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Abstract

The Java-MaC framework is a run-time verification system for Java programs that
can be used to dynamically test and enforce safety policies. This paper presents a
formal model of the Java-MaC safety properties in terms of an operational seman-
tics for Middleweight Java, a realistic subset of full Java. This model is intended
to be used as a framework for studying the correctness of Java-MaC program in-
strumentation, optimizations, and future experimentation with run-time monitor
expressiveness. As a preliminary demonstration of this model’s applicability for
these tasks, the paper sketches a correctness result for a simple program instrumen-
tation scheme.

1 Introduction

A run-time monitor is a process that observes the execution of a target system,
verifies that the system meets a given safety property, and takes action when
the system violates the property. One might use run-time monitors to halt
a program that tries to gain unauthorized access to a file or to notify an
administrator when a target variable exceeds some threshold. Because of
their generality and potential for efficient implementation, run-time monitors
are an attractive way to enforce security and other safety-critical properties.

Java-MaC [12] is an instance of a Monitoring and Checking (MaC) frame-
work developed at the University of Pennsylvania [13,11]. The goal of the
project is to apply run-time verification technology to Java programs.

Given a target Java program, a Java-MaC user can specify a safety prop-
erty in terms of events and conditions. Events are instantaneous incidents
such as variable updates or the start or end of a method call. Conditions
are propositions about the program that may be true or false for a duration
of time, such as Train.speed > 20. The language for describing Java-MaC
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events and conditions is derived from the source Java program, and more com-
plex safety properties can be built from those primitive events and conditions.
For example, the user might want to be informed when the Train.brake()

method is invoked whenever the speed is greater than 20. The Java-MaC
specification of this event is:

StartM(Train.brake) when (Train.speed > 20)

Given a safety-property specification, the Java-MaC system automatically
instruments the bytecode of the target Java program. The instrumented byte-
code, called a filter, generates event messages that are sent to an event recog-
nizer and a runtime checker, which run in parallel with the target system. The
bytecode instrumentation is done statically. At runtime, the filter sends the
information being probed to the event recognizer and runtime checker that
monitor and react to the sequence of generated events.

To date, the event recognizer and the runtime checker have been well
studied by the MaC researchers. However, the semantics of Java-MaC spec-
ifications and the instrumentation process have not. This paper presents a
formal semantics for the Java-MaC framework. It gives a precise operational
semantics for a core, but realistic fragment of the Java language and shows
how that operational model can be used to give meaning to the Java-MaC
specification language. This strategy offers a number of benefits:

• Existing work on defining the Java-MaC semantics is presented at the Java
bytecode level of abstraction. However, because Java-MaC specifications are
given in terms of source-program expressions, there is a semantic gap be-
tween what the Java-MaC user is reasoning about (Java programs and high-
level specifications) and what the underlying implementation does. Giving
a precise definition of Java-MaC specifications makes the meaning of Java-
MaC specifications with respect to the source program more apparent.

• In a related vein, previous work on the Java-MaC framework has described
the program instrumentation process at the level of Java bytecode [11]. That
work also gives an informal argument that the instrumented code behaves
the same as the original program (modulo certain timing and synchroniza-
tion considerations). By giving a source-level semantics to Java-MaC, this
work opens up the possibility of formally verifying that the bytecode instru-
mentation process corresponds with the source-level semantics.

• Working with a precise operational semantics for Java has revealed ambi-
guities in the definition of Java-MaC semantics. These ambiguities arise
because of Java-specific treatment of things like variable scoping and in-
heritance. Using a formal operational model highlights the places where
different design choices can be made.

• This operational approach lays the groundwork for future experimentation
with Java-MaC designs. For example, one could pursue extensions of the
Java-MaC framework that permit monitoring of objects or relax Java-MaC’s
current restrictions on reference aliasing.
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To demonstrate the benefits of this approach, this paper gives a toy Java-
level instrumentation algorithm that generates (some of) the events needed by
the Java-MaC event recognizer and runtime checker. It also sketches how to
establish a simulation relation between the original program and the instru-
mented program to prove that the instrumentation process is correct.

The next section introduces Middleweight Java, the subset of Java on
which our semantics is based. Section 3 gives the semantics of Java-MaC
events and conditions. Section 4 gives the instrumentation algorithm and
states the appropriate simulation result. Section 5 discusses related work, and
6 concludes with some of the lessons learned from formalizing Java-MaC and
some directions for future work.

2 Middleweight Java

This section describes the syntax and operational semantics of Middleweight
Java (MJ), a fragment of Java amenable to formal proof and analysis tech-
niques. This variant of MJ closely follows prior work on Middleweight Java [5]
and Featherweight Java [10], but it extends those languages with static fields
and methods, which are needed for Java-MaC safety property specifications.

Figure 1 gives the grammar for MJ programs. The syntax is a strict subset
of the full Java language [9]; any valid MJ program is also a valid Java program.
The intention is that the evaluation of an MJ program captures the behavior
of the corresponding Java program.

The syntax is defined in terms of five kinds of identifiers, which are just
strings. Each kind of identifier is drawn from a set given below:

C − Class names: C, D, Object, etc.
M − Method names: m, main, etc.
F − Field names: f , field, etc.
V − Variable names: x, y, this, etc.
R − References (object identifiers): r, r1, r2, etc.

MJ expressions can have primitive type boolean or an object type C,
and the syntactic class T ranges over expression types. For simplicity, the
formalism here does not consider other primitive Java types such as int or
byte, but they could be added straightforwardly.

