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Abstract
Noninterference is the strong information-security property that a program does not leak secrets
through publicly-visible behavior. In the presence of effects such as nontermination, state, and
exceptions, reasoning about noninterference quickly becomes subtle. We advocate using interaction
trees (ITrees) to provide compositional mechanized proofs of noninterference for multi-language,
effectful, nonterminating programs, while retaining executability of the semantics. We develop
important foundations for security analysis with ITrees: two indistinguishability relations, leading to
two standard notions of noninterference with adversaries of different strength, along with metatheory
libraries for reasoning about each. We demonstrate the utility of our results using a simple imperative
language with embedded assembly, along with a compiler into that assembly language.
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1 Introduction

Information-flow guarantees state that programs respect the information-security specifica-
tions of their inputs and outputs. The most basic is noninterference, which states that secret
data cannot influence publicly observable behavior. There are many languages designed to
enforce information-flow properties, guaranteeing that programs treat their sensitive inputs
correctly [29, 40, 41]. The importance of information-security properties has increasingly
led to verification efforts for such languages and systems [7, 21]. These efforts, however, are
mostly limited to source-level guarantees for a single language. For security guarantees to be
meaningful, the entire language toolchain must support them.

One of the key decisions when formalizing any effectful, possibly-nonterminating language
is the choice of representation. Much prior work focuses on operational semantics defined
as a relation on syntax, or on trace models defined as a predicate over lists or streams of
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4:2 Semantics for Noninterference with Interaction Trees

observations [22, 26, 37]. However, such definitions often require auxiliary constructs, like
program counters or evaluation contexts, making proofs brittle and hard to compose. These
concerns are particularly pronounced for information-security properties, which often rely on
subtle definitions with delicate correctness proofs. The complexity of multi-language settings
further complicates the already-fraught choice of language representation.

Interaction Trees (ITrees) [58, 60] provide an alternative: a runnable denotational seman-
tics for effectful, potentially-nonterminating programs, with a library implemented in Coq [30].
Intuitively, ITrees represent programs as interactions with the environment. At a technical
level, ITrees are a coinductive data type based on free monads [51]. Programs are either done
and provide a return value, emit an event to the environment and continue once the environ-
ment provides a response, or produce a “silent event,” allowing ITrees to represent (silently)
diverging programs in strongly normalizing metalanguages. By interpreting the events into
a suitable monad [32], ITrees can express the semantics of diverse programming-language
features, and thus many different languages. This versatility makes ITrees well-suited to
cross-language reasoning [58] and reasoning about real-world toolchains [60, 25].

ITrees come equipped with a notion of program equivalence based on weak bisimilarity,
which considers programs equivalent if they differ only by a finite number of silent steps.
Properties like noninterference, however, require more nuanced reasoning because some
program behaviors are visible to an attacker while others are not.

This work introduces two indistinguishability relations for ITrees to capture these intu-
itions: one progress-sensitive and one progress-insensitive. These definitions—motivated by
corresponding notions found in the information-flow security literature [57, 56, 46]—adapt
the notion of bisimilarity to account for what information is available to an adversary. They
require delicate treatment of the interplay between nontermination and the interactions of
a program with its environment. Progress-sensitive noninterference is a very strong guar-
antee, but is overly restrictive for many real-world programming tasks. For instance, it
generally disallows loops that depend on secret data. Progress-insensitive noninterference is
less demanding, but provides considerably less security [6].

While the definitions of ITrees and our indistinguishability relations are coinductive, we
provide metatheoretic results allowing a proof engineer to reason with these relations without
manual coinduction. These results further connect these indistinguishability relations to the
standard ITrees notion of bisimilarity, providing compatability with existing results.

We validate this design with a simple toolchain for cross-language noninterference. The
toolchain consists of a simple imperative language, Imp, and a simple assembly language,
Asm. There are two type systems for Imp and a compiler from Imp to Asm. One type
system enforces progress-sensitive noninterference and the other enforces progress-insensitive
noninterference. In addition to standard information flow typing rules, the type systems
allow for semantic typing: any semantically secure program can be considered well typed.
This flexibility allows Imp to support embedded Asm blocks without giving a type system to
Asm, and it demonstrates the powerful semantic composition of our security reasoning. We
further verify that our Imp-to-Asm compiler preserves both kinds of noninterference. This
preservation relies only on semantic security, not the type system, which is required to allow
for security preservation with semantic typing.

To further demonstrate the utility of our approach, we include exceptions in Imp. Ex-
ceptions show how our indistinguishability semantics interact with effects that may alter
control flow, which are a particular challenge for information-flow reasoning. This inclusion
also requires an extension to the ITrees library that is orthogonal to the security extensions.

Section 2 reviews background on information-flow control and ITrees, the Imp language,
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and its semantics defined with ITrees. The contributions of this paper are as follows.
Section 3 extends the ITrees library with exceptions and exception handlers.
Section 4 adapts ITrees metatheory to reason about security guarantees, defining progress-
sensitive and progress-insensitive notions of indistinguishability and noninterference.
Section 5 uses ITrees and the new relations to prove the security of two standard
information-flow type systems for Imp.
Section 6 extends Xia et al.’s [58] simple compiler from Imp to Asm with exceptions and
print effects. We then show that Xia et al.’s notion of compiler correctness immediately
implies security preservation using only the metatheory of indistinguishability.

Finally, Section 7 discusses related work and Section 8 concludes. All definitions and theorems
described in this paper have been formalized in Coq.

2 Background

We now review background on information-flow control, interaction trees, and Imp.

2.1 Information-Flow Control
We represent information-security policies using a set of information-flow labels L that must
form a preorder. That is, there is a reflexive, transitive relation ⊑ (pronounced “flows to”) on
labels where ℓ ⊑ ℓ′ means that any adversary who can see information with label ℓ′ can also
see information with label ℓ. We also identify adversaries with labels. An adversary at label ℓ

can only see information with labels that flow to ℓ. Information-flow systems use a variety of
orderings, including simply “public” and “secret,” subsets of permissions [63], lattices over
principals making up a system [34, 5, 50], and orderings based on logical implication [40].

The classic information-flow security policy is noninterference: if an adversary cannot
distinguish a program’s inputs, they should not be able to distinguish its outputs or its
interactions with the environment. Because information-flow labels determine which data an
adversary can observe, a semantic version of noninterference requires a semantic model of
information-flow labels. Sabelfeld and Sands [47] suggest modeling labels as partial equivalence
relations (PERs) on terms. PERs are relations that are symmetric and transitive, but not
necessarily reflexive. PERs act like equivalence relations on a subset of their domain. For
information-flow security, such PERs are called “indistinguishability relations.”

This model further asserts that indistinguishable programs take indistinguishable inputs
to indistinguishable outputs. That is, related programs, applied to related inputs, produce
related computations. This closure property allows a semantic version of noninterference to
be defined as self-relation of a program. A program is related to itself—and noninterfering—if
and only if, for every adversary, given any two inputs an adversary cannot distinguish, it
produces two computations that adversary cannot distinguish.

As we will see in Section 4, indistinguishability gives a natural way to reason about
noninterference using ITrees. Requiring every indistinguishability relation to be a PER,
however, corresponds to strong assumptions about the adversary. In particular, it requires that
the adversary be able to distinguish a program that silently diverges from a program that takes
arbitrarily long to produce an observable interaction with its environment. Noninterference
against this strong adversary is known as progress-sensitive noninterference. While this
strength provides more security, enforcing progress-sensitive noninterference results in a
prohibitively expensive programming model [46, 56, Section 5.1]. To allow for enforcement of
progress-insensitive noninterference, the indistinguishability model is often relaxed to not
require transitivity [55, 43, 16].

ECOOP 2023
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2.2 Basic Definitions for Interaction Trees
Interaction Trees (ITrees) [58] are a coinductive data structure designed to give denotational
semantics to effectful, possibly divergent programs. ITrees model such computations as
branching trees where internal nodes represent events, or interactions with the environment,
with a branch for each different possible response from the environment. The use of coinduction
means that these trees can be infinite, modeling diverging programs. Because ITrees give a
denotational semantics to programs, they are a language-agnostic view of programs. Thus,
we can use ITrees as a common domain for multiple languages, allowing us to reason about
how those languages interact.

The type of an ITree includes an event signature E and a result type R. The result type
simply specifies the output type if the program halts normally. The event signature E defines
the interface by which the environment interacts with the program. E : Type → Type is a
type transformer that takes an answer type A and returns E A, the type of an event that
produces a value of type A. For example, the event signature, stateE, modeling a state effect
might have two constructors: get and set. A get event represents a state access that returns
a number, so it has type stateE(N). A set event represents an assignment that need not
return any useful information, so it has type stateE(unit).

ITrees have the following constructors.

r : R

ret r : itree E R
−−−−−−−−−−−−−−−−−

t : itree E R

τ · t : itree E R
================

e : E A k : A→ itree E R

Vis e k : itree E R
==============================

In this paper, a double line in an inference rule means that it should be interpreted coinduc-
tively, while a single line is interpreted inductively, as usual. This definition, then, is a fully
coinductive definition, since the only single-line definition is a base case.

