
MFPS 2015

VPHL: A Verified Partial-Correctness Logic
for Probabilistic Programs 1

Robert Rand2 Steve Zdancewic3

Computer and Information Sciences
University of Pennsylvania

Philadelphia, PA

Abstract

We introduce a Hoare-style logic for probabilistic programs, called VPHL, that has been formally verified
in the Coq proof assistant. VPHL features propositional, rather than additive, assertions and a simple
set of rules for reasoning about these assertions using the standard axioms of probability theory. VPHL’s
assertions are partial correctness assertions, meaning that their conclusions are dependent upon (determin-
istic) program termination. The underlying simple probabilistic imperative language, PrImp, includes a
probabilistic toss operator, probabilistic guards and potentially-non-terminating while loops.

Keywords: Hoare Logic, Formal Verification, Coq, Probabilistic Programming, Non-termination

1 Introduction

Hoare logic has long been used as a means of formally verifying programs and several

papers have presented variants to reason about probabilistic programs [6, 7, 10,20].

There are significant differences between these approaches but all embrace certain

design choices: They reason about sub-distributions instead of full distributions and

they restrict the possibility of non-termination. The first limits us from introducing

assertions like Pr(2 = 2) = 1, which frequently precedes the variable assignment

x := 2, into our deductions. It also prevents us from taking the complements of our

probabilities, which is critical for probabilistic reasoning. Eliminating while loops,

or restricting us to those guaranteed to terminate, not only limits the kinds of pro-

grams we can analyze, it removes a core feature of Hoare logic: partial correctness

assertions. We introduce a Verified Probabilistic Hoare Logic (VPHL) that reasons

exclusively about full distributions and applies to potentially non-terminating pro-

grams. Importantly, VPHL is itself formally verified in the Coq proof assistant [9].

1 This material is based in part upon work supported by NSF Grant No. CCF-1421193.
2 Email:rrand@seas.upenn.edu
3 Email:stevez@cis.upenn.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:rrand@seas.upenn.edu
mailto:stevez@cis.upenn.edu

Rand and Zdancewic

As probabilistic Hoare logics are increasingly used to verify critical code (for exam-

ple, in the Easycrypt project [2]), it is important that the logic itself should rest on

the firmest foundations.

Classical Hoare logic reasons about program states, mappings from identifiers

(or variables) to values. Commands are partial functions from one state to another:

for example x := 1 takes a state θ to a state that maps x to 1 and is otherwise

identical. The triple {x = 1} c {z = 3} asserts that if a state maps x to 1 and then

we run the program c from that state, the resulting state will map z to 3, assuming

that the program terminates.

In designing a Hoare logic for probabilistic programs, we would like to introduce

triples with probabilistic propositions such as {Pr(x = 1) > 1
2} c {Pr(z = 3) = 2

3}.
Since states are deterministic (a state either maps x to 1 or it doesn’t) we will have

to reason about state distributions: the set of states a program may be in at a given

point, and their associated weights (or probabilities). For example, if we toss a fair

coin T in a deterministic state, we arrive at a state distribution: One state has T

mapped to heads, and the other has T mapped to tails; each state has a weight of
1
2 .

In section 2, we formalize our notion of a distribution. In the following section

we introduce our simple probabilistic imperative language PrImp. Sections 4–7 deal

with VPHL itself, with a particular focus on the If and While rules. Following that

(section 8), we discuss how termination analysis can be combined with our partial

correctness assertions to yield precise characterizations of generally undecidable

problems. We conclude with an example of our logic in practice, discussion of

possible extensions to the logic, and a review of the related work in the area.

We will occasionally refer to an expanded version of this paper [21], which in-

cludes additional examples and discussion of alternative If and While rules. The

underlying Coq development is online at https://github.com/rnrand/VPHL.

2 Modeling Distributions

To begin, we need to formalize our notions of distributions and state distributions. A

distribution with finite support is a multiset of elements {x1, x2, . . . , xn} along with

associated weights {w1, w2, . . . , wn} in which every wi ∈ [0, 1] and
∑n

i=1wi = 1. In

our development, we will be concerned exclusively with distributions over program

states.

We define distributions (ranged over by Θ) inductively by means of a weighted

tree structure. The leaves of the distribution contain states (mappings from identi-

fiers to numeric and boolean values), denoted θ, and we use Unit θ to lift a state

to a one-element distribution. The combine operator ⊕p takes two trees Θ1 and Θ2

and combines them to make one bigger tree, associating weight p ∈ (0, 1) to Θ1 and

weight (1− p) to Θ2.

For example, suppose we want to give θ1 and θ2 a weight of 1
6 each and give the

remaining two-thirds of the weight to θ3. We can represent this distribution with

2

https://github.com/rnrand/VPHL

Rand and Zdancewic

A ::= n | v | A+A | A −A | A ∗ A
B ::= t | f | A = A | A < A | ¬B | B ∧ B | B ∨ B

P,Q ::= Pr(B) = p | Pr(B) < p | Pr(B) > p | P ∧ P | P ∨ P

Fig. 1. PrImp Expressions and the Probabilistic Assertions of VPHL

either of the following trees:

