
The Linearity Monad
Jennifer Paykin

University of Pennsylvania

jpaykin@cis.upenn.edu

Steve Zdancewic

University of Pennsylvania

stevez@cis.upenn.edu

Abstract
We introduce a technique for programming with domain-specific

linear languages using the monad that arises from the theory of

linear/non-linear logic. In this work we interpret the linear/non-

linear model as a simple, effectful linear language embedded inside

an existing non-linear host language. We implement a modular

framework for defining these linear EDSLs in Haskell, allowing

both shallow and deep embeddings. To demonstrate the effective-

ness of the framework and the linearity monad, we implement

languages for file handles, mutable arrays, session types, and quan-

tum computing.

ACM Reference format:
Jennifer Paykin and Steve Zdancewic. 2017. The Linearity Monad. In Pro-
ceedings of 10th ACM SIGPLAN International Haskell Symposium, Oxford,
UK, September 7-8, 2017 (Haskell’17), 16 pages.
https://doi.org/10.1145/3122955.3122965

1 Introduction
Linear types have been used successfully for a variety of effectful

domain-specific programming languages. For the domains of mem-

ory management [Fluet et al. 2006; Pottier and Protzenko 2013],

mutable state [Chen and Hudak 1997; Wadler 1990], concurrency

[Caires and Pfenning 2010; Mazurak and Zdancewic 2010], and

quantum computing [Selinger and Valiron 2009], linearity statically

enforces properties, specific to each domain, that are inexpressible

in non-linear settings.

Consider the following interface for linear file handles.
1

open ∶∶ String⊸ Handle read ∶∶ Handle⊸ Handle ⊗ Char

close ∶∶ Handle⊸ One write ∶∶ Handle⊸ Char⊸ Handle

In this example, linearity rules out two specific kinds of errors.

First, it ensures that file handles cannot be used more than once in

a term, which means that once a handle has been closed, it cannot

be read from or written to again. Second, linearity ensures that

all open handles are eventually closed (at least for terminating

computations) since variables of type Handle cannot be dropped.

Linearity allows us to think of a file handle as a consumable resource

that gets used up when it is closed.
2

1

Here,⊸ (pronounced “lollipop”) denotes linear implication, ⊗ (“tensor”) denotes the

multiplicative linear product, and One denotes the multiplicative unit.

2

Note that linearity does not prevent all runtime errors: open could fail if there is a

problem with the file name, or read could fail with an end-of-file error, etc. These

later errors depend on the state of the system external to the program, while the errors

avoided by linear types depend only on the program itself.

Haskell’17, September 7-8, 2017, Oxford, UK
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use.

Not for redistribution. The definitive Version of Record was published in Proceed-
ings of 10th ACM SIGPLAN International Haskell Symposium, September 7-8, 2017 ,
https://doi.org/10.1145/3122955.3122965.

Linearity is useful here because it statically enforces proper-

ties that are inexpressible using conventional “non-linear” types.

For mutable state, linear types enforce a single-threadedness prop-

erty that allows a functional operation such as writeArray of type

Int ⊸ Array α ⊸ α ⊸ Array α to be implemented as a mutable

update [Wadler 1990]. For concurrent session types, linearity stati-

cally enforces the fact that every channel has exactly two endpoints

that obey complementary communication protocols [Caires and

Pfenning 2010]. For quantum computing, linear types enforce the

so-called “no-cloning” theorem by restricting function spaces to

linear transformations [Selinger and Valiron 2009].

Unfortunately, few mainstream programming languages offer

support for linear types, for two reasons. First, linear type systems

are often unwieldy, with linear typing information bleeding into

programs that are entirely non-linear. For example, consider an

ordinary, unrestricted function that concatenates a string to itself,

given by \s → s++s, of type String → String. In traditional pre-

sentations of linear types [Benton et al. 1993] this function would

instead be given type !String ⊸ !String and would be written

\s → let! s' = s in !s'++!s'. The type !α , pronounced “bang α”,
indicates that expressions of type α can be duplicated, but the pro-

grammer must make such uses explicit by means of the binding

let!. Conversely, to create a value of type !String, the programmer

must explicitly mark an expression with !, as in !e, which promises

that e contains no free linear variables. For simple examples like

this one, the explicit management of linearity isn’t too bothersome,

but it quickly becomes painful for larger pieces of code. Put an-

other way, the traditional presentation of linearity using the !α type

presents linearity as the default and non-linearity as the exception,

while programmers expect the opposite.

Over the years, various linear type systems have been introduced

to mitigate the problem of mixing linear and non-linear program-

ming, using techniques based on subtyping [Selinger and Valiron

2009], constraint solving [Morris 2016], weights [McBride 2016],

and kind polymorphism [Mazurak et al. 2010]. However, these

techniques introduce complicated typing rules, can be difficult to

use, and require significant modifications to existing non-linear

language design.

The second problem with integrating substructural type systems

with mainstream languages is that linear typing disciplines are

almost always domain-specific, meaning that new applications of

linear types must be added by the language designer, not the user.

In the past few years, a growing number of general purpose lan-

guages have begun integrating features from substructural logics

into their type systems, in order to express some of these domain-

specific features. Ownership types in Rust [Matsakis and Klock

2014] and uniqueness types in Clean [Nöcker et al. 1991] and

Idris [Idris Community 2017] are limited to a specific domain—

shared memory management—and are weaker than full linear types.

Recently, Bernardy et al. [2017] proposed a plan to add full linear

types to Haskell, which could in the future be integrated with new

https://doi.org/10.1145/3122955.3122965
https://doi.org/10.1145/3122955.3122965


Haskell’17, September 7-8, 2017, Oxford, UK Jennifer Paykin and Steve Zdancewic

domains. Their approach, discussed further in Section 7, is intrigu-

ing but requires thinking about linearity in a newway, as a property

of arrows rather than as a property of data.

linear EDSL

non-linear

host language

(e.g. Haskell)

⊣ LiftLower

Figure 1. The linear/non-

linear programming model.

We propose a different approach,

inspired by Benton’s linear/non-

linear (LNL) presentation of linear

logic [1995]. The LNL model, illus-

trated in Figure 1, describes a cat-

egorical adjunction between two

separate type systems, one linear

and the other non-linear. In this pa-

per we interpret the LNL model as

the embedding of a simple linear

lambda calculus inside an existing

non-linear programming language.

The embedded language approach

easily extends to a variety of differ-

ent application domains, and the ad-

joint functors Lift and Lower form

a straightforward interface between

the embedded and host languages: Lower inserts host language

terms into the embedded language, and Lift injects closed linear

terms into the host language as suspended computations.

When the host language supports monadic programming, as

Haskell does, the LNL interface reveals a connectionwithmonads. It

is well-known that the !modality from linear logic forms a comonad

on the linear category. In Figure 1, the !modality corresponds to the

composition Lower ○ Lift; we can think of it as the perspective of

looking “up” at the non-linear category from the linear one. In this

work, we propose to also look “down” at the linear category from

the unrestricted world. The adjoint structure of the LNL model

ensures that the result, the composition Lift ○ Lower, forms a

monad. This structure, the linearity monad, is the main focus of

this work.

1.1 Contributions
In this paper we show how to realize linear/non-linear type theory

by embedding a linear language inside of an unrestricted language,

using Lower and Lift tomove between the two fragments (Section 2).

For concreteness we choose Haskell as the host language, since it

already has good support for monadic programming; we expect

our techniques could be readily adapted to other host languages as

well. Importantly, we target a design that allows various application

domains to be expressed modularly in the system.

To that aim, the paper makes the following contributions:

1. We show how our realization of the LNL model as an embedded

language gives rise to a linearity monad (Section 5). The rela-

tionship between linear types and monads is well-known from a

categorical perspective, but the consequences for programming

have not been widely explored [Benton and Wadler 1996; Chen

and Hudak 1997]. We justify the monad laws and describe how

the monad extends to a monad transformer.

2. We develop a framework for implementing linear EDSLs us-

ing higher-order abstract syntax in Haskell (Sections 3 and 4).

The framework draws on prior embeddings of linear types in

Haskell [Eisenberg et al. 2012; Polakow 2015] by employing

linear non-linear

types σ , τ ∶∶= σ ⊸ τ ⋃︀ ⋯ α, β ∶∶= α → β ⋃︀ ⋯
variables x, y a, b
typing contexts γ ∶∶= ⋅ ⋃︀ γ , x ∶ σ Γ ∶∶= ⋅ ⋃︀ Γ, a ∶ α
expressions e ∶∶= λx .e ⋃︀ ee ′ ⋃︀ ⋯ t ∶∶= λx .t ⋃︀ t t ′ ⋃︀ ⋯
typing judgment γ ⊢ e ∶ σ Γ ⊢ t ∶ α

Figure 2.Meta-variables for the purely linear and purely non-linear

language fragments

Haskell’s type classmechanism to automatically discharge linear-

ity constraints. We can instantiate the framework with both shal-

low embeddings of judgments as Haskell functions, or with deep

embeddings using generalized algebraic data types (GADTs).

Throughout, the framework uses the dependently-typed fea-

tures of the Glasgow Haskell Compiler (GHC) to enforce the

linear use of typing judgments.

3. Finally, we demonstrate the effectiveness of linear monadic pro-

gramming by implementing examples of domain-specific linear

languages in our framework, including our running example of

safe file handles in the style of Mazurak et al. [2010], as well as,

in Section 6: (a) Mutable arrays in the style of Wadler’s “Linear

types can change the world!” [1990]; (b) Session types in the

style of Caires and Pfenning [2010]; and (c) Quantum computing

in the style of Selinger and Valiron [2009].

The implementation and all of the examples described in this paper

are available at the following URL:

https://github.com/jpaykin/LNLHaskell/tree/Haskell2017

2 Linear/Non-Linear types
Linear/non-linear (LNL) logic, introduced by Benton [1995], is a

model of linear logic obtained by combining two very simple type

systems. The first is an entirely linear lambda calculus, meaning

that all variables are linear and there is no unrestricted modal-

ity !σ . The other is an entirely non-linear lambda calculus, in which

resources are not tracked. We can think of these two systems in-

dependently, each containing their own syntax of types, variables,

typing contexts, and typing judgments, as shown in Figure 2.

These fragments may contain arbitrary extra features, such as

operations for manipulating file handles in the linear language, as

in the example from the introduction. Alternatively, the non-linear

type system may have algebraic data types, dependent types, etc.
As a starting point, consider the standard presentation of a linear

lambda calculus with application and abstraction.

γ = x ∶ τ
γ ⊢ x ∶ τ

var

γ ′ = γ , x ∶ σ γ ′ ⊢ e ∶ τ
γ ⊢ λx .e ∶ σ ⊸ τ

abs

γ = γ1 ⋓ γ2 γ1 ⊢ e1 ∶ σ ⊸ τ γ2 ⊢ e2 ∶ σ
γ ⊢ e1e2 ∶ τ

app

In the var rule, no other variables occur in the context besides

the one being declared, meaning that linear variables cannot be

discarded (weakened) from a context. The abs rule introduces a

fresh linear variable into the context. In app, the relation γ = γ1⋓γ2
means that γ is the disjoint union of γ1 and γ2; it enforces the fact
that variables cannot occur on both sides of an application.

https://github.com/jpaykin/LNLHaskell/tree/Haskell2017


The Linearity Monad Haskell’17, September 7-8, 2017, Oxford, UK

linear non-linear

types σ , τ ∶∶= ⋯ ⋃︀ Lower α α, β ∶∶= ⋯ ⋃︀ Lift τ
typing judgment Γ;γ ⊢ e ∶ σ Γ ⊢ t ∶ α

γ = x ∶ τ
Γ;γ ⊢ x ∶ τ

var

γ ′ = γ , x ∶ σ Γ;γ ′ ⊢ e ∶ τ
Γ;γ ⊢ λx .e ∶ σ ⊸ τ

abs

γ = γ1 ⋓ γ2 Γ;γ1 ⊢ e1 ∶ σ ⊸ τ Γ;γ2 ⊢ e2 ∶ σ
Γ;γ ⊢ e1e2 ∶ τ

app

Γ ⊢ t ∶ α
Γ; ⋅ ⊢ put t ∶ Lower α

put

γ = γ1 ⋓ γ2 Γ;γ1 ⊢ e ∶ Lower α Γ, a ∶ α ;γ2 ⊢ e ′ ∶ τ
Γ;γ ⊢ let! a = e in e ′ ∶ τ

let!

