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Focusing is a technique from proof theory that exploits type information to prune inessential nondeterminism

from proof search procedures. Viewed through the lens of the Curry-Howard correspondence, a focused

typing derivation yields terms in normal form. This paper explores how to exploit focusing for reasoning

about contextual equivalences and full abstraction. We present a focused polymorphic call-by-push-value

calculus and prove a computational completeness result: for every well-typed term, there exists a focused term

that is 𝛽𝜂-equivalent to it. This completeness result yields a powerful way to refine the context lemmas for

establishing contextual equivalences, cutting down the set that must be considered to just focused contexts.

The paper demonstrates the application of focusing to establish program equivalences, including free theorems.

It also uses focusing to prove full abstraction of a translation of the pure, total call-by-push-value language

into a language with divergence and simple effect types, yielding a novel solution to a simple-to-state, but

hitherto difficult to solve problem.
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1 INTRODUCTION

We often want to understand how a program component interacts with its environment. Compilers,
for instance, ought to ensure that any use of a compiled component corresponds to some valid
use of the corresponding source. If this were not the case, a target environment might be able to
exploit the compiled component by using it in a way the programmer never expected to be possible,
making it impossible for the programmer to reason about their program’s behavior by using their
knowledge of the source semantics. One of the strongest łcompiler correctnessž properties is full
abstraction, which means that the compiler preserves and reflects contextual equivalences between
the source and target languages. A fully abstract compiler ensures that all abstractions in a source
language program are enforced in the compiled program.
Proving full abstraction results is notoriously challenging because it relies crucially on trans-

porting contextual equivalences from one language to another. Two program components are
contextually equivalent [Morris 1968] if there is no environment that can tell them apart: they must
behave the same in any valid context. Unfortunately, the vast number of such contexts makes direct

∗This paper’s companion technical report [Rioux and Zdancewic 2020] contains a detailed appendix with the full proofs and

definitions referenced here.
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95:2 Nick Rioux and Steve Zdancewic

proofs of contextual equivalence difficult. We cannot practically enumerate each possible context
and verify that two components behave identically in each case. For full abstraction, we have the
additional challenge of relating source and target contexts.
As a consequence of the above challenges, much work in the area has lead to a wide variety

of sound proof techniques that ease this burden. Complete methods, such as applicative bisimula-
tion [Abramsky 1990; Abramsky and Ong 1993], environmental bisimulation [Sangiorgi et al. 2007],
or łclosed-instances of usesž (ciu) [Mason and Talcott 1991] and similar context lemmas[Milner
1977], cut down on the number of cases that must be considered, while still retaining the full power
of contextual equivalence. Incomplete methods, such as normal form bisimulations [Lassen 1999,
2005] retain soundness, and often dispense with the quantification over contexts, but are not able
to prove all the equivalences one might want.

For typed programming languages, there are more options. Type systems are a tried-and-tested
method of enforcing a programmer’s abstractions, and, as such, the type structure of a programming
language can be exploited tomake proving equivalences easier. For example, logical relations [Plotkin
1980; Statman 1985; Tait 1967] associate each type with a relation over closed terms that inhabit
the type. The relations are defined inductively over the structure of the type, and soundness of
the logical relation implies that two related terms are contextually equivalent. Again there is a
tradeoff between complete logical relations methods, which can be quite involved to define, and
more elegant, concise, but incomplete approaches, such as operational extensionality [Pitts 2004].
Intuitively, while logical relations can easily say a lot about what computations inhabit a type, it
requires significantly more machinery (for instance TT-closure or biorthogonality) to characterize
the contexts in which those computations run.
In this paper, we expore how focusing, a well-established, type-directed technique for cutting

down the search space in proof search [Andreoli 1992; Chaudhuri et al. 2018; Simmons 2014], can
be applied to the problem of proving contextual equivalences, and, by extension, full abstraction
results. In focusing, the idea is to remove innessential nondeterministic choices from the search
algorithm (by finding a 𝛽-normal, 𝜂-long proof term). For proof search, completeness of focusing
says that łfor each well-formed proof 𝑝 of a proposition, there exists a focused proof 𝑝 𝑓 of the
same proposition.ž For programs, we want to view focusing through the lens of the Curry-Howard
correspondence, in which case the completeness maxim is łfor each well-typed term𝑀 , there exists
a focused term𝑀𝑓 that is 𝛽𝜂-equivalent to𝑀ž.
We can then see a proof of program equivalence as a search through all possible focused con-

texts, in which we demonstrate identical behavior for each context. Focusing lets us exploit type
information to refine the usual ciu theorem to considerably cut down the space of contexts that we
must consider. Informally, the usual ciu lemma defines a łusež to be an arbitrary evaluation context,
but many evaluation contexts do unnecessary workÐperhaps running a long computation that
eventually evaluates to a constantÐbefore getting around to probing the program under observation.
Focusing complements this idea by exploiting type information to restrict the set of evaluation
contexts to just those that immediately do the probing. Moreover, rather than considering all
closing substitutions, as would be used in ciu and other techniques, we can instead close terms by
substituting focused values, which again cuts down the search space.
The structure of a focused derivation yields strong inversion and induction principles that can

be used to establish full abstraction results. We explore this possibility by proving full abstraction
of a simple (almost trivial) compiler from a pure, total language to one that admits divergence but
whose type system tracks that possibility. Despite the straightforward-sounding, and intuitively
correct nature of the translation, which ensures that source programs are translated to the pure,
terminating fragment of the target language, proving its correctness by traditional means is quite
challenging (indeed, we are unaware of similar results in the literature). The crux of the matter is

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 95. Publication date: August 2020.



Computation Focusing 95:3

how to łback-translatež arbitrary target contexts, but here we can leverage focusing so that we
need only back-translate focused contexts, which is easier to do.

Focusing computations is useful in other situations too. If we have a well-typed term and want
to explore its possible behaviors, one approach is to use the classic łfree theoremsž [Wadler 1989],
which have traditionally been proven using logical relations. Focusing provides an alternative.
For instance, since the only closed, focused term of type ∀𝛼.𝛼 → 𝛼 is the polymorphic identity
function Λ𝛼.𝜆𝑥 :𝛼.𝑥 , completeness of focusing tells us that any term 𝑀 of polymorphic identity
type ∀𝛼.𝛼 → 𝛼 is equivalent to the polymorphic identity function. We can extrapolate from this
idea to prove equivalences of polymorphic types, including existential packages, by examining how
focused contexts are restricted in interacting with the such types.
To summarize, in this paper we make these main contributions:

• We define a focused variant of Levy’s call-by-push-value language with predicative polymor-
phism and prove its completeness with respect to the unfocused version.
• We demonstrate that focusing is useful for establishing program equivalencesÐit refines the
usual ciu theorem to further cut down the set of contexts that must be consideredÐby which
we can obtain results such as łfree theorems.ž We also give an example, based on one found
in the literature [Pitts 2004; Sumii and Pierce 2005], for which traditional logical relations
and bisimulation arguments are insufficient, but in which focusing can be used effectively.
• We further demonstrate the utility of focusing via a minimal but demonstrative application
in which we prove full abstraction for an embedding of a pure, total language into a language
that admits divergence. To our knowledge, this is the first of its kind. Moreover, our proof
uses distills full abstraction into compositionality and adequacy of a łback translation,ž which
may be of independent interest.

We build our focusingmachinery on top of Levy’s call-by-push-value (CBPV) calculus [Levy 1999],
a choice that suits our needs because focusing relies on a clear distinction between computations
and values, which is made explicit by the CBPV type system. We use a predicative polymorphic
variant of the language in the style of stratified system F [Eades III and Stump 2010], which admits
good induction principles that simplify some of our proofs (we leave exploration of impredicative
polymorphism to future work).

Section 2 reviews our variant of the CBPV language and establishes its basic metatheory. Section 3
gives the first main technical contribution of the paper, namely the definition of the focusing rules
for CBPV and a proof of completeness. We next turn to several applications of focusing as developed
here in Section 4, before moving on to our full abstraction result about a very simple compiler in
Section 5. Finally, we wrap up the paper with a discussion of related work in Section 6.1.

2 CALL-BY-PUSH-VALUE

Figure 1 describes the syntax of a (predicative) polymorphic variant of Levy’s simply-typed call-
by-push-value (CBPV) language that we call CBPV∀. CBPV∀ makes evaluation order explicit by
distinguishing values from computations both in the term syntax and in the type system. Values, V
represent pure pieces of data, they include thunked computations, tagged (disjoint unions), products,
and existential packages. Importantly, all term variables in CBPV∀ represent values. A computation,
M perform some interesting, possibly effectful, operation. These include forcing the evaluation
of a thunk, pattern matching against a value using the pm form, sequencing subcomputations
via bind, lambda-abstracting a variable (which łpopsž an argument from the stack), pushing a
value onto the stack (M V ), or constructing values. A lazy product ⟨M,N ⟩ represents a choice of
computations, one of which can be selected by the projection operations M .1 and M .2. Thus, the
motto of call-by-push-value: ła value is, a computation doesž [Levy 1999].
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95:4 Nick Rioux and Steve Zdancewic

V ::= x | thunk N | (1,V ) | (2,V )

| unit | (V1,V2) | (𝐴,V ) | (𝐴,V )

M,N ::= forceV

| pmV as {(1, x1) .M1, (2, x2) .M2}

| pmV as unit.N

| pmV as (x1, x2) .N

| pmV as (X , x) .N

| pmV as (X , x) .N

| returnV | bind x ← M .N

| 𝜆x : 𝐴.N

| | 𝜆X : 𝜅.N𝜆X : 𝜅.N

| M V | ⟨M,N ⟩ | N .1 | N .2

| M 𝐴 | M 𝐴

S ::= [·] | bind x ← S.N | S V

| S 𝐴 | S 𝐴 | S.1 | S.2

𝜅 ::= Typeu

𝐴, 𝐵 ::= X | U𝐴

| ∃X : 𝜅.𝐴 | ∃X : 𝜅.𝐴

| 𝐴 + 𝐵 | Unit | 𝐴 × 𝐵

𝐴, 𝐵 ::= X | F𝐴

| 𝐴→ 𝐵 | ∀X : 𝜅.𝐴

| ∀X : 𝜅.𝐴 | 𝐴 & 𝐵

T ::= 𝐴 | ⟨𝐴⟩

Γ ::= · | Γ, x : 𝐴 | Γ, x : ⟨𝐴⟩

Δ ::= · | Δ,X : 𝜅 | Δ,X : 𝜅

Ω ::= · | x : 𝐴,Ω

Fig. 1. CBPV Terms: V values, M computations, and S stacks (left); Types and Contexts (right)

N ↦→ N ′ (small-step reduction)

N ↦→ N ′

S [N ] ↦→ S [N ′ ] force thunk N ↦→ N pm (i,V ) as {(1, x1) .M1, (2, x2) .M2 } ↦→ Mi [V/x ]

pm (𝐴,V ) as (X , x) .N ↦→ N [𝐴/X ] [V/x ] bind x ← returnV .N ↦→ N [V/x ] (𝜆x : 𝐴.N ) V ↦→ N [V/x ]

(𝜆X : 𝜅.N ) 𝐴 ↦→ N [𝐴/X ]

Fig. 2. Selected operational semantics

A stack S acts as an evaluation context, and the CBPV∀ operational semantics, shown in Figure 2,
make uses of the stack explicit (the first rule). The remainder of the operational semantics rules
correspond to the usual 𝛽 reductions, where we use the notation M [V/x] to mean the capture-
avoiding substitution of the value V for the free occurrences of the variable x in M . We also use
𝐴[𝐵/X ] and 𝐴[𝐵/X ] to refer to the substitution of types for type variables in value types and
similar notation for subtitution of type variables in computation types.