Class declarations, as in Java, contain a suite of field declarations f̄d and
method declarations m̄d . Here, and throughout the paper, an overbar is used
to denote a possibly empty vector of program phrases. For example, x̄ =
x1x2 . . . xn for some n ≥ 0.

Field declarations consist of a type T and the name of the field f , optionally
including the keyword static to indicate that the field is shared among all
instances of the class. Method declarations include a return type τ that is
either an expression type T or the Java keyword void. There may be zero or
more formal parameters in a method declaration, and the body of the method
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T ::= boolean | C Expression type
τ ::= void | T Return type

cd ::= class C extends C {f̄d m̄d} Class decl.
fd ::= Tf; | static Tf; Field decl.

md ::= τ m(T1 x1, . . . ,Tn xn){s̄} Method decl.
| static τ m(T1 x1, . . . ,Tk xn){s̄}

e ::= x Variables
| null | true | false Basic values
| e.f | C.f Field access
| e == e | e || e | . . . Primitive operations
| e instanceof C Instanceof
| (C) e Cast
| pe Promotable expression

pe ::= new C() Object creation
| e.m(ē) | C.m(ē) Method invocation

s ::= ; No-op
| pe; Promoted expression
| T x = e; Local variable decl.
| x = e; Local variable update
| e.f = e; | C.f = e; Field update
| if (e) {s̄} else {s̄} Conditional
| return e; Return
| {s1 . . . sn} Block

Fig. 1. Syntax

consists of a vector of statements s̄. As with fields, methods may be static, but
for simplicity, MJ does not include other field and method access modifiers
such as public or final.

The simplest expressions in MJ consist of variables, x, primitive values
true and false, and null. More complex expressions can be built via dy-
namic field access e.f and static field access C.f . Note that unlike Java, MJ
requires that all dynamic field accesses be performed with respect to an object
reference, so MJ programs use this.f to access the local field f . A similar
restriction holds for method invocation.

Other MJ expressions include the instanceof operator to test class mem-
bership of an object, and a dynamic cast mechanism. Standard boolean

operations such as equality and logical or are also included in MJ.

MJ and Java permit promotable expressions to be treated as either value-
returning expressions or as program statements. Object creation (via new) and
dynamic and static method invocation are promotable expressions. Again
for simplicity, the version of MJ used in this paper does not permit object
constructors; instead fields of type boolean are initialized to false and fields
of object type are initialized to null. Other variants of MJ [5] provide a full
treatment of object constructors.

Statements in MJ include the no-op ‘;’ statement, as well as the standard
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∆m(C,m) def=
{

T̄ → τ if md i = [static] τ m(T̄ x̄){ . . . }, i ∈ {1 . . . n}
∆m(C ′,m) if m �∈ {md1 . . . mdn}

∆f (C, f) def=
{

T if fd i = [static] T f , i ∈ {1 . . . k}
∆f (C ′, f) if f �∈ {fd1 . . . fdk}

mbody(C,m) def=
{

(x̄, s̄) if md i = τ m(T̄ x̄){s̄}, i ∈ {1 . . . n}
mbody(C ′,m) if m �∈ {md1 . . . mdn}

where class C extends C ′ {fd1 . . . fdk md1 . . . mdn} ∈ prog

Fig. 2. Class tables and method body lookup

local variable declaration, variable and field assignment, conditional, and re-
turn statement. New blocks can be introduced as in Java by using {. . . }.

Although MJ is a faithful subset of Java, it is missing some features that
we leave to future work. Some of them, like arrays, should be straightforward
to include. Others, like exceptions and multithreading, will require more sub-
stantial changes to the operational semantics presented below.

2.1 MJ static semantics

An MJ program is a sequence of class declarations followed by a statement:
prog = cd1cd2 . . . cdn;s. A given program prog induces a subclass relation
between class names, written C ≺ D. The subclass relation is defined to be the
reflexive, transitive closure of the extends relation found in class declarations.
Class C extends class D if class C extends D { . . . } appears in prog. For
a valid program, the subclass relation forms a tree rooted at the class named
Object.

A well-formed program prog has an associated class table ∆ comprising
two partial functions: ∆f maps class names and field names to their types
and ∆m maps class names and method names to their types. For example,
consider the following class declaration:

class C extends Object {

boolean b;

void foo(boolean x) {...} }

The class table for this program has ∆f (C, b) = boolean and ∆m(C, foo) =
boolean → void. Method types, as for foo, are of the form T̄ → τ .

Given a well formed program prog, the partial function mbody(C, m) ex-
tracts the formal parameters and method body of the method named m from
the class C if such a method exists. Inheritance means that both the class ta-
bles and method body functions are defined inductively on the class hierarchy,
as shown in Figure 2.

MJ has a static type system derived from Java’s. The typing judgments for
expressions are of the form ∆; Γ � e : T . Γ is a finite partial map from variable
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names to expression types. This judgment says that expression e has type T
in the context of the class table ∆ and typing environment Γ. Similarly, rules
for typechecking statements have the form ∆; Γ � s : τ . Space constraints
prevent the full type system from being reproduced here, see Bierman et al.
for full details [5].

2.2 Dynamic semantics

This section defines an operational semantics for MJ programs in terms of
a transition relation between abstract machine states. Because Java has rel-
atively complex rules for allocating stack space for local variables and for
allocating static and dynamic objects in the heap, the states are themselves
relatively complex. A state or configuration σ is a five-tuple (�, � , V, G, K).
Figure 3 gives the formal syntax for MJ states.