Γ; ⋅ ⊢ e ∶ τ
Γ ⊢ suspend e ∶ Lift τ

suspend

Γ ⊢ t ∶ Lift τ
Γ; ⋅ ⊢ force t ∶ τ

force

Figure 3. Typing rules for the combined linear/non-linear language

For the non-linear language, we start with unrestricted typing

rules as in the simply-typed lambda calculus, and write Γ ⊢ t ∶ α to

denote its typing judgments.

A linear/non-linear type system modifies these two languages

so that they interact in a predictable way.

First, we extend the linear typing judgment so it can refer to non-

linear variables. The resulting judgment has the form Γ;γ ⊢ e ∶ σ ,
where the variables in Γ are non-linear, the variables in γ are linear,

and the result type σ is also linear. The revised typing rules are

given in Figure 3. The revised var rule allows arbitrary non-linear

variables, while the revised app rule allows non-linear variables to

be used on both sides of the application.

Note that a non-linear variable is not a linear expression itself;

the inference rule Γ,a ∶ α ; ⋅ ⊢ a ∶ α is not valid because α is not a

linear type. In order to use non-linear data in the linear world, the

second step in creating the linear/non-linear model is to extend the

linear language with a new type: σ ,τ ∶∶= ⋯ ⋃︀ Lower α .
As shown in Figure 3, terms of type Lower α are constructed from

arbitrary non-linear terms via an operation called put, so every

linear expression of type Lower α morally holds a non-linear value.

The elimination form, let! a = e in e′, lets us use that value non-
linearly as long as we use it to construct another linear expression;

otherwise, the linear variables used to construct e would be lost.

The third step in creating a linear/non-linear system is to in-

troduce the Lift connective, which embeds linear expressions in

the non-linear world: α , β ∶∶= ⋯ ⋃︀ Lift τ . Of course, it is not al-
ways safe to treat linear expressions non-linearly—that is the entire

point of linear logic! However, when a linear expression doesn’t

use any linear variables, it is safe to duplicate. Consider the term

open "filename" from the file handle example; multiple invocations

will create different handles to the file. Such an expression can be

thought of as an effectful “suspended” computation that can be

“forced” as many times as necessary, since running that computa-

tion doesn’t consume any linear resources.

Also in Figure 3, the Lift type is introduced by suspend e, which

internalizes a linearly-closed expression e as a non-linear value.

The corresponding elimination form, force, moves such a value

back into the linear world.
3

2.1 LNL as an Embedded Language
One contribution of this paper is the recognition that the LNLmodel

lends itself well to describing a linear language embedded in a non-

linear one. The embedded structure means that host language’s

non-linear variables are, by default, accessible to the linear sub-

language. As a result, the linear embedding only needs to keep

track of the linear variables, since the non-linear variables are

automatically handled by the host language. This vastly simplifies

the representation of the embedded language. The Lower connective

describes a simple way to use arbitrary host language terms, making

the whole host language accessible from within the linear fragment.

The Lift connective exposes linear expressions to the rest of the

host language without exposing linear variables directly.

In the rest of this paper, we use Haskell as the host language,

exploiting the dependently-typed features of GHC 8 to enforce lin-

earity in the embedding. Haskell has been used as a host language

for linear types before [Eisenberg et al. 2012; Polakow 2015], and we

draw on ideas from these previous embeddings (deferring a more

technical comparison to Section 7). The next section describes these

implementation details and how we accomodate domain-specific

linear types like file handles in our linear/non-linear interpretation.

Ours isn’t the only possible implementation—other design deci-

sions will present different tradeoffs—but the implementation helps

illustrate the main focus of this paper, which is the programming

model that arises from linear/non-linear logic.

3 Embedding a linear type system in Haskell
To embed a linear language in Haskell we build data structures

for linear types and contexts, and enforce linearity constraints on

those contexts using type classes. The choice of how to encode

variables, contexts, and typing judgments was made to maximize

the type class mechanism’s ability to automatically discharge these

constraints during type checking, while also keeping the types and

terms of our EDSL legible.

For the first iteration of our linear language, we will restrict

linear types to the unit type and linear implication.

data LType = One ⋃︀ Lolli LType LType

We use the infix notation σ ⊸ τ as a synonym for Lolli σ τ .
Following Eisenberg et al. [2012] we represent variables in our

embedding as unary natural numbers (data Nat = Z ⋃︀ S Nat) and
typing contexts as finite maps from natural numbers to LTypes. The
operations we define later rely heavily on the inductive structure

of both variables and contexts. The finite map is represented as a

list [Maybe LType], where the variable i maps to the type stored

in the list at index i. The Maybe type marks the presence (Just σ )
or absence (Nothing) of the variable in the context. As an example,

3

The suspend and force notation is inspired by Call-By-Push-Value [Levy 2012],

which separates pure and effectful computations into two parts, much in the same

way linear and non-linear type systems are separated in LNL. Indeed, the effectful

linear/non-linear type system presented in this paper can be thought of as the combi-

nation of CBPV and linear logic.



Haskell’17, September 7-8, 2017, Oxford, UK Jennifer Paykin and Steve Zdancewic

consider the following sample derivation:

(︀Just (σ ⊸ τ )⌋︀ ⊢ 0 ∶ σ ⊸ τ
var

(︀Nothing, Just σ ⊢ 1 ∶ σ ⌋︀
var

(︀Just (σ ⊸ τ ), Just σ ⌋︀ ⊢ 0 1 ∶ τ
app

(︀Nothing, Just σ ⌋︀ ⊢ λ 0. 0 1 ∶ (σ ⊸ τ )⊸ τ
abs

(︀⌋︀ ⊢ λ 1. λ 0. 0 1 ∶ σ ⊸ (σ ⊸ τ )⊸ τ
abs

To enforce the desired linearity constraints, the application rule in

this derivation satisfies the side condition that

[Just(σ⊸ τ)] ⋓ [Nothing, Just σ] = [Just σ, Just (σ⊸ τ)]

The merge relation is not defined when two contexts hold the same

variable, or, equivalently, when Just appears at the same index in

both contexts. Mathematically, merge is defined as follows:

γ1 ⋓ [] = γ1
[] ⋓ γ2 = γ2
(Just σ : γ1) ⋓ (Nothing : γ2) = Just σ : (γ1 ⋓ γ2)
(Nothing : γ1) ⋓ (Just σ : γ2) = Just σ : (γ1 ⋓ γ2)
(Nothing : γ1) ⋓ (Nothing : γ2) = Nothing : (γ1 ⋓ γ2)

This representation contains some redundancy: the lists [Just σ]
and [Just σ, Nothing] both correspond to the same context, 0 ∶ σ .
So instead of using the built-in list type [Maybe LType], we say that

a context Ctx is either empty, or is a non-empty context NCtx, which

ends in a Just σ .

data Ctx = Empty ⋃︀ NEmpty NCtx

data NCtx = End LType ⋃︀ Cons (Maybe LType) NCtx

Note that this is not a De Bruijn representation of variables; it is

a nominal representation where the map from names to types is

defined by indexing into the array.

3.1 Relations on typing contexts
The type system in Figure 3 uses three relations on contexts to

enforce linearity. The var rule says that γ ⊢ x ∶ σ if γ is the context

containing only the single binding x ∶ σ . We formulate this relation

in Haskell as a multi-parameter type class CSingleton x σ γ , as
shown in Figure 4. The class CSingletonN x σ γ records the same

property, but for non-empty contexts—we use this helper type class

to inductively build up the relation.

instance CSingletonN x σ γ ⇒ CSingleton x σ (NCtx γ)
instance CSingletonN Z σ (End σ)
instance CSingletonN x σ γ

⇒ CSingletonN (S x) σ (Cons Nothing γ)

The functional dependencies x σ → γ and γ → x σ tell GHC that

the CSingleton relations are functional and injective [Jones 2000].

They are vital to linear type checking as they guide unification:

for any concrete context, Haskell will automatically search for

the proof that it forms a singleton context, and for any concrete

variable and type, Haskell will automatically infer the singleton

context containing that variable.

To handle the side conditions on the abstraction and applica-

tion rules, we introduce two additional type classes, also shown

in Figure 4. The class CAdd x σ γ γ ’ encodes the property that

γ ′ = γ ,x ∶ σ , where x does not already occur in γ . The class CMerge
γ 1 γ 2 γ says that γ1 ⋓ γ2 = γ , or, in other words, that γ is the

disjoint union of γ1 and γ2. Proving the functional dependencies
for these classes is not straightforward, and in the implementation

we use a number of helper classes to convince GHC that they hold,

which we describe in Appendix A. The functional dependencies,

which permit the typechecker to do some amount of inversion,

are the main reason we use type classes (which encode relations),

rather than type families (which encode functions) to describe the

CSingleton, CAdd, and CMerge operations.

3.2 Typing judgments
A well-typed expression γ ⊢ e ∶ τ in the linear lambda calculus is

represented as a Haskell term e ∶∶ exp γ τ . The parameter exp ∶∶
Ctx → LType → Type is a typing judgment characterized via a type

class interface, the members of which correspond to the typing

rules of the linear lambda calculus. For example:

class HasLolli (exp ∶∶ Ctx → LType → Type) where

λ ∶∶ (CSingleton x σ γ'', CAdd x σ γ γ', x ~ Fresh γ)
⇒ (exp γ'' σ → exp γ' τ) → exp γ (σ⊸ τ)

(∧) ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 (σ⊸ τ) → exp γ2 σ → exp γ τ

The HasLolli type class asserts that the typing judgment exp con-

tains abstraction (λ) and application (
∧
) operations.

4
The applica-

tion operator corresponds closely to the app inference rule given

in Figure 3, where CMerge encodes the disjoint union of contexts.

Abstraction uses higher-order abstract syntax, which means that it

covers both the variable and abstraction rules at once. Let’s take a

look at the type of λ without the type class constraints:

(exp γ'' σ → exp γ' τ) → exp γ (σ⊸ τ)

This type says that, in order to construct a linear function σ ⊸ τ , it
suffices to provide an ordinary Haskell function from expressions of

type σ to expressions of type τ . In order to ensure that this function

uses its argument exactly once, we have the following constraints,

where ~ is equality on types:

(CSingleton x σ γ'', CAdd x σ γ γ', x ~ Fresh γ)

The last constraint says that x is a particular variable that is fresh

in γ : we define Fresh γ to be the smallest natural number that is

undefined in γ . The middle constraint says that the body of the

function, of type exp γ ' τ , satisfies the relation γ ′ = γ ,x ∶ σ . The
first constraint says that the argument of the function, of type

exp γ '' σ , really is a variable, since γ ′′ = x ∶ σ . Put in a more

functional notation, the type of λ could be described as follows:

(exp [x:σ] σ → exp (γ,x:σ) τ) → exp γ (σ⊸ τ)

The HOAS encoding leads to very natural-looking code. The

identity function is λ (\x → x), while composition is defined as:

compose ∶∶ HasLolli exp

⇒ exp Empty ((τ2⊸ τ3)⊸ (τ1⊸ τ2)⊸ (τ1⊸ τ3))
compose = λ $ \g → λ $ \f → λ $ \x → g ∧ (f ∧ x)

We do not have to add any special infrastructure to handle poly-

morphism; Haskell takes care of it for us.

3.3 Multiplicative unit and pairs
It is easy to extend the language to other operators of linear logic,

such as units, pairs ⊗, and sums ⊕. For the linear multiplicative

unit, we have the following class:

class HasOne exp where

unit ∶∶ exp Empty One

letUnit ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 One → exp γ2 τ → exp γ τ

4

The linear abstraction function λ should not be confused with Haskell’s usual anony-

mous function abstraction, written \a → t.



The Linearity Monad Haskell’17, September 7-8, 2017, Oxford, UK

class CSingleton (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) ⋃︀ x σ → γ, γ → x σ -- γ = [x:σ]
class CAdd (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) (γ' ∶∶ Ctx) ⋃︀ x σ γ → γ', x γ' → σ γ, γ γ' → x σ -- γ' = γ,x:σ
class CMerge (γ1 ∶∶ Ctx) (γ2 ∶∶ Ctx) (γ ∶∶ Ctx) ⋃︀ γ1 γ2 → γ, γ1 γ → γ2, γ2 γ → γ1 -- γ1 ⋓ γ2 = γ

Figure 4. Type classes encoding relations on typing contexts

For the operators ⊗ and ⊕, we need to first extend the syntax

of linear types. We could add constructors for tensor products, etc.,
directly to the LType definition, but doing so would commit to a

particular choice of linear connectives. Instead, we build in a way

to extend linear types by introducing MkLType, which existentially

introduces a new linear type:

data LType where MkLType ∶∶ ext LType → LType

Extensions, denoted with the meta-variable ext, are paramaterized

by a type. For example, the multiplicative product⊗ can be encoded

as an extension TensorExt using GHC data type promotion [Eisen-

berg and Stolarek 2014], as follows:

data TensorExt ty = MkTensor ty ty

type σ ⊗ τ = MkLType (MkTensor σ τ)

Multiplicative products are pairs whose components come from

disjoint typing contexts.

