
18

A Bowtie for a Beast

Overloading, Eta Expansion, and Extensible Data Types in F⊲⊳

NICK RIOUX, University of Pennsylvania, USA

XUEJING HUANG and BRUNO C. D. S. OLIVEIRA,The University of Hong Kong, China

STEVE ZDANCEWIC, University of Pennsylvania, USA

The typed merge operator offers the promise of a compositional style of statically-typed programming in
which solutions to the expression problem arise naturally.This approach, dubbed compositional programming,
has recently been demonstrated by Zhang et al.

Unfortunately, the merge operator is an unwieldy beast. Merging values from overlapping types may be
ambiguous, so disjointness relations have been introduced to rule out undesired nondeterminism and obtain
a well-behaved semantics. Past type systems using a disjoint merge operator rely on intersection types, but
extending such systems to include union types or overloaded functions is problematic: naively adding either
reintroduces ambiguity. In a nutshell: the elimination forms of unions and overloaded functions require val-
ues to be distinguishable by case analysis, but the merge operator can create exotic values that violate that
requirement.

This paper presents F⊲⊳, a core language that demonstrates how unions, intersections, and overloading can
all coexist with a tame merge operator. The key is an underlying design principle that states that any two
inhabited types can support either the deterministic merging of their values, or the ability to distinguish their
values, but never both. To realize this invariant, we decompose previously studied notions of disjointness into
two new, dual relations that permit the operation that best suits each pair of types. This duality respects the
polarization of the type structure, yielding an expressive language that we prove to be both type safe and
deterministic.

CCS Concepts: • Software and its engineering → Functional languages; Data types and structures;
Patterns; • Theory of computation→ Type theory.

Additional Key Words and Phrases: extensibility, polymorphism, type systems

ACM Reference Format:

Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic. 2023. A Bowtie for a Beast: Over-
loading, Eta Expansion, and Extensible Data Types in F⊲⊳. Proc. ACM Program. Lang. 7, POPL, Article 18
(January 2023), 29 pages. https://doi.org/10.1145/3571211

1 INTRODUCTION

Given two programs e1 and e2, the merge operator e1 q e2 combines them into one program that
supports all the operations of both of its inputs.1 This powerful language feature has been used
to model a wide range of mechanisms. The canonical example is for record concatenation, which

1This operator is sometimes written e1 , , e2 in the literature, but we prefer the more symmetric “q” since the operator is
commutative and associative.

Authors’ addresses: Nick Rioux, nrioux@cis.upenn.edu, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Xue-
jing Huang, xjhuang@cs.hku.hk; Bruno C. d. S. Oliveira, bruno@cs.hku.hk, The University of Hong Kong, Hong Kong,
China; Steve Zdancewic, stevez@cis.upenn.edu, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/1-ART18
https://doi.org/10.1145/3571211

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-5277-8920
HTTPS://ORCID.ORG/0000-0002-8496-491X
HTTPS://ORCID.ORG/0000-0002-1846-7210
HTTPS://ORCID.ORG/0000-0002-3516-1512
https://doi.org/10.1145/3571211
https://orcid.org/0000-0001-5277-8920
https://orcid.org/0000-0002-8496-491X
https://orcid.org/0000-0002-8496-491X
https://orcid.org/0000-0002-1846-7210
https://orcid.org/0000-0002-3516-1512
https://doi.org/10.1145/3571211

18:2 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

has long been used to model multiple inheritance [Cook et al. 1989; Wand 1989]. For instance, a
multi-field record might be represented as the merge of three singleton records:

e = {l1 ↦→ 1} q {l2 ↦→ true} q {l3 ↦→ 3}

In a typed setting, one assigns merges intersection types. Thus, e has the type {l1 : Int} ⊓ {l2 :
Bool} ⊓ {l3 : Int}. Here we are assuming the record fields are all distinct: l1 ≠ l2 ≠ l3.

Unfortunately, themerge operator has a cost: merges of arbitrary values lead to nondeterminism.
For example, while merging records with distinct fields, as in the program e above, is perfectly rea-
sonable, merging the boolean values true and false would require the existence of a third boolean
value that is both true and false.This violates programmers’ expectation that only one branch of an
if statement will execute: a program like if true q false then e1 else e2 is ambiguous. We would like
a way to enable the power of the merge operator, while disallowing nondeterministic programs
like this one.

Oliveira et al. [2016] introduce a typing discipline for the merge operator that rules out such
nondeterministic programs using disjoint intersection types. Under such a typing discipline, only
expressions with disjoint types can be merged. Since Bool is not disjoint from itself, the merge
true q false is rejected. This line of work led to success in the modeling of a number of highly
compositional programming patterns including forms of family polymorphism [Ernst 2001] and
first-class traits [Bi and Oliveira 2018]. It has culminated in languages that support a style of pro-
gramming known as compositional programming [Zhang et al. 2021] which offers solutions to
challenges such as the Expression Problem [Wadler 1998]. At the heart of these designs is the abil-
ity of the merge operator to support nested composition [Bi et al. 2018], which exploits subtyping
relationships like:

(Int → {age : Int}) ⊓ (Int → {name : String}) ≤ Int → {age : Int, name : String}

Here, the merge operator lets us combine/compose the behavior of multiple implementations. If
we think of the two functions in the intersection as constructors of objects, what one gets out is a
new constructor for objects with the combined behaviors.

At the same time, the merge operator has also been shown to support a form of function over-

loading, in which a single function can have several bodies and the choice of which to run is
determined by its arguments [Castagna et al. 1995; Dunfield 2014; Pierce 1991a]. The merge opera-
tor can combine multiple implementations of functions that take different argument types. Later,
the appropriate implementation can be dispatched to based on the argument at the application
site. However, overloading can also easily lead to nondeterminism if not carefully managed.

Both of these features, nested composition and overloading, are independently useful, but, so far,
no system accommodates them simultaneously. The typing discipline used for the merge operator
in Oliveira’s line of work does not support traditional forms of overloading, and, conversely, the
systems that support overloading do not support nested composition. This is the first problem that
we address in this paper.

Another natural feature to consider alongside overloading is union types [Barbanera et al. 1995].
A ⊔ B is the untagged union of A and B. Both A values and B values have this type (because, e.g.,
A ≤ A ⊔ B), but, unlike for tagged unions, there is no extra dynamic information attached to the
value to reveal which case it is. Nevertheless, the constructors of values of type A will often be
distinct from those of type B, which is sufficient to tell them apart. For our purposes, we assume
that the constructors of base types like Int are disjoint from those of other base types, like Bool,
so 1 and true are distinct. In other words, a programmer can use a pattern-matching construct to
eliminate a value e of type Int ⊔ Bool as follows:

match e with {(x1 : Int) ↦→ true, (x2 : Bool) ↦→ false}

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:3

If e = 1 : Int, then it is distinct from the constructors of Bool, so the match above will work
as intended and evaluate to true. Likewise, if e = true : Bool, the match will evaluate to false,
so pattern matching discriminates between Int and Bool values as expected. Unfortunately, in the
presence of the merge operator there is a problem: the term e = 1 q true has type Int⊓Bool, which
is a subtype of Int ⊔ Bool. Now to decide whether e is an Int or a Bool during pattern matching
yields the answer that it is both, leading again to nondeterministic evaluation. Safely incorporating
union types with intersections and the merge operator is the second problem we address.

Disjointness and polarity. This paper gives a solution to both of the problems mentioned above.
The key idea is that for certain types, like Int and Bool above, pattern matching provides a mecha-
nism for distinguishing their values. When there is such a mechanism for types A and B, we say A

and B are distinguishable, written A ⊳⊲ B. Our language design requires that patterns in different
branches of a match construct match distinguishable types. Types that are eliminated via pattern
matching are naturally distinguishable from each other; such types are called positive in the liter-
ature on polarized type theory [Andreoli 1992]. Intuitively, the values of such types are defined
completely by how they are constructed, and pattern matching extracts all of the information
about them.

On the flip side, functions are characterized via a “strong” (i.e. non-matching) elimination form.
They are characterized extensionally by the contexts in which they are used, not by how they are
constructed. This means that function types are negative. Negative types are relevant because, to
our knowledge, all practical uses of themerge operator in the literature concernmerges of negative
types. To apply the merge operator to two arguments of types A and B, our design requires that A
and B are mergeable, written A ⊲⊳ B.

Together, these two relations describe when it is unambiguous to merge two functions to create
an overloaded function. For example, it makes sense for two function types such as Int → String

and Bool → String to be mergeable because their inputs are distinguishable. Moreover, as typi-
cally (albeit not universally) described in lambda calculi, a function does not provide a means of
dynamically asking whether it accepts integers or strings as inputs. Thus, from this perspective,
we would not expect the type Int → String to be distinguishable from the type Bool → String,
and in our system they are not distinguishable.

We refer to both distinguishability and mergeability as disjointness relations: the former is the
disjointness of types as sets of values and the latter is the disjointness of types as sets of their
contexts (i.e., the operations that can be carried out on their values).

A key invariant of our language design is that no two inhabited types are both distinguishable
and mergeable—they can be only one or the other. This discipline rules out the issues of nondeter-
minism that arise in the presence of both intersection and union types. For instance, this principle
rules out the ambiguous match for e = 1 q true: since Int and Bool are distinguishable, but they
are not mergeable, and e is ill typed. (Indeed there is no term of the type Int⊓Bool and we do not
even consider that type to be well formed.) The observations that we have made about polarity
suggest a natural answer to the question of whether a pair of types should be distinguishable (pos-
itive) or mergeable (negative). Our type system exploits this observation to create an expressive
yet deterministic programming language.

Contributions. Our primary result is the formalization of a core language F⊲⊳ (pronounced “F
bow”). We prove the type system sound and demonstrate its support for compositional program-
ming. F⊲⊳ showcases several important aspects:

• It is the first language to include disjoint intersection and union types, overloading, and a
deterministic merge operator. These features combine to permit uses of nested composition.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:4 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

• It is also a step towards incorporating the work of Castagna, Ghelli, and Longo into the
literature on disjoint intersection types [Oliveira et al. 2016].

• As in past treatments of themerge operator, the operational semantics is type-directed [Huang
et al. 2021]. However, type information is not used for selecting which overload to execute
at a call site. In F⊲⊳, dispatch is (co-)pattern matching. Consequently, we characterize the
dynamic role of types as runtime 𝜂-expansion.

• The type system demonstrates the dual concepts ofmergeability and distinguishability. Both
have been studied independently [Oliveira et al. 2016; Rehman et al. 2022], but here it is
shown that, in tandem, they enable well-typed deterministic overloading.

The key technical results in this paper have been proven using a combination of pencil-and-
paper proofs for the results having to do with the term language constructs, and a Coq develop-
ment. The paper proofs are available in this article’s companion technical appendix [Rioux et al.
2022b]. The Coq development [Rioux et al. 2022a] formalizes certain type-level parts of the seman-
tics including subtyping, dispatch, and some key properties of disjointness.

2 OVERVIEW

This section gives an overview of this paper, starting with background on merges and disjoint
intersection types, and then introducing the key ideas of our work.

2.1 Background

Intersection and union types. Intersection and union types [Barbanera et al. 1995; Coppo and
Dezani-Ciancaglini 1978; Pottinger 1980] are widely used in diverse fields of programming lan-
guages. Intersection types were introduced to characterize exactly all strongly normalizing lambda
terms. Union types were later introduced as the dual construct of intersection types [Barbanera
et al. 1995]. Intersection types were first adopted for programming by work on Forsythe [Reynolds
1988, 1997] and subsequently employed to express key aspects of multiple inheritance [Com-
pagnoni and Pierce 1996] in object-oriented programming. The Scala language [Odersky et al.
2004] and its DOT calculus [Rompf and Amin 2016], for example, make fundamental use of inter-
section types to express a class/trait that extends multiple other traits. Union types have also been
adopted in programming languages. For instance they are widely used in TypeScript and Flow,
and were also included in Scala 3.

The merge operator. The Forsythe language [Reynolds 1988, 1997] introduced a merge operator,
which allows building values that can have multiple types (expressed as intersection types). The
merge operator has been studied more recently by Dunfield [2014], who removed significant re-
strictions originally present in Reynolds’ design. A simple example of a program using the merge
operator is:

let f = isDigit q not in (f ‘1’, f false)

Here f is an overloaded function that can take either a character or a boolean as an argument; it
has the type (Char → Bool) ⊓ (Bool → Bool). The variable f is built using the merge operator
and applying it extracts one of the functions from the merged value. In the body of the let, we see
two applications of f : one to a character, and another to a boolean. This style of overloading is one
of the major features of the merge operator that has been explored in earlier research [Castagna
1997; Dunfield 2014]. In addition to overloading, we can express multi-field records by merging
single-field records (as already mentioned in the introduction).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:5

Compositional programming and nested composition. Recent research on the merge operator
shows that it also enables first-class classes/traits [Bi and Oliveira 2018] and compositional pro-

gramming [Zhang et al. 2021]. Compositional programming supports extensible forms of datatypes
and functions and offers a natural solution to hard modularity challenges, such as the Expression
Problem [Wadler 1998]. At the heart of compositional programming is a mechanism, called nested

composition [Bi et al. 2018], that composes behavior from multiple components in a merge. Nested
composition differs from overloading or simple record projection, which select only one of the
components in a merge. With nested composition we can write:

letmkStudent = (𝜆𝑛 : Int. {age ↦→ 𝑛}) q (𝜆𝑛 : Int. {idNumber ↦→ . . .}) inmkStudent 25

In this case we combine two functions with a merge to get an expression with the type:

(Int → {age : Int}) ⊓ (Int → {idNumber : Int})

Using subtyping, mkStudent can be given the function type Int → {age : Int, idNumber : Int};
operationally the semantics of merge combines the two functions. Thus, we can use mkStudent to
build a new record that has both an age and a idNumber field.