� is the static portion of the heap—it contains a mapping from class names
and their static fields to the values stored in those fields. Formally, � is a finite
partial function from C × F to values. Values are null, true, false, and
object references r ∈ R. For notational consistency, all finite partial functions
like � in the operational semantics use the blackboard-bold font. The symbol
⇀ indicates a finite partial function space, and ∅ denotes the everywhere
undefined partial function. If � is a partial function, then �[x 	→ y] is a new
partial function that agrees with � except at x, which is mapped to y.

� is the dynamic heap. It contains a mapping from object references R
to heap objects. A heap object ho, which represents an instance of a class, is
a pair of the class name C and a field function �. The field function for an
instance of an object maps the names of the object’s nonstatic fields to the
values stored in the fields.

V is the stack of local variables. When a method m in class C is invoked,
a new method scope is pushed on to V to produce a new local variable stack
(M)C

m :: V . Because a single method m can contain several different lexical
blocks each containing its own local variables, M , a method scope, is itself a
stack of block scopes. Each block scope � maps local variable names to the
values stored in them. To evaluate or update a local variable x in method
scope M it is necessary to traverse the stack of blocks in M , as shown in the
following definitions:

eval((� :: M), x)
def
=

{
� (x) if x ∈ dom(� )
eval(M, x) otherwise

update((� :: M), x 	→ v)
def
=

{
� [x 	→ v] :: M if � (x) = v′

� :: update(M, x 	→ v) otherwise

G is the state’s frame stack, which consists of a stack of closed or open
frames. Closed frames K are statements or expressions whose evaluation can
proceed without first computing the value of subexpressions embedded within
them. Open frames, by contrast, are expressions and statements with a “hole”
[·] that must be filled with a value before they may be evaluated. As an exam-
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σ ::= (�, � , V,G,K) Machine state
v ::= null | true | false | r Value
V ::= (M)Cm :: V | · Variable stack
M ::= � :: M | · Method scope
ho ::= (C, �) Heap object
� : C × F ⇀ Value Static heap
� : R ⇀ Heap object Heap
� : V ⇀ Value Block scope
� : F ⇀ Value Field map
G ::= F :: G | · Frame stack
F ::= K | H Frame
K ::= s̄ | return e; | {} | e Closed frame
H ::= [·] | H.f | H.m(ē) | v.m(v̄,H, ē) Open frame

| H || e | v || H
| H == e | v == H | (C) H | H instanceof C
| H; | T x = H; | x = H; | H.f = e; | v.f = H;
| if (H) {s̄1} else {s̄2} | return H; | H;

Fig. 3. Dynamic state

ple, consider the evaluation of the expression e = (true || false) || false.
This expression can be decomposed into an open frame H = [·] || false and
the closed frame K = true || false such that e = H [K]. (The notation
H [x] means the closed frame H where the hole has been replaced by x.) In
the operational semantics this closed frame K evaluates to true, and so e
reduces to H [true] = true || false, which can then be further reduced in
subsequent steps. Intuitively, the stack of frames G keeps track or the work
yet to be done by the computation.

The final component of the state is a closed frame K, which is the statement
or expression currently being evaluated.

Figures 4 and 5 give the complete operational semantics for MJ as a tran-
sition relation between states. Most of the rules follow directly from Java
semantics. For example, rule IfTrue shows that when the guard of an if

statement evaluates to true the evaluation continues inside the first branch.

Variable reading and writing use the eval and update functions to access
the local variable x in the current method scope, as shown in VarRead

and VarWrite. Variable declaration (VarDecl) adds a new mapping to
the topmost block in scope. BlkBegin creates a new block scope, which is
initially empty, when the block is entered. That rule also pushes the empty
block {} onto the frame stack. As shown in BlkEnd, when the empty block
is reached the block scope is popped off the stack.

FldRead shows that to read a field f of the object through reference r
first the heap object is obtained from � and then the instance field function
is used to lookup the value. To read a static field, the static heap � is used
instead (SFldRead). FldWrite and SFldWrite update the appropriate
parts of the heap to point to the new value.
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VarRead (�, � , (M)Cm :: V,G, x) → (�, � , (M)Cm :: V,G, v)
when eval(M,x) = v

VarWrite (�, � , (M)Cm :: V,G, x = v;) → (�, � , (update(M,x 	→ v))Cm :: V,G, ;)
when eval(M,x) = v′

VarDecl (�, � , (� :: M)Cm :: V,G, T x = v;) → (�, � , (� ′ :: M)Cm :: V,G, ;)
when x �∈ dom(� :: M) and �

′ = � [x 	→ v]

BlkBegin (�, � , (M)Cm :: V,G, {s̄}) → (�, � , (∅ :: M)Cm :: V, {} :: G, s̄)

BlkEnd (�, � , (� :: M)Cm :: V,G, {}) → (�, � , (M)Cm :: V,G, ;)

IfTrue (�, � , V,G, if (true) {s̄1} else {s̄2}) → (�, � , V,G, {s̄1})

IfFalse (�, � , V,G, if (false) {s̄1} else {s̄2}) → (�, � , V,G, {s̄2})

IofNull (�, � , V,G, null instanceof C) → (�, � , V, G, true)

