Managing Policy Updates in Security-Typed Languages

Nikhil Swamy Michael Hicks Stephen Tse Steve Zdancewic
University of Maryland, College Park University of Pennsylvania
{nswamy, mwh}@cs.umd.edu {stse, stevez}@cis.upenn.edu
Abstract the policy to change at arbitrary program points. For exam-

ple, if the program is unaware of a revocation in the security
This paper presentBx, a new security-typed program- lattice it could allow a principal to view data illegally. More
ming language with features intended to make the man-subtly, a combination of policy changes could violate sep-
agement of information-flow policies more practical. Se- aration of duty, inadvertently allowing flows permitted by
curity labels inRx, in contrast to prior approaches, are neither the old nor the new policy. We call this channel of

defined in terms obwned rolesas found in theRT role- information leaks across updategansitive flow
based trust-management framework. Role-based security This paper presents a new security-typed language R
policies allow flexible delegation, and our languag that permits security policies to change during program ex-

provides constructs through which programs can robustly ecution. R has two distinguishing features. First, labels
update policies and react to policy updates dynamically. in Rx are defined in terms ables as found in the role-
Our dynamic semantics use statically verifteansactions based access control languages of #¥é framework [12].
to eliminate illegal information flows across updates, which A role names a set of principals, and role ordering in the
we calltransitive flows Because policy updates can be ob- security lattice is defined by subset. Second, jRograms
served through dynamic queries, policy updates can poten-are permitted to dynamically update the current role defi-
tially reveal sensitive information. As sudRX considers nitions; policy queries executed at runtime allow the pro-
policy statements themselves to be potentially confidentialgram to observe the evolution of policy. Programmers can
information and subject to information-flowetapolicies use database-style transactions to denote code that must use
a single consistent policy, preventing unintended transitive
. flows. Policy updates that would violate this consistency
1 Introduction cause the program to roll back to a consistent state.
Security-typed programming languagesend standard Once we allow policies to change within a program, poli-
types with labels to specifgecurity policieson the allow- cies themselves can become channels that carry sensitive
able uses of typed data. Such labels are typically orderedinformation. To prevent these channels from leaking in-
by a lattice that expresses multi-level security policies for formation to unauthorized principals xRisesmetapolicies
properties like confidentiality. For example, labels may de- that define which principals can view a particular role, and
note principals likeBob and Alice, and if, according to the which principals trust a role’s definition. To our knowl-
security lattice,Alice C Bob holds, then any data labeled edge, K is the first programming language to formalize
Alice can be viewed byBob. Compile-time type-checking metapolicies to forbid illegal flows via policy updates. The
ensures that the policies expressed by labels mentioned irinherent administrative model of theT" policy languages
types are enforced, and thus one can prove, in advance ofuggests natural choices for these metapolicies. For exam-
program execution, that a program adheres to a particulample, in the RT framework, a role has designated owner
information-flow policy. that is responsible for administering the role’s contents.
Most existing security-typed languages assume that aThus, only when the program is acting in a way trusted by
program'’s security policy does not change once the pro-that owner may the role be changed.
gram begins its execution. This is an unrealistic assumption =~ The RT policy language has useful features that ease the
for long-running programs. For operating systems, network administration of policy in use by a security-typed program.
servers, and database systems, the privileges of principald?T" supports fine-grained delegation which can limit the
are likely to change. New principals may enter the system,impact of policy changes on information flows. Also, us-
while existing principals may leave or change duties. ing named roles as labels provides a useful indirection: the
On the other hand, it would be unwise to simply allow contents of a role may change when the name of the role

does not. This may reduce the need for data to be relabeledVhatparts of the policy are permitted to change? K@w
to effect a policy change. As far as we knowx i the first should those changes be reflected in the running program?
programming language to employ a role-based specification(4) Whenare such changes permitted to take place?
language for defining security policies. Rather than develop an administrative model for existing
The rest of this paper is structured as follows. Section 3 label models, we looked instead to the body of work on
presents R ., the mostly-standard core ofXRfor which formal policy languages for which administrative models
security labels are defined &9 roles. Section 3 presents already exist. Role-basedpolicy languages [17, 2, 6, 12]
the full Rx language, which extends thexR,. label model suggest a natural label model. In particularpbe, which
to support the added features of policy queries, policy up- is a name that represents a set of principals, can be treated
dates, and transactions. Section 4 states security theoremas a label, and the ordering between labels can be defined
that hold for Rk. The paper concludes with a discussion of in terms of subset on the contents of roles according to the
related work in Section 5 and future directions in Section 6. policy. Indeed, in the simple example above, the two atomic
. labelsL and H are essentially being treated as roles.
2 A Role-based Security-Typed Language We chose to us&T, as the core of the label model for
We begin by motivating the use of roles as labels in alan- Rx. RT, is the simplest member of the role-based policy
guage that supports policy updates. We follow this with a Janguage framework7 [12]. UsingRT roles as labels has
presentation of the core featuresitly, the simplest mem- a number of attractive administrative features:
ber of the RT family of role-based policy languages. Fi-

nally, we present R, an imperative security-typed lan- 1. Ownership An RT'role is defined as having awner
guage for which security labels are defined as roles. responsible for the role’s definition; a given principal

L. can own many roles. Only arole’s owner is allowed to
2.1 Existing Label Models change the definition of that role.

Most existing security-typed languages use litice
model of information flo24] in which an information flow
policy IT is defined by a latticeq, C), wherel € L is ala-
bel (or security level, and labels are ordered by the relation
C. This kind of label model allows a program to define la-
bels like L and H, which mean “low” and “high” security,
respectively, and a policld = {L C H}, which indicates
that L is less restrictive tha/. Generally speaking, labels
can either b@tomic—L and H in this example—or the join
¢y U £ of labels?, and/sy; herell is induced by thé& rela-
tion.

The language Jif [14] supports the more sophisticated
labels of thedecentralized label modéDLM). DLM la-
bels are defined in terms pfincipals and have three parts:
an owner, a reader set (those principals allowed to read the
value), and an integrity set (those principals who trust the
value). Jif policiesIl define delegation relationships be-
tween principals: for instance, if accordingl principal
P, delegates td%, thenP, may “act for” P;. The ordering
on labels is induced by this acts-for relation among princi-
pals. For example, any data labeled solely by owhemay
be read or written by>, (as well as any principals which 3 |ndirection Defining labels as roles provides a useful
may act forP). level of indirection because the membership of a role
2.2 Motivations for Roles may phange while th_e label on data stays the same.
That is, a security policy of some data can be modified
without requiring the data to be relabeled.

2. Membership and DelegatiorAn RT' policy permits
delegation at the granularity of roles, in which one role
may be defined in part by the contents of another role.
This provides better control than the DLM, which only
permits delegation between principals. To see the dis-
tinction, say that in Jif we define a special principal
Manager that represents the role of Manager in a com-
pany. To express thatlice is a member of this role, a
DLM policy IT would include the statemedtfanager
C Alice; i.e., whatever a Manager can view, Alice
can view as well. Assuming an administrative model
that would allow Alice to delegate to whomever she
wishes,Alice can state thatllice T Bob, with the ef-
fect of making Bob a manager singéunager = Alice
C Bob. By contrast, role membership and role delega-
tion in RT are separate concepts. Roles have an owner,
and membership is strictly under the owner’s control:
the owner can either include a principal in a role di-
rectly, or delegate (part of) the definition of a role to
another role. Membership does not imply delegation.

