trans with E-IfDel4,

A, if (v1 � v2) γδ(e3) γδ(e4) −→
∗ A, γδ(e4)

A, if (v′
1 � v′2) γ′δ(e3) γ′δ(e4) −→

∗ A, γ′δ(e4)

In both cases, by EM-Trans, we have related values for the result terms at type δ(t0). By
Proposition 15 (join order) and Lemma 12 (substitution for subtyping), they are also related at
type δ(t0 t l). The result then follows by R-Term.

• T-All:

∆, α � p; Γ ` e0 : t0 α 6∈ dom(∆) ∆ ` l

∆; Γ ` Λα � p. e0 : (∀α � p. t0)l

α 6∈ dom(γ) because α 6∈ ∆.

By Esu-All, Tsu-All and Lemma 11 (substitution for join),

γδ(Λα � p. e0) = Λα � δ(p). γδ(e0) (1)

γ′δ(Λα � p. e0) = Λα � δ(p). γ′δ(e0) (2)

δ(∀α � p. t0) = (∀α � p. δ(t0))δ(l) (3)

δ(t0) t δ(l) = δ(t0 t l) (4)

By (1)-(4), EM-Refl, R-All and R-Term, it remains to show that ∀A ` X � δ(p),

A ` ((Λα � δ(p). γδ(e0)) [X]) ≈ζ ((Λα � δ(p). γ′δ(e0)) [X]) : δ(t0 t l)

By EM-Trans with E-PAppAll,

A, (Λα � δ(p). γδ(e0)) [X] −→∗ A, γδ(e0){X/α} (5)

A, (Λα � δ(p). γ′δ(e0)) [X] −→∗ A, γ′δ(e0){X/α} (6)

Let δ0 = δ, α 7→ X such that

γδ(e0){X/α} = γδ0(e0) (7)

γ′δ(e0){X/α} = γ′δ0(e0) (8)

δ0 |= ∆, α � p (9)

By IH with Z-IfDel, (13) and Z-RSubs, A ` γδ(e0) ≈ζ γ′δ(e0) : δ(t0 t l). Then, the result follows by
(7)-(12) and R-Term.

41

• T-PApp:

∆; Γ ` e0 : (∀α � p. t0)l

∆; Γ ` e0 [p] : t0 t l

By IH on e0, we have A ` γδ(e0) ≈ζ γ′δ(e0) : δ((∀α � p. t0)l) with A, γδ(e0) −→∗ A, v and
A, γ′δ(e0) −→∗ A, v′. The two principals on the right are both δ(p1) and, by A ` p1 � p2 and
Lemma 12, we have A ` δ(p1) � δ(p2). The result then follows by R-All and R-Term.

• T-Sub:

∆; Γ ` e0 : t1 ∆ ` t1 ≤ t2
∆; Γ ` e0 : t2

By IH on e0, we have A ` γδ(e0) ≈ζ γ′δ(e0) : δ(t1) with A, γδ(e0) −→
∗ A, v and A, γ′δ(e0) −→

∗ A, v′.
The result then follows by Lemma 17 (subtyping for logical relations) and R-Term.

42

	Introduction
	Information-flow type systems
	Decentralized label model
	RP and run-time principals
	Evaluation and typing rules
	Noninterference

	Declassification and authority
	Run-time authority and capabilities
	Delegation
	Acquiring capabilities
	Soundness

	PKI and application
	Public key infrastructure
	Application to distributed banking

	Discussion
	Related work
	Conclusions

	Syntax
	Static semantics
	Typing
	Substitution
	Subtyping
	Declassification and models

	Dynamic semantics
	Theorems
	Noninterference