IofTrue (�, � , V,G, r instanceof C) → (�, � , V,G, true)
when � (r) = (D, �) and D ≺ C

IofFalse (�, � , V,G, r instanceof C) → (�, � , V,G, false)
when � (r) = (D, �) and D �≺ C

FldRead (�, � , V,G, r.f) → (�, � , V, G, v)
when � (r) = (T, �) and �(f) = v

SFldRead (�, � , V,G, C.f) → (�, � , V,G, v)
when �(C, f) = v

FldWrite (�, � , V,G, r.f = v;) → (�, � ′ , V,G, ;)
when � (r) = (T, �) and �

′ = �[f 	→ v] and �
′ = � [r 	→ (T, �′ )]

SFldWrite (�, � , V,G, C.f = v;) → (�′, � , V,G, ;)
when �(C, f) = v′ and �

′ = �[(C, f) 	→ v]

Cast (�, � , V,G, (C) r) → (�, � , V,G, r)
when � (r) = (D, �) and D ≺ C

CastNull (�, � , V,G, (C) null) → (�, � , V, G, null)

Fig. 4. Operational semantics
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New (�, � , V,G, new C()) → (�, � ′ , V,G, r)
when r �∈ dom(� ), � = initFields(C), and �

′ = � [r 	→ (C, �)]

EqTrue (�, � , V,G, v == v) → (�, � , V, G, true)

EqFalse (�, � , V,G, v == v′) → (�, � , V, G, false)
when v �= v′

Or (�, � , V,G, v || v′) → (�, � , V,G, v′′ )
when v, v′ ∈ {true, false} and v′′ = v ∨ v′

Call (�, � , V,G, r.m(v̄)) → (�, � , (� )Cm :: V,G, s̄)
when � (r) = (C, �), mbody(C,m) = (x̄, s̄),
� = {this 	→ r, x̄ 	→ v̄}, and ∆(C,m) = T̄ → T

CallVoid (�, � , V,G, r.m(v̄)) →
(�, � , (� )Cm :: V, (return null;) :: G, s̄)

when � (r) = (C, �), mbody(C,m) = (x̄, s̄),
� = {this 	→ r, x̄ 	→ v̄}, and ∆(C,m) = T̄ → void

SCall (�, � , V,G,C.m(v̄)) → (�, � , (� )Cm :: V,G, s̄)
when mbody(C,m) = (x̄, s̄), � = {x̄ 	→ v̄},
and ∆(C,m) = T̄ → T

SCallVoid (�, � , V,G,C.m(v̄)) →
(�, � , (� )Cm :: V, (return null;) :: G, s̄)

when mbody(C,m) = (x̄, s̄), � = {x̄ 	→ v̄},
and ∆(C,m) = T̄ → void

Return (�, � , (M )Cm :: V,G, return v;) → (�, � , V,G, v)

Promote (�, � , V,G, v;) → (�, � , V,G, v)

Sequence (�, � , V,G, s1s2 . . . sn) → (�, � , V, (s2 . . . sn) :: G, s1)

FrmClose (�, � , V, F :: G, v) → (�, � , V,G, F [v])

No-op (�, � , V,K :: G, ;) → (�, � , V,G,K)

FrmOpen (�, � , V,G,H[e]) → (�, � , V, H :: G, e)
when e is not a Value and H �= [·]

Fig. 5. Operational semantics (continued)

9



Sammapun et al.

As shown in rule New, when a new object is allocated, a fresh reference r
is created and the instance fields of the object are initialized according to the
following definition, where fields(C) is the set of nonstatic fields in class C:

init(boolean)
def
= false

init(C)
def
= null

initFields(C)
def
= {f 	→ init(T ) | f ∈ fields(C), ∆(C, f) = T}

Method invocation (Call) creates a new method scope with a single block
scope containing mappings for the this variable and the method formal pa-
rameters. The computation proceeds with the code for the method body,
which is extracted from the class table using mbody(). For methods with
return type void, a dummy return is pushed onto the frame stack, as shown
in CallVoid. The dummy return is needed to pop the method scope from
the variable stack when the method terminates. The rule Return pops the
method scope from the stack. Static methods are handled similarly (rules
SCall and SCallVoid) except that the this variable is not available.

The rules Sequence, FrmClose, No-Op, and FrmOpen show how the
control of the program is propagated. If a sequence of statements s1s2 . . . sn

is to be evaluated, the sequence s2 . . . sn is pushed onto the frame stack and
s1 is made active (rule Sequence). Once an expression has been reduced to
a value v, the program continues by popping off the topmost frame F from
the frame stack and filling its hole with v (rule FrmClose). Similarly, when
a statement has been evaluated to a no-op ‘;’, the next closed frame on the
stack becomes active (rule No-op). Lastly, if the expression currently being
evaluated can be decomposed further into a subexpression e and a nontrivial
open frame H , the subexpression e is evaluated and H is pushed onto the
frame stack (rule FrmOpen).

2.3 Initial and final states

Given a program prog = cd1 . . . cdn;s, the initial state is σ0
def
= (�0, ∅, ·, ·, s)

where �0 is the static heap mapping static fields to their initial values:

∀f ∈ sfields(C). �0(C, f) = init(T ) where ∆f (C, f) = T

The function sfields(C) returns the set of static fields defined in the class C.