γ 1 ⊢ e1 ∶ τ 1 γ 2 ⊢ e2 ∶ τ 2 γ = γ 1⋓ γ 2

γ ⊢ e1⊗ e2 ∶ τ 1⊗ τ 2

γ 1 ⊢ e ∶ σ 1⊗ σ 2 γ 2, x1 ∶ σ 1, x2 ∶ σ 2 ⊢ e ′ ∶ τ γ = γ 1⋓ γ 2

γ ⊢ let (x1, x2) = e in e ′ ∶ τ

We overload the constructor (⊗) to construct multiplicative pairs.

The HOAS version of the elimination form, which we write letPair,

has a structure that mirrors the type of λ.

class HasTensor exp where

(⊗) ∶∶ CMerge γ1 γ2 γ⇒exp γ1 τ1→exp γ2 τ2→exp γ (τ1 ⊗ τ2)
letPair ∶∶ ( CAdd x1 σ1 γ2 γ2', CAdd x2 σ2 γ2' γ2''

, CSingleton x1 σ1 γ21, CSingleton x2 σ2 γ22,
, x1 ~ Fresh γ2, x2 ~ Fresh γ2', CMerge γ1 γ2 γ)

⇒ exp γ1 (σ1 ⊗ σ2)
→ ((exp γ21 σ1, exp γ22 σ2) → exp γ2'' τ)
→ exp γ τ

The variables x1 and x2 are represented in the higher-order ab-

stract syntax by arguments exp γ 21 σ1 and exp γ 22 σ2 respec-

tively, where γ21 = (︀x1 ∶ σ1⌋︀ and γ22 = (︀x2 ∶ σ2⌋︀. The continuation
of the letPair is in the context γ22 = γ2,x1 ∶ σ1,x2 ∶ σ2. The result
is that we are able to bind pairs in a natural way, as in λ $ \x → x

‘letPair‘ \(y,z) → z ⊗ y, of type σ ⊗ τ ⊸ τ ⊗ σ .5

In the implementation we provide similar interfaces for additive

sums, products, and units.

3.4 The Lift and Lower types
The LNL connective Lower can be added to the linear language just

like any other linear connective. The only difference is that Lower

takes an argument of kind Type—the kind of Haskell types.

5

It would certainly be more natural to write λ $ \(y,z) → z ⊗ y directly, but

type checking for nested pattern matching is a difficult problem we leave for future

work. We can however define a top-level pattern match λpair, and write our example

as λpair $ \ (y,z) → z ⊗ y. We discuss the issue of type checking and nested

pattern matching more in Section 7.1.

data LowerExp ty = MkLower Type

type Lower α = MkLType (MkLower α)

Figure 3 introduces the syntax put to introduce terms of type

Lower α and let! a = e in e′ to eliminate them. In Haskell we

write the let! operator in higher-order abstract syntax as (>!).

class HasLower exp where

put ∶∶ α → exp Empty (Lower α)
(>!) ∶∶ CMerge γ1 γ2 γ

⇒ exp γ1 (Lower α) → (α → exp γ2 τ) → exp γ τ

Figure 3 also introduces syntax for the Lift type, a non-linear

type carrying linear expressions with no free linear variables. We

define Lift in Haskell as an ordinary record.

data Lift exp τ = Suspend { force ∶∶ exp Empty τ }

Figure 5 shows how we can embed the usual !σ operation from

linear logic using Lift and Lower. For convenience, we define the

synonym HasMELL for the class of constraints corresponding to

multiplicative exponential linear logic (⊸, ⊗, One, and Lower).

3.5 File Handles
We now return to our running example from the introduction of

safe file handles.

class HasMELL exp⇒ HasFH exp where

open ∶∶ String → exp Empty Handle

read ∶∶ exp γ Handle → exp γ (Handle ⊗ Lower Char)

write ∶∶ exp γ Handle → Char → exp γ Handle

close ∶∶ exp γ Handle → exp γ One

The open and write operations, which take ordinary Haskell data

as input, demonstrate how linear operations can take advantage

of existing Haskell infrastructure. For example, the function that

writes an entire string to a file (rather than just a single character)

can be implemented as an ordinary fold over the string.

writeString ∶∶ HasFH exp⇒ String→exp γ Handle→exp γ Handle

writeString s h = foldl write h s

File handles interact nicely with the other linear connectives.

The following function reads a character from a file and writes that

same character back to the file twice:

readWriteTwice ∶∶ HasFH exp⇒ exp Empty (Handle⊸ Handle)

readWriteTwice = λ $ \h → read h `letPair` \(h,x) →
x >! \c →
writeString [c,c] h

The linear type system does enforce the fact that the same file

handle cannot have more than one alias to it, which prevents a

handle from being read from after it is closed. So, the following

does not type check:

readAfterClose ∶∶ exp Empty (Handle⊸ Handle ⊗ Lower Char)

readAfterClose = λ $ \h → close h `letUnit` read h



Haskell’17, September 7-8, 2017, Oxford, UK Jennifer Paykin and Steve Zdancewic

type Bang τ = Lower (Lift τ)
dup ∶∶ HasMELL exp⇒ Lift exp (Bang τ ⊸ Bang τ ⊗ Bang τ)
dup = Suspend . λ $ \x → x >! \a → put a ⊗ put a

drop ∶∶ HasMELL exp⇒ Lift exp (Bang τ ⊸ One)

drop = Suspend . λ $ \x → x >! \_ → unit

Figure 5. Encoding the exponential from linear logic. HasMELL exp

is a synonym for (HasLolli exp, HasTensor exp, HasOne exp,

HasLower exp).

4 Evaluation and Implementation
Our goal in embedding a linear language in Haskell is not just to

represent programs in those languages, but to actually run those

programs. In this section we define both deep and shallow embed-

dings that implement the HasLolli and HasFH type classes of the

previous sections. In both cases, a correct implementation is ex-

pected to validate a number of coherence laws (akin to the monad

laws) that we explain below.

We focus on large-step semantics rather than a small-step se-

mantics, which would be both less efficient and, in the case of

a shallow embedding, less appropriate. For each linear type we

define a type of linear values using data families
6
. We also adopt

environment semantics, evaluating open linear terms within an

accompanying evaluation context. As a consequence we do not

have to define an explicit substitution function, which is slow and

type-theoretically challenging as it requires extensive manipulation

of typing contexts. Evaluation is effectful—for example, file handles

will be implemented using the Haskell primitive, which in this case

means that evaluation will take place in the IO monad. Different

domains (see Section 6) have different effects, so we need to ensure

that the effect is a parameter of the framework.

Every implementation thus has three components: a typing judg-

ment exp ∶∶ Ctx → LType → Type; a value judgment val ∶∶ LType →
Type, and a (monadic) effect m ∶∶ Type → Type. We structure these

three components as data and type families indexed by a signature

sig ∶∶ Type.

data family LExp (sig ∶∶ Type) (γ ∶∶ Ctx) (τ ∶∶ LType) ∶∶ Type

data family LVal (sig ∶∶ Type) (τ ∶∶ LType) ∶∶ Type

type family Effect (sig ∶∶ Type) ∶∶ Type → Type

An evaluation context is a finite map from variables, represented

using singletons [Eisenberg and Stolarek 2014], to values. It is in-

dexed by a signature corresponding to the signature of values, as

well as a typing context specifying the domain. That is, an evalua-

tion context of type ECtx sig γ maps variables x ∶ σ ∈ γ to values

of type LVal sig σ .

data ECtx sig γ where

ECtx ∶∶ (∀ x σ. Lookup γ x ~ Just σ⇒ Sing x → LVal sig σ)
⇒ ECtx sig γ

Evaluation is specified as a type class on signatures.

class Eval sig where

eval ∶∶ Monad (Effect sig)

⇒ ECtx sig γ → LExp sig γ τ → Effect sig (LVal sig τ)

6https://wiki.haskell.org/GHC/Type_families

4.1 A deep embedding
First we consider a deep embedding, where linear lambda terms are

defined as a GADT in Haskell. The LExp data type bears a strong

resemblance to the HasLolli type class, although without higher-

order abstract syntax.

data Deep

data instance LExp Deep γ τ where

Var ∶∶ CSingleton x τ γ ⇒ Sing x → LExp Deep γ τ
Abs ∶∶ CAdd x σ γ γ'
⇒ Sing x → LExp Deep γ' τ → LExp Deep γ (σ⊸ τ)

App ∶∶ CMerge γ1 γ2 γ
⇒ LExp Deep γ1 (σ⊸ τ) → LExp Deep γ2 σ → LExp Deep γ τ

To instantiate the HasLolli type class, it is enough, therefore, to

produce the singleton value x that corresponds to Fresh γ .7

instance HasLolli (LExp Deep) where

λ ∶∶ ∀ x σ γ γ' γ''.
(CSingleton x σ γ'', CAdd x σ γ γ', x ~ Fresh γ)

⇒ (LExp Deep γ'' σ→LExp Deep γ' τ)→LExp Deep γ (σ⊸ τ)
λ f = Abs x (f $ Var x) where x = (sing ∶∶ Sing x)

(∧) = App

Values are defined by induction on LType. A value of type σ ⊸ τ
is a closure containing an evaluation context paired with the body

of the abstraction, while a value of type Lower α is the underlying

Haskell value, and so on.

data instance LVal Deep (Lower α) = VPut α
data instance LVal Deep One = VUnit

data instance LVal Deep (σ ⊗ τ) =
VPair (LVal Deep σ) (LVal Deep τ)

data instance LVal Deep (σ⊸ τ) where

VAbs ∶∶ CAdd x σ γ γ'⇒ ECtx Deep γ
→ Sing x → LExp Deep γ' τ → LVal Deep (σ⊸ τ)

Next we instantiate Eval Deep by defining the evaluation func-

tion. When the expression is an abstraction we return the closure.

instance Eval Deep where

eval γ (Abs x e) = return $ VAbs γ x e

If the expression is a variable, we know that the typing context γ
must contain only a single variable, x ∶∶ σ . In that case we want to

return the value stored in the evaluation context, which we access

via an operation we call lookup.

eval γ (Var x) = return $ lookup x γ

The lookup operation is simply the result of looking up a variable

in the evaluation context, so lookup x (ECtx f) = f x. However,

this application is only valid if the constraint Lookup γ x ~ Just σ ,
when CSingleton x σ γ . We discuss how to embed this constraint

in the CSingleton type class in Appendix A.

To evaluate an application App e1 e2, we first evaluate e1 to

obtain a closure, then evaluate e2. Then we evaluate the body of

the closure, extending its evaluation context with the value of e2.

eval γ (App (e1 ∶∶ LExp Deep γ1 τ1) (e2 ∶∶ LExp Deep γ2 τ2)) =
do let (γ1,γ2) = split @γ1 @γ2 γ

VAbs γ' x e1' ← eval γ1 e1

v2 ← eval γ2 e2

eval (add x v2 γ') e1'

7

In the development, the constraint SingI x is a superclass to CSingleton.

https://wiki.haskell.org/GHC/Type_families


The Linearity Monad Haskell’17, September 7-8, 2017, Oxford, UK

This operation uses two additional helper functions to manipulate

contexts in away similar to lookup. The function add takes a variable

x , an evaluation context for γ , and a value of type σ , and produces

an evaluation context for γ ,x ∶ σ . Similarly, split @γ 1 @γ 2 takes
an evaluation context for γ where CMerge γ 1 γ 2 γ , and outputs

two evaluation contexts for γ1 and γ2 respectively; it uses visible
type application [Eisenberg et al. 2016] (e.g., @γ 1) to specify the

appropriate contexts.

These helper functions are described thoroughly in Appendix A.

To extend the syntax of the deep embedding to additional do-

mains such as file handles, we would need to modify the LExp Deep

data type with each new constructor. However, this is not modular;

every time a programmer wanted to use the embedding in a dif-

ferent domain, she would have to define or modify the data type

and the entire evaluation function. In Appendix B we describe a

design that allows the deep embedding to be modularly extended

to arbitrary application domains.