The problem with these label models is that they of-
fer no administrative support for changes to policy. This
iS not surprising because existing languages were not de- These points taken together answer the first three of the
signed with policy changes in mind. If policy updates are four questions posed previously. The question (4) of when
to be supported, a reasonable administrative model shouldolicy changes are allowed to occur depends on what the
be able to provide answers to the following questions. (1) program is doing when a proposed update is available; we
Whois allowed to make changes to the security policy? (2) consider this question in the next section.

For the remainder of this section, we first present the principal P
RT, policy language that forms the core of our label model. principal sets X = {P1,..., Pa}
Then we present the syntax and typing rules of the R, role p u= Pr
the core of our full language R which usesRT roles for policy stmt s = p— X | p1—p2
security labels. policy = Asiosn)
2.3 RTy: A Role-based Policy Language

)) Pat.doctors {DrSue}

RT, is the simplest member of thRT framework of Pat.doctors Clinic.staff

role-based policy languages [12]; it is summarized in Fig- Pat.insurers {BCBS}

ure 1. A rolep in R1y has the formP.r, where princi-
pal P is the role’s owner and is the role’'s name. We
often write A, B, etc. as sample principalB. We use
the functionowner(p) to extract the owner op (so that

Pat.healthRecords
Clinic.staff
Clinic.insuranceCos
DrPhil.self

rrrrra

Pat.doctors
{DrAlice,DrBob}
{BCBS, Aetna}
{DrPhil}

owner(P.r) = P).

Policy statementss have two form§ Pr «—
{Py,...,P,} andP,.ry «— Py.ry. The first form indicates
simple membership, that principats are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the rdbe.r, are also
members ofP;.r;. We use the functiomoledef (s) to de-
note the roley defined by the policy statemest for exam-
ple, roledef (A.r «— {B}) is A.r.

The semantics of a roleis a set of principals and is de-
termined according to a polidy{ by the function]-]r;. Intu-
itively, [p]m includes all elements oX wherep — X € II,
along with all elements ofp’]; wherep — p' € II. ltis
defined formally below.

Figure 1. Syntax of RT, and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned byDrPhil includes only himself.

The semantics of the rolePat.doctors and of
Pat.insurers according to this sample policy are:

[Pat.doctors]m =
[Pat.insurersn =

{DrAlice, DrBob, DrSue}
{BCBS}

2.4 The RX . Programming Language

RXore iS @ Simple imperative language with security la-
bels. Its syntax is shown at the top of Figure 2. Lalfels
in RX.re are either atomic labelg or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a rolep. Labels are ordered according to the judg-

= 8 IT . . .
.[[Sl'ﬂ]n(p 0 _ @H(p’) mentIl F ¢; C ¢y, wherell is anRT; policy as described
SHZ p: (p— X}UI) = X USn,(p,10) above. For atomic labels, this ordering is according to the

[0 T\ (pepry U Sito (0, T semantics of roles as sets:

(
Sty (p, {p = p'}UID) =)
(Stio(p,11) if roledef (s) # p

S, (p, {s} UTI) =
I p1 C pa <= [p2]u C [p1]n

An example of anRTy policy I is given in Figure 1, Note that the label ordering relatiof) is the reverse
which models the privacy of a patient's health care docu- of the subset relationd) over role membership. That s, a
ments. The example defines roles owned by three princi-role that has a larger set of members is a lower security level
pals: Pat, a patient; Clinic, a specialized medical treat- than a role with fewer members, since strictly more princi-
ment center wheréat is currently a patient; an@drPhil, pals can read data labeled by it. Extending this ordering to

a doctor not affiliated with the clinic. The policy state- compound labels is straightforward by interpreting the join
ments define several roles that capture the affiliations justgperator as set intersection.

mentioned.Pat.doctors is defined via two statements. The Ry . contains a single base typbopl) subscripted
first says thaDrSue (a family doctor) isPat’s doctor. The with a security level (We add another base type when ex-
second statement is a delegation(tbnic.staff, indicating tending Re... to RX.). There are two typing judgments for
that Pat’s doctors also include the practitioners that work Ry ., shown at the bottom of Figure 2. Expression typ-
at the clinic, which according to the policy in Figure 1, ingsQ + E : 7 state that in contex® the expressior®
is currently just the two principal®rAlice and DrBob. has typer. Statement typing§) - S state that statement
Pat.insurers includes all insurance companies with which ¢ is well formed with respect to the contet The con-
Pat has a policy—this is the single compaBy’'BS defined text) has three elements: tleavironment’, the program
through simple membershilg:linic.insuranceCos is the set counter labelpc and thepolicy contextQ. Herel is a map
1RTy also includesntersectionand linking inclusion These state- from variables to types, anplc |_s_S|mpIy a labelf that is
ments are supported by our label model, but we elide them here for sim- gse_d to_bound the effect of writing .tO memory, to prevent
plicity. indirect information flows [19]. We discug3 below. In the

information about the contents of the high-security location

atomic labels Lou=p x. To prevent such flows, the rule for if-statements checks
compound labels ¢ == L |fUY .
tvpoes : — bool each branch in a context where the effect lower-bopad
ybes o is strengthened to be no less than the security leval. of
security types T = 1y . .
policy context Q == T Whgn typing the.branches, the last premise of the rule for
typing context Q == (I,pcQ) assignment requires the labelyfo be no less than the ef-
expressions E := true|false|z|FE1® E> fect lower-bound. In our example, singés a low-security
statements S o= skip|x:=FE|S51;52 location, this premise is not satisfied and the program fails
| while (E) S | if (E) S1 S2 to type-check.
Q I true : booly QI false : bool, QFz:Q.I(x) 3 Rx: Addlng Policy Updates t0 RXcore
QF By :bool,, QF Es: booly, QrS, QFS, This section presents the remaining features of the full
QF E1 @ Es : booly, e, QF 51; 5, language R, which include (1)policy queriesby which
programs can examine the current policy during execution,
OF ski QF E:bool, Qfpc=QpcU(FS and (2)policy updatesby which programs can add or delete
P QF while (E) S statements from the current policy. The type system ensures

, none of these operations will leak confidential information,
QF B:boole Qfpc=QpcUfF S ie{l2} as proven in the next section. In addition, because policy
QF if (E) S1 Ss updates are a potentially dangerous operation—increasing
Ol =t QFE:t, QQF QpcC ! the membership of a rolg effegtlvely declgsyﬂes mforma—
tion [9]—RXx adapts the integrity constraints from previ-