To correspond with Java, the initial statement s is defined to be C.main();,
where C is the (unique) class containing a method declaration of the form
static void main(). 3

A state is terminal if it is of the form (�, � , ·, ·, null) or if is of the form
(�, � , M, G, eexn), where eexn is an exception state. Because MJ does not
model Java’s exception handling features, an MJ program can get “stuck”
when a Java program would throw an exception. If eexn is either null.f = v;

3 Java allows command-line arguments to be passed to main; they have been omitted here
for simplicity.
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or null.m(ē), Java throws NullPointerException. When eexn is (C) r and
� (r) = (D, �) for some D �≺ C, Java throws ClassCastException. These
terminal configurations are the only cases where a well-typed MJ program can
fail to make progress. Previous work on MJ [5] has proved this soundness result
using the standard subject reduction technique of Wright and Felleisen [16].

3 Monitoring: events and conditions

This section defines a semantics for Java-MaC safety properties based on
MJ’s operational semantics. This semantics is based on the earlier Java-MaC
work [12,13,11], except that it is considerably more detailed.

The grammar below presents the (mutually recursive) syntax for Java-MaC
events E, primitive conditions p, and conditions c.

E ::= startM(C.m) | endM(C.m) | update(C.f) | update(C.m.x)
| start(c) | end(c) | E && E | E || E | E when c

p ::= C.m.x | C.f | p.f | p == p | p instanceof C
| true | false | null

c ::= p | start | [E,E) | defined(c) | inM(C.m)

| c && c | c || c | c => c | !c

Events are instantaneous incidents that occur during program execution.
They take no time and occur during the transition from one state to the
next. Java-MaC provides events for monitoring method entry (startM(C.m)),
method exit (endM(C.m)), field updates (update(C.f)) and local variable
update (update(C.m.x)). Events also can be used to detect when a con-
dition becomes true (start(c)) or stops being true (end(c)). More com-
plex events can be composed from the conjunction and disjunction of events,
and events may be restricted to occur only when a given condition is true
(E when c). For example, to detect an update to the field balance when
the program is inside a method Bank.deposit, one would use the Java-MaC
event: update(Bank.balance) when inM(Bank.deposit).

Conditions, in contrast to events, are predicates on the program state and
thus may hold a particular value for a duration of time. Conditions may denote
true, false, or ⊥; they are interpreted in a three-valued logic to account for
the discrepancy between Java’s lexical block structuring and the condition’s
global scope. A condition has value ⊥ whenever a variable used to define the
condition is not currently in scope.

Primitive conditions are built from Java-like expressions of type boolean.
One important consequence of formalizing Java-MaC at this level of detail is
that it becomes apparent that the primitive conditions permitted should be
pure (have no side effects on the state) and terminate—these restrictions mean
that primitive conditions can be evaluated at any point during the program
execution without altering behavior of the system. The one difference from
Java is that Java-MaC provides a way to access the state of local variables
via the expression C.m.x. To handle the new expression form C.m.x, the
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augmented MJ type system has a judgment to conclude that ∆; Γ � C.m.x : T
whenever T x = v; ∈ mbody(C, m).

A primitive condition is permissible when it has type boolean in this aug-
mented type system; formally, p is permissible whenever ∆; ∅ � p : boolean.

Conditions, c, are built from primitive conditions through the usual Boolean
operators (and, or, not, and implication), and a few other constructors. Con-
dition start holds only at the initial state of the program. The interval
condition [E1,E2) becomes true when event E1 occurs and becomes false

when E2 occurs later. The condition defined(c) is true when the condition c
does not evaluate to ⊥ and false otherwise. Finally, the condition inM(C.m)

is true when the program is executing statements found in the method C.m.

3.1 Formal semantics of events and conditions

Having defined an accurate operational model of Java, it is now possible to
ascribe meaning to Java-Mac safety policies. Figure 6 gives the formal seman-
tics for Java-MaC events. The judgments are of the form σ → σ′ |= E, which
can be read as “the program in state σ transitions to state σ′ and generates
event E.” As these rules show, events are interpreted to occur during the
transition from one state to another. Because the operational semantics of
MJ has been designed to closely model Java, defining the Java-MaC events
is relatively straightforward. An important question is how events treat sub-
classing. Should the event update(C.f) be triggered when an object of class
D ≺ C has its f field updated? The semantics in Figure 6 does respect Java’s
subclasses, but previous Java-MaC descriptions are ambiguous on this point.

Figure 7 gives the formal semantics for Java-MaC conditions. The judg-
ments are of the form σ |= c = v where v is one of true, false, or ⊥.
Condition start holds only for the initial program state σ0 (rule Start).
Interval conditions are more interesting: The initial state satisfies no interval
condition because no events have occurred yet (IvlBase). When σ → σ′ and
σ generates E1 and σ′ does not generate E2, the interval condition [E1,E2) is
satisfied. Intervals depend on the history of the computation, so their seman-
tics are defined inductively, as shown in rule IvlInd. This semantics does not
lead immediately to an efficient implementation of conditions; rather, these
rules are a specification against which an implementation can be verified. In-
ductive rules lead to a natural proof structure for that verification.

The defined(c) condition evaluates to true when c is not ⊥, and false

otherwise (rule Defined). A state satisfies inM(C.m) when there is a method
scope for m currently at the top of the variable stack (rules InM1–InM3).

Logical connectives like && are interpreted over three-value logic in the
standard way. The expression v ∧ v′ is true if both v and v′ are true, false
if one of v or v′ is false, and ⊥ otherwise. Similarly, ¬⊥ is ⊥. Disjunction
and implication are defined by their logical encodings into conjunction and
negation. These definitions are found in rules And, Not, Or, and Implies.