Merges, Ambiguity, and Subtyping. The interaction between subtyping and the merge operator
is subtle. To illustrate the issue, we use an example similar to one given by Cardelli and Mitchell
[1990]:

𝑒q = let x : {l2 : Bool} = {l1 ↦→ 1, l2 ↦→ true} in ({l1 ↦→ 2} q x).l1 + 3

In this program, x has type {l2 : Bool}, despite also including a field l1. The field l1 is hidden due
to subtyping, because {l1 : Int, l2 : Bool} ≤ {l2 : Bool}. The merge {l1 ↦→ 2} q x appears to be
safe, statically, because the type of x does not contain l1. However, what should happen when we
project l1? If the original field l1 is preserved in x then, when we later lookup l1, there will be two l1
fields. If we use a biased lookup, which returns either the first value from the left or the first value
from the right in a merge, then the semantics of programs may lead to surprising behaviour. For
instance, in the program above, if a right-biased lookup is used, then the program would return 4.
However, a programmer may have expected 5 as a result, because the type of x appears to promise
that no field l1 is present. Moreover, if the types of the two 𝑙1 fields are distinct, this program could
lead to a runtime type-error (when the field of the wrong type is projected), unless special care in
taken to prevent such a situation. In essence, we would like that information hidden via subtyping
has no effect in later uses of values with hidden information. For this reason Cardelli and Mitchell
argued that biased lookups should not be used. More detailed discussions about such issues can
be found in work by Huang et al. [2021].

Disjoint Intersection Types. To address the ambiguity problems, as well as the problems arising
from the interactions between merges and subtyping, Oliveira et al. [2016] proposed to restrict
merges so that only mergeable types are accepted. Disjointness rejects ambiguous programs such
as true q false, because the types of the two values being merged are not disjoint. Moreover,
disjointness ensures that the merge operator is symmetric (or unbiased), guaranteeing both the
associativity and commutativity of the operator.

Originally, the semantics of the merge operator with disjoint intersection types was defined
by elaboration, following the approach promoted by Dunfield [2014]. More recently, Huang et al.
[2021] proposed a type-directed operational semantics. This approach gives a direct operational
semantics to 𝜆𝑖 , which is a calculus with disjoint intersection types and the merge operator. In 𝜆𝑖 ,
programs can reduce without encountering ambiguities in the merges.

With a type-directed operational semantics, types are relevant at runtime, and they are used
to enforce the information hiding promised by subtyping. Consider again 𝑒q, the program defined

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:6 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

previously. In this case, we drop the field l1 in x when the value is cast to the type {l2 : Bool}.
Therefore, ({l1 ↦→ 2} q x).l1 would become ({l1 ↦→ 2} q {l2 ↦→ true}) .l1 and the final result of
the program would be 5. In other words, this solution to the problem of the interaction between
merges and subtyping ensures that components of a merge that are hidden by subtyping are no
longer accessible from the value after upcasting.

While the existing approaches to disjointness can deal with programs that have merges of
records or that use nested composition, they have restricted support for overloading. For instance,
the merge used in the definition of the overloaded function f (i.e. isDigit q not), would be rejected.
In essence in the notion of disjointness proposed by Oliveira et al. [Oliveira et al. 2016], two func-
tions are disjoint if their return types are disjoint. However Char → Bool and Bool → Bool have
overlapping return types. The disjointness restriction contrasts with traditional approaches with
overloading, where distinct input types are used to eliminate possible ambiguities for overloaded
functions. In addition, none of the existing calculi with disjoint intersection types include union
types, which introduce new ambiguity issues.

2.2 Challenges for Deterministic Merges with Overloading and Union Types

Union Types. In prior approaches, as exemplified by 𝜆𝑖 , the term 1 q true is a well-typed merge.
This is because the program contexts that can eliminate an integer are distinct from boolean pro-
gram contexts. For example, an integer context might be [·] + 3, where [·] is a “hole” into which
an integer value can be filled, but this context can never be confused with any boolean context,
such as, if [·] then 𝑒1 else 𝑒2. Therefore, no matter how a context uses the merged value, it is un-
ambiguous whether the 1 or truemust be projected. For instance, we have (1 q true) + 3 evaluates
to 1 + 3.

Now consider the union type Int⊔Bool. We assume that unions are untagged, meaning that, at
runtime, there is no extra information added to indicate whether a value of this type has the type
on the left side or the right side of the union. Nevertheless, as long as integer and boolean values
have distinct runtime representations, i.e., they have separate constructors, it is possible to have a
construct that can tell values of one type from the other as in this example from the introduction:

match e with {(y : Bool) ↦→ false, (x : Int) ↦→ true}

Given that, even without union types, pattern matching on boolean and integer values is a sen-
sible operation, the behavior of the above match expression should be no surprise. It is, after all,
equivalent to the (large) expression:

match e with {true ↦→ false, false ↦→ false, 0 ↦→ true,−1 ↦→ true, 1 ↦→ true, . . .}

However, now that we have introduced a single elimination form that works on the union type
Int⊔Bool, merging becomes nondeterministic, as we saw in the case e = 1 q true. In other words,
in 𝜆𝑖 , Int and Bool are not distinguishable because there is no context that can take a value that
is either an Int or Bool and determine which type of value was provided. As a result, it is safe for
these types to be mergeable in that setting. With unions and their elimination forms, this is no
longer the case. Although permitted by 𝜆𝑖 , merges like 1 q true are not required for many practical
applications, including ours. Thus in F⊲⊳ we prefer to consider Int and Bool distinguishable in
exchange for sacrificing the ability to merge them.

In contrast, the type (Int → Bool)⊔(Bool → Bool) is quite different. Unlike integer and boolean
values, functions generally do not support pattern matching; they are eliminated via application.
Thus, from a type-theoretic point of view, a program like

match e with {(x : Int → Bool) ↦→ true, (y : Bool → Bool) ↦→ false} (1)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:7

is unusual. It represents an operation on a function—other than application—that provides informa-
tion about which inputs the function accepts. Unlike the previous example with Int ⊔ Bool, there
is no similar way to express this kind of typecase analysis with more primitive patterns.

Implementing such a matching construct would require that functional values are tagged with
type information at runtime.Thanks to subtyping, the type tag of a value could not be directly com-
pared with the type annotation in a pattern. Therefore, runtime execution of the subtyping algo-
rithmwould be necessary. Such an arrangement certainly has precedent in the literature [Castagna
et al. 1995] and in OOP language implementations, but F⊲⊳ aims to introduce union types without
changing themeaning of existing types. In other words, support for union types should not depend
on adding new operations on the values of other types. Our approach requires neither additional
type tags at runtime nor any type-tag comparison in the dispatch procedure. As we shall see, F⊲⊳
will exploit type annotations on the merge operator at runtime, but those are part of the merge
construct—they are not part of the representation of values.

Overloading. Overloading faces the same issueswith determinism as patternmatching on unions.
When the merge operator overloads functions, we can rewrite the problematic example as:

((𝜆x : Int. true) q (𝜆y : Bool. false)) (1 q true)

The merged function can be given the type (Int → Bool) ⊓ (Bool → Bool), which, due to subtyp-
ing, is equivalent to (Int⊔Bool) → Bool. Semantically, these merged functions act like the match
expression that we already saw:

match e with {(x : Int) ↦→ true, (y : Bool) ↦→ false}

Indeed, for this reason, F⊲⊳ unifies the syntax for pattern match expressions with the syntax for
(potentially merged) lambda abstractions—they are the same thing.

2.3 Information Hiding and Pattern Matching

Overloaded Functions and CopatternMatching. A common notation to represent overloaded func-
tions in core calculi is with 𝜆 abstractions containing a case for each overload such as:

𝜆{((x : Int) ↩→ Bool) ↦→ true, ((x : Bool) ↩→ Bool) ↦→ false} (2)

This is the normalized form of the merge we saw above. In each case, the type to the right of the
↩→ is the type the function returns when that case is matched.

This notation is similar to GHC’s LambdaCase and OCaml’s function syntax, both of which
combine the introduction of a function with pattern matching on its argument. It may also be seen
as a form of copattern matching [Abel et al. 2013; Zeilberger 2008] and is common in the literature
on overloading [Castagna et al. 1995].

Typical pattern matching involves destructuring a value according to a pattern describing the
shape of an introduction form. In example (2), on the other hand, the 𝜆-value destructures its
evaluation context according to elimination patterns (i.e., copatterns) that describe the shape of
elimination forms. In that example, the context [·] 1, matches the first elimination pattern (x :
Int) ↩→ Bool, whereas the context [·] true matches the second. In this way, dispatch—the pro-
cess of deciding which overload of a function to execute—is completely subsumed by (co)pattern
matching.

𝜂-Expansion. Recall the definition of 𝑒q.

𝑒q = let x : {l2 : Bool} = {l1 ↦→ 1, l2 ↦→ true} in ({l1 ↦→ 2} q x).l1 + 3

Previously, we saw that the expected semantics should hide the l1 field at the assignment of x. Type
annotations ought to have the effect at runtime of hiding information (such as a field of a record

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:8 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

or an overload of a function) in a term. F⊲⊳ implements this by 𝜂-expanding annotated terms. An
expression (v : {l2 : Bool}) 𝜂-expands to {l2 ↦→ (v.l2 : Bool)}, hiding any information, other than
the contents of the field l2, that may be present in v.

In this way, 𝜂-expansion of a value at a type builds a wrapper that limits access to the value to
the operations supported by the type. This technique is quite similar to how sound gradual type
systems [Siek and Taha 2006] build wrappers to catch runtime type errors caused by untyped code
passing ill-typed values to typed contexts.

Formally, in F⊲⊳, a value v inside a wrapper for type A is written 𝜆{(∗ ↩→ A) ↦→ v}, so we would
write the example above as 𝜆{(∗ ↩→ {l2 : Bool}) ↦→ v}. Here, the elimination pattern ∗ ↩→ A

matches any context valid for type A. When this occurs, v is placed inside this context. In other
words, the value 𝜆{(∗ ↩→ A) ↦→ v} behaves exactly as v but only in contexts valid for type A. The
∗ pattern is a sort of dual to variable patterns.

Pattern Expansion is 𝜂-Expansion. We have already seen that type annotations on pattern vari-
ables have significance at runtime. Their meaning is derived from 𝜂 principals for positive types.
Consider an F⊲⊳ expression likematch e with {(x : Bool) ↦→ e′}. Dually to 𝜂 expansion for a value
of record type, which re-builds an output and projects each field individually, 𝜂 expansion for a
positive type like Bool re-builds an input by matching against all possible values of a type and
specializing each branch. Given the term e′ above has a free variable x : Bool, the general form of
𝜂 expansion for booleans would be:

e′ →𝜂 match x with {true ↦→ e′ [true/x], false ↦→ e′ [false/x]}

From this, one might informally expect an equivalence:

match e with {(x : Bool) ↦→ e′} ≡ match e with {true ↦→ e′ [true/x], false ↦→ e′ [false/x]}

In F⊲⊳, this expansion is not just an equivalence: it is the definition of the operational semantics of
pattern matching. This is possible because similar expansions exist for all positive types. During
elimination patternmatching, a dual kind of expansion occurs for ∗-patterns.Thewrapper 𝜆{(∗ ↩→
{l2 : Bool}) ↦→ v} is equivalent to {l2 ↦→ (v.l2 : Bool)}. In other words, the pattern ∗ ↩→ 𝐴−

𝜂-expands according to the negative type 𝐴− . In summary, in F⊲⊳ we can characterize the type-
directed component of the operational semantics as runtime 𝜂-expansion.

2.4 Compositional Programming in F⊲⊳

To see how F⊲⊳ supports the kind of (nested) compositional programming offered by the merge
operator, and to introduce the notation used by the calculus, we next consider how to build a
small extensible interpreter.

In F⊲⊳, we can represent a language of integer literals and addition expressions by defining the
type IntArithExpr A as a record type as:

IntArithExpr A = {constant : Int → A, add : A → A → A}

This type represents a simplified form of a compositional interface [Zhang et al. 2021], and is
closely related to the kind of interfaces used in techniques such as finally tagless [Carette et al.
2009] or object algebras [Oliveira and Cook 2012]. Indeed this interface is essentially the fold (F-
)Algebra [Bird and de Moor 1996] for a simple datatype of arithmetic expressions. An F⊲⊳ term of
type IntArithExpr A describes how to interpret an expression in our object language as a value of
type A. We represent one such object-language expression as follows:

three : ∀𝛼.IntArithExpr 𝛼 → 𝛼

three = Λ𝛼.𝜆(x : IntArithExpr 𝛼) ↩→ 𝛼. x .add (x .constant 1) (x .constant 2)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:9

The notation Λ𝛼.e binds a type variable 𝛼 in the body e while 𝜆(x : B) ↩→ C . e binds the term
variable x of type B in the body e, which is ascribed the type C. Values such as three are defined
by implementing their folds.