QFz:=F I ..
¢ ous work onrobust declassificatiofi26, 15]. Intuitively,
QFE:booly QQFILCY the owner of a rolep must trust the integrity of the deci-
QF E : boolp sion to update policy statements that definénterestingly,

changes to policy become a potential conduit for illegal in-
formation flow. As such, we usmetapolicieg10] for pro-
typing rules we project the elements of tiguple via the tecting the confidentiality and integrity of roles.
dot notation; for example.pc is thepc component of).
We write[pc = pc’] to represent the context that is identi- 3-1 ~ RX Syntax
cal to{2 except the>c component is replaced with the value The syntax of K is shown in Figure 3. It differs from
pc’ (and similarly for other components of a context). RXcore in Several ways. Atomic labeld,, now include ab-
As in other security-typed languages, type checking in siract operatoré’; (p) and i (p) to represent metapolicies
RXcore IS €quivalent to security checking: if prograitype that define the confidentiality and integrity of roles. Like
checks, when executed it will not leak information in vio- rgles themselves, metapolicies are interpreted as sets of
lation of its policy. The policy contex) is a compile-time principals. Full labels¢, are now joins of pairs consisting
approximation of the actual polidy at run time with which ¢ 5 confidentiality component and an integrity component,
S will be executed. In Reore and most security-typed lan- \yhjich restricts where policy updates may oceur.
guages,) andIl are synonymous. That is, in these lan- Policy queriesg, are used in the statemettt (¢) S; S
guages, it is .assumgd that the policy_to be a.pplied to they yranch taS; or S, depending on whether the quety =
entire execution ofy' is known whenS'is compiled. We 4145 according to the current dynamic polidy Policy
distinguish between policy contegt and policyll now in - ¢hvexte) used for type checking the program now consist
anticipation of the full K in Section 3, for which policieH of asetof querie§qi, . . . , ¢ } that represent the knowledge
will e\{olvg over time. Other than this difference, the typing gained about the run time policy through policy queries.
rules N Figure 2 are stand.ard.[24]. . Expressionst are augmented to include collectiofs
To illustrate how the typing judgments obg preventil- of policy mutation statements. The type language is ex-
legal ipformatiqn flows, considgr typing the fqllowing P9 tended to include the typeol, which stands for the type
gramin an enV|ro'nment whene|s a high-security location of policy mutation statements at security le¢elhere/ is
andy a low-security location. defined by a metapolicy. The statemeptiate F is used

Figure 2. RXcqe Syntax and typing.

if () (y:=true) (y:=false) t_o change_ the current policy by adding or deleting a collec-
tion of policy statement§sy, . . ., s, } where eacls; results
In this program, although the contentsaofire not directly ~ from the evaluation off to A = §1s1,..., 6,55,
assigned tay, the value stored in is successfully copied Finally, the statementrans S creates a transaction

intoy. This is because the branches of the if-statement carrywith policy context@. Policy updates ir$' that violate pol-

the same way as we protect variables. There is a similar

atomic lazellsb) f B pL| Cl}:(p) | ﬁI“ (ép) dependency between the contents@fnic.insuranceCos
E;Iiioun abess . .(”C"poll) RS and Pat.insurers and the contents dfat.doctors. The
queries q = L.C L, change to the latter may |nd|recftly reveal information to
policy context Q = {qu....qn) an adversary about the former (i.e., that the members of
update § u= add |del Pat.insurers are included iflinic.insuranceCos). To ad-
updates A = §s|ds,A dress both cases, we define tmetapolicy labelof role
expressions E == ... |A p to belab(p), and use this label to protect policy infor-
statements S = ..]if(q¢) S1 S mation. Protecting policy information involves both confi-
| update E | trans o S dentiality and integrity concerns. In particular, the depen-
dency between the variablgatAcceptsTreatment and
Figure 3. Rx syntax, based on RXcore- the update to rolé’at.doctors implies that the contents of

e DPatAcceptsTreatment should betrustedby Pat; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change Rat’s policy. Therefore,
We first introduce the intuitive idea behind these new RX 1abels have the forfiZc, Ly), whereLc describes the
constructs by example. We then present the formal dy- confidentiality level anFLI descrlbes.the mtggnty Ieyel. A§
namic and static semantics. We conclude with a discussion® result, we must define both confidentiality and integrity
of metapolicies. of roles as well, withlab(p) = (Cn(p), In(p)). Here the
metapolicies”1;(p) andI;(p) may depend on the owner of
3.2 Motivating Examples the rolep and delegation information in the polidy. Sec-

Example 1. A fragment of a program that might be used to tion 3.5 will discuss possible choices of metapolicy.
create the sample health care policy in Figure 1:

icy assumptions stated @ cause all memory effects of th
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

Example 2. A program that leaks information

if (patAcceptsTreatment) across updates to the policy in Figure 1, motivating
if (Clinic.insuranceCos T Pat.insurers) Rx’s transactional semantics. Assunié as below:
update (add (Pat.doctors « Clinic.staff)) O L
clinicRec i boOl(clinic.staft, Clinic.staff)
In the example, the variabjmtAcceptsTreatment in- patSymptoms : bool(pat healthRecords, Pat.healthRecords) s
dicates that’at has agreed to be treated at thénic. As a philRec t bool(prphit.seif, Drphit.self)
result, the program will updat®at’s policy to include the S1: if(Pat.healthRecords T Clinic.staff)
Clinic’s staff in her authorized list of doctors, but only after clinicRec := patSymptoms;
ensuring that theClinic accepts payment from her insur- 82: if(leaveClinic)
ance provide?. update (del(Pat.doctors « Clinic.staff));

The policy update statement executes only if the runtime S3: update(add(Clinic.staff « {DrPhil}));
policy II satisfies the label ordering relation that appears in 84: if(Clinic.staff T DrPhil.self)
the second if-statement. Thus it is safe to assume this label philRec := clinicRec [
ordering when type-checking the update statement since it
will always be true when the statement executes. The poIicyb

) . e
context(is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stat
cally prove label orderings.

This program has a number of potential information
leaks. Suppose thalatAcceptsTreatment IS private to
only Pat and staff at theClinic, but that the contents
of Pat.doctors is public. Then an adversary could learn
the secret value ofatAcceptsTreatment by observing
Pat.doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

Here,patSymptoms contains data confidential to mem-
rs of the rolePat.healthRecords. Ling1 copies this data
into the Clinic records, which is permitted by the policy in
Il':igure 1. If the patient decides to leave the clinic, repre-
sented by the variableéeaveClinic in line 82, the pol-
icy is updated to remove th@linic.staff from Pat.doctors.
SubsequentlyDrPhil joins the clinic and is therefore added
as part ofClinic.staff. If this policy update succeeds, then
the program can copy data from the&inicRec variable
into philRec, which can be labeled by rol®rPhil.self.
Consequently,DrPhil is able to view thepatSymptoms
even though this information flow is permitted by neither

2This example is a bit artificial: in practice, one would also need to the original nor the new policy. This is an example of a
check thatPat.insurers is not empty (i.e. she hesmeinsurance); such unintendedransitive flow

a check could easily be added. Also, this check failBdt.insurers con- The unintended flow is caused because the label order-
tains some principal not ilWlinic.insuranceCos. Handling the condition

correctly would require intersection roles that we have omitted for simplic- ?ng lrelation (IDat.healthReporqg ClimC.-Staﬁ) needed to
ity in this paper. justify the flow of information in the assignment &f was

EV=- T =(£.M,transgS) EV £ £85—¢&9

& (E-TR1) : — (E-TR2)
E,transg S — E[V = ¥'],transg S E,transg S — &' transg S
W £ W £ ~ &S s &
fg 7 — (E-TR3) Evz- &S gls/ (E-TR4) €5 —~¢& ,S (R-SEQ)
E,trans g skip — E[V =], skip E,transg S — &', S E,81;5 ~ &S
I'=ETMU{s |adds € A}\ {s|dels e A}
EV = (Mt S) VqeQ.(II+ I - !
E,update A — E[II =II'], skip E,update £ — &, update F
II'=ETTU{s|adds € A}\ {s|dels € A}
EV = (M transgS) 3Jq€Q.(IFq) < (IU'Fq) (R-UP) EllFgq=j=1 ElNq=j=2 EIFQ)
E,update A ~ E[M = M']|[Il = '], trans g S E,if (q) S1 52 — &, S;

Figure 4. Rx execution (£,S — &’,5") and rollback (£, S ~ &', 5").