The ITree ret r represents a program terminating with a value r. The ITree τ ·t represents
a silent internal step of computation, followed by the ITree t. Because ITrees are a coinductive
data structure, we can chain an infinite number of τ ’s together in the ITree tspin = τ · tspin.
Here, tspin models a divergent program that causes no side effects. Finally, the ITree Vis e k

represents a visible event e of type E A for some answer type A, followed by a continuation
k that takes an answer of type A and produces an itree E R. Intuitively, k defines how the
computation proceeds after the environment handles event e. Since k’s behavior may differ
depending on the value returned by e, there is one possible computational “branch” for each
value of type A. In this view, ITrees are potentially infinitely long trees.

For any event signature E, itree E forms a monad [32]. The unit operation is provided
by the ret constructor, and the bind operation, written m≫= k, is defined as a corecursive
function which replaces every ret r in m with k r. We will also use the common monad
notation x ← t1 ; t2 in place of t1 ≫= λx.t2. ITrees satisfy the monad laws up to strong
bisimulation, which we use as an equivalence on ITrees since they are potentially infinite
objects. Two ITrees are strongly bisimilar when they have exactly the same shape (including
the values returned at corresponding leaves).

In combination with the monad operations, another useful operation is trigger, which
lifts an event into an ITree that immediately returns the environment’s response:

trigger e = Vis e ret

ITrees also support an iteration operation:

iter : ∀A, B.(A→ itree E (A⊕B))→ A→ itree E B
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Expressions e ::= x | n | e + e | e− e | e ∗ e

Commands c ::= skip | x := e | c1 ; c2 | while (e) do {c}
| if (e) then {c1} else {c2} | print(ℓ, e) | inline {a}

Inlined Assembly a ::= (see Section 6)

Figure 1 Imp syntax, where x is a variable, n is a number, and ℓ is an information-flow label.

Intuitively, iter body a acts as a do-while loop, running body on input a and either continuing
with a new value of type A, or stopping with a final value of type B.

2.3 Semantics for Imp with Security Labels
To explore how ITrees can help us verify noninterference properties, we will use a simple
imperative language, Imp, as a running example and case study. Conveniently, previous
work on both ITrees [58] and noninterference [46] use Imp as case studies, ensuring that the
connection we make corresponds with existing tools and techniques in both domains. Our
version of Imp, presented in Figure 1, includes features not present in the works cited above:
the ability to print expressions to one of several output streams, and the ability to inline
code from a simple assembly language. Section 3 will further extend Imp to allow throwing
and catching exceptions. The output streams are indexed by information-flow labels, and
we think of stream ℓ as being visible to any adversary at or above ℓ, but no others. Thus,
printing secret information to a public stream leaks data.

The assembly language, Asm, is a simplification of standard assembly language. We allow
an infinite number of registers, and we assume that the heap is addressed by variables, as
in Imp. We also do not allow dynamic jumps, only jumps to fixed addresses. Beyond those
simplifications, we include features similar to those in Imp: we allow printing to streams
indexed by information-flow labels and, as we show later, the Asm semantics can model
uncaught exceptions, both features necessary for correct compilation of Imp code. We discuss
the syntax and semantics of Asm in more detail in Section 6.

As in languages like C, embedding Asm in Imp allows developers more control over the
performance of their code. For instance, the simple compiler in Section 6 would compile the
Imp program y := x + 1 ; z := x + 2 to an Asm program that loads data from x into a register
twice, once for each assignment. Since Loads are relatively expensive, when the Imp code
above appears in a critical loop a developer might replace it with the following Asm code:

Start : load $0 ← x

add $0 ← $0, 1
store y ← $0
add $0 ← $0, 1
store z ← $0
jmp Exit

This program starts from the Start label, and terminates the program by jumping to the
Exit label. Unlike our compiler’s output, this custom Asm only has one load instruction.

Giving semantics to Imp using ITrees requires defining events representing possible
interactions between an Imp program and its environment. Imp has three types of events:
stateE for the heap state, regE for the register state, and printE for output. There are two
constructors for stateE events, one for reading and one for writing.

get : var→ stateE(N) set : var→ N→ stateE(unit)

ECOOP 2023
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JeKe : itree progE N

JxKe = trigger get(x)
JnKe = ret n

Je1 + e2Ke = x← Je1Ke ;
y ← Je2Ke ;
ret (x + y)

JcKc : itree progE unit

JskipKc = ret ()
Jx := eKc = n← JeKe ; trigger set(x, n)

Jprint(ℓ, e)Kc = n← JeKe ; trigger print(ℓ, n)
Jc1 ; c2Kc = Jc1Kc ; Jc2Kc

u

v
if e

then {c1}
else {c2}

}

~

c

= n← JeKe ;
if n ̸= 0
then Jc1Kc

else Jc2Kc

Jwhile (e) do {c}Kc = iter


λ_. n← JeKe ;

if n ̸= 0
then (JcKc ; ret inl())
else ret inr()

 ()

Jinline {a}Kc = JaKasm

Figure 2 Imp denotational semantics

The regE events require another two constructors, again one for reading and one for writing.

getreg : reg → regE(N) setreg : reg → N→ regE(unit)

There is only one constructor for printE events: print : L → N→ printE(unit).
As Imp programs can produce all three types of events, we combine them with disjoint

union. The resulting event type for Imp programs is progE = regE⊕ stateE⊕ printE. For
notational simplicity, we elide the injection operator when using these compound events.

Figure 2 presents the denotation of Imp using these events. Note that there are two
denotation functions: J·Ke for expression and J·Kc for commands. As expressions produce
numbers and commands have no output, J·Ke produces computations of type itree progE N,
while J·Kc produces computations of type itree progE unit. The function J·Kasm gives ITree-
based semantics to Asm. Its full definition can be found in the work of Xia et al. [58]; we
discuss the modifications necessary to accommodate our changes in Section 6.

The denotation for expressions is fairly straightforward, and, importantly for proofs,
completely compositional—an expression’s meaning is constructed from that of its subexpres-
sions. The denotation of a variable is a get event, a literal n becomes ret n, and arithmetic
expressions simply denote each argument and return the resulting value using bind.

Most commands are equally simple and compositional. skip is an immediate ret. Both
assignment and print first denote the argument and then bind the result into the appropriate
event. Sequencing is implemented with bind on a unit value that we elide. Conditionals first
denote the condition, and then return the denotation of either the left or right command
depending on the result.

Loops are more complex and make use of the iter combinator. The combinator expects
a function that returns itree progE (unit ⊕ unit), where a left value indicates “continue”
and a right value indicates that the loop should terminate. The function given to iter first
computes the value of the loop’s guard expression. If the value is not zero, it sequences
a single denotation of the loop body with ret inl(), indicating the loop should continue.
Otherwise, if the value is zero, it signals to halt the iteration with ret inr().
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2.4 Handlers and Interpretations
The events in an ITree can be thought of as a kind of syntax. Even though we give them names
that suggest certain behaviors, like get and set, nothing about their structure enforces this
behavior. Consider the ITree trigger set(x, 0) ; trigger get(x): while the names suggest
that the result of this get should be 0, it actually produces a tree with one branch for
every natural number. Likewise, the ITree JcKc representing an Imp program c does not fully
express the behavior we would expect from c because it has uninterpreted state events.

The behavior of events is determined by a function called an event handler from events
to effectful computations. As is standard, we represent effectful computations as elements
of a monad M , giving an event handler the type ∀A. E A→ M A. For example, consider
hprog which uses the standard monadic interpretation of state to interpret progE events:

hprog(get(x)) = λ(r, h). ret (r, h, h(x))
hprog(set(x, n)) = λ(r, h). ret (r, h[x 7→ n], ())

hprog(getreg(x)) = λ(r, h). ret (r, h, r(x))
hprog(setreg(x, n)) = λ(r, h). ret (r[x 7→ n], h, ())

hprog(print(ℓ, n)) = λ(r, h). trigger print(ℓ, n) ; ret (r, h, ())

Any event handler can be lifted to a function from ITrees to effectful computations
using the interp function, which traverses an ITree, replacing each event with the effectful
computation assigned by the handler. The full semantics of an Imp program is the interpreted
ITree, interp hprog JcKc.

2.5 Inlined Asm and Undefined Behavior
Adding support for inlined Asm code introduces a new complication to the semantics of Imp:
undefined behavior. To analyze the correctness and security of a language toolchain, we need
to define the behavior of source-level programs. The semantics defined in Section 2.3 and
Section 2.4 do that for Imp as long as any inlined Asm has well-defined behavior. However,
consider the following Imp program, which contains inlined Asm.

p = c ; inline { Start : brz $0 A1 A2
A1 : load X ← 0

jmp Exit
A2 : load X ← 1

jmp Exit }

The inlined Asm program looks at the value in register 0 and, if it is zero, jumps to
address A1; otherwise it jumps to address A2. Thus, the value of X after executing program
p depends on the value of register $0 after c is executed. However, it is not clear what the
register’s value will be when this program is compiled and run, since reasonable compilers
could use the register $0 in different ways—or not at all—to compile the Imp command c,
resulting in different register states. We thus consider inlining any Asm program that relies
on the initial values of registers to be undefined behavior. We formalize this property in
Section 5.3. We further take the same approach as CompCert,1 and only verify the correctness
and security of programs that are well-defined.