The right-hand side of Figure 1 shows the syntax of CBPV∀ types, which come in two varieties:
value types, 𝐴, and computation types, 𝐴. The lone kind Typeu is parameterized by a natural
number u that stratifies types into (ordered) universes to ensure predicativity [Leivant 1991]. A term
environment, Γ, is an unordered mapping from term variables to value types. Type environments
Δ similarly map type variables to kinds.

Variables in a Γ environment may also map to a suspended type ⟨𝐴⟩. Suspensions are used only
when describing focused programs and are not used in the conventional typing rules. The name
suspension refers to the suspension of the focusing procedure. We delay the discussion of suspended
types, along with ordered term environments Ω, to the description of focusing in Section 3.

Figure 3 details CBPV∀’s type system. The unit type, sums, and pairs are value types. We also note
that they have positive polarity, that is, their elimination forms are pattern matching constructs.
The thunk type U𝐴 is the type of a computation waiting to be evaluated. It can be executed with
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Δ ⊢𝜅 𝐴 : Typeu (computation type kinding)

Δ,X : Typev ⊢𝜅 𝐴 : Typeu

Δ ⊢𝜅 ∀X : Typev .𝐴 : Typemax (u,v)+1

Δ ⊢𝜅 𝐴 : Typeu (value type kinding)

Δ,X : Typev ⊢𝜅 𝐴 : Typeu

Δ ⊢𝜅 ∃X : Typev .𝐴 : Typemax (u,1)+1

Δ; Γ ⊢c M : 𝐵 (computation typing)

Δ; Γ ⊢v V : U𝐴

Δ; Γ ⊢c forceV : 𝐴

Δ; Γ ⊢v V : 𝐴 × 𝐵
Δ; Γ, x : 𝐴, y : 𝐵 ⊢c N : 𝐵

Δ; Γ ⊢c pmV as (x, y) .N : 𝐵

Δ; Γ ⊢v V : ∃X : 𝜅.𝐵
Δ,X : 𝜅; Γ, x : 𝐵 ⊢c N : 𝐵

X ∉ FTV (𝐵)

Δ; Γ ⊢c pmV as (X , x) .N : 𝐵

Δ; Γ ⊢v V : 𝐴

Δ; Γ ⊢c returnV : F𝐴

Δ; Γ ⊢c M : F𝐴 Δ; Γ, x : 𝐴 ⊢c N : 𝐵

Δ; Γ ⊢c bind x ← M .N : 𝐵

Δ; Γ, x : 𝐴 ⊢c N : 𝐵

Δ; Γ ⊢c 𝜆x : 𝐴.N : 𝐴→ 𝐵

Δ,X : 𝜅; Γ ⊢c N : 𝐵

Δ; Γ ⊢c 𝜆X : 𝜅.N : ∀X : 𝜅.𝐵

Δ; Γ ⊢c M : 𝐴→ 𝐵 Δ; Γ ⊢v V : 𝐴

Δ; Γ ⊢c M V : 𝐵

Δ ⊢𝜅 𝐴 : 𝜅 Δ; Γ ⊢c M : ∀X : 𝜅.𝐵

Δ; Γ ⊢c M 𝐴 : 𝐵 [𝐴/X ]

Δ; Γ ⊢v V : 𝐵 (value typing)

Δ; Γ ⊢c N : 𝐴

Δ; Γ ⊢v thunk N : U𝐴

Δ; Γ ⊢v V1 : 𝐴1 Δ; Γ ⊢v V2 : 𝐴2

Δ; Γ ⊢v (V1,V2) : 𝐴1 ×𝐴2

Δ ⊢𝜅 𝐴 : 𝜅 Δ; Γ ⊢v V : 𝐵 [𝐴/X ]

Δ; Γ ⊢v (𝐴,V ) : ∃X : 𝜅.𝐵

Fig. 3. Selected kinding and typing rules

Δ; Γ ⊢c N ≡ N ′ : 𝐵 (computation equality)

Δ; Γ ⊢c force (thunkM) ≡ M : 𝐵 Δ; Γ ⊢c pm (V1,V2) as (x1, x2) .M ≡ M [V1/x1 ] [V2/x2 ] : 𝐵

Δ; Γ ⊢c pm (𝐴,V ) as (X , x) .M ≡ M [𝐴/X ] [V/x ] : 𝐵 Δ; Γ ⊢c bind x ← returnV .M ≡ M [V/x ] : 𝐵

Δ; Γ ⊢c (𝜆x : 𝐴.M) V ≡ M [V/x ] : 𝐵 Δ; Γ ⊢c (𝜆X : 𝜅.M) 𝐴 ≡ M [𝐴/X ] : 𝐵

Δ; Γ, x : 𝐴1 ×𝐴2 ⊢c M ≡ pm x as (y1, y2) .M [ (y1, y2)/x ] : 𝐵 Δ; Γ, x : ∃X : 𝜅.𝐴 ⊢c M ≡ pm x as (X , y) .M [ (X , y)/x ] : 𝐵

Δ; Γ ⊢c M ≡ bind x ← M .return x : 𝐵 Δ; Γ ⊢c M ≡ 𝜆x : 𝐴.M x : 𝐴→ 𝐵 Δ; Γ ⊢c M ≡ 𝜆X : 𝜅.M X : ∀X : 𝜅.𝐵

Δ; Γ ⊢c bind y ← (bind x ← M .N ) .N ′ ≡ bind x ← M .bind y ← N .N ′ : 𝐵

Δ; Γ ⊢c bind x ← M .𝜆y : 𝐴.N ≡ 𝜆y : 𝐴.bind x ← M .N : 𝐴→ 𝐵

Δ; Γ ⊢c bind x ← M .𝜆X : 𝜅.N ≡ 𝜆X : 𝜅.bind x ← M .N : ∀X : 𝜅.𝐵

Δ; Γ ⊢c bind x ← M . ⟨N1,N2 ⟩ ≡ ⟨bind x ← M .N1, bind x ← M .N2 ⟩ : 𝐵1 & 𝐵2

Δ; Γ ⊢v V ≡ V ′ : 𝐵 (value equality)

Δ; Γ ⊢v V ≡ thunk (forceV ) : U𝐵

Fig. 4. Abbreviated equational theory
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the force elimination form, making it the lone negative value type. Lazy products, and functions
are negative computation types. The value returner type, F𝐴, is the type of computations that
compute and return some value of type 𝐴. The value produced by a returner M can be accessed
using the monadic bind construct bind x ← M .N . This composes M and N , producing a larger
computation. N may rely on x, the value returned by M . Returner types F𝐴 are the only positive
computation types.
From these types, we can build up many other familiar types. We encode the type Bool as

Unit + Unit where true and false refer to the injections of unit. Maybe 𝐴 encodes to Unit +𝐴. We
refer to the constructors as none and someV . We occasionally find it convenient to use the fact that
the types Bool andMaybe Unit are interchangeable, assuming false = none and true = some unit.

Equational Theory and Operational Properties. The separation of computations and values results
in a rich equational theory. We write Δ; Γ ⊢c M1 ≡ M2 : 𝐴 to mean M1 and M2 are equivalent
according to the call-by-push-value equational theory. The ≡ equivalence relation is a congruent
closure of the 𝛽 , 𝜂, associativity, and permutation laws given in figure 4. See Levy’s work [1999]
for further discussion.
As our goal is to establish equivalences as well as relationships between different languages,

we take as given a few standard properties of the language. First, we assume that our equational
theory recognizes syntactically different values as distinct.

Proposition 2.1 (Consistency of eqational theory). The computation return false is not

equivalent to return true at type Bool under empty environments.

Next, we characterize the behavior of whole programs in CBPV∀. Since CBPV∀is normalizing,
every closed computation of type FBool must return one of two values.

Proposition 2.2. If ·; · ⊢c M : FBool, then either M ↦→∗ return false or M ↦→∗ return true.

As a consequence of these properties, as well as the fact that every step a program takes
corresponds to a 𝛽 rule, we have a correspondence between the operational semantics and the
equational theory.

Lemma 2.3 (Adeqacy of eqational theory for operational semantics). Given ·; · ⊢c M :
FBool and V ∈ {false, true} where ·; · ⊢c M ≡ returnV : FBool we have M ↦→∗ returnV .

Contextual Equivalence. Contextual equivalence is the high-level, intuitive notion of equivalence
that we generally wish to prove. It states that two terms are equivelent when placing them into
closed contexts yields whole-programs that evaluate to the same value. In our definition below, we
take contexts to be pairs of terms with a single free variable (the hole) and closing substitutions.
We write Δ; Γ′′ ⊢ 𝛾 : Γ to refer to a mapping 𝛾 from variables in the domain of Γ to values whose
types are given by Γ and environment by Δ and Γ

′. We similarly write Δ′ ⊢ 𝛿 : Δ for a well-kinded
substitution of types for type variables.

Definition 2.4 (Contextually equivalent values). V1 and V2 are said to be contextually equivalent,
written Δ; Γ ⊢v V1 ≈ctx V2 : 𝐴, when for all substitutions 𝛾 and 𝛿 and programs M such that

• · ⊢ 𝛿 : Δ
• ·; · ⊢ 𝛾 : 𝛿 (Γ)
• ·; x : 𝛿 (𝐴) ⊢c M : FBool

we have M [𝛾 (𝛿 (V1))/x] ↦→
∗ return true iff M [𝛾 (𝛿 (V2))/x] ↦→

∗ return true.

Definition 2.5 (Contextually equivalent computations). M1 and M2 are said to be contextually
equivalent, written Δ; Γ ⊢c M1 ≈ctx M2 : 𝐴, when thunk M1 and thunk M2 are contextually
equivalent as values.
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Our notion of contextual equivalence strays slightly from the usual notion. Viewing contexts
as terms paired with closing substitutions spares us from having to define single-hole contexts
and littering tedious reasoning about contexts and holes throughout our development. Although
this is a non-trivial simplification, the coincidence of our definitions with the single-hole context
definition is well-known and can be established using a standard technique such as logical relations,
bisimulations, or the ciu theorem[Mason and Talcott 1991]. In any case, this choice is largely
orthogonal to the point of this paper and we do not dwell on it further.
A common characterization of contextual equivalence is as the łgreatest adequate congruence

relationž [Pitts 2004]. As ≡ is defined as a congruence closure and we have established adequacy in
Lemma 2.3, it follows that the equational theory is included within contextual equivalence.

Lemma 2.6 (Soundness of eqational theory). If Δ; Γ ⊢c M1 ≡ M2 : 𝐴 then Δ; Γ ⊢c M1 ≈ctx
M2 : 𝐴.