A natural way of interpreting object-language expressions as integers is by evaluating them.
The interpretation evalInt describes how to do this, by defining a meaning for each field:

evalInt : IntArithExpr Int
evalInt = {constant ↦→ 𝜆x : Int ↩→ Int. x, add ↦→ (+)}

Now the program three [Int] evalInt, of type Int, evaluates to 3.
Suppose that we wish to extend this language so that a constant may be either an integer or

a floating point number. For simplicity, we will not presume any subtyping relationship between
Int and Float, but instead rely on an explicit cast toFloat : Int → Float. What we wish is to ob-
tain a combined language where both floating point numbers and integers can be used. Moreover,
the language should automatically convert between integers and floating point numbers when
necessary. Orchard and Schrijvers [2010] tackle a similar problem in the setting of a typed object
language. They illustrate that the problem is tricky to solve in Haskell using a finally tagless em-
bedding. To this end, Orchard and Schrijvers proposed to extend Haskell with constraint synonyms,
which later helped motivate the addition of the ConstraintKinds GHC extension. In contrast, in
F⊲⊳, merge-based overloading with intersection and union types provides what we need.

We define the type IntFloatArithExpr A as an extension of IntArithExpr A using intersection.
Observe that the intersection distributes over the record, augmenting the type of the constant field.

IntFloatArithExpr A = IntArithExpr A ⊓ {constant : Float → A}

≡ {constant : (Int → A) ⊓ (Float → A), add : A → A → A}

≡ {constant : Int ⊔ Float → A, add : A → A → A}

In other words, subtyping gives us the equivalence (Int → A) ⊓ (Float → A) ≡ (Int⊔Float) → A.
Such equivalences are key to compositional programming [Bi et al. 2019].

To evaluate expressions in this language, we need to define an interpretation evalIntFloat :
IntFloatArithExpr (Int ⊔ Float). A first step is to define the type expressions as well as the eval-
uation function for the sub-language containing floating point but not integer literals. (We use +.
for the floating-point addition primitive.)

FloatArithExpr A = {constant : Float → A, add : A → A → A}

evalFloat : FloatArithExpr Float
evalFloat = {constant ↦→ 𝜆x : Float ↩→ Float. x, add ↦→ (+.)}

It is now possible to merge our two evaluators.

partialEvalIntFloat : (IntArithExpr Int) ⊓ (FloatArithExpr Float)

partialEvalIntFloat = evalInt q evalFloat

But, we are not finished: we would like an expression of type IntFloatArithExpr (Int⊔Float), but
only have one of type (IntArithExpr Int)⊓(FloatArithExpr Float). This is not enough because the
former type requires the add operation to support addition of integers with floating point numbers,
which the latter does not. As a result, trying to use partialEvalIntFloat to evaluate four (defined
below) would be ill typed.

four = Λ𝛼.𝜆(x : IntFloatArithExpr 𝛼) ↩→ 𝛼.

x .add (x .constant 2.0) (x .constant 2)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:10 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

expressions e ::= x | c e | e1 e2 | e [A]

| (e : A)

| (e1 : A1) q (e2 : A2)

| 𝜆{𝑝1 ↦→ e1, ... , 𝑝n ↦→ en}

values v ::= x | c v

| 𝜆{𝑝1 ↦→ e1, ... , 𝑝n ↦→ en}

value patterns p ::= x : A | c 𝑝 | (𝑝1 |𝑝2)

| 𝑝1&𝑝2

elim. frames F ::= [·]v | [·] [A]

elim. patterns 𝑝 ::= ∗ ↩→ 𝐴− | p ↩→ B | 𝛼 ↩→ B

types A, B,C ::= 𝛼 | c A

| A → B | ∀𝛼.B

| ⊥ | A1 ⊔ A2

| ⊤ | A1 ⊓ A2

neg. types 𝐴−, 𝐵− ::= A → B | ∀𝛼.B

| 𝐴−
1 ⊔𝐴−

2
| ⊤ | 𝐴−

1 ⊓𝐴−
2

elim. types 𝐴, �̂� ::= A | [A]

environments Γ,Δ ::= · | Γ, 𝛼 | Γ, x : A

Fig. 1. F⊲⊳ Syntax

In order to complete the evaluator, we need an addition extension that handles the missing cases.
Its type is given below.

ArithExt = {add : (Int → Float → Float) ⊓ (Float → Int → Float)}

We implement the extension by coercing integers to floats and using floating point addition, as
shown in the code below. Note that the add field of the record contains a “function” with two
bodies, distinguished by the input type of the argument x.

evalExt : ArithExt
evalExt = {add ↦→ 𝜆{ (x : Int) ↦→ 𝜆(y : Float) ↩→ Float. toFloat x +. y,

(x : Float) ↦→ 𝜆(y : Int) ↩→ Float. x +. toFloat y } }

Applying distributivity, we can show that

(IntArithExpr Int) ⊓ (FloatArithExpr Float) ⊓ ArithExt ≤ IntFloatArithExpr (Int ⊔ Float)

This tells us that merging partialEvalIntFloat with evalExt yields an expression of the desired type.

evalIntFloat : IntFloatArithExpr (Int ⊔ Float)

evalIntFloat = partialEvalIntFloat q evalExt

Now, evaluating four [Int ⊔ Float] evalIntFloat results in the floating-point value 4.0 as expected.

3 SYSTEM F⊲⊳

We will now make the intuitions from earlier precise. This section presents the syntax and opera-
tional semantics of F⊲⊳ in full.

3.1 Syntax

Expressions. Figure 1 presents the syntax of F⊲⊳. Expressions include standard syntax such as vari-
ables, application of functions to arguments, and application of terms to types. An underscore is
used in place of a variable name when the variable is never referenced. The c e form, tags the ex-
pression e with constructor c. The constructor c comes from some predetermined set of symbols;
the metavariables l and k also range over this set, particularly when the constructor represents a
record label. The notation (e : A) q (e′ : B) denotes a merge of two type-annotated expressions.

We denote a subset of expressions as values: variables, constructors with values as arguments,
and 𝜆 forms. We also describe elimination frames which are contexts in the shape of an elimination
form with a hole in head position. Elimination frames play a role dual to that of values in pattern
matching.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:11

A + B = left A ⊔ right B Bool = ⊤ + ⊤ {l : A} = l ⊤ → A

{l1 : A1, ... , ln : An} = {l1 : A1} ⊓ ... ⊓ {ln : An}

true = left 𝜆{ } false = right 𝜆{ } e.l = e (l 𝜆{ })

𝜆x : A. e = 𝜆{x : A ↦→ e} Λ𝛼.e = 𝜆{𝛼 ↦→ e}

{l1 ↦→ e1, ... , ln ↦→ en} = 𝜆{(_ : l1 ⊤) ↦→ e1, ... , (_ : ln ⊤) ↦→ en}

match e with {𝑝1 ↦→ e1, ... , 𝑝n ↦→ en} = 𝜆{𝑝1 ↦→ e1, ... , 𝑝n ↦→ en} e

Fig. 2. Useful Abbreviations

Types. The types of F⊲⊳ include type variables 𝛼 , constructors applied to an argument c A, functions
A → B, and universal quantifiers∀𝛼.B. Additionally, the⊥ type is uninhabitedwhile⊤ is inhabited
by the trivial value 𝜆{ }. Finally, F⊲⊳ types include unions, A ⊔ B , and intersections, A ⊓ B. We
sometimes write 𝑛-ary intersections and unions such as A1 ⊓ ... ⊓ An. This notation does not
preclude the possibility that n = 0, in which case the type is ⊤ (or ⊥ in the case of 0-ary unions).
We will in §4.2 introduce some restrictions on which unions and intersections are considered to
be well-formed.

Negative types are those that are introduced by 𝜆 and eliminated with strong (non-matching)
elimination forms.These include functions, quantifiers,⊤, and unions and intersections of negative
types. Elimination types are associated with elimination forms. An elimination type 𝐴 = A corre-
sponds to an application [·] e in which the argument e has type A; the elimination type 𝐴 = [A]

corresponds to a polymorphic instantiation [·] [A].
The typing algorithmmakes use of unordered environments Γwhich both contain type variables

and map term variables to their types. The type associated with a term variable in an environment
Γ may reference any free type variable in Γ.

Encodings. Various standard syntax can be encoded in terms of F⊲⊳’s constructs. For example, one
might in theory encode Int, the type of 32-bit integers, as a union of 232 distinct constructors.
Figure 2 contains other useful abbreviations. This figure omits (as we often do) return type annota-
tions ↩→ Awhere they are to be inferred from context. Sum types are represented by unions of the
presumed-distinct left and right constructors. Record types are also encodable as functions from
field labels to the corresponding value. The type of a label is represented as l ⊤ (the constructor
l with a dummy argument of type ⊤). A single-field record is a function accepting only the label
l 𝜆{ } as input.

Patterns. Pattern matching is a distinguishing feature of F⊲⊳. There are two types of patterns. The
metavariable 𝑝 ranges over value patterns, which are essentially the patterns of Haskell or ML. In
a match construct match v with {p1 ↦→ e1, ... , pn ↦→ en}, the discriminee v will be deconstructed
by the patterns of each pi ↦→ ei clause.

As we have seen, the 𝜆 form contains a number of overloaded implementations of a computation,
with the correct one chosen dynamically based on how the value is used by its context. Each
overload is represented as a clause 𝑝 ↦→ e where 𝑝 is an elimination pattern (or copattern [Abel
et al. 2013; Zeilberger 2008]). We can think of 𝜆 as using these patterns to build a computation by
deconstructing its immediate context—specifically, the elimination frame F . For example, consider
the following value:

𝜆{((x : A1) ↩→ B1) ↦→ e1, ((x : A2) ↩→ B2) ↦→ e2, (𝛼 ↩→ B3) ↦→ e3}

In a frame of shape [·] v′, the e1 or e2 overloads are selected when v′ has type A1 or A2 respectively.
(In fact, both may be be selected and merged together if A1 and A2 are not distinguishable.) In a

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:12 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

𝑀 ::= {𝑝1 ↦→ e1, ... , 𝑝n ↦→ en}

E ::= [·] | c E | E e | v E | E[A]

| (E : A) | (E : A) q (e : B)

| (v : A) q (E : B)

e ↦−→ e′ (small-step reduction)

e ↦−→ e′

E[e] ↦−→ E[e′] F [𝜆𝑀] ↦−→ disp(𝑀, F) (v : A) ↦−→ v

(v1 : 𝐴
−
1) q (v2 : 𝐴

−
2) ↦−→ 𝜆{∗ ↩→ 𝐴−

1 ↦→ v1, ∗ ↩→ 𝐴−
2 ↦→ v2}

disp(𝑀, F) =
n

𝑝 ↦→ e ∈ 𝑀

F/𝑝 ⇒ 𝜎 ↩→ B

(𝜎 (e) : B)

Fig. 3. F⊲⊳ Operational Semantics and Auxiliary Definitions

context of shape [·] [A], the third clause is matched instead. Each Bi in the value is an output type
annotation that describes the type of the corresponding expression ei. Note that 𝛼 is bound in B3.

A clause (∗ ↩→ 𝐴−) ↦→ v matches any elimination F that is valid for a value of type 𝐴− . The
elimination frame F , then becomes the context for v. In this way, the elimination pattern ∗ is a sort
of “pattern variable” that places the current context around the expression in which ∗ is “bound”.
The point is purely to enforce that v has precisely the type 𝐴− . This may seem unusual, but the
semantics are straightforward. A term 𝜆{(∗ ↩→ {l1 : A1}) ↦→ {l1 ↦→ e1, l2 ↦→ e2}} should be
thought of as a wrapper around {l1 ↦→ e1, l2 ↦→ e2} that enforces the type {l1 : A1} by hiding the
field l2.

As we have seen, this hiding is achieved using 𝜂-expansion. In other words, we are taking ad-
vantage of the fact that 𝜆{(∗ ↩→ {l1 : A}) ↦→ v} is equivalent to 𝜆{(x : l1 ⊤) ↩→ A ↦→ v.l1}. This
explains why 𝐴− must be a negative type: only negative types have more primitive elimination
patterns to introduce them with. The syntax of value patterns also includes or- and and-patterns
written p1 |p2 and p1&p2. These provide 𝜂-principles for union and intersection types. Variables in
patterns are annotated with the type of value they are expected to match. They are bound in the
right hand side of a clause.

3.2 Operational Semantics

A small-step, call-by-value operational semantics is given in Figure 3. We use 𝑀 to range over
𝜆-bodies and E to range over evaluation contexts. Evaluation proceeds under all evaluation con-
texts as is standard. The metavariable 𝜎 ranges over substitutions: mappings from term and type
variables to values and types. A substitution may also contain at most one special mapping from ∗

to an elimination frame. The notation 𝜎 (e) applies the substitution: every variable in the domain
of 𝜎 is replaced with the corresponding type or value in e. The result is then placed in the frame F
if such a frame exists in 𝜎 .