1 Personal Communication with Xavier Leroy.
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R(r1, r2)

E ⊢ ret r1 ≈R ret r2

−−−−−−−−−−−−−−−−−−−−−
e : E A ∀(a : A), E ⊢ k1(a) ≈R k2(a)

E ⊢ Vis e k1 ≈R Vis e k2
=======================================

E ⊢ t1 ≈R t2

E ⊢ τ · t1 ≈R τ · t2
==================

E ⊢ t1 ≈R t2

E ⊢ τ · t1 ≈R t2

−−−−−−−−−−−−−−−
E ⊢ t1 ≈R t2

E ⊢ t1 ≈R τ · t2

−−−−−−−−−−−−−−−

Figure 3 Inference rules for weak bisimulation

2.6 Weak Bisimulation

Much of the power of ITrees comes from their equational theory. While it is natural to
reason about coinductive structures like ITrees using bisimulation, the “obvious” bisimulation
relation is too strong for our needs. For example, the more complex operations we have
introduced, like iter and interp, insert some (finite number of) silent internal τ steps,
which would be convenient to ignore. For this reason, we often prefer to work with a coarser
equivalence called weak bisimulation, or equivalence-up-to-tau (eutt), which ignores finite
numbers of τs when comparing two ITrees.

Weak bisimulation is defined by the inference rules in Figure 3, where the relation
is parameterized by a relation R used to compare return values. Furthermore, the event
signature of the two ITrees is made explicit by the E parameter. The first three inference
rules correspond to the three constructors of an ITree and are exactly the definition of strong
bisimulation. The last two rules allow us to ignore any finite number of τs. The fact that
these rules are inductive rather than coinductive is crucial. If these rules were coinductive,
we could use them to show that a diverging ITree with only τ constructors is equivalent to
any other ITree. Using this technique of mixed induction and coinduction, coinductive rules
may be used infinitely often, while inductive rules can only be used a finite number of times
before either terminating with a base case or applying a coinductive rule.

Xia et al. [58] formalize the ITrees data structure and its metatheory in a Coq library,2
providing a rich equational theory up to this definition of weak bisimulation. This theory allows
users to prove termination-sensitive properties about ITrees without explicitly performing
coinductive proofs, greatly reducing the proof burden.

3 Exceptions with Interaction Trees

As mentioned in Section 1, we include exceptions in Imp since they are an important example
of an effect which can change the control flow. In this section, we show how to model
exceptions with ITrees by adding throw and catch constructs to Imp as follows:

Commands c ::= · · · | throw(ℓ) | try {c1} catch {c2}

Note that the throw command includes an information flow label, specifying who may see
the exception.

2 This Coq development, as well as our extension of it, defines coinductive relations using the paco
library [19, 61] for coinductive reasoning.
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3.1 Exceptions as Halting Events
We model exceptions in ITrees as halting events. Recall from Section 2.2 that events create
one branch for every possible response from the system. If an event has an uninhabited
response type, then that continuation can never be run since the answer type has no values.
We call such events halting because they force the computation to stop. We formalize this
with the following lemma:
▶ Lemma 1. Suppose A is an uninhabited type and e is an event of type E A, then given
any continuations k1 and k2 and any return relation R, E ⊢ Vis e k1 ≈R Vis e k2.
The continuation of a halting event cannot be run and has no effect on the computational
content of the ITree. This allows a programmer to assign such an ITree any desired return type
without changing its computational content. This property makes halting events useful for
modeling (uncaught) exceptions: an exception can have any type and causes computation to
stop. To represent exceptions using this strategy, we use an event type excE with only a single
constructor exc : Err → excE(∅) which takes the exception’s data payload and produces an
event with an empty answer type. This allows us to define Jthrow(ℓ)Kc = trigger exc(ℓ).

3.2 Catching Exceptions
Real-world languages do not just throw exceptions, they also handle them. To implement
exception handling in ITrees, we use a common monadic interpretation of exceptions: we allow
programs to return either a standard return value or an exception. Specifically, we move from
an ITree of type itree (excE Err⊕E) R to one of type itree (excE Err⊕E) (Err⊕R)
using interp to lift the following hexc event handler to the entire ITree, as described in
Section 2.4.

hexc : ∀A, (excE Err ⊕ E) A→ itree (excE Err ⊕ E) (Err ⊕A)
hexc(inl(exc(e))) := ret inl(e)

hexc(inr(e)) := x← trigger inr(e); ret inr(x)

Even though the resulting ITree cannot have exception events, we still assign it a type that
allows them so it can cleanly compose with ITrees that do contain exception events. This
choice allows monadic bind to apply exception handlers—which may themselves contain
exception events—to any left values (exceptions) while leaving right values (normal returns)
unmodified. The result is the following exception-handling combinator, where case k1 k2
chooses the continuation k1 or k2 if the return value is inl or inr, respectively.

trycatch(t, kc) := interp hexc t≫= case kc ret

This trycatch combinator has a straightforward metatheory. In particular, we show
how it interacts with the constructors of ITrees, allowing proof engineers to reason about
trycatch without using manual coinduction.
▶ Theorem 2. The trycatch operator satisfies the following equivalences:

E ⊢ trycatch(ret r, kc) ≈= ret r

E ⊢ trycatch(τ · t, kc) ≈= trycatch(t, kc)
E ⊢ trycatch(Vis inr(a) k, kc) ≈= Vis inr(a) λx.trycatch(k(x), kc)

E ⊢ trycatch(Vis inl(exc(ε)) k, kc) ≈= kc(ε)

Finally, the trycatch operator provides a simple denotation of Imp’s try-catch blocks:

Jtry {c1} catch {c2}Kc = trycatch(Jc1Kc , λ_. Jc2Kc)

ECOOP 2023
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4 Indistinguishability of Interaction Trees

To leverage the common semantic domain of ITrees to guarantee the security of a toolchain,
we define our indistinguishability relation purely semantically. Intuitively, for programs to
be indistinguishable, they must return indistinguishable results and have indistinguishable
interactions with their environments.

Since return values can be arbitrary types, we follow eutt by parameterizing indistin-
guishability over a return relation R. For indistinguishability, R describes when two values
appear to be the same to the adversary. For example, consider a program that outputs a pair
(a, b) where a is visible to Alice and b is visible to Bob, but not vice versa. The values (1, 1)
and (1, 2) are not equal, but they are indistinguishable from Alice’s perspective, as she can
only see the first element. We can represent Alice’s view of the output with a relation RAlice
defined by RAlice((a, b), (a′, b′)) ⇐⇒ a = a′.

We could simply use eutt with a return relation R modeling indistinguishability. The
resulting relation would model an adversary who can only see some part of the program’s
output, but it would require the two programs to interact with the environment in precisely
the same way. Most settings, however, allow adversaries to see some interactions, but not
others. For example, memory may be partitioned into a protected heap the adversary can
never see, and an unprotected heap that it can see at all times. Reasoning about security
when some events are visible and others are not requires changing eutt to account for what
the adversary can observe.

4.1 Secure Equivalence Up-To Taus
Our indistinguishability relation is called secure equivalence up-to tau or seutt. In addition
to a return relation, seutt is also parameterized by a label ℓ, representing what the adversary
can see, and a sensitivity function ρ that maps events to labels, representing who may observe
which events. Intuitively, two ITrees are related by seutt if the environment interactions
appear the same to an adversary who can see events only at or below label ℓ, and the return
values are related by R. We write the relation as E; ρ ⊢ps t1 ≈ℓ

R t2.
Notably, we base the relation on eutt, which makes it progress sensitive. Recall from

Section 2.1 that progress-sensitive noninterference allows any adversary to determine if a
program silently diverges, and is often prohibitively expensive to enforce. We will also define
pi-seutt, a progress-insensitive version of seutt, in Section 4.3. The judgments take the
same form, so we annotate the turnstile with a subscript ps or pi to distinguish them visually.

For presentation, we separate the rules for seutt into three groups: rules covering returns,
τs, and public events (Figure 4), rules covering secret events that do not halt the program
(Figure 5), and rules covering secret halting events (Figure 6).

Public Events and Returns. When an adversary is able to see an event, indistinguishability
acts just like weak bisimulation. The rules, found in Figure 4, are almost identical to the rules
of eutt, but with the added requirement that any visible event be visible to the adversary.
That is, we require ρ(e) ⊑ ℓ in PubVis.