3 FOCUSING COMPUTATION

Traditionally, focusing has been employed as a proof search technique. Some work [Krishnaswami
2009; Zeilberger 2008b] does apply it through the lens of the Curry-Howard correspondence to
study the design of programming language features. Though our ultimate goal is to extend this
approach to enlist focusing as a tool for reasoning about program equivalences, we first review the
standard approach to focusing through the lens of Curry-Howard. We explain the focusing rules
for CBPV∀ from the point of view of a program synthesis technique as an aid to intuition. Previous
work in functional type-directed program synthesis has alluded to the use of focusing to narrow
down the synthesizer’s search space [Frankle et al. 2016; Osera and Zdancewic 2015]. Synthesizers
of stateful programs have also found its ideas useful [Polikarpova and Sergey 2019].
Consider the problem of synthesizing a program of type 𝐴 under environment Γ that satisfies

some specification 𝑆 . We might attempt to search the space of well-typed expressions by repeatedly
applying applicable typing rules until we have built a complete program and then attempt to verify
that the program satisfies 𝑆 . Unfortunately, this approach would lead us to visit numerous terms
that are obviously equivalent, such as (𝜆x : Bool.return x) true and return true.
Focusing cuts down the set of terms by eliminating such redundancy in the search space. By

searching only through these focused terms, we visit fewer equivalent programs. At the same time,
focusing manages to avoid sacrificing completeness. Completeness dictates that, given sufficient
time, the algorithm should be able to discover any program, modulo equivalence.

3.1 Inversion

We now give a concrete presentation of focusing, heavily derived from that of [Simmons 2014].
Figure 5 inductively defines a focused subset of CBPV∀ terms in two phases. The first phase,
inversion, is defined by the judgementΔ; Γ;Ω ⊩inv N : 𝐴. This means thatN is a focused computation
of type 𝐴 with type variables ascribed kinds by Δ, free variables of negative (thunk) type in the
unordered environment Γ, and positive free variables in the ordered, suspension-free environment
Ω. The ordering on Ω allows the focusing algorithm to process those variables in sequence, which
reduces nondeterminism in the search. We write Ω ∈ ord (Γ) when the entries in Ω are an ordering
of those in Γ.
The inversion phase exploits the observation that some typing rules can be applied whenever

they are applicable and without regard for their ordering, without losing completeness. For example,
whenever we need to build a program with a variable x : 𝐴 + 𝐵 in the environment, we might
as well immediately pattern match on that variable. The left rule for sums (SumL ) reflects this
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Δ; Γ ⊩c M : 𝐴 (canonical computations)

CompFocTop
Δ; ·;Ω ⊩inv M : T
Ω ∈ ord (Γ)

Δ; Γ ⊩c M : T

Δ; Γ;Ω ⊩inv M : T (inversion)

FR
Δ; Γ ⊩foc V : [𝐴]

Δ; Γ; · ⊩inv returnV : F𝐴

UL
Δ; Γ, x : U𝐴; [𝐴] ⊩foc S : T

stable T

Δ; Γ, x : U𝐴; · ⊩inv S [force x ] : T

EtaL
Δ; Γ, x : ⟨X ⟩;Ω ⊩inv N : T

Δ; Γ; x : X ,Ω ⊩inv N : T

UMove
Δ; Γ, x : U𝐴;Ω ⊩inv N : T

Δ; Γ; x : U𝐴,Ω ⊩inv N : T

SumL
Δ; Γ; y : 𝐴,Ω ⊩inv M : T
Δ; Γ; y′ : 𝐵,Ω ⊩inv N : T

Δ; Γ; x : 𝐴 + 𝐵,Ω ⊩inv pm x as {(1, y) .M, (2, y′) .N } : T

PairL
Δ; Γ; y1 : 𝐴1, y2 : 𝐴2,Ω ⊩inv M : T

Δ; Γ; x : 𝐴1 ×𝐴2,Ω ⊩inv pm x as (y1, y2) .M : T

ExistsValL
Δ,X : 𝜅; Γ; y : 𝐴,Ω ⊩inv M : T

X ∉ FTV (T )

Δ; Γ; x : ∃X : 𝜅.𝐴,Ω ⊩inv pm x as (X , y) .M : T

EtaR
Δ; Γ; · ⊩inv N : ⟨X ⟩

Δ; Γ; · ⊩inv N : X

FunR
Δ; Γ; x : 𝐴 ⊩inv N : 𝐵

Δ; Γ; · ⊩inv 𝜆x : 𝐴.N : 𝐴→ 𝐵

ValTypeFunR
Δ,X : 𝜅; Γ; · ⊩inv N : 𝐵

Δ; Γ; · ⊩inv 𝜆X : 𝜅.N : ∀X : 𝜅.𝐵

ProdR
Δ; Γ; · ⊩inv M : 𝐴 Δ; Γ; · ⊩inv N : 𝐵

Δ; Γ; · ⊩inv ⟨M,N ⟩ : 𝐴 & 𝐵

Δ; Γ ⊩foc V : [𝐴] (right focus)

IdPlus

Δ; Γ, x : ⟨𝐴⟩ ⊩foc x : [𝐴]

UR
Δ; Γ;Ω ⊩inv N : 𝐴

Δ; Γ ⊩foc thunk N : [U𝐴]

PairR
Δ; Γ ⊩foc V1 : [𝐴1 ]
Δ; Γ ⊩foc V2 : [𝐴2 ]

Δ; Γ ⊩foc (V1,V2) : [𝐴1 ×𝐴2 ]

ExistsValR
Δ ⊢𝜅 𝐴 : 𝜅

Δ; Γ ⊩foc V : [𝐵 [𝐴/X ] ]

Δ; Γ ⊩foc (𝐴,V ) : [∃X : 𝜅.𝐵 ]

SumR
Δ; Γ ⊩foc V : [𝐴i ]

Δ; Γ ⊩foc (i,V ) : [𝐴1 +𝐴2 ]

Δ; Γ; [𝐴] ⊩foc S : T where stable T (left focus)

IdMinus

Δ; Γ; [𝐴] ⊩foc [ ·] : ⟨𝐴⟩

FL
Δ; Γ; x : 𝐴 ⊩inv N : T

Δ; Γ; [F𝐴] ⊩foc bind x ← [·] .N : T

FunL
Δ; Γ ⊩foc V : [𝐴]
Δ; Γ; [𝐵 ] ⊩foc S : T

Δ; Γ; [𝐴→ 𝐵 ] ⊩foc S [ [ ·] V ] : T

ValTypeFunL
Δ ⊢𝜅 𝐴 : 𝜅

Δ; Γ; [𝐵 [𝐴/X ] ] ⊩foc S : T

Δ; Γ; [∀X : 𝜅.𝐵 ] ⊩foc S [ [ ·] 𝐴] : T

ProdL
Δ; Γ; [𝐴i ] ⊩foc S : T

Δ; Γ; [𝐴1 & 𝐴2 ] ⊩foc S [ [ ·] i] : T

The predicate stable T holds if and only if T = F𝐵 or T = ⟨𝐵⟩.

The predicate stable Γ holds if and only if for every x : T in Γ, T = U𝐴 or T = ⟨𝐴⟩.

Fig. 5. Selected focusing rules

observation, which is justified by the following eta law for sums.

Δ; Γ, x : 𝐴1 +𝐴2 ⊢c N : 𝐵

Δ; Γ, x : 𝐴1 +𝐴2 ⊢c N ≡𝜂 pm x as {(1, x1).N [(1, x1)/x], (2, x2) .N [(2, x2)/x]} : 𝐵
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Dually, the eta law for functions (given below) states that every CBPV∀ term of function type
is equivalent to a lambda. Thus, whenever we need to build a program of function type, we are
justified in assuming that it is a lambda expression. This idea is captured in the right rule for
functions FunR .

Δ; Γ ⊢c N : 𝐴→ 𝐵

Δ; Γ ⊢c N ≡𝜂 𝜆x : 𝐴.N x : 𝐴→ 𝐵

In general, inversion proceeds as follows:

• When synthesizing a term containing a variable of positive type, we immediately pattern
match on the variable and then synthesize the bodies of each case of the matching construct.
This process is embodied by the łleftž inversion rules, which extract information from the
ordered context Ω.
• When synthesizing a term of negative type, we select an introduction form as the outermost
term constructor and then synthesize its body. This process is embodied by the łrightž
inversion rules.

In some cases, two different inversion rules may seem to be applicable, potentially forcing the
program synthesizer to make a nondeterministic choice between them. For example, the synthesizer
may have the choice of pattern matching one of many positively-typed variables in the context. Or,
it may need to decide between matching on a positive variable or producing an introduction form
for a negative type. In these cases, it doesn’t matter which choice the synthesizer makes: it may
apply them in any order while maintaining completeness. We refer to this situation as don’t care
or conjunctive nondeterminism. In order to avoid unnecessary nondeterminism in our synthesis
procedure, we here deal with don’t care nondeterminism implicitly, by fixing an arbitrary order.

(1) We first match positive variables in the context Ω from left to right. Any negative variable
x : U𝐴 encountered during inversion is shifted into the łnegative contextž Γ by the UMove

rule.
(2) We then apply introduction forms for negative types on the right hand side of the judgement.

(Note that the łrightž inversion rules require the context Ω to be empty).

Variables of suspended type provide a way to skip parts of the inversion phase. A variable x : ⟨𝐴⟩
in Γ is never destructed. The computational intuition here is that suspended types on the left
correspond to variables which are used parametrically: the overall computation may return them
or a value containing them, but will not inspect them directly. The left 𝜂 rule EtaL states that
when we are trying to build a term with a variable whose type is a free type variable, we may
proceed by suspending the type. This makes sense because values of abstract type are always used
parametrically.
On the right hand side of the focusing judgement, we may also suspend computation types. A

computation of suspended type cannot be built directly with term constructors but rather must
execute some other computation obtained from the context. The rule EtaR allows the suspension
of abstract types on the right side since there is no appropriate term constructor to use.
We write Γ

◦ and T ◦ to refer to a given type or environment with all suspensions erased. A
judgement is suspension-normal when the only suspended types are type variables. Since the 𝜂 rules
allow the suspsension only of type variables, subderivations of a suspension-normal judgement are
themselves suspension-normal.

3.2 Focusing

Eventually, the inversion phase reaches a situation in which we need to build a positive (returner)
or suspended computation containing only variables of negative (thunk) or suspended type. For
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forceV [S/nil] = S [forceV ]
(pmV as (x, y) .N ) [S/nil] = pmV as (x, y) .N [S/nil]
(pmV as (X , x) .N ) [S/nil] = pmV as (X , x) .N [S/nil]

returnV [S/nil] = S [returnV ]
(bind x ← M .N ) [S/nil] = bind x ← M .N [S/nil]

(𝜆x : 𝐴.N ) [S/nil] = S [𝜆x : 𝐴.N ]
(𝜆X : 𝜅.N ) [S/nil] = S [𝜆X : 𝜅.N ]
(M V ) [S/nil] = S [M V ]
(M 𝐴) [S/nil] = S [M 𝐴]

Fig. 6. Stack substitution (abbreviated)

example, when we need to synthesize the term N where

Δ; x1 : U𝐴1, ... , xn : U𝐴n, y1 : ⟨𝐴1⟩, ... , ym : ⟨𝐴m⟩; · ⊩inv N : F𝐵

This marks the end of the inversion phase and we now say that the judgement is stable.
Our options for constructing N are to either immediately return a value of type 𝐵 or to force one

of the thunks in the context. This choice is an essential source of nondeterminism in our search.
In the presence of effects, a term that immediately returns a value is not equivalent to one that
runs an arbitrary computation provided by the context. This situation is known as don’t know or
disjunctive nondeterminism: we don’t know which choice to make to find the program we desire, so
the synthesizer must search all possibilities.