4.2 A shallow embedding
Next we consider a shallow embedding, where an expression exp

γ τ is represented as a monadic function from evaluation contexts

for γ to values of type τ . Evaluation in the shallow embedding is

just unpacking this function.

data Shallow

data instance LExp Shallow γ τ =
SExp { runSExp ∶∶ ECtx γ → Effect Shallow (LVal τ) }

instance Eval Shallow where eval γ f = runSExp f γ

Values in the shallow embedding are almost the same as those in the

deep embedding, except that a value of type σ ⊸ τ in the shallow

embedding is represented as a function from values of type σ to

values of type τ , instead of as an explicit closure.

data instance LVal Shallow (σ⊸ τ) =
VAbs (LVal Shallow σ → Effect Shallow (LVal Shallow τ))

We can show that the shallow embedding simulates all the fea-

tures of our linear language by instantiating the type classes for

HasLolli, HasLower, HasFH, etc. Unsurprisingly, all of these construc-
tions mirror the evaluation functions from the deep embedding.

For example, here we give the instantiation of HasLower:

instance Monad (Effect Shallow)⇒ HasLower (LExp Shallow)

where put a = SExp $ \_ → return $ VPut a

e >! f = SExp $ \γ → do let (γ1,γ2) = split γ
VPut a ← runSExp e γ1
runSExp (f a) γ2

4.3 File Handles
Both embeddings can be given instances of the HasFH type class,

where values of type Handle are built-in IO file handles, and the

effect is also IO. We sketch the shallow embedding here, and give

the deep embedding in Appendix B.

data instance LVal Shallow Handle = VHandle IO.Handle

type instance Effect Shallow = IO

The file handle operations are easily given by their IO counterparts;

open and close are defined here, and read and write analogously.

instance HasFH (LExp Shallow) where

open s = SExp $ \ρ → do h←IO.openFile s IO.ReadWriteMode

return (VHandle h)

close e = SExp $ \ρ → do VHandle h ← runSExp e ρ
IO.hClose h

return VUnit

4.4 Laws and correctness
In Haskell we often associate type classes with mathematical laws

that characterize the properties of correct instances of those classes.

In this setting, such laws describe an equational theory on the

embedded language. For example, the laws for the type Lower α
are as follows:

8

put a >! f = f a [β] e >! put = e [η]
(e >! f) >! g = e >! \x → f x >! g [assoc]

We say that an instance for Eval sig satisfies the Lower laws if they

are preserved by evaluation.

Proposition 4.1. The shallow embedding satisfies the Lower laws.

Proof. We start with the β rule. Unfolding definitions:

eval (put a >! f) γ = do let (γ1,γ2) = split γ
VPut a ← return $ VPut a

runSExp (f a) γ2

Since γ1 is the empty context we know that γ2 = γ . Since HasLower

(LExp Shallow) assumes that Effect Shallow is a monad, the equa-

tion above is equal to runSExp (f a) γ , as expected.
The proofs of the η and associativity laws are similarly obtained

by unfolding definitions and applying the monad laws. □

Proposition 4.2. The deep embedding satisfies the Lower laws.

Proof. By unfolding definitions and applying monad laws. □

5 The monad
Benton [1995] originally proposed linear/non-linear logic as a proof

theory, and through the Curry-Howard correspondence we have

interpreted it as a type system; we can also draw on its categorical

interpretation. Illustrated back in Figure 1, the LNL categorical

model consists of two categories, one corresponding to the linear

language, and the other corresponding to the non-linear language.

In our implementation, the non-linear category is hask, the

idealized category of Haskell types and terms. The linear category

has objects that are elements of LType, and morphisms that are

values of type LExp sig Empty (σ ⊸ τ ).
The operators Lift and Lower are functors between these two

categories. For any Haskell function α → β we have a linear mor-

phism Lower α ⊸ Lower β , and similarly for any linear morphism

σ ⊸ τ we have a Haskell function Lift σ → Lift τ .9

fmapLower ∶∶ (HasLolli (LExp sig), HasLower (LExp sig))

⇒ (α → β) → LExp sig Empty (Lower α⊸ Lower β)
fmapLower f = λ $ \x → x >! put . f

fmapLift ∶∶ HasLolli (LExp sig)

⇒ LExp sig Empty (σ⊸ τ) → Lift sig σ → Lift sig τ
fmapLift f s = Suspend $ f ∧ force s

8

The astute reader will recognize a similarity to the monad laws, which we discuss in

depth in Section 5.

9

Note that we do not give an instance of the standard type class Functor, which only

describes endofunctors on hask.



Haskell’17, September 7-8, 2017, Oxford, UK Jennifer Paykin and Steve Zdancewic

Back in the linear/non-linear model, Lift and Lower form a (sym-

metric monoidal) adjunction Lower ⊣ Lift, which is what allows

non-linear variables to occur in linear typing judgments. Mac Lane

[1978] famously says that “adjoint functors arise everywhere”, but

they seem to have found less ground in Haskell than their close

cousin, the monad. Every adjunction F ⊣ G gives rise to a monad,

G ○ F , as well as a comonad, F ○G. As is usual in linear logic, the

type operator Bang sig τ = Lower (Lift sig τ ) (from Section 3.4)

forms a comonad, and its dual Lift sig (Lower α) forms a monad.

We write this linearity monad as Lin sig α . For convenience,
the accessor functions suspendL and forceL move directly between

the monad and the linear category.

newtype Lin sig α = Lin (Lift sig (Lower α))
suspendL = Lin . Suspend

forceL (Lin e) = force e

The linearity monad does indeed have a monad instance.
10

instance HasLower (LExp sig)⇒ Monad (Lin sig) where

return a = suspendL $ put a

e >>= f = suspendL $ forceL e >! forceL . f

Theorem 5.1. If a siganture sig satisfies the Lower laws, then the
monad laws hold for Lin sig: (1) pure a >>= f = f a; (2) e >>=pure
= e; and (3) (e >>= f) >>= g = e >>= (\x → f x >>= g)

Proof. For (1), expanding the definition for Lin sig we see that

pure a >>= f = suspendL $ forceL (pure a) >! forceL . f

= suspendL $ put a >! forceL . f

By the β rule for >!, this is equal to suspendL (forceL $ f a), which

is η-equivalent to f a itself.

The proofs of (2) and (3) are similarly by unfolding definitons

and applying the Lower laws. □

When we evaluate the body of an expression in Lin sig α , the
result is an effectful lowered Haskell value LVal sig (Lower α). We

can always extract the underlying value of type α , meaning that

we get a result in Effect sig α . We call this operation run.

run ∶∶ Eval sig⇒ Lin sig a → Effect sig a

run e = eval EEmpty (forceL e) >>= \(VPut a) → return a

5.1 Monads in the linear category
Consider the following function, which opens a file, performs some

transformations, and closes the file again. Note that composing run

with withFile will produce an IO action that manipulates the file

directly.

withFile ∶∶ HasFH (LExp sig)⇒ String

→ Lift sig (Handle⊸ Handle ⊗ Lower a) → Lin sig a

withFile s op = Suspend $ force op ∧ open s `letPair` \(h,a)→
close h `letUnit` a

Just like the state monad in Haskell, the type σ ⊸ σ ⊗ τ forms

a monad in the linear category. We can then define a type class

of linear monads LMonad m, where m has kind LType → LType, with

linear versions of return and bind.

To make an instance declaration for linear state, we first try to

define a type synonym LState σ τ for σ ⊸ σ ⊗ τ . This approach

10

The appropriate Functor and Applicative instances can be found in the

implementation.

fails for a rather silly reason: the monad LState σ is a partially

defined type synonym, which is not allowed in GHC. The ordi-

nary solution would be to define a newtype, but these (and regular

algebraic data types) produce Types, not LTypes.

Our solution is to use a trick called defunctionalization [Eisen-

berg and Stolarek 2014]. The Singletons library
11

provides a type-

level arrow k1 ↝ k2 that describes unsaturated type-level functions

between kinds k1 and k2. To define a defunctionalized arrow, we first

define an empty data type for the unsaturated version of LState,

and then define a type instance for the (infix) type family (@@),

which has kind (k1 ↝ k2) → k1 → k2.

data LState' (σ ∶∶ LType) ∶∶ LType ↝ LType

type instance LState' σ @@ τ = σ⊸σ ⊗ τ

We can then define LState σ τ = LState’ σ @@ τ . Instead of

defining the LMonad type class for m ∶∶ LType → LType, we instead

define it for defunctionalized arrows m ∶∶ LType ↝ LType.

class LMonad sig (m ∶∶ LType ↝ LType) where

lreturn ∶∶ LExp sig γ τ → LExp γ (m @@ τ)
lbind ∶∶ LExp sig 'Empty (m @@ σ⊸ (σ⊸ m @@ τ)⊸ m @@ τ)

When convenient, we use the notation e =>>= f for lbind ∧ e ∧ f.

The laws for monads in linear are the same as for those in

hask: (1) lreturn e =>>= f = f ∧ e; (2) e =>>= lreturn = e; and (3)

(e =>>= f) =>>= g = e =>>= (\x → f x =>>= g)

We can now define our monad instance.

instance HasMILL (LExp sig)⇒ LMonad sig (LState' σ) where

lreturn e = λ $ \s → s ⊗ e

lbind = λ $ \st → λ $ \f → λ $ \s →
st ∧ s `letPair` \(s,x) → f ∧ x ∧ s

To illustrate monadic linear programming, consider the follow-

ing operation that reads the first n characters from a file handle:

takeM ∶∶ HasFH (LExp sig)

⇒ Int → LExp sig Empty (LState Handle (Lower String))

takeM n ⋃︀ n ≤ 0 = lreturn $ put ""

⋃︀ otherwise = readM =>>= λ $ \x → x >! \c →
takeM (n-1) =>>= λ $ \y → y >! \s →
lreturn $ put (c : s)

The monadic readM ∶∶ LState Handle (Lower Char) is just λ read.

5.2 The monad transformer
When an LMonad returns a lowered Haskell type, such as in readM

and takeM above, we can push the monadic programming style a

step further: the adjunction Lower ⊣ Lift also induces an LMonad

transformer. Given an LMonad of type LType ↝ LType, we can define

a Haskell monad LinT m. As we did for Lin, it is convenient to have

versions of suspend and force; we omit their definitions.

newtype LinT sig (m ∶∶ LType ↝ LType) (α ∶∶ Type) =
LinT (Lift sig (m @@ (Lower α)))

suspendT ∶∶ LExp sig Empty (m @@ (Lower α)) → LinT sig m α
forceT ∶∶ LinT sig m α → LExp sig Empty (m @@ (Lower α))

We can define the Monad instance just as we did for Lin:

instance (LMonad m, HasLower (LExp sig))⇒ Monad (LinT sig m)

where

return = suspendT . lpure . put

x >>= f = suspend $ forceT x =>>= λ $ \y → y >! (force . f)

11https://hackage.haskell.org/package/singletons

https://hackage.haskell.org/package/singletons


The Linearity Monad Haskell’17, September 7-8, 2017, Oxford, UK

Proposition 5.2. If m satisfies the LMonad laws, then LinT sig m

satisfies the Monad laws.

Proof. By unfolding definitions and applying the LMonad laws. □

The read, write, and withFile operations have natural presen-

tations in terms of LinT, where LStateT sig σ α is a synonym for

LinT sig (LState' σ) α .

readT ∶∶ HasFH (LExp sig)⇒ LStateT sig Handle Char

writeT ∶∶ HasFH (LExp sig)⇒ Char → LStateT sig Handle ()

withFile ∶∶ HasFH (LExp sig)

⇒ String → LStateT sig Handle a → Lin sig a

We also define a monad transformer version of take.

takeT ∶∶ HasFH (LExp sig)⇒ Int → LStateT sig Handle String

takeT n ⋃︀ n ≤ 0 = return ""

⋃︀ otherwise = do c ← readT

s ← takeT (n-1)

return $ c:s

Putting these together we can actually evaluate our linear programs:

main = run $ do withFileT "foo" $ mapM_ writeT "Hello world"

withFileT "foo" $ takeT 7

> "Hello w"

6 Examples
In this section we present three additional application domains

in the linear/non-linear framework: mutable arrays, session types,

and quantum computing.

6.1 Arrays
In his paper “Linear types can change the world!”, Wadler [1990]

argues that mutable data structures like arrays can be given a pure

functional interface if they are only accessed linearly. To understand

why, consider a non-linear program with purely functional arrays:

let arr1 = write 0 arr "hello" in

let arr2 = write 0 arr "world" in arr1[0]

If writewere to update the array in place, the programwould return

``world'' instead of ``hello''. Linear types force us to serialize

the operations on arrays so that reasonable equational laws still

hold, even when performing destructive updates.

Here we expand Wadler’s example to describe slices of an ar-

ray. Consider an operation slice i, which splits an array into two

disjoint sub-arrays determined by the index i. As long as the opera-

tions on each slice are restricted to their domains, the implementa-

tion of slice can alias the same array. Furthermore, as long as we

keep track of when two slices alias the same array, we can merge

slices back together with zero cost.