violated by the update to policy. This problem of uninten- icy updates is that it is possible for badly written programs
tional flows motivates the support of a non-standard transac-to enter livelock—for instance, a transaction that performs
tional model [18, 25] to our languagexR The semantics of ~ mutually incompatible policy updates can cause the roll-
atransactionrans ¢ S is such that if, during the execution back mechanism to enter an infinite loop.

of S, a policy update violates a label ordering relation nec- In situations where it is not essential for the update to
essary to show the absence of unintentional flows, then thetake effect immediately, it might be desirable to choose a
memoryof the program is reverted to the state it was prior roll-forward semantics in which policy updates that violated
to the start of the transaction. Execution of the statementconsistency were delayed until the transaction completed
S then resumes using the updated policy. The subs@ipt execution. We explored such a semantics in a previous pa-
contains all the necessary label ordering relations. per [9]. One of the contributions of this paper is showing

Rolling back transactions, however, introduces yet an- that transactions can be rolled back in a secure manner.
other channel of information leaks. To see why, sup-
pose that we enclose the program of Example 2 within a
transaction. Since the policy update statemengdnvi- The dynamic semantics of>XRis defined by the execu-
olates the policy invariant that appearsdm, the trans- tion relationg, S — £’,5” where€ is the current execu-
action is rolled back, undoing the assignment to location tion configuration and' is the current program statement.
clinicRec. Any principal P who can view the contents The execution takes a small step, resulting in a new config-
of clinicRec can therefore observe whether or not the uration£’ and a new statemest to be executed next. The
transaction has been rolled back. If the confidentiality of syntax for configurations is:
leaveClinic is greater tharlinicRec, then, by observ-
ing the rollback, the principaP will have gained informa- exec. configuration & == (II, M, V)
tion aboutleaveClinic. The static semantics obRguar- dynamic snapshot ¥ | (M, S)
antees that no information leaks of this kind occur.

Our choice of transaction semantics is motivated by our
belief that policy updates must take effect immediately.
This behavior is particularly critical in the case of updates
that revoke privileges. With this in mind, we have defined
the semantics of transaction rollback to be such that the pol-
icy is updated immediately, and only the state of memory
rolled back. Note that policy updates that occur in a trans-
action are treated like 1/0 operations in traditional transac-
tion systems [18, 8]—only writes to memory are undone
by a rollback, policy updates are left intact. Rolling back
both the state of policy and memory is not feasible since
this would guarantee non-termination through infinite roll-
back. As with traditional transaction systems, we could use
compensations to allow programmers to undo some updates 3as iscussed in Section 3.4, we support only non-nested transactions,
if necessary. Another consequence of not rolling back pol- for simplicity. So, no stack of snapshots is needed.

3.3 Rx Dynamic Semantics

An execution configuration consists of a polidy a mem-
ory store M mapping variables to values; and a possibly
empty dynamic snapshof of memory M and program
statemens used to implement transactional rollbatk.

The rules, shown in Figure 4, define two relations:
£,S — &',8 for normal execution, and, S ~ &', 5’
for rollback. The rules for standard constructs (assignment,
addition, sequences etc.) are not shown.

The rules (E-TR1), (E-TR2), (E-TR3) and (E-TR4) are
for the execution of transaction statememtns ¢ S. (E-
TR1) takes a new snapsh#t of the current memory store
M and the current statementans g S in the execution
context€, only if the current snapshot is empty. (E-TR2) is

lab(Ly T Ly) = lab(L1) U lab(L2) lab(Cua(p)) = lab(In(p)) = lab(p) = (Cua(p), Iu(p))

QFHLEL QFLC L LiCLeQ
= C F T C A
QFCu(p)Ep QFIn(p)Ep QFLLC orGLt o OF L C L
OF Lo, CLe, QFLp C Ly OF (Le,Li)C 6 QHECH QF(C (Le,Li) QFECH

QF(LCNLH)E(LszLIz) Q"(LCHLI)UZIEE Q}—EE(L(:,LI)LJK,

QF ds : pol, pc’ =pc U lab(q) qed.Q
£ = lab(roled QF A :poly, T;pc;QU ;@FS I;pd;Q;@F S
a (TO e ef(s)) (T—POLl) poly (T—POLZ) y pC aQ {q}a 1. y pC an 2 (T-”:Q)
QF ds: pol, Q1+ ds, A :poly I;pe; Q; @ F if (q) S1S2
5 pe; 0; (pe, @) - S (T-TR) Iipe; Q- FA:pol, QFpcEl QFpeclpd QF (Ugeqrlab(q)) E pc’ (T-UP)

[;pc; 0; - F trans o/ S I';pc; Q; (pc’, Q') F update A

Figure 5. Rx metapolicy labels (lab(-)), label ordering (Q - ¢; C ¢5) and typing (Q- E : 7, Q1 S).

a congruence rule for evaluation within a transaction and Execution of this program begins with the (E-TR1) rule
(E-TR3) discards the snapshot when a transaction com-which takes a shapshot of the memory and program and

pletes. (E-TR4) and (R-SEQ) use the rollback relation records itin®’. Notice that the subscrig) = {A.r C B.r}
E,S ~ &' 8 triggered by failed updates to abort a trans- on the transaction statement is a set that includes the
action. lone policy query that occurs in the body of the trans-

(E-UP1) takes the current poli@.IT and computes the
new policyIl’ by adding or deleting policy statements ac-
cording toAg, which is the result of evaluating ea¢hthat gates toB.r, the policy entails the query and the then-
appears inA according to the rule (E-UP2). We omit the branch of the statement is taken. We now have a sequence
standard definition of the execution relation for expressions of statements with the first being an update statement
E,E — &, E'. However, the new policyl’ must be con- update(del(A.r « B.r)), all enclosed in a transac-
sistent with the query s&p which annotates the enclosing tion statement from the first line.
transaction statementans ¢ S (stored in the snapshdt). In attempting to apply the (E-TR2) rule again, the first
Formally, thepolicy consistency conditias: statement in sequence must take a step under the normal

VeeQ execution relation— (according to the standard rule for
q€Q.

evaluating sequences, which is omitted here). In this case
the policy consistency condition is violated by the update

This consistency condition says that the satisfiability of ev- policy y y P

ery queryq in the policy context) is the same for the old

since, under the new policy B.r «— {B}}), the policy
) X . o= - query (A.r C B.r) is not satisfied, unlike under the old
policy and for the new policy. This condition is sufficient i~ Therefore, the first statement of the sequence can
to guarantee that every information flow witnessed during only take a step under the rollback relatien Then, we use
the e_xecutior_1 of the transact.ion under the olld policy is al§o (E-TR4) with (R-SEQ) preceded by (R-UP) in the premise.
consistent with the new policy. If the consistency condi- The conclusion of (R-SEQ) serves to discard the statement

tion fails, (R-UP) is triggered instead, rolling back using S that succeeds the update statement. The result is that the

(R-SEQ) to discard the second statement of any sequence,qram and memory is reverted to its original state and the
statemenfSy; Sy, and completing the abort using (E-TR4).

action. (E-TR2) now applies and with the program tak-
ing a small step using (E-IFQ). Since the roler dele-

(ITkq) & (' - q)

Finally, (E-IFQ) for the policy query statement chooses

policy is now{B.r «— {B}}.

the appropriate branch to take according to the judgment3.4 RXx Static Semantics

EIl g; that is, whether or not the queryholds in the
current policyII. This judgment is defined as follows (note
the contravariance):

Mk L1 E Ly < [L2]u C [Li]n

Example 3. A program that rolls back when executed under
the policy{A.r — B.r, B.r — {B}}:
trans{AmEBm}
if(A.r C B.r) {

update(del(A.r < B.r)); S } O

The static semantics of>Ris defined by the typing rela-
tionsQ F E : 7 andQ) - S in Figure 5, just like the typing
relation for Rxe in Figure 2. However, the typing con-
text 2 now contains atatic snapsho® for type checking
transactions:

typing context 2
static snapshot ®

(T;pc; Q; @)

: | (pC,Q)

Hence, we also write the typing judgmentlasc; Q; ¢ +
S. The type binding for variables it and the program

counterpc are standard, and the policy context is already mentions’, and the (T-IFQ) rule, whose premiges ®.Q

defined Figure 3. The snapshdtis used to approximate
the assumptions of a transaction (explained below).