Choosing to return a value immediately leads us to apply the first inversion rule shown in Figure 5.
In this scenario, we build the term N = returnV using the rule in which V is synthesized according
to the right focus judgement Δ; x1 : U𝐴1, ... , xn : U𝐴n, y1 : ⟨𝐴1⟩, ... , ym : ⟨𝐴m⟩ ⊩foc 𝑉 : [𝐵]. This
indicates that we are focusing on the type 𝐵 on the right side of the turnstile.
On the other hand, we could apply the second rule in order to use the 𝑖th thunk from the

context.1 In this case, N = S[force xi] where we synthesize S according to the left focus judgement
Δ;𝑥1 : U𝐴1, . . . , 𝑥𝑛 : U𝐴𝑛 ; [𝐴𝑖 ] ⊩foc 𝑆 : F𝐵. The square brackets around𝐴i indicate we are focusing
on the left and that 𝐴i is the type of the computation that S consumes.
The focusing phase of synthesis consists of repeatedly applying rules that break down a type

in a particular position (on the right or left). For example, the right focus sum rule allows us to
break down the type 𝐴1 +𝐴2 into the type 𝐴i where 𝑖 is 1 or 2. The choice of 𝑖 is another source of
łdon’t knowž nondeterminism. The presence of nondeterminism is characteristic of rules in the
focusing phase. In any case, the focus moves from 𝐴1 +𝐴2 to 𝐴i in the child derivation. The most
significant aspect of focusing is that we do not need to care about what is in the context at this
point: we can continue breaking down the type on the right side of the turnstile and shifting focus
to its components for as long as possible. Focusing ends when either:

• we apply an identity rule, constructing a variable or empty stack,
• we must return to the inversion phase in order to build a computation in order to construct a
thunk, or
• we must return to the inversion phase because we introduced a new variable to the context
representing the value returned by a returner computation.

3.3 Completeness of Focusing

We now establish the basic correctness property of focusingÐnamely, that it is complete in the
sense that, even though there are far fewer focused terms, we can, nevertheless find for every
(well-typed) CBPV∀ term M a focused term 𝑀𝑓 such that M is equivalent to 𝑀𝑓 . To prove that

1In the rule we have the unordered context Γ, 𝑥 : U𝐴 = 𝑥1 : U𝐴1, . . . , 𝑥𝑛 : U𝐴
𝑛
, so 𝑥 = 𝑥𝑖 , for some 𝑖 .
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result, we first need to build up some metatheory that explains how to perform type substitution
on focused terms and how to substitute one focused term into another.

3.3.1 Basic Properties. Recall that a variable x of suspended type in a focused term is used only
parametrically. As a result, variables of suspended type can be replaced with focused values using
standard substitution and no redex is formed. Due to the variety of syntactic structures of the
language, we arrive at several mutually recursive notions of substitution. The most unfamiliar one,
stack substitution, is shown in Figure 6. The stack substitution M [S/nil] produces a computation
that is 𝜂 equivalent to directly plugging M into S, but it pushes the stack S as deep into M as
possible. We also define the substitution of stacks into stacks S[S′/nil] in a very similar manner
but leave the definition to the appendix.

Lemma 3.1 (Suspended substitution).

(1) If Δ; Γ, x : ⟨𝐴⟩;Ω ⊩inv M : T and Δ; Γ ⊩foc V : [𝐴] then Δ; Γ;Ω ⊩inv M [V/x] : T
(2) If Δ; Γ, x : ⟨𝐴⟩ ⊩foc V : [𝐵] and Δ; Γ ⊩foc V

′ : [𝐴] then Δ; Γ ⊩foc V [V
′/x] : [𝐵]

(3) If Δ; Γ, x : ⟨𝐴⟩; [𝐵] ⊩foc S : T and Δ; Γ ⊩foc V : [𝐴] then Δ; Γ; [𝐵] ⊩foc S[V/x] : T
(4) If Δ; Γ;Ω ⊩inv M : ⟨𝐵⟩ and Δ; Γ; [𝐵] ⊩foc S : T then Δ; Γ;Ω ⊩inv M [S/nil] : T
(5) If Δ; Γ; [𝐴] ⊩foc S : ⟨𝐵⟩ and Δ; Γ; [𝐵] ⊩foc S

′ : T then Δ; Γ; [𝐴] ⊩foc S[S
′/nil] : T

Proof. By routine induction on the focused derivation of the term being substituted into. □

3.3.2 Type Substitution. Given a focused derivation such as Δ,X : 𝜅; Γ;Ω ⊩inv M : T and a type
Δ ⊢𝜅 𝐴 : 𝜅, we would like to be able to obtain a new focused term MJ𝐴/XK in which 𝐴 has been
substitued for the free type variable X . This operation must be more than a simple syntactic type
substitution. Suppose we have x : X ∈ Γ and 𝐴 = Bool. While M , according to the eta rule, can
ignore x because it is of parametric type, MJBool/XK must pattern match on x because Bool is a
positive type.

Thus, in addition to performing a standard type substitution, we define the focused type substi-
tution operator as follows. It finds each use of the 𝜂 rule for X in the focused derivation of M and
replaces it with the derived 𝜂 principle for 𝐴 given by Lemma 3.3 (described below). As there is
no syntax that represents where in a term the 𝜂 rules are used, type substitution must work over
derivations rather than terms. This makes a more formally written definition tedious so we omit it.
It also means that writing MJ𝐴/XK is technically an abuse of notation. It is, however, unambiguous
so long as we take care to ensure the intended derivation for M is clear from context.

Lemma 3.2 (Type substitution).

(1) If Δ,X : 𝜅; Γ;Ω ⊩inv M : T and Δ ⊢𝜅 𝐴 : 𝜅 then Δ; Γ [𝐴/X ];Ω[𝐴/X ] ⊩inv MJ𝐴/XK : T [𝐴/X ]
(2) If Δ,X : 𝜅; Γ;Ω ⊩inv M : T and Δ ⊢𝜅 𝐴 : 𝜅 then Δ; Γ [𝐴/X ];Ω[𝐴/X ] ⊩inv MJ𝐴/XK : T [𝐴/X ]
(3) If Δ,X : 𝜅; Γ ⊩foc V : [𝐵] and Δ ⊢𝜅 𝐴 : 𝜅 then Δ; Γ [𝐴/X ] ⊩foc V J𝐴/XK : [𝐵 [𝐴/X ]]
(4) If Δ,X : 𝜅; Γ ⊩foc V : [𝐵] and Δ ⊢𝜅 𝐴 : 𝜅 then Δ; Γ [𝐴/X ] ⊩foc V J𝐴/XK : [𝐵 [𝐴/X ]]
(5) If Δ,X : 𝜅; Γ; [𝐵] ⊩foc S : T and Δ ⊢𝜅 𝐴 : 𝜅 then Δ; Γ [𝐴/X ]; [𝐵 [𝐴/X ]] ⊩foc SJ𝐴/XK : T [𝐴/X ]
(6) If Δ,X : 𝜅; Γ; [𝐵] ⊩foc S : T and Δ ⊢𝜅 𝐴 : 𝜅 then Δ; Γ [𝐴/X ]; [𝐵 [𝐴/X ]] ⊩foc SJ𝐴/XK : T [𝐴/X ]

Proof. By routine mutual induction on the first derivation in each part. In the 𝜂 cases, identity
expansion (Lemma 3.3) is applied. □

3.3.3 Identity Expansion. Identity expansion, shown in Figure 7, is used during type substitution,
as explained above. Intuitively, it 𝜂-expands the uses of a variable of a suspended value type in a
term M , or 𝜂-expands M itself, when M is a computation type.
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𝜂x:X (M) = M
𝜂x:U𝐴 (M) = M [thunk 𝜂𝐴 (force x)/x ]

𝜂x:𝐴1+𝐴2 (M) = pm x as {(1, x1) .𝜂x1:𝐴1 (M [ (1, x1)/x ]), (2, x2) .𝜂x2:𝐴2 (M [ (2, x2)/x ]) }
𝜂x:Unit (M) = pm x as unit.M [unit/x ]

𝜂x:𝐴1×𝐴2 (M) = pm x as (x1, x2) .𝜂x2:𝐴2 (𝜂x1:𝐴1 (M [ (x1, x2)/x ]))
𝜂x:∃X :𝜅.𝐴 (M) = pm x as (X , y) .𝜂y:𝐴 (M [ (X , y)/x ])
𝜂x:∃X :𝜅.𝐴 (M) = pm x as (X , y) .𝜂y:𝐴 (M [ (X , y)/x ])

𝜂X (M) = M
𝜂F𝐴 (M) = M [bind x ← [·] .𝜂x:𝐴 (return x)/nil]

𝜂𝐴→𝐵 (M) = 𝜆x : 𝐴.𝜂x:𝐴 (𝜂𝐵 (M [ [ ·] x/nil]))
𝜂∀X :𝜅.𝐵 (M) = 𝜆X : 𝜅.𝜂𝐵 (M [ [ ·] X/nil])
𝜂∀X :𝜅.𝐵 (M) = 𝜆X : 𝜅.𝜂𝐵 (M [ [ ·] X/nil])
𝜂𝐴1 & 𝐴2

(M) = ⟨𝜂𝐴1
(M [ [ ·] 1/nil]), 𝜂𝐴2

(M [ [ ·] 2/nil]) ⟩

Fig. 7. Identity expansion operations

Lemma 3.3 (Identity Expansion).

(1) If Δ; Γ, x : ⟨𝐴⟩;Ω ⊩inv M : T then Δ; Γ; x : 𝐴,Ω ⊩inv 𝜂x:𝐴 (M) : T and Δ; Γ, Γ′ ⊢c M ≡ 𝜂x:𝐴 (M) :
T ◦ for Ω ∈ ord (Γ′).

(2) If Δ; Γ; · ⊩inv M : ⟨𝐴⟩ then Δ; Γ; · ⊩inv 𝜂𝐴 (M) : 𝐴.

Proof. By routine induction on the suspended type. In each case, we must apply the supsended
substitution lemma (Lemma 3.1) and note that the operations performed by the 𝜂 operator are
merely 𝜂-expansions. □

3.3.4 Term Substitution. When substituting for a variable x in a focused termM that does not have
suspended type, we risk building an unfocused term: the usual substitution M [V/x] may yield
an unfocused term even though V and M are. For example, if x then return unit else return unit
is focused but if true then return unit else return unit is not. The solution is to 𝛽-reduce and 𝜂-
expand the term as we substitute in order to maintain focus, a process known as hereditary or
focused substitution [Eades III and Stump 2010; Pfenning 1995; Simmons 2014]. We write MJV/xK
for the focused substitution of V for x in M and SJMK for the focused hole-filling of M into S. The
definitions, which are given in the appendix, rely upon auxiliary operations handling substitution
of computations for variables of thunk type and binding of values from returner computations to
variables in other computations. To establish the correctness of these operations, we need to show
that they yield terms that are equivalent to those given by their usual, unfocused counterparts.

Lemma 3.4 (Focused substitution).

Assume Γ and T are suspension-normal and Ω ∈ ord (Γ′′).

(1) If Δ; Γ ⊩foc V : [𝐴] and Δ; Γ, Γ′; x : 𝐴,Ω ⊩inv N : T, then Δ; Γ, Γ′;Ω ⊩inv N JV/xK : T and

Δ; Γ◦, Γ′◦, Γ′′ ⊢c N [V/x] ≡ N JV/xK : T ◦

(2) If Δ; Γ; · ⊩inv M : 𝐴 and Δ; Γ, Γ′; [𝐴] ⊩foc S : 𝐵, then Δ; Γ, Γ′; · ⊩inv SJMK : 𝐵 and Δ; Γ◦, Γ′◦ ⊢c
S[M] ≡ SJMK : 𝐵.