To implement linear arrays in the LNL framework, we first add

a new type for arrays of non-linear values.

data ArraySig ty = MkArray Type Type

type Array token α = MkLType (MkArray token α)

The token argument to the array keeps track of the array being

aliased. Constructing a new array will result in an array with an

existentially quantified token, as required by the following type:

data SomeArray exp α where

SomeArray ∶∶ exp Empty (Array token α) → SomeArray exp α

The linear interface can allocate new arrays and drop the pointers

to existing ones. Each array is associated with a domain of valid

indices, which can be obtained via the operation dom. The operation

slice takes an index and an array, and outputs two aliases to that

same array with domains partitioned around the index. Dually, join

takes two aliases to the same array and combines their bounds. The

read and write operations will fail at runtime if their arguments

are not in the domain of their slice.

class HasMELL exp⇒ HasArray exp where

alloc ∶∶ Int → α → SomeArray exp α
drop ∶∶ exp γ (Array k α) → exp γ One

dom ∶∶ exp γ (Array k α)→exp γ (Array k α⊗Lower [Int])

read ∶∶ Int→exp γ (Array k α)→exp γ (Array k α⊗Lower α)
write ∶∶ Int → exp γ (Array k α) → α → exp γ (Array k α)
slice ∶∶ Int→exp γ (Array k α)→exp γ (Array k α⊗Array k α)
join ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 (Array k α)

→ exp γ2 (Array k α) → exp γ (Array k α)

6.1.1 Implementation
We can implement the HasArray signature in the shallow embedding.

A value of type Array k α will be a pair of a domain of valid indices

(of type [Int]) as well as a primitive Haskell array; in this case, an

IOArray; the effect of this language will be IO.

data instance LVal Shallow (Array k α) =
VArray [Int] (IOArray Int α)

type instance Effect Shallow = IO

The implementation of alloc, read, and write call to the primitive

operations on IOArrays. The implementation of drop simply returns

a unit value—it does not explicitly deallocate the array, which would

be inappropriate when dropping partial slices. The slice operation

partitions the bounds of its input array according to its index, while

join evaluates its arguments and combines the resulting bounds.
12

slice i e1 e = SExp $ \γ → do VArray bnd arr←runSExp e γ
let arr1 = filter (< i) bnd arr

let arr2 = filter ( ≥ i) bnd arr

return $ VPair arr1 arr2

join e1 e2 = SExp $ \γ→do let (γ1,γ2) = split γ
VArray bnd1 arr ← runSExp e1 γ1
VArray bnd2 _ ← runSExp e2 γ2
return $ VArray (bnd1++bnd2) arr

6.1.2 Arrays in the lifted state monad
We can lift dom, read, and write into the linear state monad trans-

former with the following signatures, where LStateT sig σ α is

LinT sig (LState' σ) α .

domT ∶∶ HasArray (LExp sig)⇒ LStateT sig (Array k α) Int

readT ∶∶ HasArray (LExp sig)⇒ Int → LStateT sig (Array k α) α
writeT ∶∶ HasArray (LExp sig)

⇒ Int → α → LStateT sig (Array k α) ()

We can also derive a lifted operation that combines slicing and

joining. The function sliceT takes an index and two state transfor-

mations on arrays. The resulting state transformation takes in an

12

As an aside, the structure of sliced arrays lends itself naturally to concurrency in

the style of separation logic, and in the git repository we implement join so that it

evaluates its two sub-arrays concurrently.



Haskell’17, September 7-8, 2017, Oxford, UK Jennifer Paykin and Steve Zdancewic

array, slices it around the input index, and applies the two state

transformations to the two sub-arrays.

sliceT ∶∶ HasArray (LExp sig)⇒Int→LStateT sig (Array k α) ()

→LStateT sig (Array k α) ()→LStateT sig (Array k α) ()

sliceT i st1 st2 = Suspend . λ $ \arr →
slice i arr `letPair` \(arr1,arr2) →
forceT st1 ∧ arr1 `letPair` \(arr1,res) → res >! \_ →
forceT st2 ∧ arr2 `letPair` \(arr2,res) → res >! \_ →
join arr1 arr2 ⊗ put ()

6.1.3 Quicksort
Wewill use the LStateT interface to implement an in-place quicksort.

Quicksort relies on a helper function partition that chooses a pivot

value and swaps elements of the array until all values less than the

pivot occur to the left of the pivot in the array, and all values greater

than or equal to the pivot occur to the right. The partition function

returns to us the index of the pivot after all the swapping occurs;

if the list is too short to successfully partition, it returns Nothing.

We omit the definition here but it uses the simple operation swap,

which swaps two indices in the array.

swap ∶∶ HasArray (LExp sig)

⇒ Int → Int → LStateT sig (Array k α) ()

swap i j = do a ← readT i

b ← readT j

writeT i b ≫ writeT j a

partition ∶∶ (HasArray (LExp sig), Ord α)
⇒ LStateT sig (Array k α) (Maybe Int)

The quicksort algorithm slices its input according to the partition

and recurses. The base case occurs when partition returns Nothing.

quicksort ∶∶ (HasArray (LExp sig), Ord α)
⇒ LStateT sig (Array k α) ()

quicksort = partition >>= \case

Nothing → return ()

Just pivot → sliceT pivot quicksort quicksort

6.1.4 Performance
Preliminary tests indicate that the linear typing framework for

arrays reduces performance by a significant constant factor, al-

though we have not performed a thorough analysis to confirm and

quantify these results. Because we are implementing an embedded

language, this is not entirely unexpected, but we expect a number

of design choices could be tweaked to increase performance. In the

shallow embedding of arrays, the runtime artifacts introduced by

the linear framework are variables and evaluation contexts; the

constraint-based type checking is only relevant at compile time.

6.1.5 Related work
Mutable state and memory management is one of the most com-

mon applications of linear type systems in the literature. Wadler

[1990] formalizes the connection between mutable arrays and lin-

ear logic, and Chen and Hudak [1997] expand on this connection

to show that when mutable abstract data types treat their data

linearly in a precise way, they can be automatically transformed

into monadic operations. Their monad corresponds more closely

to Haskell’s IO monad than the linearity monad described in this

paper; it formally justifies Haskell’s treatment of mutable update.

Going beyond arrays, linear types have informed the use of re-

gions [Fluet et al. 2006], uniqueness types [Barendsen and Smetsers

1993] and borrowing [Noble et al. 1998], all of which seek to safely

manage memory usage in an unobtrusive way.

6.2 Session types
Session types are a language mechanism for describing communi-

cation protocols between two actors. A session is a channel with

exactly two endpoints. Caires and Pfenning [2010] draw a Curry-

Howard connection between session types and intuitionistic linear

types, which we implement in this section.

Consider a protocol for an online marketplace: the marketplace

will receive a request for an item in the form of a string, followed by

a credit card number. After processing the order, the marketplace

will send back a receipt in the form of a string. The session protocol

for the marketplace is described by the following LType:

type Market = Lower String⊸ Lower Int⊸ Lower String ⊗ One

In Caires and Pfenning’s formulation, a channel with session pro-

tocol σ ⊸ τ receives a channel of type σ , then continues with

the protocol τ . A channel with protocol σ ⊗ τ sends a channel of

type σ and then continues as τ . The Curry-Howard formulation

means that we do not have to define a new syntax for session-typed

programming, since we can just reuse the syntax we already have

for ⊗ and⊸. Consider the following implementation of Market:

marketplace ∶∶ HasMELL exp⇒ Lift exp Market

marketplace = Suspend . λ $ \x → λ $ \y →
x >! \item → y >! \cc →
(put $ "Processed order for " ++ item) ⊗ unit

A consumer interacts with the opposite end of the protocol, and

then the two actors can be plugged together to form a complete

transaction.

buyer ∶∶ HasMELL exp⇒ Lift exp (Market⊸ Lower String)

buyer = Suspend . λ $ \c → c ∧ put "Tea" `letin` \c →
c ∧ put 1234 `letin` \c →
c `letPair` \(receipt,c) →
c `letUnit` receipt

transaction ∶∶ HasMELL exp⇒ Lin exp String

transaction = supendL $ marketplace ∧ buyer

6.2.1 Implementation
Although we use the same syntax as the pure linear lambda cal-

culus, we really want an implementation that communicates data

over channels. Since session-typed channels change their protocol

over time, we implement them via untyped channels, and we use

unsafeCoerce. This is appropriate (and safe!) because the session

protocols—enforced by the linear types— ensure that each time a

value of type α is sent on the channel, the recipient will coerce

it back to that same type α . Details of the implementation can be

found in Appendix C.

6.2.2 Related work
Session types have gained popularity in recent years as a model of

concurrency. The connection to intuitionistic linear logic was first

highlighted by Caires and Pfenning [2010], though connections

have also been drawn with classical linear logic, which highlights

the duality between sending and receiving on a channel [Lindley

and Morris 2015; Wadler 2014]. Lindley and Morris [2016] provide



The Linearity Monad Haskell’17, September 7-8, 2017, Oxford, UK

an embedding of their functional classical session types language

GV in Haskell based on Polakow’s linear embedding. Other im-

plementations of session types in Haskell wrap enforce linearity

dynamically by means of paramaterized monads [Orchard and

Yoshida 2016; Pucella and Tov 2008], which we expect corresponds

closely to the linearity monad.

6.3 Quantum computing
Quantum computing is the study of computing with qubits, en-

tanglement, and other quantum-mechanical forces that are not

expressible on classical (e.g., non-quantum) machines. Mathemati-

cally, quantum computations are expressed as linear transforma-

tions (specifically unitary transformations) and as a result, non-

linear computations such as copying quantum values are prohib-

ited. Selinger and Valiron [2009] introduce a linear lambda calculus

for describing quantum computations that they call the quantum
lambda calculus. The details of quantum computation are beyond

the scope of this paper; see Selinger and Valiron’s presentation for

a gentler introduction.

The quantum lambda calculus consists of a linear lambda calculus

extended with a type for qubits (the quantum equivalent of a bit)

and three additional operations:

class HasMELL exp⇒ HasQuantum exp where

new ∶∶ Bool → exp Empty Qubit

unitary ∶∶ Unitary σ → exp γ σ → exp γ σ
meas ∶∶ exp γ Qubit → exp γ (Lower Bool)

The new operation creates a qubit in a so-called “classical” state,

corresponding to either 0 (False) or 1 (True). These qubits can be

put into probabilistic states by applying unitary transformations,

which correspond to the class of valid quantum computations. We

assume there exists some universal set of unitary transformations

Unitary σ , each of which corresponds to a linear transformation

σ ⊸ σ . Finally, meas performs quantum measurement, which prob-

abilistically outputs a boolean value.

In Appendix D we show how to define a dependently-typed

quantum Fourier transform using type families, drawing on Paykin

et al. [2017], and give some implementation details.

7 Discussion and Related Work
7.1 Design of the embedded language
The embedding described in this paper is very similar to the work

of Eisenberg et al. [2012] and Polakow [2015], who also describe

embeddings of linear lambda calculi in Haskell using dependently-

typed features of GHC to enforce linearity. We adapt features from

both embeddings: Polakow introduces higher-order abstract syntax

(HOAS) for linear types, but to achieve this he uses a non-standard

typing judgment γ in⇑γout ⊢ e ∶ τ that threads an input context into

every judgment. Eisenberg et al. use the standard typing judgment

γ ⊢ e ∶ τ but without HOAS, which makes linear programming

awkward.

In this paper we combine the two representations to get a HOAS

encoding of the direct-style typing judgment. Doing so has some

limitations, however. For example, lambda abstractions can be used

in either the left-hand side or the right-hand side of an application,

but not both: the expression λ $ \x → (λ $ \y → y) ^ x type

checks in Haskell, but not (λ $ \x → x) ^ (λ $ \y → y). Haskell

cannot infer that both sides of the application are typed in the

empty context; knowing γ1⋓γ2 = Empty is not enough to infer that

γ1 = γ2 = Empty. Although inconvenient, we find that this problem

can often be circumvented by writing helper functions, e.g., id ^ id.

Although we did not find this property prohibitively restrictive

while writing our examples, it does represent a tradeoff in the

design space. For example, one challenge we have not yet been

able to overcome is type checking nested linear pattern matches.