12
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StartM

� (r) = (D, �) D ≺ C

(�, � , V, G, r.m(v̄)) → σ |= startM(C.m)

SStartM

D ≺ C
(�, � , V, G, D.m(v̄)) → σ |= startM(C.m)

EndM

D ≺ C

(�, � , (M)Dm :: V,G, return v;) → σ |= endM(C.m)

FldUpd

� (r) = (D, �) D ≺ C

(�, � , V, G, r.f = v;) → σ |= update(C.f)

SFldUpd

D ≺ C
(�, � , V,G,D.f = v;) → σ |= update(C.f)

VarDecl

D ≺ C

(�, � , (M)D
m :: V,G, T x = v;) → σ |= update(C.m.x)

VarUpd

D ≺ C

(�, � , (M)D
m :: V,G, x = v;) → σ |= update(C.m.x)

StartC

σ |= c = v v ∈ {false,⊥} σ′ |= c = true

σ → σ′ |= start(c)

EndC

σ |= c = true σ′ |= c = v v ∈ {false,⊥}
σ → σ′ |= end(c)

When

σ → σ′ |= E σ′ |= c = true

σ → σ′ |= E when c

EOr

σ → σ′ |= E1

σ → σ′ |= E1 || E2

σ → σ′ |= E2

σ → σ′ |= E1 || E2

EAnd

σ → σ′ |= E1 σ → σ′ |= E2

σ → σ′ |= E1 && E2

Fig. 6. Semantics of Java-MaC events

It remains to give a semantics to the primitive conditions—their inter-
pretation is shown in Figure 8. Because primitive conditions are just Java
boolean expressions (except for the form C.m.x), the idea is to simply eval-
uate the expressions to either true or false. To handle the case of C.m.x it
is necessary to add an additional operational rule as shown in the figure. The
notation σ � σ′ denotes a transition step in this augmented semantics. The
reflexive, transitive closure of the � relation is written �∗.

Observe that because MJ is sound, if evaluation of a primitive condition
halts at a value it must be either true or false. Because the sublanguage
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Start σ0 |= start = true

σ �= σ0

σ |= start = false

IvlBase σ0 |= [E1,E2) = false

σ′ → σ |= E1 σ′ → σ �|= E2 σ′ �= σ0

σ |= [E1,E2) = true

IvlInd

σ′ |= [E1,E2) = true σ′ → σ �|= E2

σ |= [E1,E2) = true

σ′ → σ |= E2

σ |= [E1,E2) = false

Defined

σ |= c = v v ∈ {true, false}
σ |= defined(c) = true

σ |= c = ⊥
σ |= defined(c) = false

InM1

D ≺ C

(�, � , (M)Dm :: V,G,K) |= inM(C.m) = true

InM2

D �≺ C

(�, � , (M)Dm :: V,G,K) |= inM(C.m) = false

InM3 (�, � , ·, G,K) |= inM(C.m) = false

And/not

σ |= c1 = v1 σ |= c2 = v2

σ |= c1 && c2 = (v1 ∧ v2)
σ |= c = v

σ |= !c = ¬v

Or/Impl

σ |= !(!c1 && !c2) = v

σ |= c1 || c2 = v

σ |= (!c1) || c2 = v

σ |= c1 => c2 = v

Fig. 7. Semantics of Java-MaC conditions

D ≺ C

(�, � , (M)Dm :: V,G,C.m.x) � (�, � , (M)D
m :: V,G, x)

σ → σ′
σ � σ′

(�, � , V, ·, p) �∗ (�, � , V, ·, v) v ∈ {true, false}
(�, � , V, G, K) |= p = v

¬∃v.(�, � , V, ·, p) �∗ (�, � , V, ·, v) and v ∈ {true, false}
(�, � , V,G, K) |= p = ⊥

Fig. 8. Semantics of Java-MaC primitive conditions

of primitive conditions terminates in all cases, if evaluation of the primitive
condition fails to produce a value, it must have gotten stuck either by trying
to interpret a local variable out of scope or by reaching an exception state. In
these latter cases, the meaning of the primitive condition is ⊥.

4 Program instrumentation

Given a set of events and conditions making up a safety property for a pro-
gram, the Java-MaC system inserts event-monitoring instructions into the
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IProg

c̄d ⇒ c̄d
′

C; main;∆; ∅ � s̄ ⇒ s̄′

c̄d;s̄ ⇒ c̄d
′
; s̄′

IClass

C;∆ � m̄d ⇒ m̄d
′

class C extends D {f̄d m̄d} ⇒ class C extends D {f̄d m̄d ′}

IMeth1

C;m;∆; x̄ : T̄ , this :C � s̄ ⇒ s̄′

C;∆ � T m(T̄ x̄){s̄} ⇒ T m(T̄ x̄){emit(startM(C.m, x̄));s̄′}

IMeth2

C;m;∆; x̄ : T̄ , this :C � s̄ ⇒ s̄′

C;∆ � void m(T̄ x̄){s̄} ⇒
void m(T̄ x̄){emit(startM(C.m, x̄));s̄′; emit(endM(C.m));}

Fig. 9. Program, class, and method instrumentation

bytecode. This section gives an example of how our formal framework can
be used to formalize and reason about such program transformations. Rather
than instrumenting bytecode, the scheme presented here instruments Java
source programs—establishing a correctness result for the full bytecode trans-
formation is left to future work. In practice, Java-MaC performs a number of
optimizations such as monitoring only fields that affect the evaluation of the
safety property. The formal version presented here takes a conservative stance
by fully instrumenting the program. Doing so simplifies the correctness proofs
because they don’t have to take into account optimizations; a more realistic
model of Java-MaC instrumentation would take optimizations into account.