⊕ 1
3

⊕ 1
2

Unit θ1 Unit θ2

Unit θ3

⊕ 1
6

⊕ 1
5

Unit θ1

Unit θ2 Unit θ3

which correspond to (Unit θ1 ⊕1
2
Unit θ2)⊕1

3
Unit θ3 and Unit θ1 ⊕1

6
(Unit θ2 ⊕1

5
Unit θ3), respectively.

This gives rise to our notion of distribution equivalence. We say that Θ1 ≡ Θ2

if the total weight given to every θ in the distributions’ supports is equal. 4 We

make use of the following three lemmas in our development, which hold for all

distributions Θi and p, q, r ∈ (0, 1):

Lemma 2.1 (Commutativity) Θ1 ⊕p Θ2 ≡ Θ2 ⊕1−p Θ1

Lemma 2.2 (Associativity) (Θ1 ⊕q Θ2)⊕p Θ3 ≡ Θ1 ⊕pq (Θ2 ⊕ p(1−q)
1−pq

Θ3)

Lemma 2.3 (Merge)

(Θ1 ⊕q Θ2)⊕p (Θ3 ⊕r Θ4) ≡ (Θ1 ⊕q‘ Θ3)⊕p‘ (Θ2 ⊕r′ Θ4)

where p′ = pq + (1− p)r, q′ = pq

pq + (1− p)r
, r′ =

p(1− q)
r(p− 1)− pq + 1

We now define probability over distributions. In the general case, for any distri-

bution X over X and function f : X → Bool, PrX(f) =
∑
{wi : f(xi) = t}.

We can define this inductively as follows:

Pr(Unit x)(f) =

{
1 if f(x) = t

0 if f(x) = f

Pr(X1⊕pX2)(f) = p · PrX1(f) + (1− p) · PrX2(f).

We can use this construction to derive all the standard laws of discrete proba-

bility theory (see the expanded paper and Coq development for more details).

In our logic, the elements of the distributions will always be states. The prob-

ability functions f are the lifted boolean expressions B from PrImp (see figure 1),

4 In our Coq development we do not posit the decidability of state equivalence, hence distribution equiva-
lence is defined in terms of boolean predicates over states, for which we can state equivalent lemmas.

3

Rand and Zdancewic

Skip
skip / Unit θ ⇓ Unit θ

c1 / Unit θ ⇓ Θ′ c2 / Θ′ ⇓ Θ′′
Sequence

c1; c2 / Unit θ ⇓ Θ′′

θ(a) = n
Assignment

x := a / Unit θ ⇓ Unit θ[n/x]

θ(b) = b0
Boolean Assignment

y := b / Unit θ ⇓ Unit θ[b0/x]

θ(y) = t c1 / Unit θ ⇓ Θ′
If True

if y then c1 else c2 / Unit θ ⇓ Θ′
θ(y) = f c2 / Unit θ ⇓ Θ′

If False
if y then c1 else c2 / Unit θ ⇓ Θ′

θ(y) = f
While End

while y do c / Unit θ ⇓ Unit θ

θ(y) = t c / Unit θ ⇓ Θ′ while y do c / Θ′ ⇓ Θ′′
Loop

while y do c / Unit θ ⇓ Θ′′

c / Θ1 ⇓ Θ′1 c / Θ2 ⇓ Θ′2
Combine

c / Θ1 ⊕p Θ2 ⇓ Θ′1 ⊕p Θ′2

p ∈ (0, 1)
Toss

y := toss(p) / Unit θ ⇓ θ[t/y]⊕p θ[f/y]

Fig. 2. Operational Semantics for PrImp

where B(θ) is the value of B in the given state. For example, let Θ be our distri-

bution above and suppose that θ1(x) = 2, θ2(x) = 1 and θ3(x) = 2. Consider the

boolean expression b ≡ (x = 2). Then b(θ1) = t, b(θ2) = f and b(θ3) = t. Hence,

PrΘ(b) = 1
6 + 0 + 2

3 = 5
6 .

3 A Simple Probabilistic Imperative Language

VPHL will let us prove assertions about PrImp, a probabilistic variant of the simple

imperative language Imp from Software Foundations [19], with the addition of a

coin flip operator toss. We present the big-step operational semantics of PrImp in

figure 2 where c / Θ ⇓ Θ′ means that if we evaluate c in the state distribution Θ

we arrive at the new distribution Θ′. PrImp’s semantics are designed to satisfy the

following principles:

(i) PrImp should contain an embedding of a deterministic programming language.

(ii) Deterministic commands should preserve probabilities.

(iii) Any program with a non-terminating branch should not terminate.

We satisfy these principles by “lifting” Imp such that every command behaves

in its traditional way on Unit (or single-state) distributions. The Combine rule

recursively applies a given command to all states in the support, terminating if

and only if every such state terminates on the command, satisfying principle (iii)

(we discuss the rationale for this specification in the following section). The new

command p := toss(y) splits a Unit distribution into two Unit states, the first with

weight p and y set to t and the second with weight (1− p) and y set to f.

The following two lemmas follow directly from our operational semantics but

are worth making explicit:

Lemma 3.1 (Decomposition) For any c, p,Θ1,Θ2,Θ
′
1,Θ

′
2,

c / Θ1 ⊕p Θ2 ⇓ Θ′1 ⊕p Θ′2 ⇐⇒ c / Θ1 ⇓ Θ′1 ∧ c / Θ2 ⇓ Θ′2.

Lemma 3.2 (Step Determinism) For any c,Θ,Θ′,Θ′′,

c / Θ ⇓ Θ′ ∧ c / Θ ⇓ Θ′′ =⇒ Θ′ = Θ′′.