(3) If Δ; Γ; · ⊩inv M : 𝐴 and Δ; Γ, Γ′, x : U𝐴;Ω ⊩inv N : T, then Δ; Γ, Γ′;Ω ⊩inv N JM/force xK : T
and Δ; Γ◦, Γ′◦, Γ′′ ⊢c N [thunk M/x] ≡ N JM/force xK : T ◦.

(4) If Δ; Γ; · ⊩inv M : 𝐴 and Δ; Γ, Γ′, x : U𝐴 ⊩foc V : [𝐵], then Δ; Γ, Γ′ ⊩foc V JM/force xK : [𝐵]
and Δ; Γ◦, Γ′◦ ⊢v V [thunk M/x] ≡ V JM/force xK : 𝐵.

(5) If Δ; Γ; · ⊩inv M : 𝐴 and Δ; Γ, Γ′, x : U𝐴; [𝐵] ⊩foc S : T, then Δ; Γ, Γ′; [𝐵] ⊩foc SJM/force xK : T
and Δ; Γ◦, Γ′◦;𝐵 ⊢ S[thunk M/x] ≡ SJM/force xK : T ◦.

(6) If Δ; Γ;Ω ⊩inv M : F𝐴 and Δ; Γ, Γ′; x : 𝐴 ⊩inv N : T where stable T, then Δ; Γ, Γ′;Ω ⊩inv
N Jx ← MK : T and Δ; Γ◦, Γ′◦, Γ′′ ⊢c bind x ← M .N ≡ N Jx ← MK : T ◦.
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(7) If Δ; Γ; [𝐵] ⊩foc S : F𝐴 and Δ; Γ, Γ′; x : 𝐴 ⊩inv N : T where stable T, then Δ; Γ, Γ′; [𝐵] ⊩foc
N Jx ← SK : T.

Proof. We prove these claims by lexicographic induction on the following components:

• The universe level of the principal type.
• The formula size of the principal type.
• The łpart sizež (as in parts 1-7) decreases.
• In parts 3, 4, and 5, the focused derivation of the computation N , stack S, or value V being
substituted into.
• In the case of the focused bind operators (parts 6 and 7), the focused derivation of the
computation M or stack S being bound.

For cases 1-5, the principal type is the type of the value or computation being substituted or filled
in. For the focused bind cases, the principal type is the type of the variable x being bound. □

3.3.5 Completeness. We now prove our main completeness theorem simultaneously with a couple
of lemmas. We first present Theorem 3.5, which is the top-level property claiming that for every
well-typed term, there is an equivalent focused term. This result follows by mutual induction on
the typing derivations of M (in Lemma 3.6 and Lemma 3.7) and V (in Lemma 3.8). The full proofs
can be found in the appendix.

Theorem 3.5 (Completeness). Assume Δ; Γ ⊢c M : 𝐵. Then there exists𝑀𝑓 such that Δ; Γ ⊩c 𝑀𝑓 :
𝐵 and Δ; Γ ⊢c M ≡ 𝑀𝑓 : 𝐵.

Proof. Let Ω ∈ ord (Γ). By instantiating Lemma 3.6 with an empty stack and substitution, we
get that there exists𝑀𝑓 equivalent to M such that Δ; ·;Ω ⊩inv 𝑀𝑓 : ⟨𝐵⟩. From identity expansion,
we get 𝜂𝐵 (𝑀𝑓 ) a term equivalent to 𝑀𝑓 (and thus also M) such that Δ; ·;Ω ⊩inv 𝜂𝐵 (𝑀𝑓 ) : 𝐵. This
completes the proof. □

The lemma structure largely follows that of the focusing rules. Lemma 3.6 corresponds to the
inversion phase. Consider an unfocused computationM with a variable x of type𝐴1×𝐴2. A focused
term must immediately pattern match on x. We would like to 𝜂-expand𝑀 into the equivalent term
pm x as (x1, x2).M [(x1, x2)/x] and then continue by focusing the computation M [(x1, x2)/x] in the
body of the matching construct. Unfortunately, this term is not strictly smaller than M , so a naive
approach does not satisfy our induction scheme.

We can, however, make the observation that the value (x1, x2) is already focused in an environ-
ment where x1 and x2 have suspension type. Rather than substituting (x1, x2) directly into M , then,
we are able to keep around a mapping 𝜔 from variables to focused values. Dually, we keep track of
a stack S which is used in the same way when 𝜂-expanding computations of negative type.
In the base cases, after all possible 𝜂-expansion has completed and the judgement is stable,

Lemma 3.7 is used to focus the resulting term.
In all of the following claims, suppose that Ω1 ∈ ord (Γ1) and Ω2 ∈ ord (Γ2) where Γ1 and Γ2

are suspension-free. Furthermore, assume Γ is stable and suspension-normal.

Lemma 3.6. Assume

• Δ; Γ◦, Γ1, Γ2 ⊢c M : 𝐵,
• Δ; Γ, ⟨Γ2⟩; [𝐵] ⊩foc 𝜔 (S) : T
• Δ; Γ, ⟨Γ2⟩ ⊩c 𝜔 : Ω1, and

Then there exists𝑀𝑓 such that Δ; Γ;Ω2 ⊩inv 𝑀𝑓 : T ◦ and Δ; Γ, Γ2 ⊢c 𝜔 (M [S/nil]) ≡ 𝑀𝑓 : T ◦.

Given a computation which is typed under a stable judgement, Lemma 3.7 beta reduces it as
much as possible and proceeds recursively into subexpressions to obtain a focused term.
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Lemma 3.7. Assume

• Δ; Γ◦, Γ1 ⊢c M : 𝐵,

• Δ; Γ ⊩c 𝜔 : Ω1,

• Δ; Γ; [𝐵] ⊩foc 𝜔 (S) : T where stable Γ and stable T.

Then there exists𝑀𝑓 such that Δ; Γ; · ⊩inv 𝑀𝑓 : T and Δ; Γ◦ ⊢c 𝜔 (M [S/nil]) ≡ 𝑀𝑓 : T ◦.

Lemma 3.8. Assume Δ; Γ◦, Γ1 ⊢v V : 𝐵 and Δ; Γ ⊩c 𝜔 : Ω1. Then there exists 𝑉𝑓 such that

Δ; Γ ⊩foc 𝑉𝑓 : [𝐵] and Δ; Γ◦ ⊢v 𝜔 (V ) ≡ 𝑉𝑓 : 𝐵.

4 EXAMPLE APPLICATIONS OF COMPUTATION FOCUSING

In this section, we illustrate some of the uses for computation focusing, which has interesting
applications even in the simple predicative, polymorphic CBPV∀ language defined above.

4.1 “Free Theorems”: Polymorphic Identity Function

As a first example, we show how computation focusing can replicate some of the łfree theo-
remsž [Wadler 1989] that would typically be proved directly via a logical relations arguments. For
instance, consider a closed term M of type ∀X : 𝜅.X → FX . A classic free theorem for this type
tells us that M must be contextually equivalent to the polymorphic identity function. Rather than
using a logical relations argument, examining the possible derivations that we may obtain from
focusing M yields a particularly simple alternative proof of this property.

Completeness of focusing (Theorem 3.5) states that there must exist a focused term𝑀𝑓 which is
equivalent to M . Simply by inversion on the derivation of ·; ·; · ⊩inv 𝑀𝑓 : ∀X : 𝜅.X → FX we find
𝑀𝑓 = 𝜆X : 𝜅.𝜆x : X .return x. Thus, M is equivalent to the polymorphic identity function.

4.2 Corollary to Completeness: Context Lemmas

As a stepping stone to more interesting applications of focusing, we next show that computational
focusing indeed does cut down the search space of contexts that we must consider to prove contex-
tual equivalence. Intuitively, to prove that two CBPV∀ computations are contextually equivalent it
suffices to examine their behaviors in all focused stacks, rather than arbitrary contexts. Similarly,
to show that two values are contextually equivalent, it suffices to show that they yield similar
behaviors when placed into each focused term, rather than an arbitrary context.

These intuitions are captured in the following lemmas.

Lemma 4.1. Assume Ω ∈ ord (Γ).

Suppose that for all 𝑀𝑓 , 𝜔 , and 𝛿 such that ·; x : 𝐴 ⊩c 𝑀𝑓 : FBool and ·; · ⊩c 𝜔 : Ω and · ⊢ 𝛿 : Δ

we have𝑀𝑓 [𝜔 (𝛿 (V1))/x] ↦→
∗ return true iff𝑀𝑓 [𝜔 (𝛿 (V2))/x] ↦→

∗ return true.

Then, Δ; Γ ⊢v V1 ≈ctx V2 : 𝐴

Lemma 4.2. Assume Ω ∈ ord (Γ).

Suppose that for all𝑀𝑓 , 𝜔 , and 𝛿 such that ·; x : U𝐴 ⊩c 𝑀𝑓 : FBool and ·; · ⊩c 𝜔 : Ω and · ⊢ 𝛿 : Δ

we have𝑀𝑓 [thunk 𝜔 (𝛿 (M1))/x] ↦→
∗ return true iff𝑀𝑓 [thunk 𝜔 (𝛿 (M2))/x] ↦→

∗ return true.

Then, Δ; Γ ⊢c M1 ≈ctx M2 : 𝐴

To prove each of these, we start by considering an arbitrary context M and closing substitution
𝛾 with the goal of showing that substituting some values closed by 𝛾 into M yields equivalent
results. Our premise allows us to substitute these values into any focused context and get equivalent
results. We simply apply completeness of focusing (Theorem 3.5) to the context M and 𝛾 to obtain
equivalent, focused versions of these.
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4.3 Tricky Existential Packages

As a more sophisticated example of computation focusing, we can use it to prove the contextual
equivalence of existential packages, even in cases where standard proof techniques, such as logical
relations, fall short. We show a (somewhat contrived) but small and illustrative example of this
phenomenon, adapted to our CBPV∀ setting from similar examples from the literature [Pitts 2004;
Sumii and Pierce 2005]. Note that the proof relies essentially on the ability to do induction on
focused derivations.
Let Z3 be the type Unit + Unit + Unit. We refer to the inhabitants of this type as 0, 1, and 2.

Consider the type 𝐴 = ∃X : Typeu .U (U (X → FX ) → FBool) and the following two closed
values of this type:

V1 = (Bool, thunk (𝜆f : U (Bool→ FBool).force f true ∧ ¬ (force f false)))

V2 = (Z3, thunk 𝜆𝑓 : U (Z3 → FZ3).bind

x0 ← force f 0, x1 ← force f 1, x2 ← force f 2.

x0 = 0 ∧ x1 = 1 ∧ x2 = 2)

The packages V1 and V2 are equivalent because the existential ensures that the only argument
that can be passed in for f is the identity functionÐthe context does not have any knowledge
about 𝑋 and no means of constructing or destructing values of type 𝑋 , so, intuitively, it is forced to
provide the identity function. In the case that 𝑓 is instantiated with the identity, then the functions
in both V1 and V2 always return true.