The usual 𝛽 rules for type and term application are subsumed into a single rule which evaluates
terms of the form F [𝜆𝑀] (strong elimination forms applied to a value) using the dispatch meta-
function, disp. This procedure looks at every case 𝑝 ↦→ e in 𝑀 and checks whether F matches 𝑝 .
If so, a substitution 𝜎 and output type B are obtained. The result of disp is then a merge of the
expression e of every matching case with an appropriate substitution applied for pattern variables.
The notation F/𝑝 ⇒ 𝜎 ↩→ B used here indicates that elimination frame F matches elimination
pattern 𝑝; we will shortly present this process in more detail. A merge of two values evaluates to a
𝜆-expression with two corresponding cases. Note that the type that each of the values is annotated
with is remembered; the 𝜆 acts as a wrapper to hide access to any part of either value not described
by its type annotation. Type annotations on expressions other than merges can be safely dropped
during evaluation, since if the expression gets merged it will be annotated again in the merge.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:13

v/p ⇒ 𝜎 (value pattern matching)

v/𝑝 ⇒ 𝜎

c v/c 𝑝 ⇒ 𝜎

v/𝑝1 ⇒ 𝜎

v/(𝑝1 |𝑝2) ⇒ 𝜎

v/𝑝2 ⇒ 𝜎

v/(𝑝1 |𝑝2) ⇒ 𝜎

v/𝑝1 ⇒ 𝜎1 v/𝑝2 ⇒ 𝜎2 𝜎 = 𝜎1 ⊓ 𝜎2

v/(𝑝1&𝑝2) ⇒ 𝜎

v/(x : 𝐴−) ⇒ [x ↦→ v]

v/((x : A1)& (x : A2)) ⇒ 𝜎

v/(x : A1 ⊓ A2) ⇒ 𝜎

v/c (x : A) ⇒ [x ↦→ v′]

v/(x : c A) ⇒ [x ↦→ c v′]

v/((x : A1) | (x : A2)) ⇒ 𝜎

v/(x : A1 ⊔ A2) ⇒ 𝜎

F/𝑝 ⇒ 𝜎 ↩→ B (elimination pattern matching)

v/p ⇒ 𝜎

[·]v/(p ↩→ B) ⇒ 𝜎 ↩→ B [·] [A]/(𝛼 ↩→ B) ⇒ [𝛼 ↦→ A] ↩→ B[A/𝛼]

F/((x : A) ↩→ B) ⇒ [x ↦→ v] ↩→ B′

F/(∗ ↩→ (A → B)) ⇒ [∗ ↦→ [·]v] ↩→ B′

F/(𝛼 ↩→ B) ⇒ [𝛼 ↦→ A′] ↩→ B′

F/(∗ ↩→ ∀𝛼.B) ⇒ [∗ ↦→ [·] [A′]] ↩→ B′

F/(∗ ↩→ 𝐴−
1) ⇒ 𝜎1 ↩→ B1

F/(∗ ↩→ 𝐴−
2) ⇒ 𝜎2 ↩→ B2 𝜎 = 𝜎1 ⊓ 𝜎2

F/(∗ ↩→ 𝐴−
1 ⊔𝐴−

2) ⇒ 𝜎 ↩→ B1 ⊔ B2

F/(∗ ↩→ 𝐴−
1) ⇒ 𝜎1 ↩→ B1

F/(∗ ↩→ 𝐴−
2) ⇒ 𝜎2 ↩→ B2 𝜎 = 𝜎1 ⊔ 𝜎2

F/(∗ ↩→ 𝐴−
1 ⊓𝐴−

2) ⇒ 𝜎 ↩→ B1 ⊓ B2

F/(∗ ↩→ 𝐴−
1) ⇒ 𝜎 ↩→ B F/(∗ ↩→ 𝐴−

2) ;

F/(∗ ↩→ 𝐴−
1 ⊓𝐴−

2) ⇒ 𝜎 ↩→ B

F/(∗ ↩→ 𝐴−
1) ; F/(∗ ↩→ 𝐴−

2) ⇒ 𝜎 ↩→ B

F/(∗ ↩→ 𝐴−
1 ⊓𝐴−

2) ⇒ 𝜎 ↩→ B

𝜎 = 𝜎1 ⊓ 𝜎2

(𝜎1 ⊓ 𝜎2)(𝛼) = A1 where 𝜎1 (𝛼) = A1, 𝛼 not in 𝜎2
(𝜎1 ⊓ 𝜎2)(𝛼) = A2 where 𝜎2 (𝛼) = A2, 𝛼 not in 𝜎1
(𝜎1 ⊓ 𝜎2)(𝛼) = A where 𝜎1 (𝛼) = 𝜎2 (𝛼) = A

(𝜎1 ⊓ 𝜎2)(x) = v1 where 𝜎1 (x) = v1, x not in 𝜎2
(𝜎1 ⊓ 𝜎2)(x) = v2 where 𝜎2 (x) = v2, x not in 𝜎1
(𝜎1 ⊓ 𝜎2)(x) = v where 𝜎1 (x) = 𝜎2 (x) = v

(𝜎1 ⊓ 𝜎2)(∗) = F1 where 𝜎1 (∗) = F1, ∗ not in 𝜎2
(𝜎1 ⊓ 𝜎2)(∗) = F2 where 𝜎2 (∗) = F2, ∗ not in 𝜎1
(𝜎1 ⊓ 𝜎2)(∗) = F where 𝜎1 (∗) = 𝜎2 (∗) = F

𝜎 = 𝜎1 ⊔ 𝜎2

(𝜎1 ⊔ 𝜎2) (𝛼) = A

where 𝜎1 (𝛼) = 𝜎2 (𝛼) = A

(𝜎1 ⊔ 𝜎2) (x) = v

where 𝜎1 (x) = 𝜎2 (x) = v

(𝜎1 ⊔ 𝜎2)(∗) = F

where 𝜎1 (∗) = 𝜎2 (∗) = F

Fig. 4. Pattern Matching

Pattern Matching. Figure 4 gives the pattern matching algorithm. We write v/p ⇒ 𝜎 to mean
the value v matches the value pattern p, where 𝜎 describes the corresponding bindings for pattern
variables. During the matching process, constructors are compared to a pattern structurally. Or-
patterns match a value when either one of the two component patterns match. The type system
will ensure that the two patterns are mutually exclusive, so there is no need for a rule that handles
both patterns matching. An and-pattern matches a value when both of its subpatterns match. The
results of the two matches are combined with the partial 𝜎1 ⊓ 𝜎2 operation. On substitutions with
disjoint domains, this operation is concatenation. However, when the domains overlap it is defined
only when any variables present in both results are assigned the same value.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:14 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

Variable patterns annotated with negative types trivially match any value because values of
negative type have no discerning tags to take advantage of in the pattern matching process. On
the other hand, when the type is positive we can perform 𝜂-expansion. The last three cases of the
value pattern matching definition define matching of a variable pattern in terms of patterns for
the corresponding type. In this way, these variable patterns are essentially just shortcuts for more
primitive patterns.

A valuemaymatch a pattern variable annotatedwith a negative intersection or union type either
via the negative variable case or via the intersection/union case. The following lemma makes clear
that we get the same substitution as output either way.

Lemma 3.1. If v/(x : A) ⇒ 𝜎 then 𝜎 = [x ↦→ v].

PRoof. Routine induction on A. □

Thus, this issue is not a source of nondeterminism. However, the treatment of or-patterns does
introduce nondeterminism. A value v that matches the patterns p1 and p2 in two different ways
can also match p1 |p2 in both ways. The type system will rule out such nondeterministic examples
by ensuring only one side of an or-pattern ever matches. In other words, well-typed or-patterns
are exclusive and pattern matching is deterministic over well-typed patterns.

Dually, F/𝑝 ⇒ 𝜎 ↩→ B means that the elimination frame F matches the pattern 𝑝 , where the
substitution 𝜎 contains bindings for pattern variables and may additionally contain an elimination
frame. The negation of this definition, F/𝑝 ; means that F does not match 𝑝 . The type B is the
expected return type of the case of the 𝜆-expression in which 𝑝 appears.

The ∗ elimination patterns behave in a dual way to variable patterns. To understand them, it is
helpful to see an example. Consider the term e = 𝜆{(∗ ↩→ (A → B)) ↦→ v} v′. Here, F = [·]v′ and
𝑝 = ∗ ↩→ A → B. The matching procedure proceeds by recursively matching F against the pattern
(x : A) ↩→ B. In the end, the result is [∗ ↦→ [·]v′] with a return type of B. Thus, e ↦−→ (v v′ : B).

As with variable patterns for positive types, ∗ patterns for function and polymorphic types are
defined in terms of more primitive patterns. To keep F⊲⊳’s typechecking deterministic, however, the
language includes neither and-elimination patterns nor or-elimination patterns. Thus, ∗ patterns
for union and intersection types must be treated specially. This in effect offloads the nondetermin-
ism to the subtyping algorithm. The dual role of elimination patterns when compared with value
patterns can be counterintuitive when it comes to union and intersection types. For example, a
value matches a value pattern x : A1 ⊔ A2 when it matches one of either x : A1 or x : A2 but an
elimination frame matches an elimination pattern ∗ ↩→ A1 ⊔ A2 when it matches both ∗ ↩→ A1

and ∗ ↩→ A2. Similarly, 𝜎1 ⊓ 𝜎2 is used to combine substitutions during elimination matching for
union types while the dual 𝜎1 ⊔ 𝜎2 operation is used for intersection types.

4 TYPE SYSTEM

We now present the type system of F⊲⊳. It aims to guarantee both a conventional type soundness
property as well as determinism of reduction.

4.1 Subtyping

Types form a bounded distributive lattice under the subtyping relation (written A ≤ B) defined in
Figure 5. The standard subtyping rules for function, union, and intersection types are included in
this definition or derivable from the rules that are. For example, the rule

B ≤ A A′ ≤ B′

A → A′ ≤ B → B′

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:15

A ≤ B (declarative subtyping)

A ≤ A

A1 ≤ A2 A2 ≤ A3

A1 ≤ A3

A ≤ B

c A ≤ c B

A ≤ B

C → A ≤ C → B

A ≤ B

∀𝛼.A ≤ ∀𝛼.B

A2 ≤ A1

A1 → B ≤ A2 → B

A1 ≤ B

A1 ⊓ A2 ≤ B

A2 ≤ B

A1 ⊓ A2 ≤ B

A ≤ B1 A ≤ B2

A ≤ B1 ⊓ B2

(C → A) ⊓ (C → B) ≤ (C → A ⊓ B) (c A) ⊓ (c B) ≤ c (A ⊓ B)

(∀𝛼.A) ⊓ (∀𝛼.B) ≤ (∀𝛼.A ⊓ B) ∀𝛼.(A ⊔ B) ≤ (∀𝛼.A) ⊔ (∀𝛼.B) c (A ⊔ B) ≤ (c A) ⊔ (c B)

(A1 → B) ⊓ (A2 → B) ≤ (A1 ⊔ A2) → B

A ≤ B1

A ≤ B1 ⊔ B2

A ≤ B2

A ≤ B1 ⊔ B2 ⊥ ≤ B A ≤ ⊤

(A ⊔ B) ⊓ C ≤ (A ⊓ C) ⊔ (B ⊓ C)

A1 ≤ B A2 ≤ B

A1 ⊔ A2 ≤ B

Fig. 5. Declarative Subtyping

A ⊲⊳ B (mergeability)

A ⊳⊲ B

A → A′
⊲⊳ B → B′

B ⊲⊳ B′

A → B ⊲⊳ A → B′

A ⊲⊳ B A′
⊲⊳ B

A ⊓ A′
⊲⊳ B

A ⊲⊳ B

∀𝛼.A ⊲⊳ ∀𝛼.B

A ⊲⊳ B A′
⊲⊳ B

A ⊔ A′
⊲⊳ B

A ⊲⊳ax B

A ⊲⊳ B

B ⊲⊳ A

A ⊲⊳ B

A ⊲⊳ax B (merg. axioms)

⊤ ⊲⊳ax B

A → A′
⊲⊳ax ∀𝛼.B

A ⊳⊲ B (distinguishability)

A ⊳⊲ B

c A ⊳⊲ c B

A ⊳⊲ B A′
⊳⊲ B

A ⊔ A′
⊳⊲ B

A ⊳⊲ax B

A ⊳⊲ B

B ⊳⊲ A

A ⊳⊲ B

A ⊳⊲ B′ B ≤ B′

A ⊳⊲ B

A ⊳⊲ax B (dist. axioms)

⊥ ⊳⊲ax B

c1 ≠ c2

c1 A ⊳⊲ax c2 B

Fig. 6. Disjointness Relations

is derivable from transitivity and the co- and contravariance rules for the function type constructor.
Subtyping is defined to be reflexive and transitive. Additionally, unions and intersections distribute
over most other types. The following type equivalences hold:

c (A ⊔ B) ≡ (c A) ⊔ (c B) ∀𝛼.(A ⊓ B) ≡ (∀𝛼.A) ⊓ (∀𝛼.B)

(C → A) ⊓ (C → B) ≡ C → (A ⊓ B) (A → C) ⊓ (B → C) ≡ (A ⊔ B) → C

The notation A ≡ B denotes subtyping in both directions.
Due to the presence of overloading, we do not in general have (A → A′)⊓(B → B′) ≤ (A⊔B) →

(A′ ⊓ B′). Consider an overloaded function which produces an integer when given an integer and
produces a boolean when given a boolean. It has type (Int → Int) ⊓ (Bool → Bool). It cannot be
cast to the type (Int ⊔ Bool) → (Int ⊓ Bool) because given only one of an integer or boolean, it
is able to produce a value of only one of those types as a result—not both.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:16 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

Γ ⊢ A (type well-formedness)

𝛼 ∈ Γ

Γ ⊢ 𝛼

Γ ⊢ A

Γ ⊢ c A

Γ ⊢ A Γ ⊢ B

Γ ⊢ A → B

Γ, 𝛼 ⊢ B

Γ ⊢ ∀𝛼.B Γ ⊢ ⊤ Γ ⊢ ⊥

Γ ⊢ A1 Γ ⊢ A2 A1 ⊲⊳ A2

Γ ⊢ A1 ⊓ A2

Γ ⊢ A1 Γ ⊢ A2 A1 ⊳⊲ A2

Γ ⊢ A1 ⊔ A2

Fig. 7. Well-Formed Types

4.2 Disjoint and Well-Formed Types

The mergeability and distinguishability relations are defined inductively in Figure 6.