It might seem mysterious that we require the event to be visible in PubVis. But allowing
this rule to apply no matter the visibility would allow the adversary too much power, since
they would know that the same result is returned on both sides of the equivalence. As we
will see, the rule for invisible events is stricter. We will also see how this strictness, when
proving a program p indistinguishable from itself, corresponds to proving that the behavior
of p does not differ in runs in low-equivalent environments. If we were to allow high events in
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[Ret]
R(r1, r2)

E; ρ ⊢ps ret r1 ≈ℓ
R ret r2

−−−−−−−−−−−−−−−−−−−−−−−−− [TauTau]
E; ρ ⊢ps t1 ≈ℓ

R t2

E; ρ ⊢ps τ · t1 ≈ℓ
R τ · t2

======================

[PubVis]

∀a, E; ρ ⊢ps k1(a) ≈ℓ
R k2(a)

e : E A ρ(e) ⊑ ℓ

E; ρ ⊢ps Vis e k1 ≈ℓ
R Vis e k2

============================= [TauL]
E; ρ ⊢ps τ · t1 ≈ℓ

R t2

E; ρ ⊢ps t1 ≈ℓ
R t2

−−−−−−−−−−−−−−−−−−−

[TauR]
E; ρ ⊢ps t1 ≈ℓ

R τ · t2

E; ρ ⊢ps t1 ≈ℓ
R t2

−−−−−−−−−−−−−−−−−−−

Figure 4 Inference rules for indistinguishability, where all events are visible

[PrivVisTau]

∀a, E; ρ ⊢ps k(a) ≈ℓ
R t e : E A

¬empty(A) ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R τ · t

================================ [PrivVisIndL]

∀a, E; ρ ⊢ps k(a) ≈ℓ
R t e : E A

¬empty(A) ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[PrivVisVis]

∀(a :A)(b :B), E; ρ ⊢ps k1(a) ≈ℓ
R k2(b) e1 : E A e2 : E B

ρ(e1) ̸⊑ ℓ ρ(e2) ̸⊑ ℓ ¬empty(A) ¬empty(B)

E; ρ ⊢ps Vis e1 k1 ≈ℓ
R Vis e2 k2

=============================================================

Figure 5 Inference rules for indistinguishability, where events are not visible but answer types
are inhabited

PubVis, this would allow our proof to only consider the behavior of p in one environment,
breaking our correspondence with information-flow security.

Private Events With Responses. When the adversary is unable to view an event, seutt
cannot act like eutt. In this case, the rules are designed to formalize two intuitions. If the
computation continues after a secret event, we should treat the event like a τ , since the
adversary cannot observe either. If the event halts the computation, the event should be
equivalent to a silently nonterminating computation.

The rules in Figure 5, along with symmetric analogues of PrivVisTau and PrivVisIndL,
handle the case where the event allows computation to continue—that is, the event’s answer
type is inhabited. The first rule, PrivVisTau, relates a private event Vis e k with a τ · t. In
addition to requiring the event to be secret (ρ(e) ̸⊑ ℓ) and have a non-empty answer type
(¬empty(A)), it also requires the continuation k produce an ITree indistinguishable from t for
every possible response. This requirement ensures that the adversary’s future observations
cannot depend on the response to the private event. Note that the requirement that A be
non-empty does more than just specify when the rule applies. Without it, a private halting
event would trivially satisfy this condition, allowing it to relate to any ITree with a τ in
front. Since the adversary can determine when a program has halted, they should be able to
distinguish, for example, a program that throws a private exception from a program which,
after a τ , prints to a public channel. This rule ensures that this intuition holds.

PrivVisIndL is analogous to TauL, but for secret events instead of τ nodes. This rule
has the same premises as PrivVisTau for the same reasons. Moreover, it only removes a node
from the head of one ITree, not both. As with the definition of seutt, TauL, and TauR, we
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[EmpVisTau]

E; ρ ⊢ps Vis e k ≈ℓ
R t

e : E A empty(A)
ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R τ · t

======================= [EmpVisVisL]

∀b, E; ρ ⊢ps Vis e1 k1 ≈ℓ
R k2(b)

e1 : E A e2 : E B

empty(A) ρ(e1) ̸⊑ ℓ ρ(e2) ̸⊑ ℓ

E; ρ ⊢ps Vis e1 k1 ≈ℓ
R Vis e2 k2

====================================

Figure 6 Inference rules for indistinguishability, where events are halting and not visible

therefore make PrivVisIndL inductive, not coinductive, to avoid relating a infinite stream
of secret events to all other ITrees.

Finally, PrivVisVis removes a private event from the head of both sides of the relation.
As with the previous rules, we require both events to be private and have non-empty answer
types. This time, we require the continuations of the two events to be indistinguishable for
every possible response of both events separately. This requirement formalizes the idea that
the adversary should not be able to distinguish the program’s behavior on any pair of secret
responses.

To see the power of this rule, consider whether an adversary who can see l but not h

would find the following ITrees indistinguishable from themselves:

tsec ≜ x← trigger get(l);
y ← trigger get(h);
trigger set(h, x + y)

tinsec ≜ x← trigger get(l);
y ← trigger get(h);
trigger set(l, x + y)

One would hope that tsec would be indistinguishable from itself, while tinsec would not be,
and indeed that is the case. To (attempt to) prove that either tree is equivalent to itself, we
walk through each ITree. Since l is visible, so is get(l), so PubVis applies and requires only
that each possible value of x produce an ITree that is indistinguishable from itself. Because
h is secret, the adversary should not be able to observe or infer its value, so we must use
PrivVisVis to remove get(h). PrivVisVis requires that, for all possible pairs of values
y1, y2, the continuations be indistinguishable. Thus in tsec, trigger set(h, x + y1) must be
indistinguishable from trigger set(h, x + y2). Since h is secret, so are the set events, so
PrivVisVis can remove them even when they differ. After removing set, the remaining
continuation always produces ret (), so Ret finishes the proof.

However, in tinsec, PrivVisVis does not apply to the set events since l is visible. PubVis
only relates ITrees starting with the same event, but set(l, x + y1) ̸= set(l, x + y2) when
y1 ≠ y2. As a result, no rule applies after removing get(h), so the adversary can distinguish
tinsec from itself. In other words, tinsec is, indeed, insecure.

Private Halting Events. Finally, we turn to the case where an event the adversary cannot
see halts the computation. In this case, the adversary should be unable to tell that the event
took place, and therefore should not be able to distinguish a program with a secret halt from
a program that never terminates. However, the adversary should still be able to distinguish
it from any ITree that contains an event the adversary can see.

This intuition means that a private halting event should not be treated like a τ , as a
private non-halting event is, but rather should be indistinguishable from an infinite stream
of τs. We formalize this approach with the rules presented in Figure 6 along with their
symmetric analogues. EmpVisTau peels a single τ off the right ITree, leaving the private
halting event on the left unmodified. EmpVisVisL does the same for a private event.

There are two interesting properties about these rules. First, unlike the rules for private
events and τs that leave one side of the equivalence unmodified, these rules are coinductive, not
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inductive. This choice allows us to relate a private halting event to an entire nonterminating
program, as long as that program has no public events. Indeed, no rule allows us to remove a
private halting event, as there would be nothing left to compare. Second, EmpVisVisL has
no requirement that B, the answer type of the not-necessarily-halting event, be non-empty.
This choice avoids the need to explicitly handle the case where both ITrees contain private
halts. If B is non-empty, then EmpVisVisL treats the event as a τ . If B is empty, then the
first premise of the rule is trivially satisfied, which is desirable, as in that case both ITrees
begin with a private halt event and should be equivalent.

4.2 The Metatheory of Indistinguishability
The seutt relation captures intuitions about when two ITrees are indistinguishable to
some adversary, but using it requires a delicate mix of induction and coinduction. To both
demonstrate the power of our definition and better support verification, we also develop a
library of metatheory for indistinguishability. This library supports reasoning about cross-
language toolchains without the need for explicit coinduction, as we will see when we verify
the correctness of a security type system and compiler for Imp (Sections 5 and 6, respectively).

Indistinguishability as a PER Model. Recall from Section 2.1 that Sabelfeld and
Sands [47] argue for indistinguishability forming a partial equivalence relation (PER). It
would be nice if seutt always formed a PER, but because it is parameterized on an arbitrary
relation for return values, that is not always the case. Instead, we prove generalized versions
of transitivity and reflexivity. In particular, if we let

↔
R denote the reverse relation of R—that

is,
↔
R(x, y) △⇐⇒ R(y, x)—then the following theorems hold.

▶ Theorem 3. For all R, E, ρ, and ℓ, if E; ρ ⊢ps t1 ≈ℓ
R t2, then E; ρ ⊢ps t2 ≈ℓ

↔
R

t1.

▶ Theorem 4. If E; ρ ⊢ps t1 ≈ℓ
R1

t2 and E; ρ ⊢ps t2 ≈ℓ
R2

t3 then E; ρ ⊢ps t1 ≈ℓ
R1◦R2

t3.

Note that if R is symmetric, then R =
↔
R, and if R is transitive, then R ◦R ⊆ R. These

properties allow us to prove the following corollary.

▶ Corollary 5. If R is a PER, then so is E; ρ ⊢ps − ≈ℓ
R − for any E, ρ, and ℓ.

ITree Combinators. ITrees are often defined using the combinators from Section 2.2,
making it important to understand how indistinguishability interacts with those combinators.
The definition of seutt directly describes how to relate simple programs defined using only
ret and trigger, but they say nothing about larger ITrees built using bind and iteration.

Bind allows for the sequential composition of programs. We would like indistinguishable
programs t1 and t2 followed by indistinguishable continuations k1 and k2 to compose into
larger indistinguishable programs t1≫=k1 and t2≫=k2. The following theorem says that this
result holds whenever the relation R1, securely relating t1 and t2, puts enough constraints on
their possible outputs to ensure that k1 and k2 are always securely related at some relation
R2.

▶ Theorem 6. If E; ρ ⊢ps t1 ≈ℓ
R1

t2 and for all values a, b, R1(a, b) implies E; ρ ⊢ps
k1(a) ≈ℓ

R2
k2(b), then E; ρ ⊢ps t1≫= k1 ≈ℓ

R2
t2≫= k2.