4

Rand and Zdancewic

P ′ → P {P} c {Q} Q→ Q′
Consequence

{P ′} c {Q′}
{P} c1 {Q} {Q} c2 {R}

Sequence
{P} c1; c2 {R}

Skip
{P} skip {P}

Assignment
{P [z 7→ e]} z := e {P}

y free in P
Toss

{P} y := toss(p) {P�
y
p}

Fig. 3. The Basic Hoare Logic Rules

4 Hoare Logic Semantics

We now have sufficient background to formally define our Hoare triples. Let us

begin with the formal definition of a classical (non-probabilistic) Hoare triple. Here

P and Q are assertions about states, or more formally, mappings from states to

propositions:

Definition 4.1 We say that a classical Hoare Triple {P} c {Q} is valid if ∀θ, θ′ :

P (θ) ∧ c / θ ⇓ θ′ implies Q(θ′).

We call P the precondition and Q the postcondition.

In our Hoare logic, all assertions relate directly to probabilities, using the prob-

abilistic assertions defined in figure 1. Note that the arithmetic and boolean expres-

sions are the same ones used in our definition of probability over state distributions

above, and in the commands of PrImp itself. In particular [Pr(B) = p](Θ) translates

into PrΘ(B) = p and likewise for < and >. ∧ and ∨ distribute as you would expect,

and we use 6=,≤,≥,¬ and → as abbreviations for the corresponding disjunctions.

We express that a given boolean expression b is true throughout a distribution by

Pr(b) = 1, which we abbreviate dbe, and call these assertions non-probabilistic.

Definition 4.2 We say that a Hoare Triple {P} c {Q} is valid in PrImp if ∀Θ,Θ′ :
P (Θ) ∧ c / Θ ⇓ Θ′ implies Q(Θ′).

As mentioned in the previous section, a PrImp while loop terminates on a given

distribution if and only if it terminates on every state in the distribution’s support.

Hence, the following two programs do not terminate in our language, even though

the second would traditionally terminate with probability 1:

y := toss(2
3); if y then x := 4 else while t do skip (1)

y := toss(1
2); while y do y := toss(1

2) (2)

This is partly motivated by our approach to the Hoare If rule (see figure 4 later

in this paper). We separately reason about each branch of the if statement, and

then take the conjunction of their conclusions. If either of these conclusions is only

vacuously true (since the branch doesn’t terminate), and the program is deemed

to terminate, our conjunction will be false. Hence, we call such a program non-

terminating as well.

5

Rand and Zdancewic

5 Basic Hoare Logic Rules

We can now introduce VPHL itself. Figure 3 presents the basic rules of VPHL. The

rules for if and while commands are presented in figures 4 and 5, with discussion

deferred until later in the paper. We will present our soundness result up front:

Theorem 5.1 (Soundness) All of the VPHL rules presented in this paper are

sound with respect to the semantics of PrImp.

We prove this theorem in the Coq development, where each rule is individually

verified to be sound.

We do not claim completeness (that is, that everything possible to derived can be

derived via our Hoare logic) in this paper, though we do demonstrate the usability

of VPHL via examples (section 10).

The basic rules (with the exception of Toss) are preserved from classical Hoare

logic. The toss command assigns an identifier y to either t or f, with probability

p and (1− p) respectively. For our Hoare logic, we restrict y from appearing in the

precondition P . Since a freshly tossed y is necessarily independent of all previous

probabilities, we can then update all statements of the form Pr(b) = q with Pr(b∧
y) = pq.

We define P�y
p, read“P conditioned on y with probability p”, inductively as

follows:

(Pr(b) = q)�y
p ≡ Pr(b ∧ y) = pq ∧ Pr(b ∧ ¬y) = (1− p)q

(Pr(b) < q)�y
p ≡ Pr(b ∧ y) < pq ∧ Pr(b ∧ ¬y) < (1− p)q

(Pr(b) > q)�y
p ≡ Pr(b ∧ y) > pq ∧ Pr(b ∧ ¬y) > (1− p)q

(P1 ∧ P2)�y
p ≡ P1 �

y
p ∧ P2�

y
p

(P1 ∨ P2)�y
p ≡ P1 �

y
p ∨ P2�

y
p

Conveniently, the resulting rule is lossless. When we apply the Toss rule

{P} y := toss(p) {P�y
p}, any proposition that was true in the precondition will

remain true in the postcondition. To formalize this:

Lemma 5.2 For all P , P�y
p entails P .

We can show this by simply marginalizing over y in each atomic proposition.

For instance, P (b ∧ y) = 1
5 and P (b ∧ ¬y) = 2

5 imply that P (b) = 1
5 + 2

5 = 3
5 . We

will use this technique, often implicitly, throughout the paper.

6 Conditioning on Probabilistic Guards

The if command is the most difficult to reason about for straightforward reasons.

Unlike the previous commands, which behave identically on all of the states in the

distribution’s support, the if command will run one command wherever the guard

is true, and another whenever the guard is false.

In the simplest case, the value of the guard will take on the same value through-

out the distribution (we say that the guard is deterministic), so it’s sensible to have

a usable If rule, specific to that case. In figure 4 we present such a rule.