Metapolicy labels The first row of Figure 5 defines the
auxiliary functionlab(-) to compute the metapolicy label
of policy queriesg. The functionlab(-) uses the metapol-
icy Cri(-) and I (+) to construct a label for a role. The
assertionab(Cr(p)) = lab(In(p)) = lab(p) is themeta-
metapolicy It states that the metapolici€s;(p) andIr(p)
only carry information aboup. A metapolicy label for
queriesL; C L, is the join of all the metapolicy labels
for roles contained ir.; andLs.

Label ordering Figure 5 (the second and third rows) spec-
ifies the label ordering relatiof - ¢; C /5. In the second
row of Figure 5, the first two rules impose conditions on the

ensures that every policy query is accounted for. The (T-
TR) rule also includes the current program counter lgloel

in ®. Doing this guarantees that the memory effects that
occur when a transaction is rolled back do not leak infor-
mation. We explain how this works when considering the
(T-UP) rule below.

Supporting nested transactions (assuming inner transac-
tions can roll back without causing outer ones to rollback
too) would require a flow-sensitive static analysis. Such
an approach would also increase the precision of the static
semantics and permit more updates. To simplify the dy-
namic semantics and typing rules, (T-TR) must occur in an
empty policy context, thus preventing nested transactions.
Ultimately, we want to extend Rwith procedures, which
will increase the need for nested transactions; i.e., to allow

metapolicy. The first rule states that all members of a role transaction-containing procedures to compose.

p are permitted observe the definition gfthe second rule
states that all members of a rgidrust the definition of.

Also notice that these rules effectively prevent policy
queries from occurring outside a transaction. This is to pre-

We discuss these conditions in more detail in Section 3.5.yent aberrant behavior in which an update occurring within
The remaining three rules on this row are straightforward: 5 transaction has a conflict with non-transactional query

the left and the middle rules say that the relation is reflexive g tside the transaction: in this case rolling back would not
and transitive, and the rightmost rule makes use of the pol-ggve the problem, and the program would resume execu-

icy context@ when the labeld.,; and L. are atomic. In the
third row of Figure 5, the left rule handles the compound la-
bel (Ls, Ly), and the middle and the right rules handle the
join label? L1 ¢'.

Typing policy mutation statementsThe rule (T-POL1) as-
signs a policy mutation statemefy the typepol, where/?

is the metapolicy associated with the role defined bysthe
For a collection of policy mutation expressioAg T-POL2)
states that the label in the type &fis the join of the labels
assigned to each policy mutator that appearA inFor in-
stance, ifA = add A.r «— X,del B.r «— Y then the type

of Ais pol(cy (A7), I (A.r))U(Cri (B.r), I (B.r)) -
Typing policy queries The rule (T-1IFQ) type checks policy
query statementf (¢) S; S.. The rule has three impor-

tant aspects. First, notice that we check the true-bra&hch
using an augmented policy conteédtu {¢}. Second, both

tion under the new policy while still not satisfying the non-
transactional query.

Typing policy updates The (T-UP) rule defines the con-
ditions under which policy may be safely modified. Re-
call that the metapolicy label of a rofeis (Cri(p), Iri(p)),
where the metapolicy’11(p) is the set of principals who
are permitted to view the members @fand the metapol-
icy Irr(p) is the set of principals that trugfs definition.

As motivated by the discussion of Example 1, we must be
careful to only allow a program to update the definition of
a role p when doing so is trusted by thosefn(p); this is

a condition similar to robust declassification [26]. More-
over, according to the metapolicy, the change in a role def-
inition p reveals information about the context to principals
in Cr(p). The first two premises of (T-UP) (in a manner
analogous to the rule for assignments in Figure 2) ensures

branches are checked using an elevated program counter 13y at members o€ (p) are permitted to gain information

bel pc’, which is defined as the join of the currgnt la-
bel and the label of the queryaccording to the label set

about the context. In particular, thee must be no more
confidential and no less trustworthy than the confidentiality

function lab(q). _This reflects the information gained by 4nq integrity levels of the role, thus ensuring that the role
querying the policy, and is used to prevent leaks about a pol-ig not improperly updated, and that its update does not leak
icy through assignments to variables. Finally, the premise jyformation. Note that to ensure that the owner of a role

q € ®.Q is used to ensure transaction consistency, which

we will explain when we consider the typing rule for trans-
actions below.

Typing transactions The snapsho?® is used to ensure that
every policy query, that appears in the bodyof a transac-

tion trans ¢/ S also appears i)’. This is ensured by the
(T-TR) rule, whose bodys is checked in @ snapshot that

is permitted to modify its definition, any metapoliéy (p)
must include the owner of the role.

Example 4. An instantiation of the typing rule (T-UP) for
policy updates in Figure 5. We abbreviate role names to
save space.Suppose we enclose Example 1 as statement
S in a transactioncrans - S. Hence we wish to prove

I';pe; Q; - - trans ¢/ S with

I' = patAcceptsTreatment : bool(cy (Pat.drs), I (Pat.drs))
pc = (Cu(Pat.drs), [r(Pat.drs))

The variable patAcceptsTreatment determines
whether Pat’s role Pat.drs should be updated. The label
on its type, Cn(Pat.drs), I(Pat.drs)), indicates that
information flows from this variable to the definition of
the role Pat.drs. Thepc at the start of the transaction will
be added to the snapshét by (T-TR). The instance of
(T-UP) that checks thepdate statement appears within
a derivation that includes (T-IFQ). (T-IFQ) checks the

of the current context. As explained earlier (Section 3.1)
for Example 2, this guarantees that the change to memory
caused by the rollback of a transaction is observable only by
principals who are also permitted to view the effects of the
context in which the update occurs. In our example typing
above,(clearly satisfies this condition because it asserts
that each component of the label is higher than each of
the components ipc’ that do not already includec.