Iteration represents loops, which have two parts: an initial value, and a body that produces
a value from the previous value. Indistinguishable initial values paired with indistinguishable
bodies produce indistinguishable loops, as we can see in the following theorem.
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▶ Theorem 7. If R1(a1, b1) and, for any a, b, E; ρ ⊢ps k1(a) ≈ℓ
caseR(R1,R2) k2(b) whenever

R1(a, b), then E; ρ ⊢ps iter k1 a1 ≈ℓ
R2

iter k2 b1.

This rule is conceptually similar to a loop invariant from a Hoare-style logic. R1 is a property
that is initially true and is preserved on each iteration except the final one, while the final
iteration guarantees that R2 holds. The caseR(R1,R2) function lifts two relations to a single
relation over sum types such that R1 is applied to two left values, R2 is applied to two right
values, and no other combination is related.

Relationship with Equivalence Up-To Taus. Recall that weak bisimulation of ITrees
(eutt) requires two ITrees to contain the same pattern of interaction with their environment.
Our notion of indistinguishability assumes that adversaries distinguish programs purely based
on their interactions with the environment. One would thus expect that combining eutt
with indistinguishability should result in indistinguishability. The following theorem shows
this to be the case.

▶ Theorem 8 (Mixed Transitivity). If both E; ρ ⊢ps t1 ≈ℓ
R1

t2 and E ⊢ t2 ≈R2 t3 then we can
conclude that E; ρ ⊢ps t1 ≈ℓ

R1◦R2
t3.

This is a very powerful theorem. In particular, many program transformations preserve
equality. That is, they take source programs with equivalent-up-to-taus ITree representa-
tions to target programs with the same property. Mixed transitivity tells us that compil-
ers built from such transformations also preserve indistinguishability. For instance, since
noninterference—the security property we are ultimately considering—is defined as a program
being indistinguishable from itself, mixed transitivity supports a very simple proof that the
compiler in Section 6 preserves noninterference. While this result might be surprising, it
reflects the utility of ITrees and indistinguishability. By looking at which labels can distinguish
an ITree from itself, we can discover where leaks are possible.

4.3 Progress-Insensitive Indistinguishability
The type systems that enforce progress-sensitive noninterference are extremely restrictive.
Thus, information-flow control literature mostly studies progress-insensitive type systems.
These type systems enforce noninterference against adversaries who cannot see when a
program has begun to silently loop forever. Intuitively, such adversaries believe that silently
looping programs could break out of their loops at any moment, and so do not distinguish
them from programs which have produced visible events.

In order to support such reasoning, we introduce pi-seutt, a progress-insensitive version
of indistinguishability for ITrees. This leads to the following definition:

▶ Definition 9 (pi-seutt). The relation pi-seutt, the progress-insensitive version of in-
distinguishability, is defined by modifying the definition of seutt by completely removing
the rules for halting events (all rules in Figure 6) and making every other rule coinductive
(this modifies TauL and TauR in Figure 4 as well as PrivVisIndL in Figure 5 and its
not-presented symmetric counterpart).

This relation is strictly more permissive than seutt, since it relates every ITree to silently
diverging ITrees and private halts. These facts can be formalized in the following theorems:

▶ Theorem 10. If E; ρ ⊢ps t1 ≈ℓ
R t2 then E; ρ ⊢pi t1 ≈ℓ

R t2.

▶ Theorem 11. Given any ITree t, E; ρ ⊢pi tspin ≈ℓ
R t.



L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic 4:15

▶ Theorem 12. Given any ITree t, if e is a halting event, then E; ρ ⊢pi Vis e k ≈ℓ
R t.

Just as with the progress-sensitive version of indistinguishability, we can show that
indistinguishability plays well with the usual ITree combinators. This allows us to prove
ITrees indistinguishable in many cases without resorting to hand-rolled coinduction.

▶ Theorem 13. If E; ρ ⊢pi t1 ≈ℓ
R1

t2 and E; ρ ⊢pi k1(a) ≈ℓ
R2

k2(b) whenever R1(a, b), then
E; ρ ⊢pi t1≫= k1 ≈ℓ

R2
t2≫= k2.

▶ Theorem 14. If R1(a1, a2) and for any a, a′, E; ρ ⊢pi k1(a) ≈ℓ
caseR(R1,R2) k2(a′) whenever

R1(a, a′), then E; ρ ⊢pi iter k1 a1 ≈ℓ
R2

iter k2 a2.

Moreover, mixed transitivity again holds, allowing for simple proofs of compiler safety:

▶ Theorem 15 (Mixed Transitivity). If both E; ρ ⊢pi t1 ≈ℓ
R1

t2 and E ⊢ t2 ≈R2 t3 then we
get E; ρ ⊢pi t1 ≈ℓ

R1◦R2
t3.

Progress-insensitive indistinguishability behaves differently from the progress-sensitive
sibling version in one important way: it does not form a PER. Because it relates a diverging
ITree to every other ITree, pi-seutt is not transitive. This is not surprising, since progress-
insensitive indistinguishability is not a PER [55, 43, 16]. It does, however, retain generalized
symmetry, and a weakened but still-useful version of generalized transitivity:

▶ Theorem 16. If E; ρ ⊢pi t1 ≈ℓ
R t2 then E; ρ ⊢pi t2 ≈ℓ

↔
R

t1.

▶ Theorem 17. If E; ρ ⊢pi t1 ≈ℓ
R1

t2, E; ρ ⊢pi t2 ≈ℓ
R2

t3, and t2 converges along all paths,
then E; ρ ⊢pi t1 ≈ℓ

R1◦R2
t3.

Where an ITree is considered convergent if it is either a ret, a τ followed by a convergent
ITree, or a non-halting event followed by a continuation that converges for any input.

Unlike progress-sensitive indistinguishability, we can easily show that loops produce no
events that are observable to some adversary at ℓ via pi-seutt. Suppose that we want to
show that iter body a0 emits no events that are observable to some adversary at ℓ. We
can do so by showing that iter body a0 and ret b are indistinguishable with some return
relation R. This shows that the body of the loop both emits no observable events and, if
the loop terminates, it returns a value c where R(c, b). Importantly, we have not made any
statement about whether the loop terminates; we have merely said that it will not produce
events, regardless of its termination behavior. We formalize this in the following theorem:

▶ Theorem 18. For any relation Rinv, if

Rinv(a0, b) and ∀a, Rinv(a, b) =⇒ E; ρ ⊢pi body a ≈ℓ
leftcase(Rinv,R) ret b,

then E; ρ ⊢pi iter body a0 ≈ℓ
R ret b, where the relation leftcase is defined as follows:

leftcase(R1,R2)(inl(a), b) = R1(a, b) leftcase(R1,R2)(inr(a), b) = R2(a, b)

4.4 Noninterference and Interpretation
Recall from Section 2.1 that we can define noninterference using an indistinguishability
relation on programs by saying that a program is noninterfering if it is related to itself—given
indistinguishable inputs, it will produce indistinguishable computations. We could define
noninterference on ITrees using seutt (or pi-seutt), as they provide such indistinguishability
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relations by design. This approach produces a sensible definition, but one that assumes an
extremely strong adversary.

Consider the following Imp program, where the his have label ℓh and the lis have label ℓl:

if (h1 = 0) then {h2 := l1} else {h2 := l2}

Since the program writes only to secret variables, intuitively this program seems secure.
However, according to seutt, it is not related to itself at ℓl since reading from l1 and l2
produce different get events with label ℓl. All adversaries have the power to observe reads of
public state, not just writes.

The visibility of public read events is not the only problem. Using just seutt also means
a computation cannot publicly depend on the result of reading a secret variable, even if a
public value were written to that variable. For instance, the following program would also be
considered insecure:

h := l ; print(ℓl, h)

If h cannot change between assignments, this program is intuitively secure, but seutt at ℓl

requires print(ℓl, h) to produce the same output regardless of the value of h, which it clearly
does not.

On uninterpreted ITrees, seutt models a system where both reads and writes are visible
to anyone who can see the variable, and the value of a secret variable may silently change
between a read and a write. This model makes perfect sense in some contexts—like distributed
computation [28]—but we usually consider weaker adversaries.

We can remove these assumptions and model a weaker adversary by interpreting state,
as we discussed in Section 2.4. Interpreting these programs would result in two meta-level
functions (i.e., Coq functions) which take a state as input and produce an ITree returning
an output state. For example in Section 2.4, we define the semantics of an Imp program c

as an interpreted ITree—that is, as a function from states to ITrees—not as a single ITree
with state events. We thus adjust our notions of indistinguishability and noninterference to
account for this semantic construct.

Intuitively, we start with a family of relations RS,ℓ that describes when states are
indistinguishable to an adversary at level ℓ and use it to define the following observational
equivalence. For technical reasons, we require RS,ℓ to be an equivalence relation at all labels.
For Imp, we use a relation ∼=ℓ

Γ which only requires states to agree on a variable x if the label
of x flows to ℓ.

▶ Definition 19 (Stateful Indistinguishability). Two stateful computations p1 and p2 are
px-statefully indistinguishable under RS,ℓ and R at label ℓ if, for every pair of states σ1 and
σ2 such that RS,ℓ(σ1, σ2),

E; ρ ⊢px p1 σ1 ≈ℓ
RS,ℓ×R p2 σ2

where RS,ℓ ×R((σ′
1, a1), (σ′

2, a2)) △⇐⇒ RS,ℓ(σ′
1, σ′

2) and R(a1, a2)

As described above, stateful indistinguishability with ∼=ℓ
Γ defines security against an

adversary who can observe public writes, but not secret writes or secret reads. This indistin-
guishability relation leads to a much more common definition of noninterference, and it is
the one we will use in our case studies in Sections 5 and 6.