6

Rand and Zdancewic

{P ∧ dye} c1 {Q} {P ∧ d¬ye)} c2 {Q}
Deterministic If{P ∧ (dye ∨ d¬ye)} if y then c1 else c2 {Q}

0 < p < 1

{ 1
p
∗ P1 ∧ dye} c1 { 1p ∗Q1}

y unassigned in c1, c2

{ 1
1−p
∗ P2 ∧ d¬ye} c2 { 1

1−p
∗Q2}

Probabilistic If{Pr(y) = p ∧ P1 |y ∧ P2 |¬y} if y then c1 else c2 {Q1 |y ∧Q2 |¬y}

Fig. 4. The Deterministic and Probabilistic If Rules

The deterministic If rule is based on the standard If rule from Hoare logic. It

requires an expression of the form Pr(y) = 1 ∨ Pr(¬y) = 1 (written dye ∨ d¬ye) in

the precondition, and allows us to reason about the execution of c1 as if y were true

throughout, and to reason about c2 as if y were false throughout. Provided that

these both allow us to conclude Q we can conclude Q about the if statement itself.

This rule (along with the quasi-deterministic While rule introduced below) proves

useful for a variety of probabilistic programs that exclusively use non-probabilistic

guards.

This should give us an idea of how to deal with the probabilistic case, where

0 < Pr(y) < 1. We prove the following distribution equivalence lemma using the

commutativity, associativity and merge rules of Section 2:

Lemma 6.1 For any state distribution Θ where Pr(y) = p and p ∈ (0, 1), ∃Θ1,Θ2

such that PrΘ1(y) = 1, PrΘ2(y) = 0 and Θ ≡ Θ1 ⊕p Θ2.

We can now reason about the sub-distribution in which y is true and the one

in which it’s false separately, and then recombine their postconditions into a single

postcondition.

In order to ensure that we’re reasoning about the right part of the distribution,

we split the assertion P into two parts, P1 | y and P1 | ¬y (shown in figure 4) as

defined below. Any part of the assertion that does not mention a value for the

guard is discarded.

(Pr(X) = q) |y ≡ Pr(X ∧ y) = q

(Pr(X) < q) |y ≡ Pr(X ∧ y) < q

(Pr(X) > q) |y ≡ Pr(X ∧ y) > q

(P1 ∧ P2) |y ≡ P1 |y ∧ P2 |y
(P1 ∨ P2) |y ≡ P1 |y ∨ P2 |y

For reasoning about sub-distributions, we take the approach of scaling both sub-

distributions up to complete distributions, allowing us to reason normally about

both without having to restrict our logic. We achieve this via the scaling operator

∗ that scales up all of probabilities in preconditions and postconditions by 1
p or

1
1−p where p is the probability of the guard. Since we’re looking to reason about

sub-distributions (not just sub-assertions), we need the following lemmas:

Lemma 6.2 For any Θ1,Θ2 where PrΘ1(y) = 1 and PrΘ2(y) = 0, [P1 |y](Θ1⊕pΘ2)

if and only if [1
p ∗ P](Θ1)

Lemma 6.3 For any Θ1,Θ2 where PrΘ1(y) = 1 and PrΘ2(y) = 0, [P2 |¬y](Θ1 ⊕p
Θ2) if and only if [1

(1−p) ∗ P2](Θ2)

7

Rand and Zdancewic

P → D

{P ∧ dye} c {P}
{D ∧ dye} c {D ∧ (dye ∨ d¬ye)} D is non-probabilistic

While{P ∧ (dye ∨ d¬ye)} while y do c {P ∧ d¬ye}

Fig. 5. The While Rule

We demonstrate that if P |y holds of the full distribution, then p∗P holds of the

sub-distribution in which y is true. We can then reason about the application of c1

and c2 to those distributions separately. In order to combine the two postconditions,

we add back the | y and | ¬ys. (That is, we conjoin the values of the guard y to

all the probabilistic expression, ensuring that they do not overlap). In order to

prevent statements of the form P (y ∧ ¬y) = p from appearing in the combined

postconditions, we restrict y from being reassigned in c1 or c2.

The reader may observe that the rules of VPHL are scale-invariant – that is,

they do not depend on the value p on the right hand side of Pr(X) = p. This

suggest that instead of scaling our P1 and P2, we could simply reason about P1 |y
and P2 | ¬y separately. Indeed, with minor restrictions such an If rule would be

sound, and we discuss this rule in the expanded paper.

7 The While Rule

In order to explain and justify the form of our While rule (see figure 5), let us con-

sider the classical Hoare logic While rule, and why it fails for probabilistic programs:

{P ∧ y} c {P}
{P} while y do c {P ∧ ¬y}

Consider the following Hoare triple:

{Pr(y′) = 1
2 ∧ dy → y′e}

while y do (y′ := toss(1
2); y := (y′ ∧ i < 5); i++)

{Pr(y′) = 1
2 ∧ dy → y′e ∧ d¬ye}

There are two major problems with the derivation of this triple. The first is that

a contradiction appears in the precondition: Pr(y′) = 1
2 ∧ dy → y′e ∧ dye implies

that Pr(y′) = 1
2 and Pr(y′) = 1. Moreover, the post condition is false – if initially

i = 1 we run the loop up to 5 times, and the probability of y′ coming out as true is

2−5 = 1
32 .

This illustrates that probabilistic invariants are not guaranteed to hold if dif-

ferent branches of the distribution traverse the loop a different number of times.