Mergeability. The idea of mergeability is to relate two typesA and Bwhen there is no potentially
ambiguous operation shared between them. Consider the following derivable rules.

l ≠ k

{l : A} ⊲⊳ {k : B}

A ⊲⊳ B

{l : A} ⊲⊳ {l : B}

The first states that any records with different labels are mergeable, because such types share no
operations in common. The second states that even when two types both contain the field l, they
may be merged if the contents of the field themselves are mergeable. In this case, some later part
of every operation on the two types (after the projection of l) will disambiguate a use of this type.

These two rules follow directly from the first two rules of Figure 6. Functions can be merged
when their arguments are distinguishable to form an overloaded function. Two functions that
take the same argument type can also be merged when their outputs can be. We previously saw
an example in which merging a constructor of type Int → {age : Int} with another of type
Int → {name : String} yields a combined constructor of type Int → {age : Int, name : String}
This style of merge supports nested composition and is also possible for universally quantified
types. A merge of values of types A and A′ (itself having type A ⊓ A′) can be merged with a
third value of type B when both A and A′ are mergeable with B. This ensures that operations on
B do not conflict with those of A or A′. Since a value of type A ⊔ A′ may actually have either
type A or A′, for this union type to be mergeable with another type, both A and A′ must be. A
value of type ⊤ cannot be used in any way. Thus this type can trivially be merged with any other
type. Finally, because application of terms to types is explicit in F⊲⊳, it is safe for function types
and universal quantifiers to be mergeable with each other. In systems where universal quantifiers
have no explicit elimination form, this may not be possible.

Distinguishability. Figure 6 also gives the distinguishability relation. Two types A and B are dis-
tinguishable when patterns of each type do not match values of the other type. In other words,
distinguishability means that the pattern matching procedure can tell values of one type from val-
ues of the other. Most of the distinguishability rules are straightforward or precisely dual to those
of mergeability. A key rule states that unequal type constructors are distinguishable. Another rule
closes distinguishability over the subtyping relation. As shown in §6.2, this property is important
for soundness of the type system.

Well-Formed Types. The well-formedness relation on types, written Γ ⊢ A ensures that:

(1) Only the type variables in Γ appear free in A.
(2) The components of every intersection in A are mergeable.
(3) The components of every union in A are distinguishable.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:17

The cases for unions and intersection types are the only non-standard part of the definition of this
relation, which is given in Figure 7.

The disjointness restrictions considerably simplify the type soundness argument by enabling
inversion principles that we will see in §6. In the case of unions, the restrictions similarly simplify
the pattern matching procedure. Consider matching the value v = 𝜆{(∗ ↩→ A ⊔ B) ↦→ v′} against
the pattern p = (x : A) | (x : B). The matching procedure we saw earlier would try to match v

against x : A and x : B separately. But these matches are potentially ill typed: A⊔ B is in general a
subtype of neither A nor B. With the disjointness restriction on unions, it can be proven that every
value of type A ⊔ B either has type A or type B. Thus, one of the two matches is well typed.

A notable drawback of the disjointness restriction is that it precludes employing intersections
as type refinements [Freeman and Pfenning 1991]. It appears that, under a notion of subtyping
with the right distributivity rules, non-distinguishable unions (and their patterns) can often be
simplified to distinguishable ones. Future work may study such an approach to support arbitrary
union and intersection types in F⊲⊳. For our present purposes, disjoint intersections and unions
capture the essence of what is necessary to investigate overloading and extensible data types.

4.3 Typing

Figure 8 defines F⊲⊳’s type system. It borrows some concepts from bidirectional typing which help
ensure that the rules are type-directed. The judgment Γ ⊢ e ⇒ A (“e synthesizes type A under Γ”)
means that A is the least type which can be assigned to e. In other words, A is the principal type
of e. Meanwhile, Γ ⊢ e ⇐ A (“e checks at type A under Γ”) signifies that e has the type A and
potentially some subtypes ofA. It is defined by a single rule and holds precisely when e synthesizes
some subtype of A under Γ. Unlike typical bidirectional systems, the distinction between checking
and synthesis is not exploited to reduce the need for type annotations.

Applications are typed with the help of a type-level dispatch operator disp(A, �̂�) ⇒ C. This is
similar in style to the 𝑎𝑝𝑝𝑡𝑦𝑝𝑒 function in the system of Freeman and Pfenning [1991]. The disp
metafunction takes the type of a function A and a context �̂� and computes the output type C.
Due to overloading and union types, the implementation of this operation is non-trivial. It must
statically determine which overloads of a function will execute. We will cover this in §5. It is,
however, expected to abide by the following spec:

Lemma 4.1 (Soundness and Completeness of Type-level Dispatch).

(1) We have disp(A, B) ⇒ C iff C is the least type such that A ≤ B → C.

(2) We have disp(A, [B]) ⇒ C iff C is the least type such that there exists A′ where A ≤ ∀𝛼.A′

and C ≤ A′ [B/𝛼].

Merges are typed by taking the intersection of the types they are annotated with. These types
must be mergeable. Types are assigned to a 𝜆-value by obtaining a type for each clause in its body,
ensuring that the inferred types of all clauses are disjoint, and constructing an intersection of those
types. This involves an auxiliary judgment Γ;𝑝 ⊢ e ⇒ A which infers the type A of a single clause
𝑝 ↦→ e. Inferring the type of a clause involves determining the types of the bound variables in 𝑝

as well as this pattern’s return type annotation. These are used to type the expression e.
The next two judgments type patterns. Value patterns are typed with the judgment Γ ⊢ p ⇒

A ⊣ Δ. The environment Γ contains the type variables free in p (as well as A, B, and Δ). The type A
is the type of value that p matches (i.e. the type that p eliminates). Lastly, Δ contains the type and
term variables bound by p.

An or-pattern binds only the variables that around bound by both subpatterns.This ensures that
at runtime there is always a value to assign to every bound variable, even if only one subpattern
matches. On the other hand, an and-pattern binds the variables that are mentioned on either side.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:18 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

Γ ⊢ e ⇔ A (expression type synthesis/checking)

x : A ∈ Γ

Γ ⊢ x ⇒ A

Γ ⊢ e ⇒ A

Γ ⊢ c e ⇒ c A

Γ ⊢ e ⇐ A

Γ ⊢ (e : A) ⇒ A

Γ ⊢ e ⇒ A A ≤ B

Γ ⊢ e ⇐ B

Γ ⊢ e2 ⇒ A2

Γ ⊢ e1 ⇒ A1 disp(A1,A2) ⇒ B

Γ ⊢ e1 e2 ⇒ B

Γ ⊢ A2

Γ ⊢ e ⇒ A1 disp(A1, [A2]) ⇒ B

Γ ⊢ e [A2] ⇒ B

Γ ⊢ 𝐴−
1 Γ ⊢ 𝐴−

2 𝐴−
1 ⊲⊳ 𝐴−

2
Γ ⊢ e1 ⇐ 𝐴−

1 Γ ⊢ e2 ⇐ 𝐴−
2

Γ ⊢ (e1 : 𝐴
−
1) q (e2 : 𝐴

−
2) ⇒ 𝐴−

1 ⊓𝐴−
2

Γ;𝑝1 ⊢ e1 ⇒ A1, ... , Γ; 𝑝n ⊢ en ⇒ An

A1 ⊲⊳ ... ⊲⊳ An

Γ ⊢ 𝜆{𝑝1 ↦→ e1, ... , 𝑝n ↦→ en} ⇒ A1 ⊓ ... ⊓ An

Γ ⊢ 𝑝 ⇒ A ⊣ Δ (value pattern typing)

Γ ⊢ A

Γ ⊢ (x : A) ⇒ A ⊣ x : A

Γ ⊢ p1 ⇒ A1 ⊣ Δ1 Γ ⊢ p2 ⇒ A2 ⊣ Δ2 A1 ⊳⊲ A2

Γ ⊢ p1 |p2 ⇒ A1 ⊔ A2 ⊣ Δ1 ⊔ Δ2

Γ ⊢ p ⇒ A ⊣ Δ

Γ ⊢ c p ⇒ c A ⊣ Δ

Γ ⊢ p1 ⇒ A1 ⊣ Δ1 Γ ⊢ p2 ⇒ A2 ⊣ Δ2 A1 ⊲⊳ A2 p1 ∼ p2

Γ ⊢ p1&p2 ⇒ A1 ⊓ A2 ⊣ Δ1 ⊓ Δ2

Γ;𝑝 ⊢ e ⇒ B (𝜆 clause typing)

Γ ⊢ 𝑝 ⇒ A ↩→ B ⊣ Δ

Γ,Δ ⊢ e ⇐ B

Γ;𝑝 ⊢ e ⇒ A

Γ ⊢ 𝑝 ⇒ A ↩→ B ⊣ Δ (elimination pattern typing)

Γ ⊢ 𝐵−

Γ ⊢ (∗ ↩→ 𝐵−) ⇒ 𝐵−
↩→ 𝐵− ⊣ ·

Γ ⊢ B Γ ⊢ p ⇒ A ⊣ Δ

Γ ⊢ (p ↩→ B) ⇒ (A → B) ↩→ B ⊣ Δ

Γ, 𝛼 ⊢ B

Γ ⊢ (𝛼 ↩→ B) ⇒ ∀𝛼.B ↩→ B ⊣ 𝛼

𝑝1 ∼ 𝑝2 (value pattern consistency)

(x : A) ∼ (y : B)

𝑝1 ∼ 𝑝2

c 𝑝1 ∼ c 𝑝2

𝑝1 ∼ 𝑝2 𝑝′1 ∼ 𝑝2

𝑝1&𝑝
′
1 ∼ 𝑝2

𝑝1 ∼ 𝑝2 𝑝1 ∼ 𝑝′2

𝑝1 ∼ 𝑝2&𝑝
′
2

Δ1 ⊔ Δ2 and Δ1 ⊓ Δ2

x : A ∈ (Δ1 ⊔ Δ2) iff x : A1 ∈ Δ1 and x : A2 ∈ Δ2 and A = A1 ⊔ A2

x : A1 ∈ (Δ1 ⊓ Δ2) if x : A1 ∈ Δ1 and x ∉ dom (Δ2)

x : A2 ∈ (Δ1 ⊓ Δ2) if x : A2 ∈ Δ2 and x ∉ dom (Δ1)

x : A1 ⊓ A2 ∈ (Δ1 ⊓ Δ2) if x : A1 ∈ Δ1 and x : A2 ∈ Δ2

Fig. 8. Typing Rules

The Δ1 ⊔ Δ2 and Δ1 ⊓ Δ2 operation take care of building the output environments in the typing of
these kinds of patterns. Their definitions are reminiscent of classical record subtyping.

One subtle point in the definition of value pattern matching is required to ensure determinism.
We need to rule out certain patterns like (x : ⊤)&c0 (x : (c1 ⊤⊔ c2 ⊤)) that bind the same variable
twice to distinct values. This is achieved by requiring that the two sides of an and-pattern are
consistent, written p1 ∼ p2. Elimination patterns are typed with the judgment Γ ⊢ 𝑝 ⇒ A ↩→ B ⊣ Δ.
The environments Γ and Δ perform the same functions as for value patterns. The type A, this time,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:19

is the type of context that 𝑝 matches (i.e. the type that 𝑝 introduces). Since elimination patterns
contain output type annotations, B is type of the expression bound under 𝑝 .

Example. Consider the value 𝜆{(c (f : Bool → Bool) ↩→ Int) ↦→ if f true then 1 else 0} of type
(c (Bool → Bool)) → Int. This function pattern matches on its input to extract a function f from
underneath a constructor c. Then it calls the function and returns an integer based on the result.

The elimination pattern 𝑝 = c (f : Bool → Bool) ↩→ Int is typed with the following derivation:

· ⊢ (f : Bool → Bool) ⇒ Bool → Bool ⊣ f : Bool → Bool

· ⊢ c (f : Bool → Bool) ⇒ c (Bool → Bool) ⊣ f : Bool → Bool

· ⊢ 𝑝 ⇒ (c (Bool → Bool) → Int) ↩→ Int ⊣ f : Bool → Bool

At the bottom, in the elimination pattern judgment, note that the type Int appears twice. The first
occurrence is to the right of the→ in the type, which becomes the type of the entire function. The
second is to the right of the ↩→ as the return type—that is, the type of the body if f true then 1 else 0.