▶ Definition 20 (Noninterference). A stateful computation is px-noninterfering with state
relations RS,ℓ and return relation R if, given any label ℓ, it is px-statefully indistinguishable
from itself under state relation family RS,ℓ and return relation R.
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Γ(x) ⊑ ℓ

Γ ⊢ x : ℓ
−−−−−−−−

Γ ⊢ n : ℓ
−−−−−−−

Γ ⊢ e1 : ℓ1 Γ ⊢ e2 : ℓ2

Γ ⊢ e1 ⊙ e2 : ℓ1 ⊔ ℓ2

−−−−−−−−−−−−−−−−−−−−−−−−

Figure 7 Typing rules for expressions in security-typed Imp.

Shared Typing Rules

[Skip]
Γ; pc ⊢px skip ⋄ ⊥
−−−−−−−−−−−−−−−− [If]

Γ ⊢px e : ℓ

Γ; pc ⊔ ℓ ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓ ⊢px c2 ⋄ ℓ′
ex

Γ; pc ⊢px if (e) then {c1} else {c2} ⋄ ℓex ⊔ ℓ′
ex

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Assign]

Γ ⊢px e : ℓ

pc ⊔ ℓ ⊑ Γ(x)

Γ; pc ⊢px x := e ⋄ ⊥
−−−−−−−−−−−−−−−−−− [Seq]

Γ; pc ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓex ⊢px c2 ⋄ ℓ′
ex

Γ; pc ⊢px c1 ; c2 ⋄ ℓex ⊔ ℓ′
ex

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Try]
Γ; pc ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓex ⊢px c2 ⋄ ℓ′

ex

Γ; pc ⊢px try {c1} catch {c2} ⋄ ℓ′
ex

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [Print]
Γ ⊢px e : ℓ pc ⊔ ℓ ⊑ ℓ′

Γ; pc ⊢px print(e, ℓ′) ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−−−

Progress-Sensitive Typing Rules Progress-Insensitive Typing Rules

[While-PS]
Γ ⊢ps e : ⊥ Γ;⊥ ⊢ps c ⋄ ⊥

Γ;⊥ ⊢ps while (e) do {c} ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Throw-PS]
Γ;⊥ ⊢ps throw(⊥) ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−

[While-PI]

Γ ⊢pi e : ℓ

Γ; pc ⊔ ℓ ⊔ ℓex ⊢pi c ⋄ ℓex

Γ; pc ⊢pi while (e) do {c} ⋄ ℓex

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Throw-PI]
pc ⊑ ℓex

Γ; pc ⊢pi throw(ℓex) ⋄ ℓex

−−−−−−−−−−−−−−−−−−−−−−−

Figure 8 Typing rules for commands in security-typed Imp.

5 Security Sensitive Type Systems For Imp

To see how to use this theory of indistinguishability and ITrees, we now provide an information-
security guarantee for an example toolchain for Imp. We begin by verifying two information-
flow type systems, and proceed with a simple compiler in Section 6. The two notions of
noninterference—progress sensitive and progress insensitive—require slightly different type
systems, so we use our ITrees-based semantics to formally verify that both enforce their
respective notions of noninterference. As is common in such type systems, we assume L forms
a join semilattice with a unique least element ⊥ representing “completely public.”

5.1 Two Type Systems
Both type systems have two typing judgments: one for expressions and one for commands.
The typing judgments for expressions take the form Γ ⊢ e : ℓ, where Γ is a map from variables
to information flow labels, and ℓ is a label. The judgment says that e is well-typed and
depends only on information at or below label ℓ. The typing rules for expressions, which are
the same for both type systems, are presented in Figure 7.

The typing rules for commands are presented in Figure 8. As these rules differ between
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the progress-sensitive and progress-insensitive type systems, we annotate the turnstyles with
ps for progress-sensitive rules, pi for progress-insensitive rules, and px for rules that are
identical in both type systems.

The typing judgments for commands take the form Γ; pc ⊢px c ⋄ ℓex , where pc and ℓex are
information-flow labels. The pc label is a program-counter label that tracks the sensitivity of
the control flow, while the second label ℓex is an upper bound on the label of any exceptions
c might raise. Note that the rules listed in Figure 8 do not include any way to type check an
inlined Asm program. We address this concern in Section 5.3.

Program-counter labels are a standard technique to control implicit information flows—
that is, information leaked by the control flow [46]. For example, consider the following
program where h has label ℓh and l has label ℓl with ℓh ̸⊑ ℓl:

if (h = 0) then {l := 0} else {l := 1}

While l is only ever explicitly set to constant values, its final value clearly depends on the
secret h. The pc label allows us to detect and eliminate these flows by tracking the sensitivity
of the control flow. Specifically, the If rule requires the condition’s label to flow to the pc in
each branch, and the Assign rule requires the pc to flow to the label of the variable being
assigned. In the above example, the label of the condition h = 0 is ℓh, so If requires c1 and c2
to type check with a pc where ℓh ⊑ pc. Since Γ(l) = ℓl, Assign requires pc ⊑ ℓl. Transitivity
of ⊑ thus requires ℓh ⊑ ℓl, which it does not, so the program correctly fails to type check.

Exceptions can affect the control flow of a program, and therefore can also cause implicit
flows of information. Consider the following program.

if (h = 0) then {throw(ℓh)} else {skip} ; l := 1

Much like the previous example, this program only assigns l to a constant, yet it still leaks
the value of h. We use a standard technique [33, 41] that relies on exception labels in the
typing judgment. As previously mentioned, the exception label of a program c is an upper
bound on the labels of any exception c might raise. To eliminate exception-based leaks, the
Seq rule increases the pc label of the second command by the exception label of the first.
The Try rule makes similar use of the exception label, increasing the pc in the catch block,
as that command only executes if an exception is thrown.

The Skip rule is simple, as skip can never have an effect. Print produces a flow of
information to an output channel labeled ℓ′, so it checks that ℓ′ may safely see both the
expression being written and the fact that this command executed.

The rules for while loops and throw statements are different for the progress-sensitive and
progress-insensitive type systems, so we handle them separately.

Progress-Sensitive While and Throw Rules. In a progress-sensitive setting, the
adversary can observe nontermination. As a result, a program’s termination behavior can
only safely depend on completely public information. While-PS enforces this requirement
in a standard, but highly restrictive way [56]: the loop condition and the pc of the context
must both be the fully public label ⊥. Moreover, any exceptions thrown in the body of the
loop could also influence termination behavior, so those must be fully public as well.

Recall from Section 4 that a low observer cannot distinguish between an uncaught secret
exception and an infinite loop. Thus non-public exceptions create the same implicit flows as
while loops, so Throw-PS restricts exceptions in much the same way as While-PS restricts
loops: everything must be fully public.

Progress-Insensitive While and Throw Rules. In a progress-insensitive setting, the
adversary cannot see nontermination, so secrets can safely influence the termination behavior
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of a program. The While-PI rule therefore allows loops with any pc. Since both the loop
condition and any exceptions the loop body throws influence whether the body is run,
While-PI increases the pc in the loop body by both the loop guard label and the body’s
exception label.

For the same reason, Throw-PI is more permissive than its progress-sensitive counterpart.
In particular, the label on the exception just needs to be at least as secret as the pc label.

5.2 Proving Security
Both type systems enforce their respective notions of noninterference (Definition 20). Unlike
many existing proofs of noninterference, our proofs using ITrees proceed by simple induction
over the syntax of Imp. This simplicity is made possible by the combination of two facts: our
Imp semantics is given by simple induction using ITrees combinators, and those combinators
interact with indistinguishability in predictable ways, as described by the metatheory of
Section 4.

Type systems are inherently compositional: we are able to conclude that a program is
secure knowing nothing about subprograms other than that they also type check. However,
our semantic definition of noninterference is not fully compositional. To see this, consider
the Imp program p = l := h ; throw(ℓ). This program updates the state in an insecure way,
assigning a high-security value to a low-security variable, and then throws a low-security
exception. In fully interpreted programs, the updated state is part of the return value, but
adversaries cannot observe that return value if an exception is thrown (see Section 3), making
p semantically secure. However, if we catch the exception, the adversary once again can see
the effect of the assignment l := h. Thus, p does not compose securely.

In order for our type system to enforce security compositionally, it enforces two properties
beyond noninterference. Each rules out programs which, like p above, are secure but do not
compose securely. The first describes how state and exceptions interact in a secure setting,
which will rule out the example program above. The second, called confinement, defines how
effects are bound by the type system.

Interaction of Exceptions and State. Our first goal is to semantically rule out programs
like p above, allowing us to reason compositionally about exception handlers. In order to do
so, we need to reason about what state updates are performed before an exception is thrown.
However, since in our semantics of Imp we interpret state events while leaving exceptions as
ITree events, the result state of an Imp program is forgotten when an exception is thrown.