Hence we introduce the restriction (figure 5) that the value of y must remain non-

probabilistic (that is, either dye or d¬ye) upon the completion of every iteration

loop, ensuring that if the loop terminates, all branches terminate concurrently.

Or rather, all branches should terminate concurrently but we run into some

difficulty: While P may hold for a given distribution Θ1 ⊕p Θ2 and be sufficient

to preserve both P and the determinism of y upon running c, there’s no guarantee

8

Rand and Zdancewic

that either Θ1 or Θ2 satisfy P and thereby preserve determinism. However, we

have a nice subset of non-probabilistic assertions (that is, assertions where every

probability is either zero or one) that do satisfy this property.

Lemma 7.1 For any non-probabilistic assertion P , P (Θ1 ⊕p Θ2) implies P (Θ1)

and P (Θ2) for any p ∈ (0, 1).

Our While rule therefore requires a non-probabilistic invariant that preserves

the determinism of the guard to be exhibited along with the probabilistic one. In

practice (as opposed to in general) this proves to be fairly straightforward, and

often quite convenient. For example, we may only need to show that our counter

deterministically takes on a specific value in {0, 1, . . . , n} and that y depends only on

i, for example when analyzing a random walk on an n-vertex graph. We separately

reason about the main invariant, which may include probabilistic propositions.

8 Reasoning About Probabilistically Terminating Pro-
grams

Consider again the following simple program from section 4.

y := toss(2
3); if y then x := 4 else while t do skip

We call this program cpartial. According to the operational semantics of PrImp,

this program doesn’t terminate, hence {P} cpartial {Q} is valid (though generally

not derivable in VPHL) for any assertions P and Q. However, if we consider the

truly probabilistic program (one with a seed of random numbers and probabilistic

steps) that corresponds to cpartial, we know that Pr(x = 4∧ y) = 1 upon successful

termination. More generally, for an arbitrary else branch which doesn’t reassign y

we know the following:

Pr(x = 4 ∧ y) =


1 if the else branch terminates with probability 0
2
3 if the else branch terminates with probability 1

p ∈ (2
3 , 1) otherwise

This suggest that if we have information about the probabilities of each branch

terminating, we can combine this with a straightforward analysis of each branch to

derive precise probabilities for the outcomes. This requires that (1) every branch

terminates with probability zero or one and (2) that every branch is analyzed inde-

pendently and has its own post-conditions.

We now note three important features of our logic.

(i) Each branch of an if statement has its own, independent derivation

(ii) The post-conditions of if statements explicitly mention the value of the guard

(iii) The While rule requires that the loop terminates with probability 0 or 1

Hence, with the simple restrictions that the guards on if statements are not

reassigned in the program or eliminated via the consequence rule in the Hoare

9

Rand and Zdancewic

logic derivation 5 , we can combine our logic with termination analysis to precisely

characterize probabilistically terminating programs.

Consider the following example, where c1 through c4 are programs that do not

modify y1, y2 or y3 and are not guaranteed to terminate:

y1 := toss(p); y2 := toss(q); y3 := toss(r);

if y1 then

if y2 then c1;x := 1 else c2;x := 2

else

if y3 then c3;x := 3 else c4;x := 4

Assuming that c1, c2, c3 and c4 are susceptible to analysis by VPHL (i.e. their

while loops terminate or loop deterministically), we should be able to derive the

following post-condition:

Pr(x = 1 ∧ y1 ∧ y2) = pq ∧ Pr(x = 2 ∧ y1 ∧ ¬y2) = p(1− q) ∧
Pr(x = 3 ∧ ¬y1 ∧ y3) = (1− p)r ∧ Pr(x = 4 ∧ ¬y1¬ ∧ y3) = (1− p)(1− r)

Now imagine we know that only c3 never halts. Then the prior probabilities of

x taking on the values 1, 2, and 4 are pq, p(1 − q) and (1 − p)(1 − r) respectively,

corresponding to the values in our post-condition. The prior probability of the

program looping is (1 − p)r. Upon the program’s successful termination, we have

x = 1 with probability pq
1−(1−p)r and similarly for the other terminating outcomes.

On the other hand, if we don’t know whether any of the branches terminate we

can’t come to any conclusion regarding the probabilities of the outcomes. This isn’t

surprising: it follows directly from the fundamental results of computability theory.

In the general case, the probability of any proposition upon program termination

depends directly upon the weight of the branches that do terminate, reducing the

problem of assigning probabilities directly to the Halting Problem.

9 Extending VPHL

Before we use VPHL to verify a few sample programs, we will introduce some

notations that will make our task easier. The first is drawing from a uniform

distribution. We define UNIFORM as syntactic sugar for a series of tosses:

x := UNIFORM(1) ≡ x := 1

x := UNIFORM(N) ≡ u := toss(1
N);

if u then x := N else x := UNIFORM(N − 1)

where u is a reserved boolean variable.

5 This restriction requires carefully managing the scope of our reasoning to avoid conflicting assertions.
For example, if one branch is non-terminating, we could use our While rule to derive false and thereby an
incorrect assertion about another branch of the program. In the case where we can move all subsequent
commands inside If statements, the form of the If rule ensures this scoping for us. However, in the general
case with loops, the scoping is more difficult to enforce and is left to the user of the logic.