5 TYPING ALGORITHM

The distinguishability, subtyping, and type-level dispatch relations have thus far been presented
only in a declarative manner. We here discuss the algorithms required to compute these relations.
As both of these play crucial roles in the type system, their implementations are necessary to show
the typing relation is computable.

5.1 Splitting, Subtyping, and Disjointness

The main difficulty in our subtyping algorithm design arises from the distributivity over inter-
sections and unions. A conventional technique adapted by many of the systems that support both
intersection and union types is to convert types to standard forms before analyzing them [Castagna
2022; Freeman and Pfenning 1991]. We instead follow the idea of splitting types [Huang and
Oliveira 2021], which normalizes types on the fly, and extend its subtyping to universally quanti-
fied and record types. The two splitting algorithms shown at the top of Figure 9 each take a type
and transform it into an equivalent union or intersection type, respectively. The type C → A ⊓ B,
for instance, is equivalent to (C → A) ⊓ (C → B), as we can derive spliti (C → A ⊓ B) ⇒ (C →

A) ⊓ (C → B). We use a negated arrow to express that a type is not splittable, e.g., splitu (Int) ;.
These rules encode all of the distributivity in subtyping and therefore take the burden off the al-

gorithmic subtyping rules (defined in the middle of Figure 9). Once we replace these type splitting
judgments by equations, i.e., write A = A1 ⊓ A2 and B = B1 ⊔ B2 instead of spliti (A) ⇒ A1 ⊓ A2

and splitu (B) ⇒ B1 ⊔ B2, the distributivity is fully eliminated, and we can see that the algorithmic
subtyping rules follow a standard presentation. Importantly, it coincides with declarative subtyp-
ing.

Lemma 5.1 (Soundness and Completeness of AlgoRithmic Subtyping).
A ≤ B if and only if A ≤alg B.

PRoof. Our proof follows that of Huang and Oliveira [2021]. The only if direction (soundness)
is straightforward: it follows from the soundness of the type splitting relations.

The key to proving the if direction (completeness) is demonstrating the transitivity of the al-
gorithmic system. For this, we induct on the sum of the sizes of the two types. When a type is
split, we have an induction hypothesis for each piece. From there, the proof makes use of auxiliary
inversion properties. □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:20 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

splitu (�̂�) ⇒ A1 ⊔ A2 (union splitting)

splitu (A ⊔ B) ⇒ A ⊔ B

splitu (A) ⇒ A1 ⊔ A2

splitu (∀ 𝛼.A) ⇒ (∀ 𝛼.A1) ⊔ (∀ 𝛼.A2)

splitu (A) ⇒ A1 ⊔ A2

splitu (c A) ⇒ c A1 ⊔ c A2

splitu (A) ⇒ A1 ⊔ A2

splitu (A ⊓ B) ⇒ (A1 ⊓ B) ⊔ (A2 ⊓ B)

splitu (A) ; splitu (B) ⇒ B1 ⊔ B2

splitu (A ⊓ B) ⇒ (A ⊓ B1) ⊔ (A ⊓ B2)

spliti (A) ⇒ A1 ⊓ A2 (intersection splitting)

spliti (A ⊓ B) ⇒ A ⊓ B

spliti (A) ⇒ A1 ⊓ A2

spliti (∀ 𝛼.A) ⇒ (∀ 𝛼.A1) ⊓ (∀ 𝛼.A2)

spliti (A) ⇒ A1 ⊓ A2

spliti (c A) ⇒ c A1 ⊓ c A2

spliti (B) ⇒ B1 ⊓ B2

spliti (A → B) ⇒ (A → B1) ⊓ (A → B2)

spliti (B) ; splitu (A) ⇒ A1 ⊔ A2

spliti (A → B) ⇒ (A1 → B) ⊓ (A2 → B)

spliti (A) ⇒ A1 ⊓ A2

spliti (A ⊔ B) ⇒ (A1 ⊔ B) ⊓ (A2 ⊔ B)

spliti (A) ; spliti (B) ⇒ B1 ⊓ B2

spliti (A ⊔ B) ⇒ (A ⊔ B1) ⊓ (A ⊔ B2)

A ≤alg B (algorithmic subtyping)

A ≤alg A

A ≤alg B

c A ≤alg c B

B1 ≤alg A1 A2 ≤alg B2

A1 → A2 ≤alg B1 → B2

A ≤alg B

∀ 𝛼.A ≤alg ∀ 𝛼.B ⊥ ≤alg A A ≤alg ⊤

spliti (A) ⇒ A1 ⊓ A2

A1 ≤alg B

A ≤alg B

spliti (A) ⇒ A1 ⊓ A2

A2 ≤alg B

A ≤alg B

spliti (B) ⇒ B1 ⊓ B2
A ≤alg B1 A ≤alg B2

A ≤alg B

splitu (A) ⇒ A1 ⊔ A2

A1 ≤alg B A2 ≤alg B

A ≤alg B

splitu (B) ⇒ B1 ⊔ B2 A ≤alg B1

A ≤alg B

splitu (B) ⇒ B1 ⊔ B2 A ≤alg B2

A ≤alg B

disp(A, �̂�) ⇒ C (type-level dispatch)

splitu (B) ⇒ B1 ⊔ B2
disp(A, B1) ⇒ C1 disp(A, B2) ⇒ C2

disp(A, B) ⇒ C1 ⊔ C2

splitu (�̂�) ;

disp(⊥, �̂�) ⇒ ⊥

splitu (B) ; B ≤ A

disp(A → A′, B) ⇒ A′

disp(∀ 𝛼.A, [B]) ⇒ A[B/𝛼]

splitu (�̂�) ;

disp(A1, �̂�) ⇒ C1 disp(A2, �̂�) ⇒ C2

disp(A1 ⊔ A2, �̂�) ⇒ C1 ⊔ C2

splitu (�̂�) ;

disp(A1, �̂�) ⇒ C1 disp(A2, �̂�) ;

disp(A1 ⊓ A2, �̂�) ⇒ C1

splitu (�̂�) ;

disp(A1, �̂�) ; disp(A2, �̂�) ⇒ C2

disp(A1 ⊓ A2, �̂�) ⇒ C2

splitu (�̂�) ;

disp(A1, �̂�) ⇒ C1 disp(A2, �̂�) ⇒ C2

disp(A1 ⊓ A2, �̂�) ⇒ C1 ⊓ C2

Fig. 9. Subtyping and Related Algorithms

Since the distinguishability relation is closed over subtyping, deciding it also requires dealing
with distributivity. Thus, the disjointness algorithm [Rioux et al. 2022b] uses splitting just as the
subtyping algorithm does.

5.2 Typing Application

The meta function disp(A, B) ⇒ C is used to calculate the most precise output type for both
applications and type applications. The function type A has a very general form as it describes
overloaded functions or nested compositions. Metavariable �̂� captures two cases: it is either the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:21

term’s type in an ordinary application, which we use B to represent, or the type argument in a
type application, denoted by [B]. The definitions ensure that type arguments are not splittable. In
other words, splitu ([B]) ; holds trivially.

The base case for a type application is when a universal quantified type or a bottom type meets
a type argument. Unlike in the function application rule, which checks subtyping, there is no side
condition for type application, so we do not need to process the type argument. The dispatch
function looks into all the universally quantified types in A, substitutes the type argument into
their bodies and then re-composes them back into the original structure (all the bottom types are
also kept in the process). For example, we have: disp((⊥ ⊔ ∀𝛼.A), [B]) ⇒ ⊥ ⊔ A[B/𝛼].

For an intersection type to be applicable, the dispatch function requires that at least one part
of it is applicable. Imagine an overloaded function with two implementations typed by A1 → A2

and B1 → B2, respectively. The argument only needs to satisfy either A1 or B1 for at least one
implementation to be applicable in the runtime. For unions, it is mandatory that both parts are
applicable, as unions only guarantee that one side is satisfied.

Dispatch splits unions in the argument type eagerly. To seewhy, consider the following situation,
where an intersection of two function types is applied to a union. The two function types can each
take one of the possible argument types, but when directly compared with the whole argument
type, neither can have the subtyping condition satisfied.

disp(((Int → A1) ⊓ (Bool → A2)), Int ⊔ Bool) ⇒ A1 ⊔ A2

After our dispatch function tears the argument type apart, both applications can proceed.
As the type of a term evolves during reduction, the dispatch function must be monotonic to

ensure soundness. Specifically, the subtypes of two applicable types must also be applicable, and
the return type computed by the dispatch function should be a subtype of the original return type.

Lemma 5.2 (Monotonicity of Type-Level Dispatch).

(1) If disp(A, �̂�) ⇒ C and A′ ≤ A then there exists C′ ≤ C such that disp(A′, �̂�) ⇒ C′.

(2) If disp(A, B) ⇒ C and B′ ≤ B then there exists C′ ≤ C such that disp(A, B′) ⇒ C′.

PRoof. Follows from the type-level dispatch specification given by Lemma 4.1. □

6 RESULTS

We prove the soundness of F⊲⊳’s type system using a progress and preservation argument [Wright
and Felleisen 1994]. Given the presence of copatterns, our proof structure in some ways resem-
bles that of Abel et al. [2013]. It requires a standard substitution lemma as well as inversion and
canonical forms lemmas.

Thanks to the presence of elimination pattern matching, we need to reason not only about the
shape of well-typed values, but also well-typed elimination frames. Figure 10 defines typing judg-
ments for elimination frames. The type 𝐴 of an elimination frame F is given by the judgment
Γ ⊢ F ⇒ 𝑉 . An alternative method of typing elimination frames is by thinking of them as contexts
which, when filled with an expression of type A, produce an expression of type B. In this case, we
write Γ;A ⊢ F ⇒ B. With these definitions, we state our canonical forms lemma. This lemma
describes the shape of a value or elimination frame given its type.

Lemma 6.1 (Canonical FoRms).

(1) If · ⊢ v ⇐ c A then there exists v′ such that v = c v′.

(2) If · ⊢ v ⇐ A → B then there exists𝑀 such that v = 𝜆𝑀 .

(3) If · ⊢ v ⇐ ∀𝛼.A then there exists𝑀 such that v = 𝜆𝑀 .

(4) There is no v such that · ⊢ v ⇐ ⊥.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:22 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

value types V ::= c V | 𝐴− elim. frame types 𝑉 ::= V | [A]

Γ ⊢ F ⇒ 𝑉 (elim. frame typing)

Γ ⊢ v ⇒ V

Γ ⊢ [·]v ⇒ V Γ ⊢ [·] [A] ⇒ [A]

Γ;A ⊢ F ⇔ B (elim. type synthesis/checking)

Γ ⊢ F ⇒ 𝑉

disp(A,𝑉) ⇒ B

Γ;A ⊢ F ⇒ B

Γ;A ⊢ F ⇒ B′

B′ ≤ B

Γ;A ⊢ F ⇐ B

V/A ⇒+
✓ (value coverage)

V/A ⇒+
✓

c V/c A ⇒+
✓

V/A ⇒+
✓

V/A ⊔ B ⇒+
✓

V/B ⇒+
✓

V/A ⊔ B ⇒+
✓

V/A ⇒+
✓

V/B ⇒+
✓

V/A ⊓ B ⇒+
✓

V/𝐴− ⇒+
✓

𝑉 /𝐴− ⇒−
✓ (elimination coverage)

V/A ⇒+
✓

V/A → B ⇒−
✓ [B]/∀𝛼.A ⇒−

✓

𝑉 /𝐴−
1 ⇒−

✓

𝑉 /𝐴−
2 ⇒−

✓

𝑉 /𝐴−
1 ⊔𝐴−

2 ⇒−
✓

𝑉 /𝐴−
1 ⇒−

✓

𝑉 /𝐴−
1 ⊓𝐴−

2 ⇒−
✓

𝑉 /𝐴−
2 ⇒−

✓

𝑉 /𝐴−
1 ⊓𝐴−

2 ⇒−
✓

Fig. 10. Definitions Used in Soundness Proof

(5) If ·;A → A′ ⊢ F ⇒ B then there exists v such that F = [·]v.

(6) If ·;∀𝛼.A ⊢ F ⇒ B then there exists C such that F = [·] [C]

(7) There are no F and B such that ·;⊤ ⊢ F ⇒ B.

PRoof. By case analysis on the value or frame in each part, using properties of subtyping. □

We also have a number of additional inversion principles for the typing relation. Most notable
are those for union and intersection types. Perhaps surprisingly, inversion principles for unre-
stricted union types remain an active object of study [Castagna et al. 2022]. Given our disjointness
restrictions, we are straightforwardly able to obtain:

Lemma 6.2. If Γ ⊢ v ⇐ A1 ⊔ A2 and A1 ⊳⊲ A2 then Γ ⊢ v ⇐ A1 or Γ ⊢ v ⇐ A2.

PRoof. By properties of subtyping. □

The distinguishability premise is crucial to this lemma, as is the fact that v is a value. Dually, we
also have a property about frames that eliminate intersections of mergeable types.

Lemma 6.3. Suppose · ⊢ A1 ⊓ A2. If ·;A1 ⊓ A2 ⊢ F ⇒ B then there exists a B′ such that either

·;A1 ⊢ F ⇒ B′ or ·;A2 ⊢ F ⇒ B′.