The second case of a leak via policy is handled by the
last premise @ + lab(Q') C pc’) of (T-UP), which re-
quires that all the queries mentioned@ are at a lower
security level than the program counter label at the start

then-branch of the policy query statement by augmentingof the transaction. This ensures that the effects to mem-

the policy context?) to include{ Clinic.ins C Pat.ins},
while the program counter is strengthenedtd to reflect
the security level of the query. The instantiation of the
(T-UP) rule in the derivation is as follows:

Q U {Clinic.ins C Pat.ins} - pc’ C lab(Pat.drs)
Q U {Clinic.ins C Pat.ins} I pc’ C pc
Q U { Clinic.ins C Pat.ins} F lab(Q") C pc
I;pc’; Q U { Clinic.ins C Pat.ins}; (pc, Q')
update add(Pat.drs— Clinic.staff)

where

pc’ pc U (Cu(Clinic.ins), In(Clinic.ins))
U (Cu(Pat.ins), In(Pat.ins))

(Cu(Pat.drs), It (Pat.drs))

lab(Pat.drs)

If @ weref), it would not be sufficient to prove the first
premise according to the label ordering rules in Figure 5.
This is becausg Clinic.ins C Pat.ins} alone has nothing
to say about the relationship between the metapolicies o
the various roles. It would be sufficient to choose

Q ={ Cu(Clinic.ins) Cr(Pat.drs),
Cru(Pat.ins) Cu(Pat.drs),
It (Clinic.ins) In(Pat.drs),
I (Pat.ins) Iri(Pat.drs) }

M Irr e

Such a contexty could be established by preceding the
code S in Example 1 with policy queries testing these as-
sertions within the transaction. Rather than expect the pro
grammer to write these, they could be straightforwardly
inferred. To type-check these queries (and the one al
ready inS) would require choosing the transactio®s 2

Q U {Clinic.ins C Pat.ins}. O

The decision of whether or not an update causes a roll-

back depends on the policy consistency conditign €
Q. I + g = II' + ¢) appearing in the operational rules
(E-UP1) and (R-UP) in Figure 4. We want to avoid leak-

ing information about the queries through low-security data

and low-security policy. The first case is handled by the
third premise of the (T-UP) rule. It ensures that all memory
effects in a transaction are bounded below bythédabel

ory that occur as a result of rollback are at a higher se-
curity level than all the policy queries. Therefore, the
principals that can observe the effects to memory as a re-
sult of rollback are also sufficiently privileged to view the
definitions of roles mentioned i)’. So, policy infor-
mation is not leaked into memory via rollback. In our
example typing, this third premise is clearly satisfied be-
causelab(Q’) (Cri(DrBob.ins), In(DrBob.ins)) U
(Cr(Pat.ins), Ir(Pat.ins)).

3.5 Requirements of a Metapolicy

Rx uses metapolicie€'r;(p) and I'1(p) to protect the
confidentiality and integrity, respectively, of a rgle Be-
cause metapolicies are labels, they must be interpreted as
sets of principals; i.e[Cn(p)] = {P,..., P,} for some
principalsP;, and similarly forlr;(p). Here we discuss pos-
sible interpretations of'r;(p) and Ir;(p). We define suffi-
cient conditions for metapolicy interpretations that enables
fproving noninterference.

A simple interpretation for role confidentiality is
[Cu(p)] = L. Here, L denotes the set of all principals,
so that under this metapolicy every principal can know the
contents of all roles. While simple, this metapolicy requires
policy update decisions to be independent of secret data, as
shown in Example 1, which may be too limiting.

An attempt to permit updates to occur in contexts depen-
dent on secret data would have to defj6; (p)] to be more
-restrictive thatl. An anonymitypolicy might, for instance,
allow a principal to learn of its own membership but not

-that of others [7]. That is, not all members @tan com-

pute the interpretatiofp];. However, such a metapolicy is
overly restrictive in that many simple programs will fail to
type-check, as illustrated by the following example.

Example 5. Consider checking the following program in a
contextl’ = z : bool(p., B.ry, ¥ : bool(4.1 A.r):

if(ArC Br)z:=y

Since the query carries information about the roles
and B.r, (T-IFQ) checks the then-branch in a context with

pc = (Cu(A.r), In(Ar)) U (Cn(B.r), In(B.r)) andQ = p'" Intuitively, p depends o’ if p delegates transitively

{A.r C B.r}. Tojustify the flow of information fromy to « to p’. Note that an interpretation that satisfies this condition
the rule for assignments requirdsr C B.r, the evidence must also be robust under policy updates. A simple way to
for which is provided by). The mutation of locatiorn: ensure this is to allow the semantics of role confidentiality

that results from this assignment is observable by all mem-to change with the update, which is the approach we adopt
bers of B.r. Therefore the rule for assignments must also here. While simple, this permits members of one role to
showpc C (B.r, B.r), so that information about the query view another role by delegating to it. To prevent this we
is not leaked to unauthorized principals. If the metapol- could require that for an update to add a delegation state-
icy is such that]Cr(B.r)] doesn't include[B.r], then mentA.r «— B.r the integrity of thepc must be trusted by

pc C (B.r, B.r) cannot be satisfied and the program fails both I;(A.r) and I (B.r). We leave exploration of this

to type-check. issue to future work.

Intuitively, by observing the write to locationy all mem- We don’t extend the subtyping relatidn given in Fig-
bers of B.r gain information aboufB.rJy. To be able ure 2 topol, types. The following example illustrates what
to write programs in which information flows across se- might go wrong if we allowed covariant subtyping fosl,
curity levels (from low-security to high-security), we must as we do fobool,.

ensure that the policy conditions that are necessary to jus- . . .
: X C : Example 6. Assume the existence of a covariant subtyping
tify the flow of information into a particular memory loca-

i i fidential than th tents of that | rule for pol, and consider the program below checked in a
ion are not more confidential than the contents of that loca- -y ntext with = « - POl yr (Bry. i (Br))-

tion. This requirement is expressed formally in Figure 5 as
Q F Cu(p) C p. A similar argument explains the need for trans(cy(A.r)COn(B.r),In(A.r)CIn(B.r)}

QF In(p) C p. O if(Cr(A.r) C Cr(B.r))
if (In(A.r) C In(B.r))
Though intuitive, allowingCri(p) to include only the r := add Ar —C;
members (and the owner @) is not sufficient. A pol- trans (3
icy that includesdelegationspermits information to flow update(del A.r«— B.r);
between roles that are related by delegation. These flows update ()

could possibly reveal secret information. To see why, con- The type of the policy statement in the assignment is
sider the example from Figure 1. In the example, the def- POl (ary.im(ary- The policy queries provide the nec-
inition of the role Pat.doctors is given by a membership essary evidence for the covariant subtyping judgment for
statement inC|udinQ?1”Sue and a delegation td'lzmcstaff, pOl[to permit the assignment to A separate transaction
the interpretation of the role is given fjat.doctors|n = deletes the delegatiot.r < B.r from the policy. Since the
{DrAlice, DrBob, DrSue}. Under a choice of metapolicy interpretation of the metapolici€¥; (-) andIy;(+) depend in
where [Cri(p)] includes only the members ¢f and the general on the the state of the polidyand in particular the
role’s owner, we permibrSue to view the interpretation of delegations between roleslh the deletion of a delegation
Pat.doctors although she is not permitted to view the inter- jn the second transaction can violate the assumptions of the
pretation ofClinic.staff. However, any change inthe defini- first transaction. This has the effect of destroying the ev-
tion of Clinic.staff (say, if DrAlice is removed) is reflected jgence for subtyping necessary to check the assignment to
in the interpretation ofPat.doctors. Hence, even though ~. The final update statement updates the ble Even
DrSue is not a member ollinic.staff, she can observe the though at runtime the effect of this update is observable by

effect of changes to that role. Realizing that the definition of)| members ofCy;(A.7), the type ofz indicates that the
Pat.doctors depends on the definition@finic.staff makes ypdate is observable only by membersaf-. O

it clear that it is not reasonable to treat the policy state- _ _ . . _

ments defining’linic.staff as being more confidential than ~ Treatingpol, as invariant is one way of ensuring up-
the those defining’at.doctors. We formally state this con- dates that use first-class policy statements do not leak infor-
straint on the confidentiality metapolicy below (A similar Mation even in the the presence of non-monotonic updates

constraint must hold for the integrity metapolify(p).). to policy. An alternative might be to permit subtyping for
pol, while imposing constraints on how policy is allowed to

evolve. We leave examining this alternative to future work.
VILYp, p'.(3s.roledef (s) = p’ A [p]n # [plnogsy) = A further condition on metapolicieS (p) and Iz (p) is
[Cn(p)] € [Cu(p] induced by our definition in Figure 5 of meta-metapolicy
throughlab(Cri(p)) = lab(Ir1(p)) = lab(p). The metapol-
Informally, this constraint reads: “if the interpretation of icy Cr(-) is a function that maps a role to a set of principals.
the rolep depends on the definition pf, then the metapol- The interpretation of this function might depend on its in-
icy for p must be at least as restrictive as the metapolicy for put p, and possibly on the definition of some other roles

{p1,-..,pn} that appear in the polic}l. In such a case,
since Cri(p) carries information aboup and py, ..., pn,
the label ofCr(p) should be(Ll;Cri(p;)) U Cri(p). Thus,
for our definition oflab(Cr(p)) = lab(p) to be sound, the
metapolicy must also satisfy the following condition.