Directly applying the ciu theorem for this example would allow us to narrow down the contexts
we need to consider to bindw ← [·] .M where

·;w : ∃X : Typeu .U (U (X → FX ) → FBool) ⊢c M : FBool

It remains to show that

bind w ← returnV1.M ≡ M [V1/w]

evaluates to the same value as

bind w ← returnV2.M ≡ M [V2/w]

We would like to take advantage of the earlier intuition that the only interesting thing M might do
is break apart w via pattern matching into (X , 𝑦) and then apply 𝑦 to some value morally equivalent
to the identity function. Sadly for us, the ciu theorem is not particularly helpful here since it gives
us no information about how the variable w is used by M .
Instead, we use focusing to prove the equivalence. Consider an arbitrary focused context 𝑀𝑓 ,

where ·; x : 𝐴 ⊩c 𝑀𝑓 : FBool. By Lemma 4.1, it suffices to show that there exists V ∈ {true, false}
such that𝑀𝑓 [V1/x] ↦→

∗ returnV and𝑀𝑓 [V2/x] ↦→
∗ returnV .

Inverting the focusing derivation, we obtain𝑀𝑓 = pm x as (X , y).M ′ where

X : Typeu; ·; y : U (U (X → FX ) → FBool) ⊩inv M
′ : FBool

It now suffices to show

M ′[Bool/X ] [thunk (𝜆f : U (Bool→ FBool).(force f ) true ∧ ¬ ((force f ) false))/y]

returns the same value as

M ′[Z3/X ] [thunk 𝜆𝑓 : U (Z3 → FZ3).bind

x0 ← force f 0, x1 ← force f 1, x2 ← force f 2.

x0 = 0 ∧ x1 = 1 ∧ x2 = 2/x]

From here, we proceed by induction on the focused derivation of M ′.
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Case: M ′ = return true or M ′ = return false

In these cases, M ′ ignores the function it is given, so we immediately have that both programs
return the same value.
Case: M ′ = bind z ← force y thunk (𝜆w : X .M ′′).if z thenN1 elseN2

By inversion we have

• X : Typeu; y : U (U (X → FX ) → FBool),w : ⟨X⟩; · ⊩inv M
′′ : FX and

• X : Typeu; y : U (U (X → FX ) → FBool); · ⊩inv N1 : FBool.

In this case, M ′ is calling y with a function thunk (𝜆w : X .M ′′) of type U (X → FX ). The crux
of this proof is showing that this argument must be the identity function. In other words, M ′′ must
return w. The reason this is trickier than our earlier proof of the polymorphic identity function is
that the variable y is free in M ′′. We will prove this in Lemma 4.3, whose proof we defer.
Applying Lemma 4.3, X : Typeu; y : U (U (X → FX ) → FBool),w : X ⊢c M

′′ ≡ returnw : FX .
Now that we have shown that y is passed the identity function, we can examine the functions in
V1 and V2 to confirm that whenever the identity function is passed in for f , they both return true.
Applying this observation, it suffices to show

bind z ← return true.

if z then

N1 [Bool/X ] [thunk (𝜆f : U (Bool→ FBool).(force f ) true ∧ ¬ ((force f ) false))/y]

else

N2 [Bool/X ] [thunk (𝜆f : U (Bool→ FBool).(force f ) true ∧ ¬ ((force f ) false))/y]

↦→∗

N1 [Bool/X ] [thunk (𝜆f : U (Bool→ FBool).(force f ) true ∧ ¬ ((force f ) false))/y]

returns the same value as

bind z ← return true.

if z then

N1 [Z3/X ] [thunk 𝜆f : U (Z3 → FZ3) .bind x0 ← force f 0, x1 ← force f 1,

x2 ← force f 2.x0 = 0 ∧ x1 = 1 ∧ x2 = 2/y]

else

N2 [Z3/X ] [thunk 𝜆f : U (Z3 → FZ3).bind x0 ← force f 0, x1 ← force f 1,

x2 ← force f 2.x0 = 0 ∧ x1 = 1 ∧ x2 = 2/y]

↦→∗

N1 [Z3/X ] [thunk 𝜆f : U (Z3 → FZ3).bind x0 ← force f 0, x1 ← force f 1,

x2 ← force f 2.x0 = 0 ∧ x1 = 1 ∧ x2 = 2/y]

But this follows thanks to the induction hypothesis for N1, whose derivation is a subderivation of
that of M ′.

Now all that remains is to return to the proof of Lemma 4.3, the key parametricity property we
relied on. Unlike the reasoning we just described, the proof of this lemma could be given using a
logical relation. However, as we already have the machinery set up for a focusing-based proof, we
opt to continue with this approach instead.

Lemma 4.3. For 𝑛 ≥ 1 assume:

• X : Typeu; y : U (U (X → FX ) → FBool),w1 : ⟨X⟩, ... ,wn : ⟨X⟩; · ⊩inv M : FX and

• ·; · ⊢v V : U (U (𝐴→ F𝐴) → FBool)

Then, there exists some 𝑗 such that

X : Typeu;w1 : X , ... ,wn : X ⊢c M [𝐴/X ] [V/y] ≡ returnwj : F𝐴
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Proof. We proceed by induction on the focused derivation of M . Applying theorem 3.5, let 𝑉𝑓

be a focused value equivalent to V .
Case: M = returnwi

This case is immediate since (returnwi) [𝐴/X ] [V/y] = returnwi.
Case: M = bind z ← force y (thunk 𝜆w : X .N ).if z thenN1 elseN2

We are required to show

·; Γ ⊢c bind z ← (force y (thunk 𝜆w : X .N )) [𝐴/X ] [V/y] .

if z thenN1 [𝐴/X ] [V/y] elseN2 [𝐴/X ] [V/y] ≡

returnwi : F𝐴

By inversion,

y : U (U (X → FX ) → FBool),w1 : ⟨X⟩, ... ,wn : ⟨X⟩; · ⊩X :Typeu

force y (thunk 𝜆w : X .N ) : FBool

Applying focused substitution (Lemma 3.4),

·;w1 : ⟨𝐴⟩, ... ,wn : ⟨𝐴⟩; · ⊩inv (force y (thunk 𝜆w : X .N ))J𝐴/XKJ𝑉𝑓 /yK : FBool

Inverting this derivation, we see that (force y (thunk 𝜆w : X .N ))J𝐴/XKJ𝑉𝑓 /yK must be equal
to either return true or return false. The two cases of the proof are analagous; we will proceed
assuming the former. This lets us determine:

Δ; Γ ⊢c bind z ← (force y (thunk 𝜆w : X .N )) [𝐴/X ] [𝑉𝑓 /y] .

if z thenN1 [𝐴/X ] [V/y] elseN2 [𝐴/X ] [V/y]

≡ bind z ← return true.

if z thenN1 [𝐴/X ] [V/y] elseN2 [𝐴/X ] [V/y]

≡ N1 [𝐴/X ] [V/y] : F𝐴

By the induction hypothesis, there exists some 𝑖 such that N1 [𝐴/X ] [V/y] is equivalent to returnwi ,
completing the proof. □

5 COMPILER CORRECTNESS: FULL ABSTRACTION

As a more extensive demonstration of how computation focusing can be applied, we show in this
section how it can help in proving full abstraction results.

5.1 Full Abstraction

Full abstraction is a strong compiler correctness property. It requires that two programs are
contextually equivalent in the source language if and only if their compilations are equivalent in the
target. In other words, equivalence must be preserved and reflected. Full abstraction is compositional
in that it provides guarantees about the behavior of a compiled component regardless of the code
it is linked with. It is not restricted to whole-program compilers and enables the linking of a
component with other components that may be written in entirely different source languages.

Proofs of full abstraction are about comparing the observations that can be made about a source
language term with those that can be made in the target language on the compilation of the
source term. If some target language context is able to make an observation that distinguishes
two programs which were equivalent in the source, then the compiler does not enforce the source
language’s abstractions and the programmer cannot reason about a component’s behavior using
their knowledge of the language it was written in. In this case, full abstraction fails because the
compiler does not preserve equivalence. On the other hand, if two different source-language
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𝐴, 𝐵 ::= U𝐴 | 𝐴 + 𝐵 | Unit | 𝐴 × 𝐵

𝐴, 𝐵 ::= F𝐴 | 𝐴→ 𝐵 | 𝐴 & 𝐵

Fig. 8. CBPV𝑠 : source language types

programs are compiled to the same target language program (i.e. equivalence is not reflected), the
compiler is changing the behavior of some programs.
Designing compilers to be fully abstract often requires careful consideration of how source-

language features are encoded into the target. This is particularly important when compiling less
expressive source languages to more expressive target languages. Using the target language’s type
system to regulate the observations which can be made about the compiler’s output is, in many
cases, crucial.
We draw the correspondence between target and source language contexts through a back-

translation relation which relates a target-level context for a compiled component to a corresponding
source-language context. The idea is that if there is some target-language context which can
distinguish two compiled components, its back-translation can distinguish the original source-level
components.
If the target language is more expressive than the source language, then we cannot hope to

back-translate every target context. Since the hole of the back-translated context must have a type
that is a translation of some source language type, we can narrow down the set of contexts that
concern us. As we have seen before, when we have type information describing a context, focusing
can generally be applied to enumerate the possible shapes of the context. In the case of proving full
abstraction, this means that fewer contexts need be back-translated.
For example, the consistency of dependently-typed languages like Coq hinges on the fact that

that every program terminates. Languages like OCaml place no such restrictions on their programs.
OCaml programmers, however, may wish to link their programs with highly-reliable verified Coq
components. However, building a compiler from Coq to OCaml with a compositional correctness
theorem poses many challenges. An important first step in this direction is to design a way for a
component written in a total language to be compiled fully-abstractly to an intermediate language
in which it can link with potentially nonterminating components. In the remainder of this section,
we establish full abstraction for the extremely simplified case in which the source language is a
terminating, simply-typed language and the target is CBPV∀plus a divergent term and termination-
sensitive typing.
We study a primitive compiler because even in this idealized setting, current proof techniques

fall short. The challenge of full abstraction proofs generally has more to do with capturing the
relationship between the source and target language than the translation itself. And, unfortunately,
current techniques are limited in their ability to reason about the operations that target-level
contexts may perform on a compiled component. The simplicity of the embedding only makes it all
the more frustrating that we have hitherto been unable to prove this essential compiler correctness
property.

5.2 Setup

To this end, we introduce CBPV𝑠 , a simply typed subset of CBPV∀ and CBPV∀•𝑡 , which includes
both polymorphism and a diverging computation diverge. Note that naively embedding CBPV𝑠

into CBPV∀•𝑡 is not fully abstract. In a terminating language, no context can differentiate between
M1 = 𝜆x : U (FUnit).force x, a function that forces a thunk of unit type provided by the context
and M2 = 𝜆x : U (FUnit).return unit, a function that ignores the thunk and simply returns the

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 95. Publication date: August 2020.