PRoof. By properties of type-level dispatch. □

6.1 Progress

To prove progress, we must show that every closed, well-typed term is either a value or may take
a step. The key coverage lemma needed here is that if a value v and a pattern p have type A, then
v should successfully match p. An analogous property for elimination frames and elimination
patterns is also needed. There are a couple of issues. First, A is not necessarily the principal type of
v, so coverage is fundamentally a property relating subtyping to pattern matching. The subtyping
relation is relatively complex, so proceeding directly by induction on it is tricky. Second, the type
A does not uniquely determine the shape of the pattern p, which would require a direct proof to
analyze many cases.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:23

To deal with these issues, we define the value coverage relation V/A ⇒+
✓, where V is the

principal type of a value (also called a value type and described by Figure 10) and A is the type
of a pattern. This relation holds when values of type V match patterns of type A; the defining
rules of the relation in Figure 10 closely correspond to the rules defining the pattern matching
procedure from Figure 4. To abstract over elimination pattern matching, we similarly define an
elimination coverage relation 𝑉 /𝐴− ⇒−

✓. Here, 𝑉 is the type of an elimination frame. The
matching abstraction lemmas describe the intent behind both of these definitions. That is, if a
value’s (resp. elimination frame’s) type matches a pattern’s type, then the value (resp. elimination
frame) matches the pattern.

Lemma 6.4 (PatteRn Matching AbstRaction).

(1) Suppose · ⊢ v ⇒ V and · ⊢ A. If V/A ⇒+
✓ then v matches all patterns p for which there

exists some Δ such that · ⊢ p ⇒ A ⊣ Δ.

(2) Suppose · ⊢ F ⇒ 𝑉 and · ⊢ 𝑝 ⇒ 𝐵−
↩→ C ⊣ Δ. If 𝑉 /𝐵− ⇒−

✓ then F matches 𝑝 .

PRoof. For the first case, proceed by induction on V/A ⇒+
✓ and𝑉 /𝐵− ⇒−

✓ using inversion
properties of pattern typing and subtyping. The proof of the second case is analogous. □

This lemma allows us to reason about pattern matching purely at the type level; we need not
worry about the particular values or patterns involved. It is an approach with a clear connection
to abstract interpretation [Cousot and Cousot 1977].

It remains to connect subtyping and the type-level dispatch operator to the coverage relations.

Lemma 6.5 (Completeness of CoveRage Relations).

(1) If V ≤ A then V/A ⇒+
✓.

(2) If there exists C such that disp(𝐴−,𝑉) ⇒ C then 𝑉 /𝐴− ⇒−
✓.

PRoof. Both are proved via induction on the premise and use some auxiliary lemmas that con-
struct the coverage relation judgments when one involved type is splittable. The proof of the sec-
ond part makes use of the first when 𝐴− is an arrow type. □

Coverage now follows easily from the previous two lemmas.

Lemma 6.6 (CoveRage).

(1) Suppose · ⊢ A. If Γ ⊢ v ⇐ A and Γ ⊢ p ⇒ A ⊣ Δ then v matches p.

(2) If · ⊢ F ⇒ 𝑉 and disp(𝐴−,𝑉) ⇒ B1 and · ⊢ 𝑝 ⇒ 𝐴−
↩→ B2 ⊣ Δ then F matches 𝑝 .

PRoof. We prove the first case; the second case follows analogously from the same lemmas. By
the definition of Γ ⊢ v ⇐ A, we have Γ ⊢ v ⇒ V where V ≤ A. By Lemma 6.5, we have
V/A ⇒+

✓. Applying Lemma 6.4 to this, we have that v matches p. □

The desired progress lemma is a consequence of coverage.

Lemma 6.7 (PRogRess). If · ⊢ e ⇒ A then e is a value or there exists e′ such that e ↦−→ e′.

PRoof. By induction on the typing derivation for e. The cases for elimination forms rely upon
Lemma 6.6. □

6.2 Preservation

We face a rather subtle barrier to proving preservation. Consider the well-typed application of an
overloaded function to an argument:

e = 𝜆{(x : Int) ↩→ Int ↦→ e1, (x : Bool) ↩→ Bool ↦→ e2} v

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:24 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

Assuming · ⊢ v ⇒ A and x : Int ⊢ e1 ⇐ Int and x : Bool ⊢ e2 ⇐ Bool, we find that e has
a type B such that disp((Int → Int) ⊓ (Bool → Bool),A) ⇒ B. The expression e reduces to the
expression e′ below:

e′ = disp({𝑝1 ↦→ e1, 𝑝2 ↦→ e2}, [·]v)

Establishing type preservation requires showing that the type of e′ is a subtype of B.The problem
arises in trying to determine what B is. The type-level dispatch operator first splits the type A. This
makes things difficult since the only thing we know about A is that it is the type of an arbitrary
value v. Intuitively, it seems that B should be the intersection of the output type of each overload
that accepts B as an input. Unfortunately, that is not always true. Suppose A = Int ⊔ Bool. In this
case, A is a subtype of neither Int nor Bool. On the other hand, B ≡ Int⊔Bool. Thankfully, it turns
out this case is impossible. There is no value whose principal type is Int ⊔ Bool; it is not a value
type. To take advantage of this fact, we first need a couple of properties relevant to the dispatch
procedure.

Lemma 6.8 (DownwaRd ClosuRe of Distinguishability). If A ⊳⊲ B and B′ ≤ B then A ⊳⊲ B′.

PRoof. Immediate from the distinguishability rules. □

Lemma 6.9 (Dispatch). Suppose splitu (B) ; and splitu (B
′) ;. If A1 ⊲⊳ A2 and disp(A1, B) ⇒ C1

and disp(A1, B
′) ; and disp(A2, B

′) ⇒ C′
2 then B ⊳⊲ B′.

PRoof. By induction on A1 ⊲⊳ A2, using Lemma 6.8. □

From these we can prove the required properties of the disp operator.

Lemma 6.10 (Type-Level Dispatch on Value Types).
Suppose · ⊢ A1 ⊓ A2 and disp(A1 ⊓ A2,𝑉) ⇒ B and disp(A1,𝑉) ⇒ B1.

(1) If disp(A2,𝑉) ⇒ B2 then B1 ⊓ B2 ≤ B.

(2) If disp(A2,𝑉) ; then B1 ≤ B.

PRoof. By scrutinizing whether 𝑉 is splittable and applying inversion properties of the type-
level dispatch operator. □

Thanks to this lemma, we know that we can compute the output type of an application of an over-
loaded function to an unkown value from the output types of each individual overload. Lemma 5.2
allows the subtyping relationships in the conclusion of each of these cases to be strengthened to
an equivalence.

With that difficulty taken care of, we next turn our attention to two key properties of pattern
matching. The first ensures that patterns of distinguishable types are mutally exclusive while the
second ensures that substitutions produced from pattern matching are well-typed.

Lemma 6.11 (Distinguishable PatteRns). Suppose Γ ⊢ p1 ⇒ A1 ⊣ Δ1 and Γ ⊢ p2 ⇒ A2 ⊣ Δ2

where A1 ⊳⊲ A2. There does not exist a closed, well-typed value that matches both p1 and p2.

PRoof. By properties of the coverage relations and induction on A1 ⊳⊲ A2. □

Lemma 6.12 (Adeacy).

(1) If · ⊢ p ⇒ A ⊣ Δ and Γ ⊢ v ⇐ A and v/p ⇒ 𝜎 then Γ ⊢ 𝜎 ⇐ Δ.

(2) Suppose · ⊢ A, and · ⊢ 𝑝 ⇒ A ↩→ B1 ⊣ Δ, and ·;A ⊢ F ⇒ B2, and F/𝑝 ⇒ 𝜎 ↩→ B3. Then

·;B1 ⊢ 𝜎 ⇐ Δ ↩→ B3 and B3 ≤ B2.

PRoof. By induction on the pattern matching rules using Lemma 6.11. In the case of value
pattern matching against or-patterns, we again make use of Lemma 6.6. □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:25

The judgement ·;B1 ⊢ 𝜎 ⇐ Δ ↩→ B3 in the conclusion above means, first, that each value in
𝜎 has a type given by Δ and, second, that an elimination frame in 𝜎 has input and output types
B1 and B3 respectively. We refer the reader to the technical appendix [Rioux et al. 2022b] for its
formal definition. With adequacy established, we can now prove the type preservation lemma.

Lemma 6.13 (PReseRvation). If · ⊢ e ⇐ A and e ↦−→ e′ then · ⊢ e′ ⇐ A.

PRoof. By induction on e ↦−→ e′, making use of Lemma 5.2, Lemma 6.10, and Lemma 6.12. □

6.3 Soundness and Determinism

With progress and preservation proven, our main result is now within reach.

TheoRem 6.14 (Type Soundness). If · ⊢ e ⇐ A and e ↦−→∗ e′ then either e′ is a value or e′ can

take another step.

PRoof. Follows from Lemma 6.7 and Lemma 6.13. Note that e synthesizes some subtype of A
by the definition of the checking relation. Thus, fulfilling the premise of the progress lemma is not
a problem. □

This establishes that well-typed programs do not “go wrong” [Milner 1978]. Furthermore, the
type system also ensures the determinism of reduction.

Lemma 6.15 (DeteRminism of Evaluation).

(1) If Γ ⊢ p ⇒ A ⊣ Δ and Γ ⊢ v ⇐ A and v/p ⇒ 𝜎1 and v/p ⇒ 𝜎2 then 𝜎1 = 𝜎2.

(2) If Γ ⊢ 𝑝 ⇒ A ↩→ B ⊣ Δ and Γ ⊢ F ⇒ 𝑉 and F/𝑝 ⇒ 𝜎1 ↩→ B1 and F/𝑝 ⇒ 𝜎2 ↩→ B2 then

𝜎1 = 𝜎2 and B1 = B2.

(3) Suppose · ⊢ e ⇒ A. If e ↦−→ e1 and e ↦−→ e2 then e1 = e2.

PRoof. The only source of nondeterminism in the definition of patternmatching (and reduction)
is when p has the form p1 |p2 where vmatches both p1 and p2. By inversion on the typing derivation
for p1 |p2, the type of p1 must be distinguishable from that of p2. This contradicts Lemma 6.11. □

7 RELATEDWORK

TheMerge Operator and Disjoint Intersection Types. Oliveira et al. [2016] proposed the 𝜆𝑖 calculus,
which only allows intersections of disjoint types. The goal of the disjointness restriction was to
address the ambiguity in Dunfield’s calculus and prove the coherence of the elaboration. Various
extensions to 𝜆𝑖 , as well as relaxations to the type system were proposed afterwards. Bi et al.
[2018] relaxed the disjointness restriction, requiring it only on merges and allowing the use of
unrestricted intersections. To enable nested composition, they added a more powerful subtyping
relation based on the well-known BCD subtyping [Barendregt et al. 1983] relation, which supports
distributivity rules for intersections over other type constructs.

Huang et al. [2021] proposed a new approach to model the type-directed semantics of calculi
with a merge operator, allowing for a direct proof of determinism of the operational semantics.
Runtime implicit (up)casting replaces coercive subtyping. For example, being annotated by an in-
tersection type A⊓Bmeans that a value will be cast by A and B respectively and merged together.
F⊲⊳ also uses a type-directed semantics, but it does not employ a casting relation. Instead, our dy-
namic semantics is based on 𝜂-expansion. At runtime, merges are rewritten without duplication
and other annotations are discarded. In addition, unlike all previous calculi with disjoint inter-
section types, F⊲⊳ supports overloading and union types by using two, more refined, disjointness
relations (distinguishability and mergeability). The mergeability relation in F⊲⊳ is closely related

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

18:26 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

to the disjointness relation in the previous calculi. At the moment, F⊲⊳ does not yet support unre-
stricted intersections/unions and disjoint polymorphism, but we plan to study these extensions in
the future.

Refinement Types. Intersection and union types are used in refinement type systems to increase
the type-level expressiveness [Davies and Pfenning 2000; Freeman and Pfenning 1991]. Such sys-
tems either do not support overloading, as there is no merge, or use it only as a mechanism to
annotate the term differently [Dunfield 2012]. These type systems face a similar problem: they
must calculate the return type for application, where the function can have an intersection or
union type. Due to the lack of overloading, the subtyping relation can be stronger, as we discussed
in §4.1, but reduction is type irrelevant and often erases annotations.

Overloading, Semantic Subtyping, and CDuce. Castagna et al. [1995] studied a restricted form of
the merge operator for overloading. In their calculus 𝜆& only merges of functions are allowed and
only one function is selected for 𝛽-reduction, so nested composition is not supported. Instead of dis-
jointness, the criteria in 𝜆& for types of merged functions is: for any argument that they can take, a
best-matching type always exists. This restriction forbids merging a function of Int → Int → Int

and a function of Int → Bool → Bool, but it allows overlapping among overloaded functions,
which violates disjointness. Nonetheless adding more implementations to an overloaded function
may lead to a different implementation being choosen with a best-match semantics, which could
be unexpected. With disjointness this cannot happen, since adding a new overlapping implemen-
tation to an existing merge would result in a type error.

The semantic subtyping [Frisch et al. 2008] approach gives types a set-theoretic interpretation.
Calculi with semantic subtyping are equipped with very expressive subtyping relations, contain-
ing unions, intersections, negation types and various distributivity rules. F⊲⊳ employs syntactic
subtyping. While its subtyping relation is quite expressive, it does not support negation types.
Calculi with semantic subtyping support expressive forms of overloading, which is typically re-
solved using a best-match semantics, as in Castagna et al.’s work. However, existing calculi with
semantic subtyping do not support a merge operator or nested composition, key features for com-
positional programming [Zhang et al. 2021]. In contrast, F⊲⊳ is designed to support compositional
programming features, and nested composition in particular. It integrates features of two previ-
ously separate types of calculi: those with disjoint intersection types and those with overloading.