VILVp, ol (3s.roledef (s) = p' A [Cu(p)] # [Cuuga(0)]) =
[Ca(p] < [Cu(p)]

An identical condition must also hold true féi (p). For
a more complete treatment of metapolicy including possibly
explicit higher-order metapolicies, see our technical report
[21].

4 Noninterference

This section proves a noninterference property for. R
Informally speaking, we show that if anxRprogram.sS
is well-formed according to the static semantics, then the
effects of executing that program visible to a low-security

observer are independent of the high-security parts of the

configuration elementd/ andIl (memory and policy) with
which the program executes. Updates to policy intention-
ally alter the security behavior of the program, possibly re-
vealing previously secret information [9]. Therefore, rather
than providing an end-to-end security guarantee with re-
spect to a single policy, we prove that information flows
observable by a principal at a given point in time during the
program’s execution are consistent with the policy at that
time. Since our formulation of policy and data integrity is
conceptually identical to our formulation of confidentiality,

this property of noninterference also yields a preservation

property for the integrity of policy and data. We do not con-
sider timing or termination channels.

Lemma 8 (Static Label Ordering Soundness).For all
contexts) and programsS, if the derivation of2 - .S con-
tains a sub-derivatiof?’ + S’, then the following holds
true for all policiesII:

(Vg e Q.QIIF q) = (V1,00 .QF 41 Cly =TI+ 4y T 4o)

Clause (3.3) states that all effects on memory exhibited
during a transaction are bounded abovepghéwer-bound
used to statically check the transaction.

We prove noninterference by relating execution traces
of well-formed configurations, restricted to an attacker’s
level of observation. Anexecutionof a configuration
(£0,50) (where & = (II, M, W¥)) is written (&, Sp)
and denotes a (possibly infinite) sequence of configura-

tions&, ..., &, ... and programsy, ..., S,,...such that
(&,S:) — (&41,5:41). The sequence of config-
urations&y,...,&,,. .. is called thetrace and is written

Tr((&y, So)). We writea to denote a (possibly empty) trace
and&, a to denote the concatenation of a single configura-
tion and a trace.

We define the attacker's observation level as a set of
roles R. We assume the existence of a type environment
I'. The restriction of a trace: to observation leveR is
written « |z, and is defined in Figure 6. As long as the
policy remains unchanged, a restricted trace consists of a
restriction to each configuration element of the trace (the
“otherwise” clause of th@race definition of the figure). In
doing so, we restrict the view of memory according to the
policy IT and the{Q2.T" used to type check the initial pro-
gram. Herdab(T'(x)) refers to the security label associated
with the contents of the location. We restrict the policy
according to the metapoliayi(p), which must satisfy the
condition described in Section 3.5. However, if a policy
update results in a declassification with respect to the ob-

The statement of noninterference relies on the notion of server's rolesk then the trace is truncated (the first clause

a well-formed configuration. We writ@ = £ to mean that

of the Trace definition of the figure). This truncation is

the execution context is consistent with the static assump_JUStlfled since declassifications due to policy update are in-

tions made while type-checking the program.

Definition 7. A configurationé = (II, M, ¥) is well-
formed with respect to a contef denoted? = &, if and
only if all of the following are true:

dom(M) C dom(Q.T)
VgeQ.0Q . TFq
if ¥ =(M',S") then

Qrys (3.1)
dom(M') = dom(M) (3.2)
Ve.M(z) # M'(x) = TTF QpcCQI(z) (3.3)

The clauses in the definition above are mostly straight-
forward. Clause (2) connects the static approximatipn
used during type checking to the runtime polidy The
following lemma ensures that this connection is sound.

tentional releases of information. For a formal definition
of the predicateleclassify(-, -, -) refer to the full version of

our paper [21]. Note that declassifications to observers at
an unrelated observation level do not cause the trace to be
truncated. Similarly, a policy update that causes a reduction
in the privilege of an observer at levEl(a revocation) does

not require the trace to be truncated.

We make no attempt to restrict the observability of a
program configuration while the program executes within
a transaction. This makes it reasonable to exclude the snap-
shot¥ when defining the observability of a configuration.
However, for our statement of non-interference, it is use-
ful to identify configurations while taking into account the
transaction context, so we defii#l, M, ¥) [% = (IT |z
 M|rn, ¥ r,m).

The definition of trace observability implies that compu-
tation steps are only observable if they have an effect on an

Role :
Obs(R,II) ={p|3p' € R.II+ Culp) C p'}
Policy :

I r = I1f| 0bs(r,m)

Ola =0 (s}umm)le =

Memory :
M|rn = {(z,M(z)) | 3p € R. 11 F lab(T'(z)) C p}

{s}u(Il'||r)
Ir'||r

roledef (s) € R
otherwise

Transaction snapshot :

lrm=. (M,S)|rn= (M|rmu,S)

Configuration :
(H7 M, \II)‘R = (H|R7 M|R,H7)

Trace :

(E1,E2,)| = { Ei|r if declassify(R, E2.11, €1 .10)

&ilr, (&2, 0)|r otherwise

Figure 6. Trace observability.

observable part of memory or policy. This entails that we
identify traces only up to stutterifgWe write e = 3 if «
andg are equivalent up to stuttering.

Theorem 9 (Noninterference). Suppose that for an
Rx program.S and a pair of configuration§, and&, there
exists a contexf2 such that? - S, Q = & andQ = &;.
Then, for any set of role®, whenever both&y, S) and
(&1, S) terminate, we have

& lp= & ly= Tr((&,S) |r = Te((61,9)) |r

The proof (in our technical report [21]) uses Pottier and

Simonet’s proof technique [16] which extends the language

to represent pairs of executions that differ only in the high-

security parts of their configurations. Because we may trun-
cate traces for which there is a declassification visible at
level R, to obtain an end-to-end security guarantee we can
apply noninterference piecewise to each non-declassifying
sub-trace. Thus we can claim that (1) the execution is non-

interferring until the policy is updated; (2) the act of up-
dating the policy itself does not leak information; and (3)

after the policy has been updated all subsequent flows ar

consistent with the new policy.

5 Related Work
There is a large body of work on policy specification lan-

guages, including owned policies [4] and role-based lan-

guages like Cassandra [2], RBAC [17], SPKI [6]x Roli-
cies are based on those from RT framework by Li, Mitchell

4Sequencey; is equivalent up to stuttering toy if o = ody, where
o/, is obtained fromo; by removing all consecutively repeated elements
from «;. For example, the sequenaebbbc is equivalent up to stuttering

and Winsborough [12], which is similar to SPKI/SDSI [11].
The Rx transaction semantics is inspired by software trans-
actional memory [20].