Polakow [2015]’s representation of typing judgments as a threaded

relation γ in⇑γout ⊢ e ∶ τ may be better suited for automatic type

checking, but we find it less natural than the direct style. In future

work many possibilities exist to enhance type checking for the

direct style, including more robust type classes or a type checker

plugin that uses an external solver to search for the intermediate

typing contexts.
13

Crucially, the contribution of this work in contrast to that of

Eisenberg et al. and Polakow is not somuch the design of the embed-

ding in Haskell, but rather the use of the linear/non-linear model

that gives rise to the linearity monad. Eisenberg et al. and Polakow

introduce !α as an embedded connective, which, compared to the

LNL decomposition of !, requires significantly more maintenance

in the linear system, and introduces a divide between linear and

regular Haskell programming.

7.2 Error messages
As in any type-heavy language embedded in Haskell, the error

messages are not ideal. For example, the type checker will fail on

λ (\x → x ⊗ x), but instead of reporting that the program has

attempted to duplicate a linear argument, the error message simply

states that it expects an empty context where a non-empty context

has been provided:

Couldn't match type `Empty' with `NEmpty (End σ)'
arising from a use of ⊗̀' in the expression: x ⊗ x

7.3 Deep versus shallow embeddings
The prior implementations by Eisenberg et al. [2012] and Polakow

[2015] include only shallow embeddings, which should be more

efficient than deep embeddings. However, the shallow embedding

is not “adequate,” because it is possible to write down terms of type

LExp Shallow γ τ that do not correspond to anything in the linear

lambda calculus.
14

This may be acceptable in some cases, as there

are two different consumers of our framework: DSL implementers
and DSL users. Implementers have access to unsafe features of the

embedding, and so they must be careful to only expose an abstract

linear interface (e.g., one not containing the SExp constructor) to

the clients of the language to enforce the linearity invariants.

In the deep embedding, linear expressions are entirely syntax

so by definition all terms of type LExp Deep γ τ correspond to real

linear expressions. The deep embedding also makes it possible to

express program transformations and optimizations.

7.4 Further integration with Haskell
A recent proposal by Bernardy et al. [2017] suggests how to inte-

grate linear types directly into GHC as Hask-LL, based on a model

of linear logic that uses weighted annotations on arrows instead

of !α or the adjoint decomposition considered here. Their proposal

would allow the implementation of efficient garbage collection and

13https://ghc.haskell.org/trac/ghc/wiki/Plugins/TypeChecker
14

For example, SExp (\γ → VPut ()) has type LExp Shallow γ (Lower ()) for
any context γ .

https://ghc.haskell.org/trac/ghc/wiki/Plugins/TypeChecker


Haskell’17, September 7-8, 2017, Oxford, UK Jennifer Paykin and Steve Zdancewic

explicit memory management, and could conceivably be adapted

to a wide variety of different domains using foreign function in-

terface calls.
15

Compared to our approach, the proposal requires

significant changes to GHC; our framework works out-of-the box.

We hypothesize that the linearity monad arises in their work as the

(linear) CPS monad: (α ⊸ �)⊸ �.
Bernardy et al.’s proposal is also adamant about eliminating code

duplication, meaning that data structures and operations on data

structures should be parametric over linear versus non-linear data.

It is certainly a drawback of our work that the user may have to

duplicate Haskell code in the linear fragment, as we saw when

defining the linear versions of the monad type classes in Section 5.

Future work might address this by using Template Haskell
16

to

define data structures and functions with implementations in both

the linear and non-linear worlds.

7.5 Conclusion and future work
In this paper we present a new perspective on linear/non-linear

logic as a programming model for embedded languages that inte-

grates well with monadic programming. We develop a framework

in Haskell to demonstrate our design, and implement a number

of domain-specific languages. We expect the techniques presented

in this paper to extend to many areas not covered here, such as

affine and other substructural type systems, as well as bounded

linear logic. In addition, the idea of an LNL model as an embedded

language is not specific to Haskell, but could be applicable in a wide

range of languages [Rand et al. 2017].

Appendices

A Type checking and type class resolution
The type classes CAdd and CMerge in Figure 4 are used to type-check

linear expressions in Haskell, and they depend critically on func-

tional dependencies to perform type checking. For example, con-

sider type checking for a lambda abstraction. To show that λ f has

type exp γ (σ ⊸ τ ), it suffices to show that f ∶∶ exp γ ’’ σ →
exp γ ’ τ where

1. CSingleton x σ γ '';
2. CAdd x σ γ γ '; and
3. x ~ Fresh γ .

In many cases, we know the value of γ—in practice the top-level of

an expression will often be the empty context—and we can proceed

in the following way. From γ we can compute x , as Fresh γ is a

type family that produces the smallest natural number x that does

not occur in γ . The functional dependencies of CSingleton state

that because we know x and σ , we can compute γ ′′; it is the context
with Just σ at index i and Nothing everywhere else. Furthermore,

knowing the values of x , σ and γ we can deduce γ ′ based on the

functional dependencies of CAdd.

Unfortunately, whenwe do not know the value ofγ , we cannot in
general deduce the types of the other variables. This situation arises

whenever a merge occurs. For example, even if we know γ when

type-checking e ∧ e' ∶∶ exp γ τ , we do not a priori know the con-

texts γ1 and γ2 such that e ∶∶ exp γ 1 (σ ⊸ τ ), and e' ∶∶ exp γ 2 σ ,

15https://wiki.haskell.org/Foreign_Function_Interface
16https://wiki.haskell.org/Template_Haskell

such that γ1 ⋓ γ2 = γ . Knowing γ is not enough to compute γ1 and
γ2, although knowing any two of these three contexts is enough to

compute the third, thanks to the functional dependencies of CMerge.

When one of e or e' is, for example, a variable, we then know the

value of γ1 or γ2 respectively, which allows us to compute the other.

This explains why λ(\x → (λ (\y → y) ^ x)) does type check in

our system, but λ (\x → x) ^ λ (\y → y) does not.

In order to enforce the functional dependencies required by this

technique, it is necessary to design the type classes with some sub-

tlety. For example, in the class CAdd x σ γ γ ', we need to enforce

the functional dependency that γ ’ x → σ γ . Naively one might

expect the following instances of this class:

instance CSingletonCtx x σ γ'⇒ CAdd x σ Empty γ'
instance CAddN x σ γ γ'⇒ CAdd x σ (N γ) (N γ')

where CAddN is the same relation, but on non-empty contexts. Un-

fortunately, these instances overlap, since there is not a unique

instance that applies from just knowing x and γ ′, when γ ′ is non-
empty. The decision of which case to apply depends on the size
of the output context γ ′: when the size of γ ′ is one, the first rule
applies, and when the size is greater than one, the second rule

applies.

We can define a type class that counts the size of a non-empty

context; for technical reasons (so we start counting at zero), we

define CountNMinus1 γ ' to be one less than the number of elements

in γ ′.

type family CountNMinus1 (γ ∶∶ NCtx) ∶∶ Nat where

CountNMinus1 (End _) = Z

CountNMinus1 (Cons (Just _) γ) = S (CountNMinus1 γ)
CountNMinus1 (Cons Nothing γ) = CountNMinus1 γ

type family Count (γ ∶∶ Ctx) ∶∶ Nat where

Count Empty = Z

Count (N γ) = S (CountNMinus1 γ)

Now the type class CAdd depends on a helper class, CAdd', that itself

depends on an additional argument corresponding to the size of

the input context. The class CAddN' similarly applies when both the

input and output contexts are non-empty, and the length argument

to CAddN' corresponds with the length of the input context.

instance CAdd' x σ γ γ' (CountNMinus1 γ')⇒CAdd x σ γ (N γ')
class len ~ Count γ ⇒ CAdd' x σ (γ ∶∶ Ctx) (γ' ∶∶ NCtx) len

⋃︀ x σ γ → len γ', x γ' len → σ γ
class len ~ Count γ ⇒ CAddN' x σ (γ ∶∶ NCtx) (γ' ∶∶ NCtx) len

⋃︀ x σ γ → len γ', x γ' len → σ γ

The instances of CAdd' and CAddN' are then guided by this extra

parameter, as shown in Figure 6.

We run into a similar problem for the Merge relation, which has

the following functional dependencies:

class CMerge γ1 γ2 γ ⋃︀ γ1 γ2 → γ, γ1 γ → γ2, γ2 γ → γ1

In particular, knowing any two of γ 1, γ 2 and γ determines the third.

The naive instance declarations satisfy only the first functional

dependency, however, as shown in Figure 7.

This class does not satisfy the dependency γ 1 γ → γ 2 because of
the overlap between the instance CMergeForward (N γ ) Empty (N γ )
and CMergeForward (N γ 1) (N γ 2) (N γ ) (and similarly for γ 2 γ
→ γ 1). Since the merge relation is in fact functional in this direction,

we can define a type family that computes that function. The type

https://wiki.haskell.org/Foreign_Function_Interface
https://wiki.haskell.org/Template_Haskell


The Linearity Monad Haskell’17, September 7-8, 2017, Oxford, UK

instance CAdd' x σ γ γ' (CountNMinus1 γ')⇒ CAdd x σ γ (N γ')
instance CSingletonCtx x σ γ' ⇒ CAdd' x σ Empty γ' Z

instance CAddN' x σ γ γ' n ⇒ CAdd' x σ γ (N γ') (S n)

instance Count γ ~ n ⇒ CAddN' Z σ (Cons Nothing γ) (Cons (Just σ) γ) n

instance CSingletonCtx x σ γ' ⇒ CAddN' (S x) σ (End τ) (Cons (Just τ) γ') (S Z)

instance CAddN' x σ γ γ' n ⇒ CAddN' (S x) σ (Cons Nothing γ) (Cons Nothing γ') n

instance CAddN' x σ γ γ' (S n)⇒ CAddN' (S x) σ (Cons (Just τ) γ) (Cons (Just τ) γ') (S (S n))

Figure 6. Instances of the CAdd, CAdd', and CAddN' type classes.

class CMergeForward (γ1 ∶∶ Ctx) (γ2 ∶∶ Ctx) (γ ∶∶ Ctx) ⋃︀ γ1 γ2 → γ
class CMergeForwardN (γ1 ∶∶ NCtx) (γ2 ∶∶ NCtx) (γ ∶∶ NCtx) ⋃︀ γ1 γ2 → γ
instance CMergeForward Empty Empty Empty

instance CMergeForward Empty (N γ) (N γ)
instance CMergeForward (N γ) Empty (N γ)
instance CMergeNForward γ1 γ2 γ ⇒ CMergeForward (N γ1) (N γ2) (N γ)
instance CMergeNForward (End σ) (Cons Nothing γ2) (Cons (Just σ) γ2)
instance CMergeNForward (Cons Nothing γ1) (End σ) (Cons (Just σ) γ1)
instance CMergeNForward γ1 γ2 γ ⇒ CMergeNForward (Cons Nothing γ1) (Cons Nothing γ2) (Cons Nothing γ)
instance CMergeNForward γ1 γ2 γ ⇒ CMergeNForward (Cons (Just σ) γ1) (Cons Nothing γ2) (Cons (Just σ) γ)
instance CMergeNForward γ1 γ2 γ ⇒ CMergeNForward (Cons Nothing γ1) (Cons (Just σ) γ2) (Cons (Just σ) γ)

Figure 7. Type classes and instances for the merge relation.

type family Div (γ ∶∶ Ctx) (γ' ∶∶ Ctx) ∶∶ Ctx where

Div γ Empty = γ
Div (N γ) (N γ') = DivN γ γ'

type family DivN (γ ∶∶ NCtx) (γ' ∶∶ NCtx) ∶∶ NCtx where

DivN (End _) (End _) = Empty

DivN (Cons (Just _) γ) (End _) = N (Cons Nothing γ)
DivN (Cons (Just _) γ) (Cons (Just _) γ') =

ConsN Nothing (DivN γ γ')
DivN (Cons (Just σ) γ) (Cons Nothing γ') =

ConsN (Just σ) (DivN γ γ')
DivN (Cons Nothing γ) (Cons Nothing γ') =

ConsN Nothing (DivN γ γ')
type family ConsN (m ∶∶ Maybe LType) (γ ∶∶ Ctx) ∶∶ Ctx where

ConsN Nothing Empty = Empty

ConsN (Just σ) Empty = N (End σ)
ConsN m (N γ) = N (Cons m γ)

Figure 8. The Div and ConsN type families on contexts

family ConsN, shown in Figure 8, adds an entry to the head of a

possibly-empty context γ .
With the Div type family, also shown in Figure 8, we can satisfy

the functional dependencies in CMerge as follows:

instance ( CMergeForward γ1 γ2 γ, CMergeForward γ2 γ1 γ
, Div γ γ1 ~ γ2, Div γ γ2 ~ γ1)

⇒ CMerge γ1 γ2 γ

A.1 Helper functions: lookup, add, and split

Recall from Section 4 the definition of evaluation contexts and the

signatures of the helper functions lookup, add, and split, which are

used to instantiate embeddings of the linear languages.

data ECtx sig γ where

ECtx ∶∶ (∀ x σ. Lookup γ x ~ Just σ⇒ Sing x → LVal sig σ)
⇒ ECtx sig γ

lookup ∶∶ CSingleton x σ γ ⇒ Sing x → ECtx sig γ → LVal sig σ
add ∶∶ CAdd x σ γ γ'

⇒ Sing x → LVal sig σ → ECtx sig γ → ECtx sig γ'
split ∶∶ CMerge γ1 γ2 γ

⇒ ECtx sig γ → (ECtx sig γ1, ECtx sig γ2)

The runtime representation of evaluation contexts is just a func-

tion, and the implementations of lookup and split should not really

modify this function; they should be no-ops at runtime. For add, the

function should simply be updated to reflect the new binding. In

order to convince the type system that this is valid, we must prove

that the Lookup type family behaves appropriately with respect to

the relations CSingleton, CAdd, and CMerge.