The instrumented code uses an additional language construct emit(�);
that is intended to model the transmission of an event � to the Java-MaC
runtime monitor. In practice, the emit instruction would be implemented as
an ordinary Java method call to the Java-MaC run-time libraries, but here its
behavior is axiomatized by the following operational and typechecking rules:

(�, � , V, G, emit(�);)
�−→ (�, � , V, G, ;) ∆; Γ � emit(�); : void

This rule makes the MJ operational semantics into a labeled transition system,
where the event labels � are uninterpreted constants. The instrumentation
process inserts emit instructions into the MJ program as appropriate. Instru-
mentation correctness (see Section 4.2) requires that when a Java-MaC safety
property is interpreted with respect to the labeled transition system, it yields
the same outcome as the semantics given in Section 3.

4.1 Formal translation

The instrumentation uses four kinds of transformation rules. The first three
are presented on Fig. 9; the rules of the fourth kind are in Fig. 10. Rule
IProg instruments a given program prog = c̄d; s̄. This rule simply instru-
ments all the classes and the initial command vector; it assumes that class C
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IBlk

C;m;∆; Γ � s̄ ⇒ s̄′

C;m;∆; Γ � {s̄} ⇒ {s̄′}

IFld

∆;Γ � e′ :T ′ C;m;∆; Γ, x :T ′ � s̄ ⇒ s̄′ x �∈ dom(Γ)
C;m;∆; Γ � e.f = e′; s̄ ⇒
T ′ x = e′; e.f = x; emit(update(C.f, x)); s̄′

ISFld

∆;Γ � e′ :T ′ C;m;∆; Γ, x :T ′ � s̄ ⇒ s̄′ x �∈ dom(Γ)
C;m;∆; Γ � C.f = e′;; s̄ ⇒
T ′ x = e′; C.f = x; emit(update(C.f, x)); s̄′

IVar

C;m;∆; Γ, x′ :T, x :T � s̄ ⇒ s̄′ x, x′ �∈ dom(Γ)

C;m;∆; Γ � T x = e′; s̄ ⇒
T x′ = e′; T x = x′; emit(update(C.m.x, x′)); s̄′

IUpd

∆;Γ � x : T C;m;∆; Γ, x′ :T � s̄ ⇒ s̄′ x′ �∈ dom(Γ)

C;m;∆; Γ � x = e′; s̄ ⇒
T x′ = e′; x = x′; emit(update(C.m.x, x′)); s̄′

IRet

∆;Γ � e : T C;m;∆; Γ, x :T � s̄ ⇒ s̄′ x �∈ dom(Γ)
C;m;∆; Γ, return e; s̄ ⇒
T x = e; emit(endM(C.m;x)); return x; s̄′

Iif

C;m;∆; Γ � s̄i ⇒ s̄′i i ∈ {1, 2, 3}
C;m;∆; Γ � if (e) {s̄1} else {s̄2}; s̄3 ⇒
if (e) {s̄′1} else {s̄′2}; s̄′3

INo-op

C;m;∆; Γ � s̄ ⇒ s̄′

C;m;∆; Γ � ; s̄ ⇒ ; s̄′
C;m;∆; Γ � s̄ ⇒ s̄′

C;m;∆; Γ � pe; s̄ ⇒ pe; s̄′

Fig. 10. Statement instrumentation

contains the main method. Rule IClass instruments a class by translating all
of its method bodies. The class name is propagated into the translation con-
text for the methods. Instrumenting a method body (IMeth1 and IMeth2)
requires that the body of the method itself be instrumented and that the
emit(startM(C.m)); event be added at the start of the method body. If the
method has void return type, the corresponding end event must also be added
(non-void methods are instrumented at their return sites). Translation of
static methods (omitted from the figure) are the same except that no this

variable is available in the typing context.

Figure 10 gives the translation of vectors of MJ statements. The judg-
ments are of the form C; m; ∆; Γ � s̄ ⇒ s̄′, which says that statements s̄
are instrumented to produce statements s̄′. The translation context consists
of C, m, ∆, Γ, where C is the current class, m is the current method name,
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StartM’ σ
�−→ σ′ |=t startM(C.m) when � = startM(C.m, v̄)

EndM’ σ
�−→ σ′ |=t endM(C.m) when � = endM(C.m, v)

FldUpd’ σ
�−→ σ′ |=t update(C.f) when � = update(C.f, v)

VarUpd’ σ
�−→ σ′ |=t update(C.m.x) when � = update(C.m.x, v)

Fig. 11. Labeled transition system interpretation of events

∆ is the class table, and Γ is the current type environment. The initial type
environment for a method body contains the types of the vector of parameters
and the special variable this that gives a reference to the object for which
the method is being executed.

The translation is straightforward. Instrumenting field updates (IFld &
ISFld), local variable updates (IVar & IUpd), and returns (IRet) requires
adding some code to store the update value in a temporary variable, perform-
ing the source operation, and then emit the appropriate event. Note that
naively duplicating the update expression with effects could cause the instru-
mented program to compute an incorrect answer, which is why the temporary
variable is needed. The rest of the rules apply the translation recursively.