There has been much prior work on language-based en-
forcement of information-flow policies [19]. The majority
of that research has assumed that the security lattice and
other policy components are known at compile-time and re-
main fixed for the duration of the program execution.

In some information flow languages the policy remains
fixed but may be discovered at run time by using dynamic
gueries. Banerjee and Naumann [1] permit information-
flow policies to be mixed with stack-inspection style dy-
namic access control checks. The Jif programming lan-
guage [14] supports dynamic queries of the security lattice
and includes features for using both dynamic principals and
dynamic labels [22, 27, 23]. Jif 2.0 also allows delegations
between principals to change at run time, but does not pre-
vent information leaks through policy updates.

The predecessor [9] of this paper showed that unre-
stricted updates to the security lattice could violate sound-
ness in languages supporting dynamic policy queries, and
proposed delaying updates until soundness could be en-
sured, as determined by a run-time examination of the pro-
gram. R builds on this work by reasoning about fine-
grained policy updates within a program (in our prior work
they were out-of-band), by using roles and metapolicies to
form an administrative model (the termetapolicyis due
to Hosmer [10]) and by introducing transactions to ensure
policy consistency.

There has been recent interest in studytgrgporal poli-
cieswhich are permitted to change in predefined ways dur-
ing execution. Recent work ofiow locks by Broberg
and Sands [3] can encode many recently-proposed tem-
poral policies, including declassification policies [5], and
lexically-scoped flow policies [13]. Ris designed to sup-
port unrestricted changes to policy during execution. Since
Rx supports first-class policy mutation statements the con-
tent of an update statement is not fully known statically. The
intent is to support even more general models of policy up-
date statements by following techniques of dynamic labels

eand run-time principals.

When policy updates cause declassifications our non-
interference guarantee is similar to tmeninterference
until conditions property provided by Chong and My-
ers [5]. Both our definitions of noninterference consider
only declassification-free subtraces of the execution. Our
noninterference guarantee however permits certain classes
of declassifications to occur without necessitating a trun-
cation of the trace. Our approach to obtain an end-to-end
security guarantee by piecing together non-declassifying
subtraces yields a property similar to thendisclosure

to abbece since the result of removing consecutively repeated elements Property proposed by Almeida Matos and Boudol [13].

from each sequence igc.

Their approach of using a labeled transition semantics has

the benefit of making explicit the concatenation of non- [5] S.Chong and A. C. Myers. Security policies for downgrad-
declassifying subtraces. However, their attacker model does ing. InCCS 2004. _
not consider the state of policy to be a channel of informa- [6] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,

tion. and T. Ylonen. SPKI certificate theory. IETF RFC 2693,
1999.
6 Conclusions [7] J. Y. Halpern and K. R. O'Neill. Anonymity and informa-

. . tion hiding in multiagent systemsJ. Computer Security
This paper has presentek Ra security-typed language 13(3):483-514, 2005.

that supports dynamic updates to role-based information- [g] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-

flow policies. The main contributions of this work are: posable memory transactions. RPOPP, 2005.

(1) The novel use of role-based policies to provide a nat- [9] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic
ural administrative model for managing policies in long- Updating of Information-Flow Policies. IRCS 2005.
running programs. (2) A language design that allows pro- [10] H.H.Hosmer. Metapolicies BIGSAC Revievi0(2-3):18-
grammatic addition and deletion of the policy statements 43, 1992.

[11] N. Li and J. C. Mitchell. Understanding SPKI/SDSI using

that define roles along with a transaction mechanism that first-order logic. ICSFW 2003,

ensures that pqllples are appllgd C9n3|stently. 3) .The novel[12] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
use of metapolicies for preyentmg |Ilegal_ flows of informa- Role-Based Trust-Management Framework JBEE Sym-
tion through changes to policy. (4) A static type system and posium on Security and Privacg002.

accompanying proof that the type system enforces a form[13] A. Matos and G. Boudol. On declassification and the non-

of noninterference. disclosure policy. IrCSFW 2005.

It is for large distributed systems characterized by mu- [14] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic.
tual distrust that the need for a principled approach to secu- Jif: Java + information flow. Software release. Located at
rity is most pressing. To become a relevant technology for http:/iwww.cs.cornell.eduijif, July 2001.

[15] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
Robust Declassification. I8SFW 2004.
[16] F. Pottier and V. Simonet. Information flow inference for

this kind of setting, security-typed languages must be able
to cope with highly dynamic environments in which policy

evolution is the norm rather than the exception. Although ML. TOPLAS 25(1), Jan. 2003.

we have not studied the issue here, we expect that the trans{17] Role based access control.http://csrc.nist.gov/
actional approach will scale better to systems with concur- rbac/, 2006.

rent threads, each of which might try to update the global [18] M. F. Ringenburg and D. Grossman. AtomCaml: First-Class
information-flow policy. The transactional model is also Atomicity via Rollback. InICFP, 2005.

or in a distributed environment. The techniques presented f|0\t/_V SecgilgiljliEnggurnzazl gggSelected Areas in Communi-
Cp - o cations :5-19, Jan. .

in this paper prow_de _some of th_e g_roundwork for achieving [20] N. Shavit and D. Touitou. Software transactional memory.
our long-term objective of designing a language that can

. . S In PODC, 1995.
provide strong guarantees of security for complex, realistic 21] N. swamy, M. Hicks, S. Tse, and S. Zdancewic. Man-

applications. aging policy updates in security-typed languages. Tech-

Acknowledgments We thank Jeff Foster, Boniface Hicks, nical Report CS'T~R'4793’ University of Maryland, 2006.
www.cs.umd.edu/ nswamy/rx/tr.pdf.

Polyvios Pratikakis, Saurabh Srivastava, and the anony- [22] S. Tse and S. Zdancewic. Run-time Principals in
mous reviewers for their comments. Funding for this re- Information-flow Type Systems. WEEE Symposium on Se-
search was provided in part by NSF grants CCF-0346989, curity and Privacy 2004.

CCF-0524036, CCF-0524305, CNS-0346939 and CCR- [23] S. Tse and S. Zdancewic. Designing a security-typed lan-

0311204. guage with certificate-based declassificatiorE8OR Lec-
ture Notes in Computer Science, 2005.
References [24] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
[1] A. Banerjee and D. A. Naumann. Using access control for tem for secure flow analysidournal of Computer Security
secure information flow in a Java-like language.A8FW 4(3):167-187, 1996.) .
June 2003. [25] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional
[2] M. Y. Becker. Cassandra: flexible trust management and monitors for concurrent objects. EICOOR, 2004.

its application to electronic health records. Technical Re- [26] S.Zdancewic and A. C. Myers. Robust declassification. In
port UCAM-CL-TR-648, University of Cambridge, Com- Proc. of 14th IEEE Computer Security Foundations Work-
puter Laboratory 2005, ' shop pages 15-23, Cape Breton, Canada, June 2001.

[3] N. Broberg and D. Sands. Flow Locks: Towards a Core [27] L. Zheng and A. C. Myers. Dynamic Security Labels and
Calculus for Dynamic Flow Policies. IESOR 2006 Noninterference. IrFormal Aspects in Security and Trust

[4] H. Chen and S. Chong. Owned Policies for Information Se- 2004.
curity. InCSFW 2004.