This correctly models our adversary, who cannot distinguish between private exceptions
and silently diverging programs. But in order to achieve compositionality, we need to keep
information about the final state before an exception is raised. We accomplish this with a
condition on an alternative semantics for Imp programs. In this semantics, exceptions are
interpreted into the standard sum type representation before state events are interpreted.
This interpretation, interp hprog (interp hexc JcKc), is a stateful function that returns
a final state along with either a result of type unit or the label of an exception. We can
inspect this final state to ensure that the program always takes indistinguishable states to
indistinguishable states.

We formalize this property as follows, where the relation ∼=ℓ
Γ requires that states agree on

a variable x only when Γ(x) ⊑ ℓ, as in Section 4.4.

▶ Definition 21 (Exceptions-and-State Property). A command c satisfies the px–exceptions-
and-state property if interp hprog (interp hexc JcKc) is statefully indistinguishable from
itself under ∼=ℓ

Γ and ⊤ at every label ℓ.
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Note the use of ⊤ as the output relation means we ignore whether or not c threw
an exception, while we still ensure that the final states are indistinguishable. Ignoring
this information in this property is acceptable because it is captured by our standard
noninterference condition.

Confinement. Even with the exceptions-and-state property, implicit flows, like the motivat-
ing our use of pc labels, can still break compositionality. Confinement fixes this.

In the typing judgment for commands, the pc and ℓex labels are both designed to constrain
effects. If a command type checks with pc and ℓex , it should have no effects visible below pc
and no (uncaught) exceptions above ℓex . Semantically, a program has no visible effects below
pc if, for any label ℓ where pc ̸⊑ ℓ, it is indistinguishable from skip. For any uncaught
exception terminating a ITree, we simply check that the exception’s label flows to ℓex . We
formalize this idea into the following property called confinement.

▶ Definition 22 (Confinement). A command c is px-confined to pc with ℓex exceptions, if,
for all labels ℓ such that pc ̸⊑ ℓ, the following conditions hold.
1. c is indistinguishable from skip at ℓ: interp hprog JcKc and interp hprog JskipKc are

px-statefully indistinguishable under ∼=ℓ
Γ and = at ℓ.

2. c makes no modifications to the state visible at ℓ: interp hprog (interp hexc JcKc) and
interp hprog (interp hexc JskipKc) are px-statefully indistinguishable under ⊤ and = at ℓ.

3. For all initial state heap states h and register states r where c throws an exception, the
label of that exception flows to ℓex :

E ⊢ (interp hprog (interp hexc JcKc))(r, h) ≈= ret (r′, h′, inr(ℓ′
ex)) =⇒ ℓ′

ex ⊑ ℓex

Together, these definitions restrict programs to those that compose securely, as required
by the type system. With this compositionality property, we can prove that our type system
enforces the conjunction of all three properties.

▶ Theorem 23. If Γ; pc ⊢px c ⋄ ℓex , then c is px-noninterfering (Definition 20), satisfies the
px–exceptions-and-state property, and is px-confined to pc with ℓex exceptions.

5.3 Semantic Typing and Inline Asm
Both type systems above enforce security, but are highly conservative. Many secure programs
fail to type check, notably including any secure program with inlined Asm. To support
our goal of cross-language security reasoning and address this concern without the need to
introduce a type system for Asm, we provide a semantic typing [22] rule.

One would hope that the three conditions discussed above would be sufficient. However, the
possibility of undefined Asm behavior (see Section 2.5) necessitates an additional condition.
We thus introduce the notion of inline validity, which requires inlined Asm to depend only
on the initial heap state, not the initial register state, thereby ruling out undefined behavior.

▶ Definition 24 (Inline Validity). An Asm program a is inline-valid if, given any two register
states r1 and r2, and any heap states h, then a run with (r1, h) and (r2, h) produces the same
changes to the heap. That is, if p = interp hprog (interp hexc JaKasm), then

printE ⊢ p(r1, h) ≈⊤×= p(r2, h).

Note that any Asm program that only ever reads from a register after it has written to
that register will satisfy this property. We also lift this definition to whole Imp programs by
applying it separately to each inlined Asm block.
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Registers r ::= $0 | $1 | . . .

Operands o ::= r | n

Instructions i ::= add r1 ← r2, o | sub r1 ← r2, o | mul r1 ← r2, o

| eq r1 ← r2, o | leq r1 ← r2, o | not r ← o

| mov r1 ← r2 | load r ← x | store x← r | print(ℓ, r)
Branches b ::= jmp A | brz r A1 A2 | raise ℓ

Blocks B ::= A : i1 ; · · · ; in ; b

Programs p ::= Start : i1 ; · · · ; in ; b

B1 ; · · · ; Bm

Figure 9 Secure ASM syntax where x is a variable, A is an address, n is a natural number, and ℓ

is an information-flow label.

▶ Definition 25 (Validity). c is a valid Imp program if any inlined Asm program it contains
is an inline-valid Asm program.

Including validity with our other semantic conditions is sufficient to guarantee security,
so we can safely define the following semantic typing rule.

[Semantic]

c is px-noninterfering
c satisfies the px–exceptions-and-state property

c is px-confined to pc and ℓex
c is valid (Definition 25)

Γ; pc ⊢px c ⋄ ℓex

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Adding this new rule to both type systems allows them to reason about multi-language
programs including inline Asm and larger systems, even when the syntactic type system
cannot reason about every component. Importantly, Semantic is sound from a security
perspective. That is, Theorem 23 continues to hold for both extended type systems.

6 Preserving Noninterference Across Compilation

For a compiled language like Imp, noninterference is only part of the story. After all, rather
than run Imp code directly, programmers instead compile Imp to Asm and run the Asm.
Compilation can change programs significantly, and can introduce insecurity in the process.
Thus, we need to ensure that the compiler translates noninterfering Imp programs into
noninterfering Asm programs. We now turn our attention to the proof-engineering effort
involved in providing such an assurance. In particular, we show that (a) adding exceptions
and information-flow labels to Imp does not complicate the proof of compiler correctness,
and (b) turning a proof of correctness into a proof of noninterference preservation is simple
using mixed transitivity (Theorem 8).

Note that, to build our compiler, we had to fix the number of information-flow labels.
We thus specialize our discussion of Imp from Section 5 to the two-point lattice L = {⊤,⊥}.
Using any other finite lattice would require only minimal changes.

6.1 Asm, Its Semantics, and the Compiler
Figure 9 presents the syntax of Asm, the simple assembly language that our compiler targets.
An Asm program is a sequence of blocks, where each block starts at some address A and
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consists of a sequence of straight-line instructions followed by a single jump. The first block
must be at the special address Start.

Most Asm instructions write to exactly one register, computing the written value from
a combination of other registers and integer constants. For instance, add $0← $1, 1 takes
the value of register $1, adds one, and stores the result in register $0. The mov instruction
copies the value of one register into another, while load and store move information
between registers and the heap. Finally, the print instruction prints information to a stream,
depending on the label ℓ.

Jumps are either direct jumps, conditional jumps, or exceptions. A direct jump jmp A
immediately moves execution to the beginning of the block with address A. A conditional
jump brz r A1 A2 move execution to A1 if register r contains zero and A2 otherwise. The
raise ℓ branch raises an exception. Note that there is no equivalent of catching an exception.
We assume that Asm programs always jump to either the address of one of the program’s
blocks or a special Exit address.

Rather than representing Asm syntax directly in our Coq code, we take a more composi-
tional approach and represent sub–Control-Flow Graphs (sub-CFGs). These represent the
structure of part of an Asm program. While a complete Asm program contains a unique
Start address, sub-CFGs may contain multiple addresses accessible to the outside. We refer
to addresses which are accessible to the outside as input addresses. Likewise, sub-CFGs may
jump to undefined addresses, whereas complete ASM programs always jump either to a
defined address or Exit. We refer to the undefined addresses a sub-CFG may jump to as
its output addresses. Thus, a complete Asm program is a sub-CFG with exactly one input
address (Start) and exactly one output address (Exit).

Intuitively, sub-CFGs execute starting at some input address, potentially jumping inter-
nally several times before they jump to some output address. To represent this pattern, we
give sub-CFGs semantics as functions from an address to an ITree that return an address.
That is, the semantics of a sub-CFG takes as input the input address at which to start
executing, and produces an ITree that returns the output address the program jumps to.
This structure is due to Xia et al. [58], and their semantic needed only minor changes to
accommodate printing and exception-throwing.

In Xia et al.’s original compiler, Imp code always mapped to complete Asm programs.
However, to accommodate exception throwing, our compiler has an extra step of indirection.
We map Imp programs to sub-CFGs with exactly one input address but three output addresses.
The first represents Exit, as in a complete Asm program, while the second two represent
the location of exception handler code. Thus, we compile throw(ℓ) to a jump to the second
address if ℓ = ⊥ and the third address if ℓ = ⊤. To compile a try-catch command, we place
one copy of the handler at the second address and a second copy at the third address. That
means any exception will jump to the handler code, regardless of the label of the exception,
matching the semantics we gave Imp in Section 3. Note that we still need separate addresses
for each label to properly compile uncaught exceptions.

For inlined Asm code, we would hope to include it in the compiled code directly with no
changes. Unfortunately, if inlined Asm throws an exception with a raise instruction, the
surrounding Imp code can catch it, but embedding the raise unmodified in the compiled
output would render the exception uncatchable. To support catching these exceptions, we
process inlined Asm to replace raise instructions with jumps to the appropriate address.
This change causes the inlined exception to properly jump to the handler code.