10

Rand and Zdancewic

We can prove the associated Hoare rule 6

x free in P
Uniform{P} x := UNIFORM(N) {P�x

N}

where P�x
N is the analogue to P�y

p with [P (b) = p]�x
N ≡ P (b∧ x = 1) = 1

N ∧ · · · ∧
P (b ∧ x = N) = 1

N .

Another useful feature missing from the specification of VPHL is the ability to

include identifiers on the right side of probabilistic assertions. There is an obvious

reason for this: Probabilistic Assertions refer to a distribution, and different states

in that distribution may map a given identifier to different values. At the same time,

some identifiers will be deterministically set in our program, and we might like to

reference those. We can express the desired assertions as follows: ∀k < N,Pr(i =

k) = 1 → Pr(b) = f(k), where b is any boolean expression, i is the identifier we

want to include in the probability, and f is the real-valued function that we want

to depend on i. The universal quantifier here represents a series of conjunctions.

Similarly, we would like to be able to say that an identifier i deterministically

takes on some value in {1, 2, . . . , n}. We write this as i ∈ {1, 2, . . . n} which is

shorthand for di = 1e ∨ di = 2e ∨ · · · ∨ di = ne.
Both of the above constructs require us to have an upper bound on the possible

values for i, but this is often the case, as in the examples we analyzed.

10 Simulating A Uniform Distribution

As a simple demonstration of our logic, let us attempt to prove the Hoare logic rule

above. Proving the rule in the general case would require both induction over the

precondition and induction over N . Instead let’s prove the simple case of a uniform

distribution for N = 3. In order to use our If rule we will replace u with u1 and u2.

Algorithm 1 UNIFORM (3)

u1 := toss(1/3);

if u1 then

x := 3

else

u2 := toss(1/2)

if u2 then

x := 2

else

x := 1

end if

end if

We will now try to prove that {P} x := UNIFORM(N) {P�x
N} for an atomic

proposition P of the form Pr(b) = p. We will implicitly use the consequence rule

to transform Pr(b) = p to Pr(b ∧ 2 = 2) = p or Pr(b) = p ∧ Pr(t) = 1 as needed

throughout the program. We will occasionally make this explicit by means of an

6 This is meant to illustrate what we can in principle prove in the logic, though this rule, and the examples
given have not been verified in Coq.

11

Rand and Zdancewic

arrow symbol (→). We show sub-derivations indented and inline, as is common for

Hoare logic analysis:

Algorithm 2 Uniform Derivation

{Pr(b) = p}
u1 := toss(1/3);

{Pr(u1) = 1/3 ∧ Pr(b ∧ u1) = p/3 ∧ Pr(b ∧ ¬u1) = 2p/3}
if u1 then

{3/1 ∗ [Pr(b) = p/3] ∧ du1e} → {Pr(b ∧ 3 = 3) = p}
x := 3

{Pr(b ∧ x = 3) = p}
else

{3/2 ∗ [Pr(b) = 2p/3] ∧ d¬u1e} → {Pr(b) = p}
u2 := toss(1/2);

{Pr(u2) = 1/2 ∧ Pr(b ∧ u2) = p/2 ∧ Pr(b ∧ ¬u2) = p/2}
if u2 then

{Pr(b) = p} x := 2 {Pr(b ∧ x = 2) = p}
else

{Pr(b) = p} x := 1 {Pr(b ∧ x = 1) = p}
end if

{Pr(b ∧ x = 2 ∧ u2) = p/2 ∧ Pr(b ∧ x = 1 ∧ ¬u2) = p/2}
end if

{Pr(b ∧ x = 3 ∧ u1) = p/3 ∧ Pr(b ∧ x = 2 ∧ u2 ∧ ¬u1) = p/3

∧Pr(b ∧ x = 1 ∧ ¬u2 ∧ ¬u1) = p/3}

Note that the ui’s are still present in the conclusion. We could in principle

conclude only that Pr(b ∧ x = 1) = 1
3 ∧ Pr(b ∧ x = 2) = 1

3 ∧ Pr(b ∧ x = 3) = 1
3 by

carrying P (b) = p all the way to the postcondition and then noticing that the three

conjuncts add up the probability of b itself, but typically we want to maintain the

values of the guards, and we don’t wish to complicate things unnecessarily.

In the expanded version of this paper [21], we show how this proof is simplified

by means of an alternative If rule that doesn’t require scaling. We further illustrate

the use of the While rule by analyzing a random walk.

11 Related Work

The most significant work in representing distributions in Coq was made by the

ALEA project [18] based on the work of [1]. ALEA introduces its own axiomatic

library for the unit interval and multiple notions of distributions. ALEA is designed

to reason directly about probabilistic programs, and forms a foundation of the

Certicrypt cryptographic tool [4]. Our goals in this paper were far more limited

than ALEA’s in terms of what we aimed to represent, namely discrete distributions

with finite support. For these, a simple tree based structure of objects proved

sufficient and (significantly) easy to reason about. Our unit intervals are based on

the Coq real number library, restricted to [0, 1].