For the CSingleton type class, this amounts to showing that

if CSingleton x σ γ , then Lookup γ x ~ Just σ . A common tech-

nique for doing this is adding this constraint to the CSingleton and

CSingletonN type classes directly; the proof is build up by induction

with each instance declaration, and it leaves no trace at runtime.

class Lookup γ x ~ Just σ⇒ CSingleton x σ γ
class LookupN γ x ~ Just σ⇒ CSingletonN x σ γ

In the implementation, we actually take this opportunity to prove

other theorems in the same way, which aids in type checking:

1. If CSingleton x σ γ , then:
a. γ is a well-formed context;

b. Lookup γ x ~ Just σ ;
c. γ ~ SingletonF x σ ; and
d. Remove x γ ~ Empty.

2. If CAdd x σ γ γ ' then:
a. γ and γ ′ are well-formed contexts;

b. Lookup γ ’ x ~ Just σ ;



Haskell’17, September 7-8, 2017, Oxford, UK Jennifer Paykin and Steve Zdancewic

c. Remove x γ ’ ~ γ ; and
d. AddF x σ γ ~ γ ’.

3. If CMerge γ 1 γ 2 γ then:

a. Div γ γ 2 ~ γ 1;
b. Div γ γ 1 ~ γ 2; and
c. each of γ1, γ2, and γ are well-formed.

Here, SingletonF is the type family that computes the singleton

typing context, and similarly for AddF. The property that γ is a
well-formed context further states that

1. Div γ Empty ~ γ ;
2. Div γ γ ~ Empty;

3. CMergeForward Empty γ γ ; and
4. CMergeForward γ Empty γ .

Using this, we can define lookup:

lookup ∶∶ CSingleton x σ γ ⇒ Sing x → ECtx sig γ → LVal sig σ
lookup x (ECtx f) = f x

For add, we will need to construct an evaluation context for γ ′,
so add x v (ECtx f) will map y to f y when y ≠ x , and to v when

y = x . We can compare two singleton natural numbers using the

eqSNat function, which produces either a proof that two nats are

equal, or a proof that they are not equal. The Dict type provides

type-level representation of constraints.

eqSNat ∶∶ ∀ (m ∶∶ Nat) (n ∶∶ Nat). Sing m → Sing n

→ Either (Dict (m ~ n) (Dict ((m==n)~False))
Now we need to prove the following two properties:

1. If CAdd x σ γ γ ' then Lookup γ ' x ~ Just σ (which fol-

lows from the theorems stated above); and

2. If CAdd x σ γ γ ' andy ≠ x then Lookup γ ' y ~ Lookup γ x.

The second result is proved by induction over the structure of the

CAdd relation, but because it refers to a type variable y that is not

mentioned in the CAdd type class, we cannot prove it in the same

way. Instead, we will need to add a “proof” of this theorem as a

run-time method to the class, and build up the proof manually. The

final type class declaration for the CAdd class is as follows:

class (γ'~AddF x σ γ, γ~Remove x γ', Lookup γ' x~Just σ)
⇒ CAdd (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) (γ' ∶∶ Ctx)

⋃︀ x σ γ → γ', x γ' → σ γ
where

addLookupNEq ∶∶ (x == y) ~ False⇒ Sing x → Sing y

→ Dict (Lookup γ' y ~ Lookup γ y)

The add helper function calls out to this proof in the case that y ≠ x .
add ∶∶ ∀ x σ γ γ'. CAdd x σ γ γ'
⇒ Sing x → LVal sig σ → ECtx sig γ → ECtx sig γ'

add x v (ECtx f) = ECtx $ \y → case eqSNat x y of

Left Dict → v

Right Dict → case addLookupNEq @x @σ @γ @γ' x y of

Dict → f y

The split operation runs into a similar problem, and uses a

similar technique to solve it. When CMerge γ 1 γ 2 γ , an evaluation

context ρ forγ is also an evaluation context for bothγ1 andγ2, since
Lookup γ 1 x ~ Just σ implies Lookup γ x ~ Just σ , and similarly

for γ2. We add the following proofs to the CMergeForward type class:

class CMergeForward γ1 γ2 γ ⋃︀ γ1 γ2 → γ where

lookupMerge1 ∶∶ Lookup γ1 x ~ Just σ
⇒ Sing x → Dict (Lookup γ x ~ Just σ)

lookupMerge2 ∶∶ Lookup γ2 x ~ Just σ
⇒ Sing x → Dict (Lookup γ x ~ Just σ)

The definition of split follows:

split ∶∶ ∀ γ1 γ2 γ. CMerge γ1 γ2 γ⇒ECtx γ→(ECtx γ1,ECtx γ2)
split (ECtx f) = (ECtx $ \x→case lookupMerge1 @γ1 @γ2 @γ x of

Dict → f x

,ECtx $ \x→case lookupMerge2 @γ1 @γ2 @γ x of

Dict → f x)

B Modularly extending the deep embedding
In this section we describe an approach that lets us modularly

extend the LExp Deep data type of the deep embedding from Sec-

tion 4.1. Our approach uses the same trick of open recursion that

we used for extending linear types.

data instance LExp Deep γ τ where

Var ∶∶ CSingleton x σ γ ⇒ LExp Deep γ σ
Dom ∶∶ Domain Deep dom⇒ dom (LExp Deep) γ τ→LExp Deep γ τ

Notice that we elide Abs and App from our definition now; they can

be defined independently as domains.

The Dom constructor takes an expression from a recursively-

paramaterized data structure dom. For example, file handles use

the following domain, which closely resembles the HasFH type class.

data FHDom (exp ∶∶ Ctx → LType → Type) ∶∶ Ctx → LType → Type

where

Open ∶∶ String → FHDom exp Empty Handle

Read ∶∶ exp γ Handle → FHDom exp γ (Handle ⊗ Lower Char)

Write ∶∶ exp γ Handle → Char → FHDom exp γ Handle

Close ∶∶ exp γ Handle → FHDom exp γ One

When used by the Dom constructor, the parameter exp is replaced by

LExp Deep, tying the knot. It is trivial to define the HasFH operators

by wrapping their constructors with Dom, e.g., open = Dom . Open.

The type class Domain Deep dom defines evaluation particularly

for that domain, from which we can give a complete instance of

Eval for the deep embedding.

class Domain sig dom where

evalDomain ∶∶ Monad (Effect sig)⇒ ECtx sig γ
→ dom (LExp sig) γ τ → Effect sig (LVal sig τ)

instance Eval Deep where

eval γ Var = return $ lookup γ
eval γ (Dom e) = evalDomain γ e

All that remains now is to define an instance of Domain for file

handles. First we define values of type Handle to be Haskell’s time

of built-in IO file handles, and we define the effect of the embedding

to be IO.

data instance LVal Deep Handle = VHandle IO.Handle

type instance Effect Deep = IO

We implement evaluation using IO primitives to open and read from

files (and similarly for Write and Close).

instance Domain Deep FHDom where

evalDomain _ (Open s) =
VHandle <$> IO.openFile s IO.ReadWriteMode

evalDomain γ (Read e) = do

VHandle h ← eval γ e

c ← IO.hGetChar h

return $ VHandle h `VPair` VPut c



The Linearity Monad Haskell’17, September 7-8, 2017, Oxford, UK

evalDomain γ (Write e c) = do VHandle h ← eval γ e

IO.hPutChar h c

return $ VHandle h

evalDomain γ (Close e) = do VHandle h ← eval γ e

IO.hClose h

return VUnit

C Implementation of Session Types
We implement sessions as a pair UChan of untyped channels. We use

a pair so that an actor will never send data and then receive that

same data the next time they receive from the channel. Every time

we construct a UChan, we also construct its swap, which corresponds

to the other end of the channel.

type UChan = (Chan Any, Chan Any)

newU ∶∶ IO (UChan,UChan)

newU = do c1 ← IO.newChan

c2 ← IO.newChan

return ((c1,c2),(c2,c1))

These channels are untyped, but we will send and receive data of

arbitrary types along them using

sendU ∶∶ UChan → a → IO ()

sendU (cin,cout) a = writeChan cout $ unsafeCoerce a

recvU ∶∶ UChan → IO a

recvU (cin,cout) = unsafeCoerce <$> readChan cin

The final operation on untyped channels is linkU, which takes as

input two channels, and forwards all communication between them

in both directions.

We define a new signature for sessions. Since we are using IO

channels under the hood, the effect of the signature is IO. All values

with this signature, no matter the type, are UChans.

data Sessions

data instance LVal Sessions τ = Chan UChan

type instance Effect Sessions = IO

We use a variant of the shallow embedding to encode expressions,

which we represent as a function from evaluation contexts and an

extra UChan to IO (). The extra UChan is the output channel of the

expressions; an expression of type σ ⊗ τ will send a value σ on its

output channel, for example.

data instance LExp Sessions γ τ =
SExp {runSExp ∶∶ SCtx Sessions γ → UChan → IO ()}

To evaluate an expression, we first construct a new channel with

newU, which outputs the two endpoints of the new channel. Then

we call runSExp on the expression with one of the endpoints, and

return the other endpoint.

instance Eval Sessions where

eval e γ = do (c,c') ← newU

forkIO $ runSExp e γ c

return $ Chan c'

In the implementationwe provide instances for HasLolli, HasTensor,

HasOne, and HasLower, the last of which we illustrate here. To con-

struct an expression of type Lower τ via put a, we simply send the

Haskell value a over the output channel.

put a = SExp $ \_ c → sendU c a

To implement e >! f, we spawn a new channel and pass one end

to e. Then we wait for a value from the other end, to which we

apply f.

e >! f = SExp $ \ρ c → do let (ρ1,ρ2) = split ρ
(x,x') ← newU

forkIO $ runSExp e ρ1 x

a ← recvU x'

runSExp (f a) ρ2 c

D Quantum computing
D.1 A dependently typed Quantum Fourier Transform
We can take advantage of GHC’s dependent types to describe a

dependent quantum Fourier transform (QFT) [Paykin et al. 2017].

First, we define a Nat-indexed type family describing the n-ary

tensor of a linear type.

type family (σ ∶∶ LType) ∏ (n ∶∶ Nat) ∶∶ LType where

σ ∏ Z = One

σ ∏ (S (S n)) = σ ⊗ (σ ∏ S n)

The quantum fourier transform depends on an operation rotations,

which we omit here. The quantum fourier transform is defined

recursively as follows, where Hadamard ∶∶ Unitary Qubit.

fourier ∶∶ HasQuantum exp⇒ Sing n → LStateT (Qubit ∏ n) ()

fourier SZ = return ()

fourier (SS SZ) = suspendT . λ $ unitary Hadamard ⊗ put ()

fourier (SS m) = suspendT . λpair $ \(q,qs) →
forceT (fourier m) ∧ qs `letin` \qs →
forceT (rotations (SS m) m) ∧ (q ⊗ qs)

where rotations ∶∶ Sing m → Sing n

→ Lift exp (Qubit ∏ S n⊸ Qubit ∏ S n)

The Sing n data family is a runtime representation of the natural

number n, from the singletons library, with constructors SZ ∶∶ Sing Z

and SS ∶∶ Sing n → Sing (S n). The operation λpair combines ab-

straction and letPair to match against the input to the λ.

D.2 Implementation
We implement the quantum signature using the deep embedding

rather than the shallow, as in the future we are interested in com-

piling and optimizing quantum computations. Thus we define a

domain to plug into the deep embedding:

data QuantumExp exp ∶∶ Ctx → LType → Type where

New ∶∶ Bool → QuantumExp exp Empty Qubit

Meas ∶∶ exp γ Qubit → QuantumExp exp γ (Lower Bool)

Unitary ∶∶ Unitary σ → exp γ σ → QuantumExp exp γ σ

As is usual with the deep embedding, it is easy to show that it

satisfies the HasQuantum class.