While the infrastructure described above translates Imp code into sub-CFGs, the end
goal of our compiler is to translate complete Imp programs into complete Asm programs.
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The final step uses the two output addresses for exceptions by linking the sub-CFG of the
complete Imp program with two different handlers. The low-security exception handler raises
a low-security exception, while the high-security exception handler raises a high-security
exception. Thus, any Imp code that raises an exception compiles to a complete Asm program
that raises that same exception, while Imp code that catches an exception compiles to a
complete Asm program with equivalent control flow.

6.2 Compiler Correctness
We adapt Xia et al.’s [58] proof of compiler correctness to account for the modifications we
have made to Imp and Asm. We formalize correctness by comparing the source and the target
programs—after interpretation—using weak bisimilarity. Intuitively, two stateful programs
are weakly bisimilar if, whenever they are given related start states, the resulting ITrees are
weakly bisimilar. We use a return relation Renv. Renv ignores the register files and compares
heaps using a relation ∼=, which ensures that they map equal variables to equal values. We
can now state the correctness theorem for the compile function.

▶ Theorem 26. For any initial heap states h1, h2 such that h1 ∼= h2, any register states
r1, r2, and a valid Imp command c, the following equation holds

excE⊕ printE ⊢ interp himp JcKc (r1, h1) ≈Renv interp hasm Jcompile(c)Kasm (r2, h2)

where Renv((_, h1, _), (_, h2, _)) ⇐⇒ h1 ∼= h2.

Notably, the changes necessary to adapt Xia et al.’s [58] proof of correctness to our
modified compiler are small and isolated. Most cases of the inductive proof, corresponding to
existing language features, needed only cosmetic changes. The new language features required
new, but conceptually uninteresting, cases.

6.3 Compiler Security
We finally turn to our ultimate goal: proving that our compiler preserves security. There are
two important notions of security for our compiler, both of which require cross-language
reasoning. The first is that secure source programs are indistinguishable—by all adversaries—
from target programs. This property directly relates an Imp program to an Asm program.
The second is that the compiler preserves noninterference. While noninterference itself is
a property of a single program, preserving noninterference is a property of a translation
between two languages, which requires cross-language reasoning.

In order to formalize the idea of a secure Imp program being indistinguishable from its
compilation, we need to compare these programs, even though they come from different
languages. Because we defined seutt purely semantically, we can use it as easily as if we
were comparing programs in the same language. We use the return relation Rℓ

Γ, which again
ignores the register file and ensures that they map equal visible variables to equal values.
The theorem then takes the following form.

▶ Theorem 27. For any valid Imp program c, if interp hprog JcKc is noninterfering with
state relation Rℓ

Γ and return relation =, and c is a valid Imp program, then the following
seutt equation holds for any label ℓ, arbitrary register states r1, r2 and heap states h1, h2
such that h1 ∼=ℓ

Γ h2.

excE⊕ printE ⊢px interp hprog JcKc (r1, h1) ≈ℓ
Rℓ

Γ
interp hprog Jcompile(c)Kasm (r2, h2)
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Our second theorem is simply that our compiler takes noninterfering Imp programs to
noninterfering Asm programs.

▶ Theorem 28 (Noninterference Preservation). For a valid Imp program c, if interp hprog JcKc

is noninterfering with state relations Rℓ
Γ and return relation =, then the same holds for its

compilation. That is, interp hprog Jcompile(c)Kasm is noninterfering with Rℓ
Γ and =. This

result holds for both progress-sensitive and progress-insensitive noninterference.

Notably, the proofs of both theorems follows directly from Theorem 26 and mixed
transitivity, showing the utility of mixed transitivity for cross-language security reasoning.

7 Related Work

Goguen and Meseguer [15] introduced noninterference to formalize confidentiality; that is,
the intuitive notion that secret data does not leak to an adversary. Volpano et al. [57] enforce
progress-insensitive noninterference with a type system, and Volpano and Smith [56] modify
the type system to be progress-sensitive. These results led to a long line of work introducing
noninterference to an increasing complicated settings [41, 33, 46, 65, 34, 62, 42, 31, 54, 4, 45,
52, 1]. Proving the security of these varied type systems led to complicated arguments for
noninterference, but also gave rise to an informal library of proof techniques. This work fits
into a tradition of proof techniques for noninterference via models.

Most models view noninterference either as a trace (hyper)property or as the result of an
indistinguishability relation. These perspectives are not mutually exclusive; we can view two
programs as indistinguishable if they produce equivalent traces. Their focus, however, can be
quite different. Trace-based models view noninterference as a 2-safety hyperproperty [12].
That is, noninterference can be falsified using finite prefixes of two traces. Specifically,
for any interfering program there are two inputs that differ only on secrets but produce
distinguishable events after a finite number of steps.

Indistinguishability models focus more on building compositional relations. Pioneered
by Abadi et al. [1] and Sabelfeld and Sands [47], these models use PERs and define secure
programs as those that are self-related. Two such approaches have yielded recent notable
results. First, logical-relations techniques [44] inductively assign each type a binary relation. By
constructing the relation to reflect the security requirements of the type, logical relations can
reason about information flow control and noninterference [55, 43, 16]. Second, bisimulation
approaches directly match up program executions to define indistinguishability [49, 13].

This work straddles these methods. ITrees intuitively collect all possible traces of a
program into one infinite data structure. Our binary indistinguishability relation on ITrees
is thus combining the hyperproperty model of noninterference with the indistinguishability
model. Moreover, our indistinguishability relation is built on top of weak bisimulation. To
give meaning to a type system, we also build a small logical relation connecting types to our
bisimulation arguments.

To remain practical, many languages provide only progress-insensitive guarantees [29,
28, 57, 41], despite the fact that termination channels alone can leak arbitrary amounts
of data [6]. Techniques for enforcing progress-sensitive guarantees [56, 46] exist, but have
seen little use. Recent work attempts to unify the two by explicitly considering termination
leaks as declassifications [11]. Like other models of noninterference [16], seutt is naturally
progress-sensitive, giving a strong guarantee. We include the progress-insensitive pi-seutt
to give ITree-based semantics to more-practical systems as well.

A few other works provide machanized proofs of noninterference using different tech-
niques [17, 3, 53]. However, each verifies existing paper proofs [53] or mechanizes an existing
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proof technique designed for a single-language setting [17, 3](e.g., parametricity [3] or logical
relations [17]). This work is unique among mechanizations of noninterference in its use
denotational semantics designed to support multi-language settings.

Originally defined by Xia et al. [58], ITrees are based on free monads and their deriva-
tives [23, 24, 51]. This gives rise to a natural interpretation of effects via monad trans-
formers [20, 27] that behave like algebraic-effect handlers [48, 10, 39, 38, 36, 35]. The
information-flow community also studies effects deeply since they can leak information.
Traditionally, information-flow languages use a program-counter label to reason about effects,
as we saw in Section 5. Recent work by Hirsch and Cecchetti [18] connects program-counter
labels with monads, giving the former semantics using the latter.

Secure compilation is a very active research area. For instance, Barthe et al. [8] show
how to securely compile to a low-level Asm-like target language. However, they use a
type system for the target language to enforce security. Other efforts focus on particular
language features, such as cryptographic constant time [9]. Moreover, until recently, most
work on secure compilation focused on fully-abstract compilation [26]. Unfortunately, Abate
et al. [2] recently showed that full abstraction is not sufficient to guarantee preservation of
hyperproperties like noninterference. Our Mixed Transitivity theorems (Theorems 8 and 15)
show that equivalence-preserving compilation does preserve noninterference.

Beyond work on secure compilation, most work on noninterference does not address
multiple interacting languages. In one notable exception, Focardi et al. [14] examine the
relationship between a process-calculus–based notion of security and simple imperative
language with information-flow control, similar to Imp. They translate their version of Imp
into CCS and show that they preserve Imp’s security guarantees. However, their work contains
only pencil-and-paper proofs, rather than formally verifying their translation or its security.

Finally, this work focuses on an approach for verifying language toolchains, but running
any program requires hardware. Most language-based security and verification work assumes
the hardware is predictable and reliable, but cannot enforce security. Hardware enforcement
of information-security properties [64, 59] provides dynamic enforcement of properties like
noninterference at the cost of space and power usage. Combining these mechanisms with our
approach could reduce the overhead of hardware enforcement for verified-secure programs
and provide a means to guarantee that interactions with unverified programs remain safe.

8 Conclusion

This paper uses ITrees to reason semantically about noninterference. Our main technical
contributions are two new indistinguishability relations on ITrees that we use to define
noninterference—one progress sensitive and one progress insensitive—and their metatheory.
While both noninterference definitions are coinductive, our metatheory library supports
verifying properties of a language toolchain with no direct use of coinduction.

The two indistinguishability relations describe security in many settings, and we plan to
include them in the ITrees library. Importantly, because they do not place any restrictions
on the events in an ITree, they can be used for reasoning about a variety of language
features. However, we recognize that many variations of noninterference appear in the
literature, depending on the adversarial model and desired language features. For instance,
declassification allows private information to be made public in controlled circumstances,
creating a need for more complicated security conditions. We hope that the relations studied
here both become the basis of verification efforts larger than our case study and that they
serve as a starting point for further exploration of indistinguishability relations for ITrees.
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