Hoare Logic for deterministic programs was introduced in a foundational paper

by C. A. R. Hoare [12]. The first attempt to extend this style of reasoning to

12

Rand and Zdancewic

probabilistic programs appeared in Ramshaw’s thesis [20], which was based upon

Kozen Semantics [14] and featured the following rule for conditionals:

{P | b} c1 {Q1} {P | ¬b} c2 {Q2}
{P} if b then c1 else c2 {Q1 +Q2}

where A | b (pronounced “A restricted to b”) breaks up the predicate into “frequen-

cies” (or sub-distributions) in which b is true and in which b is false. The plus

operator in the conclusion means that some part of the distribution satisfies Q1 and

another satisfies Q2. Reasoning about sub-distributions brings with it a number of

difficulties that we set out to avoid, including the restriction that Pr(t) = 1 is not

true in any strict sub-distribution.

Den Hartog and De Vink’s logic pH [10] has a similar construction for the If

rule but with the following ? operator:

{b ? P} c1 {Q1} {¬b ? P} c2 {Q2}
{P} if b then c1 else c2 {Q1 +Q2}

Interestingly, ? is primarily defined on state distributions, not assertions. Modifying

their example (using multiset notation), if Θ = {(θ1,
1
2), (θ2,

1
4), (θ3,

1
4)} where θ1 and

θ3 satisfy b, then b ? Θ = {(θ1,
1
2), (θ3,

1
4)} and ¬b ? Θ = {(θ2,

1
4)}. Then b ? P (Θ)

asserts that there is a state Θ′ such that b?Θ′ = Θ and P (Θ). How to integrate this

with the rest of the logic isn’t made clear, but it would need to involve weakening.

Again, the postcondition refers to two sub-distributions.

There are two sufficient conditions for application of the pH While rule: Either

the loop is “terminating” (guaranteed to terminate on all states) or it is “〈c, s〉-
closed”, meaning there is a lower bound on the probability of termination on each

iteration. While the first condition seems difficult to guarantee, the latter allows us

to reason about a range of programs that lie outside the scope of PrImp. On the

other hand, it has the significant limitation that it cannot reason about potentially

non-terminating programs.

Chadha et al. [6] take an approach that is similar to ours for a language with-

out While loops, and demonstrate the completeness of their logic. They take an

interesting approach to the Toss rule, which, like the assignment rule, requires us

to rewrite the precondition in the form of the postcondition. For example, we use

the following triple to attain a postcondition of P (y) = 1
3 upon tossing a coin with

bias one-third:

{1
3P (t) + 2

3P (f) = 1
3} y := toss(1

3) {Pr(y) = 1
3}.

Given that the identifier cannot appear in the precondition here either (unlike

assignment, where we might assign x := x+ 1), it’s not clear that this adds expres-

sivity, but reasoning backwards in this fashion may help with weakest precondition

proofs.

Their If rule takes the following form:

{P1} c1 {Pr(X) = p1} {P2} c2 {Pr(X) = p2}
{P1/b ∧ P2/¬b} if b then c1 else c2 {Pr(X) = p1 + p2}

P/b is similar to our P | y, inserting ∧ b into all the probabilistic terms in the

13

Rand and Zdancewic

assertion. However, the sub-assertions are not scaled, instead we again reason about

them in a sub-probability space. In order to allow us to combine postconditions,

it includes the significant restriction that both branches’ postconditions must refer

to the same probability – often this will require significant weakening. In order to

derive a complex postcondition, we need to apply the If rule repeatedly, and join

the results via conjunction and disjunction rules.

Interestingly, this restriction wasn’t present in an earlier version of the logic [7].

That version used an alternative If command that took in a free boolean identifier

and set it to t or f depending on which branch was taken. This allowed a postcon-

dition of the form P1/y ∧ P2/¬y (where y was the new identifier) at the cost of a

non-standard If rule and the proliferation of fresh identifiers.

There has also been considerable work done in related formal systems, includ-

ing Probabilistic Guarded Command Language [17] (formalized in HOL4 [13] and

Isabelle/HOL [8]),, Dynamic Logic [11,15] and Kleene Algebra with Tests [16]. We

refer the reader to Vasquez et al. [22] for a comparison of Probabilistic Hoare Logic

and pGCL and to the related work section of Chadha et al. [6] for a broader dis-

cussion of the approaches to probabilistic verification.

Finally, related to the Certicrypt project mentioned above [4], the EasyCrypt

cryptographic tool [2] is based upon two logical systems: pRHL, a Probabilistic

Relational Hoare Logic for reasoning about two programs simultaneously and pHL,

a Probabilistic Hoare Logic for reasoning about a single program. Introduced in

Barthe et al. [3], pRHL is based upon Benton’s Relational Hoare Logic [5] and uses

a technique called “lifting” to avoid talking directly about probabilities allow us to

derive probabilities within sub-distributions. pHL (discussed briefly in the Easy-

crypt tutorial [2] and elsewhere) reasons about transitions from one state to another

in probabilistic terms, but a full account of its semantics and underlying logic has

not yet been published. Easycrypt demonstrates the utility of a probabilistic Hoare

logic in a cryptographic setting.

12 Future Work

Both PrImp and VPHL are limited by design. PrImp expressions are limited to

boolean and natural numbers; for ease of analysis we haven’t included data struc-

tures, function calls or recursion, among other language features. VPHL is similarly

limited, primarily by its lack of quantification. Existential quantifiers would allow

us to express crucial ideas like independence: A and B are independent in Θ iff

∃p, q s.t. Pr(A) = p ∧ Pr(B) = q ∧ Pr(A ∧B) = pq.