Computation Focusing 95:19

𝜖 ::= • | ◦

𝐴, 𝐵 ::= . . . | F𝜖𝐴

M,N ::= . . . | diverge

𝜂F𝜖𝐴 (M) = M [bind x ← [·] .𝜂x:𝐴 (return x)/nil]

Δ; Γ ⊢c bind x ← diverge.M ≡ diverge : F•𝐴 diverge ↦→ diverge

Δ ⊢𝜅 𝐴 : 𝜅

Δ; Γ; · ⊩inv diverge : F•𝐴

Δ; Γ ⊩foc V : [𝐴]

Δ; Γ; · ⊩inv returnV : F𝜖𝐴

Δ; Γ; x : 𝐴 ⊩inv N : T

lub (T ) ≥ 𝜖

Δ; Γ; [F𝜖𝐴] ⊩foc bind x ← [·] .N : T

Fig. 9. CBPV∀•𝑡 : syntax and semantics differences from CBPV∀and key focusing definitions

unit value. On the other hand, the CBPV∀•𝑡 stack S = [·] (thunk diverge) distinguishes M1 and M2

by providing a diverging thunk as an argument. Thus, a fully abstract compiler must ensure that
no non-terminating CBPV∀•𝑡 function is ever passed to compiled CBPV𝑠 code.

To statically enforce this separation, the type system of CBPV∀•𝑡 extends that of CBPV∀ in order

to track which computations may diverge. The CBPV∀•𝑡 returner type F𝜖𝐴 is annotated with an
effect 𝜖 , where 𝜖 = • indicates the computation may diverge and 𝜖 = ◦ indicates a total computation.
The key definitions for the language, its focused forms, and extending the equational theory are
given in Figure 9. The crucial rule is the focusing rule for bind, which says that the whole term
might diverge if the computation bound to x might. Note that ◦ ≤ • and lub(𝑇 ) traverses T , going
only on the right-hand side of function types, and computes the least upper bound of the effect
annotations in the types it visits.
We aim to prove fully abstract a simple compiler that embeds CBPV𝑠 into the pure subset of

CBPV∀•𝑡 . The judgements Δ ⊢𝜅 𝐴 : Typeu { 𝐴′ and Δ ⊢𝜅 𝐴 : Typeu { 𝐴′ describe the type
translation for this compiler. The key point is that returner computation types in the source are
translated into total returner types in the target according to the following rule:

Δ ⊢𝜅 𝐴 : Typeu { 𝐴′

Δ ⊢𝜅 F𝐴 : Typeu { F◦𝐴
′

The rest of the rules defining these judgements act homomorphically, following the syntax of types
and translating each source type constructor to the analogous type constructor in the target. We
leave them to the appendix. The computation translation Δ; Γ ⊢c M : 𝐴 { M ′ and value translation
Δ; Γ ⊢v V : 𝐴 { V ′ are similarly straightforward, so we omit them here as well. Note that the
translation is defined over the entire source language, including unfocused terms.
To understand why, informally, we should expect equivalences to be preserved between these

languages, consider a target language context M whose hole is of translation type. The fact that all
computations of translation type are total means thatM cannot pass any impure term to a compiled
component in a way that might break the source language’s abstractions. That is not to sayM itself
is pure, however. M may well perform a calculation involving its hole and, based on the result,
decide to diverge or not.
In particular, we face the following challenges in demonstrating full abstraction:

(1) Our proof must make use of the modal type system inCBPV∀•𝑡 in order to enforce the invariant
that a component compiled from CBPV𝑠 is never passed a nonterminating computation.
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Δ; Γ; · ⊩foc V : [𝐴] ↠ V ′

Δ; Γ; · ⊩inv returnV : F𝜖𝐴 ↠ return𝜖V
′

Δ ⊢𝜅 𝐴 : 𝜅 ↠ 𝐴′

Δ; Γ; · ⊩inv diverge : F•𝐴 ↠ return none

Δ; Γ; x : 𝐴 ⊩inv N : T ↠ N ′

Δ; Γ; [F𝜖𝐴] ⊩foc bind x ← [·] .N : T ↠ bind𝜖x ← [·] .N
′

return◦V = returnV

return•V = return (someV )

bind◦x ← S.N = bind x ← S.N

bind•x ← S.N = bind y ← S.pm y as {none.return none, some x .N }

Fig. 10. Selected back-translation rules and macro definitions.

(2) Even this observation however, does not mean that programs consisting of a compiled CBPV𝑠

component in a native CBPV∀•𝑡 context must always terminate: a computation internal to
the context may still diverge. We need to represent this behavior in the source language.

(3) Finally, a CBPV∀•𝑡 context may internally use other data types such as polymorphic functions
that have no equivalent in CBPV𝑠 .

The literature has visited these challenges before, so we briefly describe some related work before
showing how focusing is a natural addition to the picture.

5.3 Background

New, Bowman, and Ahmed [New et al. 2016] are able to prove full abstraction for a compiler from
a language without exceptions but with recursive types to one with exceptions tracked by a modal
type system. They find a universal type in the source language which is able to represent all of the
dynamic behavior of the target language. They then write an interpreter in the source which is
used to interpret back-translated, type-erased, target-language contexts. This is very similar to the
case we are investigating, except that we seek to avoid interpreting all of the CBPV∀•𝑡 language in
CBPV𝑠 , a strategy which would imply that to meet our eventual goal, an OCaml interpreter would
need to be written in Coq.
Like us, Ahmed and Blume [Ahmed and Blume 2011] compile to a target language with poly-

morphic types from a source language without. In their case, both languages are pure. Since no
quantified type can be passed into a source-language function, they show that any use of polymor-
phic types can be partially evaluated away during back-translation. Unfortunately, this makes the
well-foundedness of the back-translation dependent upon counting steps of evaluation, and has
not been shown to extend to languages with nontermination. Instead of partial evalutation during
back-translation, we suggest focalization as a principled, type-directed means of normalization
before back-translation.

5.4 Focusing and Full Abstraction

To establish equivalence preservation, we need to show that for any two CBPV𝑠 programs M1 and
M2 and CBPV∀•𝑡 context N ′ which can distinguish their compilations, we can find a CBPV𝑠 context
which distinguishesM1 andM2. In other words, we must define a back-translation of target language
contexts to source language contexts. This is where focusing comes in: thanks to completeness, we
need only concern ourselves with translating focused target contexts. The interesting part of the
back-translation is given in Figure 10. Its definition follows the structure of derivations of focused
terms. However, since we ultimately only need to back-translate contexts whose holes expect a
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term compiled from CBPV𝑠 , the back-translation need only be defined over terms whose types
and variables’ types are in the image of the type translation. For this reason, we never need to
back-translate polymorphic functions or terms which instantiate polymorphic functions. This is
important, since CBPV𝑠 is simply typed and there is no obvious back-translation for such terms.
Most back-translation rules simply translate type and term constructors in the target language

to their analogs in the source. Of course this is not possible in the case of rules involving the type
F•𝐴. Instead, we back-translate this type to F (Maybe 𝐴′) where 𝐴 back-translates to 𝐴′. The idea
is that diverging computations in the target will back-translate to returners that return none in the
source. Computations of partial type that do return a value V will back-translate to computations
that return someV ′ where V ′ is the back-translation of V . This is handled by the back-translation
rules for returnV and diverge. In order to define and prove properties of the back-translation of
returner computations uniformly, we define the back-translation of returnV and bind x ← [·] .N

in terms of macros return𝜖V
′ and bind𝜖x ← [·] .N

′. These macros represent the return and bind
operations for the F (Maybe 𝐴) monad and are defined in Figure 10.

Notice that our back-translation is a retraction of compilation. That is, ifM ′ is the translation ofM ,
thenM is the back-translation ofM ′. This property, together with the adequacy and compositionality

properties that follow, is the key to proving full abstraction.

Lemma 5.1 (Adeqacy of back-translation). If ·; · ⊩c M : F•Unit↠ M ′ then either

• M = diverge and M ′ = return none or

• M = return unit and M ′ = return (some unit).

Proof. By case analysis on the back-translation of M . □

Adequacy states that we back-translate complete programs correctly. That is, closed partial target
programs of type F•Unit back-translate to return none when they loop and return (some unit)

when they terminate. This is easy to prove thanks to the fact that we restrict the back-translation
to focused terms: there are only two computations of this type that are both closed and focused.

Lemma 5.2 (Compositionality of back-translation).

Assume Γ and T are suspension-normal and Ω ∈ ord (Γ′′).

(1) If Δ; Γ; · ⊩foc V : [𝐴] ↠ V ′ and Δ; Γ, Γ′; x : 𝐴,Ω ⊩inv N : T ↠ N ′, then Δ; Γ, Γ′;Ω ⊩inv
N JV/xK : T ↠ N ′JV ′/xK.

(2) If Δ; Γ; · ⊩inv M : 𝐴 ↠ M ′ and Δ; Γ, Γ′; [𝐴] ⊩foc S : 𝐵 ↠ S′, then Δ; Γ, Γ′; · ⊩inv SJMK : 𝐵 ↠
S′JM ′K.

(3) If Δ; Γ; · ⊩inv M : 𝐴 ↠ M ′ and Δ; Γ, Γ′, x : U𝐴;Ω ⊩inv N : T ↠ N ′, then Δ; Γ, Γ′;Ω ⊩inv
N JM/force xK : T ↠ N ′JM ′/force xK.

(4) If Δ; Γ; · ⊩inv M : 𝐴 ↠ M ′ and Δ; Γ, Γ′, x : U𝐴; · ⊩foc V : [𝐵] ↠ V ′, then Δ; Γ, Γ′; · ⊩foc
V JM/force xK : [𝐵] ↠ V ′JM ′/force xK.

(5) If Δ; Γ; · ⊩inv M : 𝐴 ↠ M ′ and Δ; Γ, Γ′, x : U𝐴; [𝐵] ⊩foc S : T ↠ S′, then Δ; Γ, Γ′; [𝐵] ⊩foc
SJM/force xK : T ↠ S′JM ′/force xK.

(6) If Δ; Γ;Ω ⊩inv M : F𝜖𝐴 ↠ M ′ and Δ; Γ, Γ′; x : 𝐴 ⊩inv N : T ↠ N ′ where stable T, then

Δ; Γ, Γ′;Ω ⊩inv N Jx ← MK : T ↠ N ′Jx ← M ′K.
(7) If Δ; Γ; [𝐵] ⊩foc S : F𝜖𝐴 ↠ S′ and Δ; Γ, Γ′; x : 𝐴 ⊩inv N : T ↠ N ′ where stable T, then

Δ; Γ, Γ′; [𝐵] ⊩foc N Jx ← SK : T ↠ N ′Jx ← S′K.

Compositionality states that our back-translation is substitutive. That is, back-translations of
incomplete programs can be composed via focused substitution. This lemma and its proof take
essentially the same form as the focused substitution lemma (Lemma 3.4) required for proving
completeness.
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With these properties established, we are almost ready to tackle full abstraction. At heart, full
abstraction is simply a corollary to the existence of a back-translation that is adequate, compositional,
and a retraction of the forward translation. However, since we have defined a back-translation
only over focused terms, we need to put in some additional effort to both focus target language
computations that need to be back-translated and show that this process does not disrupt our
compiler correctness property. In doing so, we make use of the fact that the compiler pass preserves
the equational theory and focusing derivations.

Lemma 5.3 (Eqivalence preservation). Suppose Δ; Γ ⊢c N1 ≈ctx N2 : 𝐴 and Δ ⊢𝜅 𝐴 : 𝜅 { 𝐴′

and Δ ⊢Γ Γ { Γ
′ and Δ; Γ ⊢c N1 : 𝐴 { N ′1 and Δ; Γ ⊢c N2 : 𝐴 { N ′2 .

Then Δ; Γ′ ⊢c N
′
1 ≈ctx N

′
2 : 𝐴

′

Proof. We begin by obtaining 𝑁𝑓 1
and 𝑁𝑓 2

, the focused forms of N1 and N2 respectively. We
then translate these to 𝑁𝑓

′
1
and 𝑁𝑓

′
2
. The compiler preserves the equational theory, so we know

that 𝑁𝑓
′
1
is contextually equivalent to N ′1 . Likewise for 𝑁𝑓

′
2
and N ′2 .