There are many computational models available for simulating

quantum computations, and our implementation chooses one based

on density matrices [Nielsen and Chuang 2010]. We will not go

into the details of this simulation here, but the outward-facing

interface has three (monadic) operations, where DensityMonad is a

probabilistic state monad on density matrices. Qubits are identified

with integers that index into the matrix.

newM ∶∶ Bool → DensityMonad Int

applyUnitaryM ∶∶ Mat (2∧m) (2∧m) → [Int] → DensityMonad ()

measM ∶∶ Int → DensityMonad Bool



Haskell’17, September 7-8, 2017, Oxford, UK Jennifer Paykin and Steve Zdancewic

Values of type Qubit are integer qubit identifiers, and DensityMonad

is the effect.

data instance LVal Deep Qubit = QId Int

type instance Effect Deep = DensityMonad

The implementation is completed with a Domain instance, which

we omit here.

D.3 Related work
Other approaches to higher-order quantum computing in Haskell

have been proposed. The Quantum IO monad [Altenkirch and

Green 2009] features a monadic approach to quantum computing

that separates reversible (e.g., unitary) computations from those

containing measurement. Unlike the quantum lambda calculus,

the Quantum IO monad is not type safe and may fail at runtime.

Quipper [Green et al. 2013] is a scalable quantum circuit language

embedded in Haskell and has a similar problem, although two

closely related core calculi have been proposed that use linear types

for safe quantum circuits [Paykin et al. 2017; Ross 2015].

Acknowledgments
This work is supported by the NSF under Grant No. CCF-1421193.

Thanks to the anonymous reviewers, as well as Antal Spector-

Zabusky, Kenneth Foner, Richard Eisenberg, and Stephanie Weirich

for many helpful discussions about this work.

References
Thorsten Altenkirch and Alexander S. Green. 2009. The Quantum IOMonad. Cambridge

University Press, 173–205. https://doi.org/10.1017/CBO9781139193313.006
Erik Barendsen and Sjaak Smetsers. 1993. Conventional and uniqueness typing in graph

rewrite systems. In Proceedings of the 13th Conference of Foundations of Software
Technology and Theoretical Computer Science, Rudrapatna K. Shyamasundar (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 41–51. https://doi.org/10.1007/
3-540-57529-4_42

Nick Benton. 1995. A mixed linear and non-linear logic: Proofs, terms and models. In

Computer Science Logic, Leszek Pacholski and Jerzy Tiuryn (Eds.). Lecture Notes in

Computer Science, Vol. 933. Springer Berlin Heidelberg, 121–135. https://doi.org/
10.1007/BFb0022251

Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. 1993. A term

calculus for Intuitionistic Linear Logic. In Typed Lambda Calculi and Applications,
Marc Bezem and JanFriso Groote (Eds.). Lecture Notes in Computer Science, Vol. 664.

Springer Berlin Heidelberg, 75–90. https://doi.org/10.1007/BFb0037099
Nick Benton and Philip Wadler. 1996. Linear logic, monads and the lambda calculus.

In Proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science,
1996. LICS ’96. 420–431. https://doi.org/10.1109/LICS.1996.561458

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and

Arnaud Spiwack. 2017. Retrofitting Linear Types. (2017). https://www.microsoft.
com/en-us/research/wp-content/uploads/2017/03/haskell-linear-submitted.pdf

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Proposi-

tions. In CONCUR 2010 - Concurrency Theory, Paul Gastin and François Laroussinie

(Eds.). Lecture Notes in Computer Science, Vol. 6269. Springer Berlin Heidelberg,

222–236. https://doi.org/10.1007/978-3-642-15375-4_16
Chih-Ping Chen and Paul Hudak. 1997. Rolling your own mutable ADT—a connection

between linear types and monads. In Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages - POPL ’97. Association for

Computing Machinery (ACM). https://doi.org/10.1145/263699.263708
Richard Eisenberg, Benoıt Valiron, and Steve Zdancewic. 2012. Typechecking Linear

Data: Quantum Computation in Haskell. (2012).

Richard A. Eisenberg and Jan Stolarek. 2014. Promoting Functions to Type Families in

Haskell. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell (Haskell
’14). ACM, New York, NY, USA, 95–106. https://doi.org/10.1145/2633357.2633361

Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. 2016. Vis-

ible Type Application. In Programming Languages and Systems: 25th European
Symposium on Programming, ESOP 2016, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2016, April 2–8, 2016, Peter
Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 229–254. https:
//doi.org/10.1007/978-3-662-49498-1_10

Matthew Fluet, Greg Morrisett, and Amal Ahmed. 2006. Linear Regions Are All You

Need. In Programming Languages and Systems. Springer Science + Business Media,

7–21. https://doi.org/10.1007/11693024_2

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît

Valiron. 2013. Quipper: A Scalable Quantum Programming Language. In Pro-
ceedings of the 34th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI ’13). ACM, New York, NY, USA, 333–342. https:
//doi.org/10.1145/2491956.2462177

The Idris Community. 2017. Uniqueness Types. (2017). http://docs.idris-lang.org/en/
latest/reference/uniqueness-types.html

Mark P. Jones. 2000. Type Classes with Functional Dependencies. In Programming
Languages and Systems: 9th European Symposium on Programming, ESOP 2000,
Gert Smolka (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 230–244. https:
//doi.org/10.1007/3-540-46425-5_15

P.B. Levy. 2012. Call-By-Push-Value: A Functional/Imperative Synthesis. Springer

Netherlands.

Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions.

In Proceedings of Programming Languages and Systems, 24th European Symposium
on Programming, ESOP 2015, Jan Vitek (Ed.), Vol. 9032. Springer Berlin Heidelberg,

London, UK, 560–584. https://doi.org/10.1007/978-3-662-46669-8_23
Sam Lindley and J. Garrett Morris. 2016. Embedding Session Types in Haskell. In

Proceedings of the 9th International Symposium on Haskell (Haskell 2016). ACM, New

York, NY, USA, 133–145. https://doi.org/10.1145/2976002.2976018
Saunders Mac Lane. 1978. Categories for the working mathematician. Vol. 5. Springer

Science & Business Media.

Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language. In Proceedings of
the 2014 ACM SIGAda Annual Conference on High Integrity Language Technology
(HILT ’14). ACM, New York, NY, USA, 103–104. https://doi.org/10.1145/2663171.
2663188

Karl Mazurak and Steve Zdancewic. 2010. Lolliproc: To Concurrency from Classical

Linear Logic via Curry-Howard and Control. SIGPLAN Not. 45, 9 (Sept 2010), 39–50.
https://doi.org/10.1145/1932681.1863551

Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. 2010. Lightweight linear types in

system F°. In Proceedings of the 5th ACM SIGPLAN workshop on Types in language
design and implementation - TLDI '10. Association for Computing Machinery (ACM).

https://doi.org/10.1145/1708016.1708027
Conor McBride. 2016. I Got Plenty o’ Nuttin’. In A List of Successes That Can Change

the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birth-
day, Sam Lindley, Conor McBride, Phil Trinder, and Don Sannella (Eds.). Springer

International Publishing, 207–233. https://doi.org/10.1007/978-3-319-30936-1_12
J. Garrett Morris. 2016. The Best of Both Worlds: Linear Functional Programming

Without Compromise. In Proceedings of the 21st ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2016). New York, NY, USA, 448–461.

https://doi.org/10.1145/2951913.2951925
M.A. Nielsen and I.L. Chuang. 2010. Quantum Computation and Quantum Information:

10th Anniversary Edition. Cambridge University Press.

James Noble, Jan Vitek, and John Potter. 1998. Flexible alias protection. In ECOOP’98 —
Object-Oriented Programming: 12th European Conference Brussels, Belgium, July 20–
24, 1998 Proceedings, Eric Jul (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

158–185. https://doi.org/10.1007/BFb0054091
E. G. J. M. H. Nöcker, J. E. W. Smetsers, M. C. J. D. van Eekelen, and M. J. Plasmeijer.

1991. Concurrent clean. Springer Berlin Heidelberg, Berlin, Heidelberg, 202–219.

https://doi.org/10.1007/3-540-54152-7_66
Dominic Orchard and Nobuko Yoshida. 2016. Effects As Sessions, Sessions As Effects.

In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’16). ACM, New York, NY, USA, 568–581. https:
//doi.org/10.1145/2837614.2837634

Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A Core Language

for Quantum Circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 846–

858. https://doi.org/10.1145/3009837.3009894
Jeff Polakow. 2015. Embedding a full linear Lambda calculus in Haskell. In Proceedings

of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada,
September 3-4, 2015. 177–188. https://doi.org/10.1145/2804302.2804309

François Pottier and Jonathan Protzenko. 2013. Programming with permissions in

Mezzo. ACM SIGPLAN Notices 48, 9 (nov 2013), 173–184. https://doi.org/10.1145/
2544174.2500598

Riccardo Pucella and Jesse A. Tov. 2008. Haskell Session Types with (Almost) No Class.

In Proceedings of the First ACM SIGPLAN Symposium on Haskell (Haskell ’08). ACM,

New York, NY, USA, 25–36. https://doi.org/10.1145/1411286.1411290
Robert Rand, Jennifer Paykin, and Steve Zdancewic. 2017. QWIRE Practice: Formal

Verification of Quantum Verification in Coq. (2017). Quantum Physics and Logic

(QPL), July 3–7, 2017, Nijmegen, Amsterdam.

Neil J. Ross. 2015. Algebraic and Logical Methods in Quantum Computation. Ph.D.

Dissertation. Dalhousie University.

Peter Selinger and Benoît Valiron. 2009. Quantum Lambda Calculus. Cambridge

University Press, 135–172. https://doi.org/10.1017/CBO9781139193313.005
PhilipWadler. 1990. Linear types can change theworld!. In IFIP TC 2Working Conference

on Programming Concepts and Methods, Sea of Galilee, Israel. North Holland.

Philip Wadler. 2014. Propositions as sessions. Journal of Functional Programming 24

(2014), 384–418. Issue Special Issue 2-3. https://doi.org/10.1017/S095679681400001X

https://doi.org/10.1017/CBO9781139193313.006
https://doi.org/10.1007/3-540-57529-4_42
https://doi.org/10.1007/3-540-57529-4_42
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/BFb0037099
https://doi.org/10.1109/LICS.1996.561458
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/haskell-linear-submitted.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/haskell-linear-submitted.pdf
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/263699.263708
https://doi.org/10.1145/2633357.2633361
https://doi.org/10.1007/978-3-662-49498-1_10
https://doi.org/10.1007/978-3-662-49498-1_10
https://doi.org/10.1007/11693024_2
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/2491956.2462177
http://docs.idris-lang.org/en/latest/reference/uniqueness-types.html
http://docs.idris-lang.org/en/latest/reference/uniqueness-types.html
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/1932681.1863551
https://doi.org/10.1145/1708016.1708027
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/2951913.2951925
https://doi.org/10.1007/BFb0054091
https://doi.org/10.1007/3-540-54152-7_66
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/2804302.2804309
https://doi.org/10.1145/2544174.2500598
https://doi.org/10.1145/2544174.2500598
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1017/CBO9781139193313.005
https://doi.org/10.1017/S095679681400001X

	Abstract
	1 Introduction
	1.1 Contributions

	2 Linear/Non-Linear types
	2.1 LNL as an Embedded Language

	3 Embedding a linear type system in Haskell
	3.1 Relations on typing contexts
	3.2 Typing judgments
	3.3 Multiplicative unit and pairs
	3.4 The Lift and Lower types
	3.5 File Handles

	4 Evaluation and Implementation
	4.1 A deep embedding
	4.2 A shallow embedding
	4.3 File Handles
	4.4 Laws and correctness

	5 The monad
	5.1 Monads in the linear category
	5.2 The monad transformer

	6 Examples
	6.1 Arrays
	6.2 Session types
	6.3 Quantum computing

	7 Discussion and Related Work
	7.1 Design of the embedded language
	7.2 Error messages
	7.3 Deep versus shallow embeddings
	7.4 Further integration with Haskell
	7.5 Conclusion and future work

	A Type checking and type class resolution
	A.1 Helper functions: lookup, add, and split

	B Modularly extending the deep embedding
	C Implementation of Session Types
	D Quantum computing
	D.1 A dependently typed Quantum Fourier Transform
	D.2 Implementation
	D.3 Related work

	Acknowledgments
	References