VPHL is meant to provide the groundwork for the further study of probabilistic

Hoare logics and for their application. It is extensible, meaning that we can add

new rules without impacting the language. The new Hoare rules would fall into one

of two categories: core rules and derived rules.

A core rule is one that is sound within the Hoare logic, but not redundant in the

context of the existing rule. Any new core rules would probably be similar in form

to the rules in [6]. They would emphasize completeness over usability, and create a

set of rules that can be used to deduce any valid Hoare triple.

A derived rule is a rule that can be derived using existing rules from the logic.

14

Rand and Zdancewic

Though in the strictest sense these rules are redundant, they enable us to efficiently

and intuitively reason about programs. Adding such rules to our logic could have a

substantial impact on its usability.

In this paper we’ve walked a line between usability and completeness, and there

is still a long way to go on the usability front. We envision a bevy of rules for a

variety of probabilistic constructs, extending what we did with the UNIFORM rule

above. There are a number of areas, including cryptography, privacy, machine

learning and randomized algorithms, which beg for formal analysis methods, and

a corresponding universe of domain-specific logics that can be tailored to these

problems. VPHL should provide a solid foundation for this future work.

References

[1] Audebaud, P. and C. Paulin-Mohring, Proofs of randomized algorithms in Coq, Science of Computer
Programming 74 (2009), pp. 568–589.

[2] Barthe, G., F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt and P.-Y. Strub, Easycrypt: A tutorial,
in: Foundations of Security Analysis and Design VII, Springer, 2014 pp. 146–166.

[3] Barthe, G., B. Grégoire, S. Heraud and S. Z. Béguelin, Computer-aided security proofs for the working
cryptographer, in: Advances in Cryptology–CRYPTO 2011, Springer, 2011 pp. 71–90.

[4] Barthe, G., B. Grégoire and S. Zanella Béguelin, Formal certification of code-based cryptographic
proofs, in: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’09 (2009), pp. 90–101.

[5] Benton, N., Simple relational correctness proofs for static analyses and program transformations,
in: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’04 (2004), pp. 14–25.

[6] Chadha, R., L. Cruz-Filipe, P. Mateus and A. Sernadas, Reasoning about probabilistic sequential
programs, Theoretical Computer Science 379 (2007), pp. 142–165.

[7] Chadha, R., P. Mateus and A. Sernadas, Reasoning about states of probabilistic sequential programs,
in: Computer Science Logic, Springer, 2006, pp. 240–255.

[8] Cock, D., Verifying probabilistic correctness in Isabelle with pGCL, in: Proceedings of the 7th Systems
Software Verification, Sydney, Australia, 2012, pp. 1–10.

[9] Coq Development Team, “The Coq Reference Manual, version 8.4,” (2012), available electronically at
http://coq.inria.fr/doc.

[10] Den Hartog, J. and E. P. de Vink, Verifying probabilistic programs using a Hoare like logic, International
Journal of Foundations of Computer Science 13 (2002), pp. 315–340.

[11] Feldman, Y. A. and D. Harel, A probabilistic dynamic logic, in: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82 (1982), pp. 181–195.

[12] Hoare, C. A. R., An axiomatic basis for computer programming, Communications of the ACM 12
(1969), pp. 576–580.

[13] Hurd, J., A. McIver and C. Morgan, Probabilistic guarded commands mechanized in HOL, Theoretical
Computer Science 346 (2005), pp. 96–112.

[14] Kozen, D., Semantics of probabilistic programs, Journal of Computer and System Sciences 22 (1981),
pp. 328–350.

[15] Kozen, D., A probabilistic pdl, Journal of Computer and System Sciences 30 (1985), pp. 162–178.

[16] McIver, A., E. Cohen and C. Morgan, Using probabilistic Kleene algebra for protocol verification, in:
Relations and Kleene Algebra in Computer Science, Springer, 2006 pp. 296–310.

[17] Morgan, C. and A. McIver, pGCL: Formal reasoning for random algorithms, South African Computer
Journal (1999), pp. 14–27.

[18] Paulin-Mohring, C., Alea: A library for reasoning on randomized algorithms in Coq version 7,
Description of a Coq contribution, Université Paris Sud (2012).

15

http://coq.inria.fr/doc

Rand and Zdancewic

[19] Pierce, B. C., C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg and B. Yorgey,
“Software Foundations,” 2014 Online at http://www.cis.upenn.edu/~bcpierce/sf/current.

[20] Ramshaw, L. H., “Formalizing the Analysis of Algorithms,” Ph.D. thesis, Stanford University (1979).

[21] Rand, R. and S. Zdancewic, VPHL: A verified partial-correctness logic for probabilistic programs
(expanded version), Technical Report MS-CIS-15-06, University of Pennsylvania (2015).

[22] Vásquez, M. D., N. Wolovick and P. R. D’Argenio, Probabilistic Hoare-like logics in comparison,
Technical report, Tech. rep. Universidad Nacional de Córdoba (2004).

16

http://www.cis.upenn.edu/~bcpierce/sf/current

	Introduction
	Modeling Distributions
	A Simple Probabilistic Imperative Language
	Hoare Logic Semantics
	Basic Hoare Logic Rules
	Conditioning on Probabilistic Guards
	The While Rule
	Reasoning About Probabilistically Terminating Programs
	Extending VPHL
	Simulating A Uniform Distribution
	Related Work
	Future Work
	References