The code below gives a method in class C before and after instrumentation.

boolean m(boolean b) {

this.f = b || this.g;

return this.f;

}

boolean m(boolean b) {

emit(startM(C.m,b));

T x1 = b || this.g;

this.f = x1;

emit(update(C.f,x1));

T x2 = this.f;

emit(endM(C.m,x2));

return x2;

}
It is easy to prove the following static correctness theorem by induction on

the translation derivation; the next section addresses dynamic correctness.

Theorem 4.1 (Static correctness) Suppose a program prog = c̄d; s̄ is well
typed and c̄d; s̄ ⇒ c̄d

′
; s̄′. Then prog′ = c̄d

′
; s̄′ is well typed.

4.2 Instrumentation correctness

This section briefly sketches how to prove that instrumented programs agree
with the Java-MaC semantics for uninstrumented programs. The first step is
to give a new interpretation of Java-MaC events in terms of the labeled tran-
sition system, as shown in the rules of Figure 11—the |=t symbol indicates the
target language interpretation. The semantics for the events not mentioned
in the figure remains the same.

The next step of the dynamic correctness proof is to show that any event
in labeled transition system correctly simulates a corresponding event in the
source-level semantics. Observe that the translation relation ⇒ on programs
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induces a translation σ ⇒ σt on machine states: the translation of the static
and dynamic heaps is the identity, the translation of the method scope stack
permits additional local variables, and the translation of frames is derived
from the translation of statements. The key lemma is the following:

Lemma 4.2 (Event simulation) Let σ be any well-typed source state and

suppose that σ ⇒ σt. If there exists a label � such that σt →∗ σ′
t

�−→ σ′′
t and

σ′
t

�−→ σ′′
t |=t E, then there exist source states σ′ and σ′′ and a target state σ′′′

t

such that σ →∗ σ′, σ′ → σ′′ |= E and σ′′
t →∗ σ′′′

t and σ′′ ⇒ σ′′′
t . Pictorially:

(the solid parts of the figure imply the existence of the dotted parts)

Source σ

��

∗�� σ′ �� σ′′

��

where σ′ → σ′′ |= E

Translation σt
∗�� σ′

t
� �� σ′′

t
∗�� σ′′′

t

5 Related work

Besides the previous research on the Java-MaC framework itself [12,13,11], this
work is related to a number of research areas, including formalizing languages,
reference monitors, and profiling.

The operational semantics presented here builds on the work on Mid-
dleweight Java [5], which is itself a variant of Featherweight Java (FJ) [10].
Other variants of FJ include different features that might be interesting to in-
corporate into the model of Java-MaC. For example, the original work on FJ
treats both exceptions and inner class. Similarly Banerjee and Naumann [2]
treat mutable state, private fields and class-based visibility.

A second related area is reference monitoring and software fault isolation
(SFI) [15]. Schneider [14] defines a class of security policies specified by secu-
rity automata that work via execution monitoring. The goal of his paper is to
characterize the subset of policies enforceable by run-time monitoring. SASI
(Security Automata SFI Implementation) [6] is an implementation of Schnei-
der’s security automata. It enforces security policies by modifying object code
for a target system before that system is executed. Instead of instrumenting
the code to ensure that all memory accesses and control transfers are safe
as in SFI, SASI inserts code that simulates a specified security automaton
and halts the target system if the automaton rejects its input. Evans and
Twyman [7] propose a similar system for instrumenting programs to enforce
security policies, but their policies lack a formal semantics. Walker et al. [4,3]
extend Schneider’s work by considering enforcement mechanisms that can do
more than simply terminate faulty programs.

There is some similarity between monitoring and profiling. To measure
performance, common tools such as gprof modify code to collect statistics
such as amount of time spent in functions. A different class of profiling tools,
such as strace or DCPI [1], works without requiring program recompilation.

18



Sammapun et al.

6 Discussion and future work

This paper has presented a formal semantics for Java-MaC that should serve
as the basis for future research. Building the semantics highlighted some po-
tential design tradeoffs and questions about the Java-MaC system. Currently,
the implementation does not support use of the instanceof operator in prim-
itive conditions, which would be useful for writing accurate safety predicates.
Similarly, unlike the semantics proposed here, condition specifications do not
respect Java subclasses. These decisions in the implementation result from a
design that permits programs to be monitored remotely, which makes network
communication and remote references issues for efficiency and correctness.
Another difficulty with remote monitoring is handling objects and references,
because the monitor must essentially reconstruct the memory layout of the
target program. The semantics here treats the events and conditions as being
evaluated locally. It may be possible to reconcile the two views by taking
advantage of Java’s support for inheritance and dynamic dispatch.

One appealing future direction is to investigate ways to make the safety
policies specifiable in Java-MaC more expressive. For example, one could
contemplate adding new events that distinguish between constructor and or-
dinary method calls, or new events to describe exceptions, garbage collection,
or block entry and exit. Conditions that monitor memory consumption might
also be a useful addition to Java-MaC.

Another important future direction is to formulate a lightweight version
of Java bytecode and formalize MJ compilation. Doing so would allow the
correctness of the Java-MaC byte-code instrumentation to be verified with
respect to the MJ semantics presented here. Such a result would involve a
more elaborate simulation proof than the one given here. A promising step in
this direction is work by Freund and Mitchell on formalizing Java bytecode [8].
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