It now suffices to show that 𝑁𝑓
′
1
is contextually equivalent to 𝑁𝑓

′
2
. To do so, we consider an

arbitrary focused context𝑀𝑓 and focused substitution 𝛾 and will show that

𝑀𝑓
′J𝛾 ′L𝑁𝑓

′
1
M/force xK = 𝑀𝑓

′J𝛾 ′L𝑁𝑓
′
2
M/force xK

We will need to use the fact that 𝑁𝑓 1
and 𝑁𝑓 2

are contextually equivalent in the source language.
To obtain a source-level context, we back-translate 𝑀𝑓

′ to 𝑀𝑓 and 𝛾
′ to 𝛾 . We obtain the source

language equality
𝑀𝑓 J𝛾L𝑁𝑓 1

M/force xK = 𝑀𝑓 J𝛾L𝑁𝑓 2
M/force xK

For this to be useful, we need to somehow relate it to the terms in the target-level equality that we
are trying to prove. Fortunately, our adequacy lemma bridges the gap by reducing our burden to
simply showing that the computation on each side of the target language equality back-translates
to the term on the same side of this source language equality.
Note that the back-translation is a retraction of the translation. Therefore, 𝑁𝑓

′
1
back-translates

to 𝑁𝑓 1
and 𝑁𝑓

′
2
back-translates to 𝑁𝑓 2

. All that remains is to apply our compositionality lemma to
determine that

• 𝑀𝑓
′J𝛾 ′L𝑁𝑓

′
1
M/force xK back-translates to𝑀𝑓 J𝛾L𝑁𝑓 1

M/force xK and
• 𝑀𝑓

′J𝛾 ′L𝑁𝑓
′
2
M/force xK back-translates to𝑀𝑓 J𝛾L𝑁𝑓 2

M/force xK.

□

Lemma 5.4 (Eqivalence reflection). Suppose Δ; Γ ⊢c N
′
1 ≈ctx N

′
2 : 𝐴 and Δ ⊢𝜅 𝐴 : 𝜅 { 𝐴′ and

Δ ⊢Γ Γ { Γ
′ and Δ; Γ ⊢c N1 : 𝐴 { N ′1 and Δ; Γ ⊢c N2 : 𝐴 { N ′2 .

Then Δ; Γ′ ⊢c N1 ≈ctx N2 : 𝐴
′.

Proof. Similar to the preceding proof. See the appendix for details. □

Equivalence preservation and reflection imply full abstraction.

Theorem 5.5 (Full abstraction). Suppose Δ ⊢𝜅 𝐴 : 𝜅 { 𝐴′ and Δ ⊢Γ Γ { Γ
′ and Δ; Γ ⊢c N1 :

𝐴 { N ′1 and Δ; Γ ⊢c N2 : 𝐴 { N ′2 .

Then Δ; Γ ⊢c N1 ≈ctx N2 : 𝐴 iff Δ; Γ′ ⊢c N
′
1 ≈ctx N

′
2 : 𝐴

′.

At this point we have shown that the embedding of CBPV𝑠 into CBPV∀•𝑡 is fully abstract.
Using focusing, we were able to take advantage of the fact that the type translation ensures
CBPV∀•𝑡 contexts of translation type do not have any more discriminating power than CBPV𝑠

contexts, even though CBPV∀•𝑡 is impure. Furthermore, focusing lets us avoid the need to back-

translate polymorphic functions despite their presence in CBPV∀•𝑡 . It also simplified the proof of full
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abstraction: for example, the proof lemma 5.1 is a short and straightforward case analysis thanks to
the fact that there are only two closed and focused programs of type F•Unit in CBPV∀•𝑡 .

6 CONCLUSION

6.1 Related Work

Focusing and Normalization. Focusing has a long history, originating with Andreoli’s [1992] study
of it in the context of linear logic. More recent work has studied its connection to programming
languages. Zeilberger [2008a; 2008b] uses focused, polarized logic as a guide to develop a language in
which, as in CBPV, evaluation order is reflected in the type system. Brock-Nannestad and Schürmann
[2010] describe focused natural deduction systems, which Espírito Santo [2016] examines carefully
in order to devise an elegant syntax and study focused CBPV. Krishnaswami [2009] investigates
pattern matching in a language based on the focused sequent calculus. Abel and Sattler [2019]
study normalization by evaluation for CBPV and obtain normal forms close to ours.

However, the above-mentioned work does not explore focusing’s relationship to reasoning about
programs and contextual equivalence. None prove a computational completeness property like
theorem 3.5, which is the springboard for our investigation.
Scherer [2017] describes an algorithm for deciding equivalence in the simply typed lambda

calculus (STLC) with sums and an empty type. This approach uses a relatively complex (compared
to ours) normalization procedure to reduce two terms of interest, obtaining canonical forms that
are syntactically identical if and only if the terms of interest are contextually equivalent. The
normalization process relies upon both the purity of the language under consideration and its
simple type system.
On the other hand, we do not desire an algorithm for deciding equivalence but only a useful

proof technique for demonstrating it. To this end, we are willing to accept that our normal forms
are not canonical in exchange for a simpler and more widely applicable normalization procedure.
This in turn yields a more straightforward description of our normal forms. We obtain results
despite relatively lax normal forms because rather than normalizing only the terms we wish to
prove equivalent, we also normalize the contexts that they may appear in.

Fully Abstract Compilation. Research in secure compilation has gained steam in recent years. Full
abstraction is a particularly desirable property because of its strength and composability. Proofs of
it have a long history; we refer the reader to the work of Patrignani, Ahmed, and Clarke [Patrignani
et al. 2019] for a detailed discussion.
The most closely related line of work to our full abstraction proof is that of Ahmed and her

collaborators. Ahmed and Blume proved the full abstraction of closure conversion [Ahmed and
Blume 2008] and CPS translation [Ahmed and Blume 2011]. The latter work combines the source
and target languages into a single łmulti-languagež [Matthews and Findler 2007] with boundaries
that mediate between source and target terms. Their target language is more expressive than
their source language in that it supports System F-style polymorphism. They recognize that the
back-translation is needed only for terms of translation type. Thus, features that appear in the
target language but not the source must exist only in intermediate terms that can be partially
evaluated away, making back-translation possible. The inductive definition of the back-translation
is quite complicated, however, and involves counting steps of remaining execution. This approach
does not seem to extend to languages with divergence.
Our technique of defining the back-translation only over focused terms is similar in spirit to

back-translation by partial evaluation. Focused terms are fully 𝛽 reduced, so our back-translation
definition does not need to handle intermediate terms in the target. We believe this positions
focusing as a promising alternative to partial evaluation in defining back-translations.
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New, Bowman, and Ahmed [New et al. 2016] prove full abstraction by essentially building an
interpreter for the target language in the source language. Their target language has a modal type
system which tracks exceptions while exceptions are not supported in the source language. This
situation is very similar to our own; however, we are interested in compiling from potentially less
expressive total source languages to more expressive target languages that admit divergence. In
such a scenario, we cannot hope to interpret the target language from the source.

Context Lemmas. We do not need to examine two programs’ behaviors in every context to prove
them equivalent: only amoremanageable subset of contexts will suffice. This is the basic observation
made by context lemmas. The ciu theorem is one such lemma which terms M and N as equivalent
when M and N evaluate to identical values after all free variables have been closed off with well-
typed values and the computation is placed inside of an evaluation context that produces a base
type.
We can take advantage of the fact that the ciu theorem allows reasoning to take place inside

of a context in which M and N are being evaluated to prove program equivalences by reasoning
about how they evaluate. The ciu theorem is less helpful, though, when it comes to reasoning about
how M and N interact with their environment. In a call-by-name setting, the type of M and N

allow us to determine the shape of the context they run in. However, in a call-by-value setting
there are many more possible evaluation contexts, which makes the ciu theorem less useful. Dually,
in call-by-value, free variables are closed off with closed values. The types of those values make
it possible to significantly narrow down the outermost term constructors used to build them. In
call-by-name, though, variables are closed with expressions, which we know less about. This means
that in call-by-value, the ciu theorem is lacking when it comes to reasoning about the continuation a
program’s output is passed to, while in call-by-name, the ciu theorem does not help with reasoning
about how a program interacts with its inputs. With focusing, we both narrow the set of contexts
and narrow the set of closing values.

On the other hand, the ciu theorem narrows the contexts we need to consider to prove computa-
tions equivalent to those that evaluate a computation exactly once. Using focused terms with a free
variable of thunk type, we must consider situations in which the thunks are forced multiple times.
Thus there is no direct comparison between the contexts used for ciu equivalence and the contexts
we describe as focused. Instead, the two techniques may be seen as complementary.

6.2 Future Work

Focusing has traditionally been applied in the context of logics [Andreoli 1992] and pure program-
ming languages [Scherer 2017; Scherer and Rémy 2015]. Thus, much work remains to be done in
applying computation focusing to languages with more complex types and effects.

Impredicativity. We would expect the focusing rules for a System F-like language to look essentially
unchanged from this paper. However, proving completeness of focusing is more challenging. We
make essential use of an induction principle that relies on predicativity in proving lemmas 3.4
and 5.2. It looks unlikely that syntactic completeness proofs like ours will scale to impredicative
languages, but a more semantic logical-relation style approach should succeed here. Work in
normalization by evaluation for impredicative languages [Abel 2008] exemplifies a step in this
direction.

Linear Types. As focusing was developed in the setting of linear logic, there is no fundamental
challenge in supporting linear types. In fact, linear languages have very useful normal forms.
Consequently, we believe that focusing is a promising approach for proving free theorems about
linear types, especially in the presence of effects. Prior work on establishing relational parametricity
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for linear lambda calculus using łopenž logical relations [Zhao et al. 2010] is effective in pure
languages, but does not take advantage of the intensional properties of linear functions that are
needed to fully reason about the interaction between linear types and effects. Perhaps surprisingly,
logical relations seem ill-suited for the task and focusing may be a better match for proving such
results.

Recursion. The definition of the set of focused terms is not hard to adjust to accommodate the
addition of a term-level fixed point operator to CBPV∀•𝑡 . The price to pay is that our focused
terms are less canonical: they may contain unfoldable uses of the fixed point operator. For the
purposes of proving equivalence, however, we should not need to consider contexts that make
arbitrary use of the fixed point operator since the execution of a terminating program unfolds fixed
points a finite number of times. Similarly, proving our full abstraction example should only require
back-translation of finite unfoldings of fixed points. To incorporate this idea, we would need a
syntactic fixed point induction principle [Debakker and Scott 1969; Pitts 2004]. Pitts’s proof of
this property is based on long and tedious inductions on the operational semantics, but we believe
focusing may simplify the argument.
Zeilberger [2008a; 2008b] presents a focused language in which pattern matching forms are

represented not by traditional syntax, but by meta-level maps from patterns to expressions. In this
setting, recursive types are a simple addition because these maps are capable of matching against
an infinite number of patterns. When trying to define a focused subset of a language with finitary
syntax, however, it seems one could only hope to describe finite approximations of focused terms
even for simple recursive types like natural numbers. Moreover, our induction principle for the
substitution lemma will not suffice as it relies upon induction on the structure of types.
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