CDuce uses semantic subtyping. Its core calculus [Xu 2013] has a type-case expression which
has two branches and takes an expression, whose type, after evaluating to a value, determines
which branch will be executed. Due to its special typing rule, the type case can encode overloaded
functions typed by an intersection type, making it very similar to disjoint merges. But it has no
disjointness constraint and only compares the value’s type against a given type then behaves like
a if-then-else expression. The cost is: functions in CoreCDuce are explicitly annotated. In contrast,
our distinguishability relation intentionally avoids the need for comparing a function value to a
function type in the runtime.

Elimination Constructs for Union Types. Unlike sum types (or tagged unions), untagged unions
are not always equipped by an explicit elimination construct. When first introduced by MacQueen
et al. [1984], the typing rule for union allows it to be eliminated under any context that can han-
dle both possibilities of the union. Unfortunately, this rule breaks type preservation unless the
𝛽-reduction is performed in parallel [Barbanera et al. 1995]. A sound calculus with this typing rule
must avoid evaluating the term of a union type multiple times after it substitutes the same vari-
able. Two kinds of restrictions are employed in the literature: van Bakel et al. [2000] only allows
values to be typed with union types, while Dunfield and Pfenning [2003] types subterms of union

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

A Bowtie for a Beast 18:27

type only when they occur in an evaluation context. The latter kind is a generalization of a more
stringent approach employed by Pierce [1991b] that limits the context to be a union elimination
form.

For the above calculi, the same piece of code is executed no matter what runtime type the term
has. But practically, many languages supporting union types choose to have a type-dependent
elimination construct: Igarashi and Nagira [2006] proposed a case analysis expression for Feath-
erweight Java. XDuce has a pattern matching expression [Hosoya and Pierce 2003]. Generally
speaking, the elimination constructs in those languages offer a first-match semantics, where cases
can overlap and reordering the cases may change the semantics of the program. In F⊲⊳ union
types are eliminated directly with applications, where the function part can, but does not have to
be overloaded. Overloading functions, compared to type-case expression (typed by unions), pro-
vide more precise typing results as it can discriminate the argument type. For example, applying
(Int → Int) ⊓ (Bool → Bool) to Int gives us Int while the corresponding type-case, which has
type (Int ⊔ Bool) → (Int ⊔ Bool), can only gives us Int ⊔ Bool. Note that the intersection type is
a (proper) subtype of the function type with distributivity laws in subtyping. Based on matching
styles, Rehman et al. [2022]’s work is the closest to ours. They proposed a union elimination con-
struct (a switch-case expression) based on disjointness. Their construct is inspired by the Ceylon
language [King 2013]. Their disjointness relation is closely related to our notion of distinguisha-
bility. Although their system supports intersection types, it does not have a merge operator and
all values have a principal type that is not an intersection or union, which eliminates many of the
technical issues at the cost of significantly less expressive power.

DATA AVAILABILITY STATEMENT

This article’s artifact [Rioux et al. 2022a] contains a Coq development formalizing the type-level
metatheory of this paper including subtyping, dispatch, and disjointness.

ACKNOWLEDGMENTS

This work has been partially funded by the Hong Kong Research Grants Council projects num-
ber 17209519, 17209520 and 17209821 and also supported by the National Science Foundation un-
der grant number 1521539 and the Office of Naval Research under grant number N00014-17-1-
2930. The first author was supported by a NSF Graduate Research Fellowship under grant number
1845298. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the NSF or the ONR.

REFERENCES

Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. 2013. Copatterns: Programming Infinite Structures
by Observations. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (Rome, Italy) (POPL ’13). Association for Computing Machinery, New York, NY, USA, 27–38.
Jean-Marc Andreoli. 1992. Logic programming with focusing proofs in linear logic. Journal of logic and computation 2, 3

(1992), 297–347.
Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. 1995. Intersection and Union Types: Syntax and

Semantics. Information and Computation 119, 2 (June 1995), 202–230.
Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A filter lambda model and the completeness

of type assignment. The journal of symbolic logic 48, 04 (1983), 931–940.
Xuan Bi and Bruno C. d. S. Oliveira. 2018. Typed First-Class Traits. In European Conference on Object-Oriented Programming

(ECOOP).
Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2018. The Essence of Nested Composition. In European Conference on

Object-Oriented Programming (ECOOP).
Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. Distributive Disjoint Polymorphism for Compo-

sitional Programming. In European Symposium on Programming (ESOP).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

https://www.ugc.edu.hk/eng/rgc/

18:28 Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic

Richard Bird and Oege de Moor. 1996. The Algebra of Programming. Prentice-Hall. http://www.cs.ox.ac.uk/publications/
books/algebra/

Luca Cardelli and John C. Mitchell. 1990. Operations on Records. In Proceedings of the Fifth International Conference on

Mathematical Foundations of Programming Semantics (New Orleans, Louisiana, USA). Springer-Verlag, Berlin, Heidel-
berg, 22–52.

J. Carette, O. Kiselyov, and C. Shan. 2009. Finally tagless, partially evaluated: Tagless staged interpreters for simpler typed
languages. Journal of Functional Programming 19, 05 (2009), 509–543.

Giuseppe Castagna. 1997. Unifying Overloading and 𝜆-Abstraction: Λ{} . Theor. Comput. Sci. 176, 1–2 (apr 1997), 337–345.
Giuseppe Castagna. 2022. Covariance and Controvariance: a fresh look at an old issue (a primer in advanced type systems

for learning functional programmers). Logical Methods in Computer Science Volume 16, Issue 1 (Feb. 2022).
Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. 1995. A calculus for overloaded functions with subtyping. Infor-

mation and Computation 117, 1 (feb 1995), 115–135.
Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze. 2022. On Type-Cases, Union Elimination, and

Occurrence Typing. Proc. ACM Program. Lang. 6, POPL, Article 13 (Jan 2022), 31 pages.
Adriana B Compagnoni and Benjamin C Pierce. 1996. Higher-order intersection types and multiple inheritance. Mathe-

matical Structures in Computer Science (MSCS) 6, 5 (1996), 469–501.
William R. Cook, Walter Hill, and Peter S. Canning. 1989. Inheritance is Not Subtyping. In Proceedings of the 17th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’90). Association for Computing Machin-
ery, 125–135.

Mario Coppo and Mariangiola Dezani-Ciancaglini. 1978. A new type assignment for 𝜆-terms. Archiv. Math. Logik 19 (Jan
1978), 139–156.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: AUnified LatticeModel for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery, New York, NY,
USA, 238–252.

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In Proceedings of the Fifth ACM

SIGPLAN International Conference on Functional Programming (ICFP ’00). Association for Computing Machinery, New
York, NY, USA, 198–208.

Jana Dunfield. 2012. Annotations for Intersection Typechecking. In Proceedings of the Sixth Workshop on Intersection Types

and Related Systems (EPTCS, Vol. 121), Stéphane Graham-Lengrand and Luca Paolini (Eds.). 35–47.
Jana Dunfield. 2014. Elaborating Intersection and Union Types. J. Functional Programming 24, 2–3 (2014), 133–165.
Jana Dunfield and Frank Pfenning. 2003. Type assignment for intersections and unions in call-by-value languages. In

International Conference on Foundations of Software Science and Computation Structures. Springer, 250–266.
Erik Ernst. 2001. Family Polymorphism. In European Conference on Object-Oriented Programming (ECOOP).
Tim Freeman and Frank Pfenning. 1991. Refinement types for ML. In Proceedings of the ACM SIGPLAN 1991 conference on

Programming language design and implementation. 268–277.
Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: Dealing Set-Theoretically with

Function, Union, Intersection, and Negation Types. J. ACM 55, 4, Article 19 (Sep 2008), 64 pages.
Haruo Hosoya and Benjamin C Pierce. 2003. XDuce: A statically typed XML processing language. ACM Transactions on

Internet Technology (TOIT) 3, 2 (2003), 117–148.
Xuejing Huang and Bruno C. d. S. Oliveira. 2021. Distributing intersection and union types with splits and duality (func-

tional pearl). Proceedings of the ACM on Programming Languages 5, ICFP (2021), 1–24.
Xuejing Huang, Jinxu Zhao, and Bruno C. D. S. Oliveira. 2021. Taming the Merge Operator. Journal of Functional Program-

ming 31 (2021).
Atsushi Igarashi and Hideshi Nagira. 2006. Union types for object-oriented programming. In Proceedings of the 2006 ACM

symposium on Applied computing. 1435–1441.
Gavin King. 2013. The Ceylon language specification, version 1.0. https://ceylon-lang.org/documentation/1.0/spec/
David MacQueen, Gordon Plotkin, and Ravi Sethi. 1984. An ideal model for recursive polymorphic types. In Proceedings of

the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming languages. 165–174.
Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17 (Aug. 1978), 348–375.
Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay Mihaylov,

Michel Schinz, Erik Stenman, and Matthias Zenger. 2004. An overview of the Scala programming language. Technical
Report. EPFL.

Bruno C. d. S. Oliveira and William R. Cook. 2012. Extensibility for the Masses. In European Conference on Object-Oriented

Programming (ECOOP).
Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. 2016. Disjoint intersection types. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming (New York, NY, USA, 2016-09-04) (ICFP 2016). Association

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

http://www.cs.ox.ac.uk/publications/books/algebra/
http://www.cs.ox.ac.uk/publications/books/algebra/
https://ceylon-lang.org/documentation/1.0/spec/

A Bowtie for a Beast 18:29

for Computing Machinery, 364–377.
Dominic Orchard and Tom Schrijvers. 2010. Haskell Type Constraints Unleashed. In Proceedings of the 10th International

Conference on Functional and Logic Programming (Sendai, Japan) (FLOPS’10). Springer-Verlag, Berlin, Heidelberg, 56–71.
Benjamin C Pierce. 1991a. Programming with intersection types and bounded polymorphism. Ph.D. Dissertation. CMU-CS-

91-205, Carnegie Mellon University.
Benjamin C Pierce. 1991b. Programming with intersection types, union types, and polymorphism. Technical Report.
Garrel Pottinger. 1980. A type assignment for the strongly normalizable 𝜆-terms. To HB Curry: essays on combinatory logic,

lambda calculus and formalism (1980), 561–577. Academic Press.
Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. 2022. Union Types with Disjoint Switches. In 36th

European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany (LIPIcs, Vol. 222),
Karim Ali and Jan Vitek (Eds.).

John C. Reynolds. 1988. Preliminary design of the programming language Forsythe. Technical Report. CMU-CS-88-159,
Carnegie Mellon University.

John C. Reynolds. 1997. Design of the Programming Language FORSYTHE. Birkhauser Boston Inc., USA, 173–233.
Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic. 2022a. A Bowtie for a Beast (Artifact). https:

//doi.org/10.5281/zenodo.7409103
Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic. 2022b. A Bowtie for a Beast (Technical Appendix).

Technical Report. MS-CIS-22-02, University of Pennsylvania.
Tiark Rompf and Nada Amin. 2016. Type Soundness for Dependent Object Types (DOT). In Proceedings of the 2016 ACM

SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (Amsterdam,
Netherlands) (OOPSLA 2016). Association for Computing Machinery, 624–641.

Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages. In Proceedings of the Scheme and Functional

Programming Workshop (Scheme). ACM, 81–92.
Steffen van Bakel, Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Yoko Motohama. 2000. The minimal relevant logic

and the call-by-value lambda calculus. Technical Report. TR-ARP-05-2000, The Australian National University.
Philip Wadler. 1998. The expression problem. Java-genericity mailing list (1998). https://homepages.inf.ed.ac.uk/wadler/

papers/expression/expression.txt
Mitchell Wand. 1989. Type Inference for Record Concatenation and Multiple Inheritance. In Symposium on Logic in Com-

puter Science (LICS).
A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115, 1 (Nov 1994), 38–94.
ZhiwuXu. 2013. Parametric Polymorphism for XML Processing Languages. Ph.D. Dissertation. Université Paris-Diderot-Paris

VII.
Noam Zeilberger. 2008. Focusing and Higher-Order Abstract Syntax. In Proceedings of the 35th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’08). Association
for Computing Machinery, New York, NY, USA, 359–369.

Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2021. Compositional Programming. ACM Transactions on Program-

ming Languages and Systems (April 2021).

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 18. Publication date: January 2023.

https://doi.org/10.5281/zenodo.7409103
https://doi.org/10.5281/zenodo.7409103
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

	Abstract
	1 Introduction
	2 Overview
	2.1 Background
	2.2 Challenges for Deterministic Merges with Overloading and Union Types
	2.3 Information Hiding and Pattern Matching
	2.4 Compositional Programming in F���

	3 System F���
	3.1 Syntax
	3.2 Operational Semantics

	4 Type System
	4.1 Subtyping
	4.2 Disjoint and Well-Formed Types
	4.3 Typing

	5 Typing Algorithm
	5.1 Splitting, Subtyping, and Disjointness
	5.2 Typing Application

	6 Results
	6.1 Progress
	6.2 Preservation
	6.3 Soundness and Determinism

	7 Related Work
	Acknowledgments
	References

