
QWIRE

QWIRE: A Core Language for Quantum Circuits

Jennifer Paykin Robert Rand Steve Zdancewic
University of Pennsylvania, USA

jpaykin@seas.upenn.edu, rrand@seas.upenn.edu, stevez@cis.upenn.edu

Abstract
This paper introduces QWIRE (“choir”), a language for defining
quantum circuits and an interface for manipulating them inside of
an arbitrary classical host language. QWIRE is minimal—it con-
tains only a few primitives—and sound with respect to the phys-
ical properties entailed by quantum mechanics. At the same time,
QWIRE is expressive and highly modular due to its relationship
with the host language, mirroring the QRAM model of computation
that places a quantum computer (controlled by circuits) alongside
a classical computer (controlled by the host language).

We present QWIRE along with its type system and operational
semantics, which we prove is safe and strongly normalizing when-
ever the host language is. We give circuits a denotational semantics
in terms of density matrices. Throughout, we investigate examples
that demonstrate the expressive power ofQWIRE, including exten-
sions to the host language that (1) expose a general analysis frame-
work for circuits, and (2) provide dependent types.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords quantum programming languages, quantum circuits,
linear types, denotational semantics

1. Introduction
The standard architecture for quantum computers follows the quan-
tum circuit model, which presents quantum computations as se-
quences of gates over qubits (the quantum analogue of bits). As
with classical circuits, quantum circuits exist at a very low level
of abstraction, and yet in spite of this, researchers and industry
professionals write complex quantum algorithms in state-of-the-art
quantum circuit languages like Quipper (Green et al. 2013a) and
LIQUi|〉 (Wecker and Svore 2014).

Why is the quantum circuit model so successful? In part, it is
due to the fact that quantum data like qubits are extremely unintu-
itive from a classical perspective. Research into simple operations
on quantum data, such as qubit-controlled conditionals and recur-
sion, is still in its infancy (Ying 2014; Badescu and Panangaden
2015), so programmers cannot be sure that their algorithms using
such abstractions are valid quantum-mechanically.

[Copyright notice will appear here once ’preprint’ option is removed.]

Although circuits manipulate quantum data, they themselves are
classical data—a circuit is just a sequence of instructions describ-
ing how to apply gates to wires. In practice this means that circuits
can be used to build up layers of abstractions hiding the low-level
details. The QRAM model of quantum computing (Knill 1996) for-
malizes this intuition by describing how a quantum computer could
work in tandem with a classical computer. In the QRAM model the
classical computer handles the majority of ordinary tasks, while
the quantum computer performs specialized quantum operations.
To communicate, the classical computer sends instructions to the
quantum machine in the form of quantum circuits. Over the course
of execution, the quantum computer sends measurement results
back to the classical computer as needed.

Classical
Computer

Quantum
Computer

circuits

measurement results

Embedded languages like Quipper, LIQUi|〉, the Q language (Bet-
telli et al. 2003), and the quantum IO monad (Altenkirch and Green
2010) can be thought of as instantiations of this model. They exe-
cute by running host language programs on the classical computer,
making specialized calls to the (hypothetical) quantum machine.
The classical host languages allow programmers to easily build up
high-level abstractions out of low-level quantum operations.

However, such abstractions are only worthwhile if the circuits
they produce are safe—if they do not cause errors when executed
on a quantum computer. Unfortunately, proving that an embedded
language produces well-formed circuits is hard because it means
reasoning about the entirety of the classical host language. This is
frustrating when we care most about the correctness of quantum
programs, which we expect to be both more expensive and error-
prone than the embedded language’s classical programs.

One way of ensuring the safety of circuits is via a strong type
system. Type safety for a quantum programming language means
that well-formed circuits will not get stuck or “go wrong” when
executed on a quantum machine. A subtlety is that this definition
implies that the quantum program is even implementable on a quan-
tum computer—that the high-level operational view of the language
is compatible with quantum physics. One way of ensuring that the
language is implementable is to give a denotational semantics for
programs in terms of quantum mechanics.

Several quantum programming languages have been proposed
with an emphasis on type safety, including Selinger’s QPL lan-
guage (Selinger 2004), the quantum lambda calculus (Selinger and
Valiron 2009), QML (Altenkirch and Grattage 2005), and Proto-
Quipper (Ross 2015). However, these are toy languages, not de-
signed for implementation in a conventional programming environ-
ment.

Paykin, Rand & Zdancewic 1 2016/11/8

In this paper we address the tension between expressive embed-
ded languages and denotationally-sound type-safe languages.

The best of both worlds:QWIRE

We propose the design of a core quantum circuit language in which
circuits, equipped with a purely linear type system to ensure type
safety, are explicitly separated from an arbitrary classical host
language. The circuit language, which we call QWIRE (“choir”),
comes equipped with an interface to this host language that allows
for all the benefits of an embedded language while maintaining
type safety and soundness.

The quantum lambda-calculus popularized the use of linear
types for quantum systems. The “no-cloning” theorem of quantum
mechanics states that quantum data cannot be cloned; in a program-
ming environment, linear types ensure that quantum programs do
not try to violate this property. However, the programming model
should also allow for non-linear programming of ordinary classical
data. The quantum lambda calculus addresses this via subtyping,
but forQWIRE we take an alternative approach inspired by the sym-
metry between the QRAM model and Benton’s Linear/Non-Linear
(LNL) logic (1995):

Non-Linear
Types

Linear
Types

InQWIRE, quantum circuits execute on the quantum computer and
are given linear types, while host language programs execute on the
classical computer and are given ordinary non-linear types.

Structuring the system in this way has several advantages. First,
the interface to circuits is minimal, which means that they can be
easily studied reasoned about. Second, the host language is exten-
sible, since changes to the host language don’t induce changes to
the circuit language, and vice versa. Third, the relationship between
the circuit language and host language can be easily axiomatized:
every circuit can be promoted to the host language via a box op-
erator, and then unboxed to be reused inside of other circuits. This
allows circuits to be treated as classical data structures in the host
language, while prohibiting quantum data such as qubits from es-
caping the linear type system.

The axiomatic approach means that the circuit language is rela-
tively independent from the host language. In particular, we expect
that the host language could be instantiated with a wide range of
programming languages depending on the intended use: high-level
functional programming languages for developing and reasoning
about algorithms; theorem provers for verification of quantum cir-
cuits; and perhaps even hardware description languages for deploy-
ment with real quantum computers.

Contributions.

• We present QWIRE, a core quantum circuit language, along
with a simple linear type system (Section 3) and an equational
operational semantics (Section 4). In addition to the circuit
language itself, we describe a minimal interface to a classical
host language that allows for modularity and communication
via the QRAM model.

• We prove that the operational semantics of QWIRE is type
safe (Theorems 6 and 7), and that all circuits reduce to a small
set of normal forms (Theorem 8), depending only on the cor-
rectness of the host language.

• We give a denotational semantics in terms of density matri-
ces (Section 5) and prove that the operational semantics is
sound with respect to it (Theorem 11).

• Throughout we give examples of circuits written in an archety-
pal host language with access to QWIRE (Section 2). We also
consider how to extend the host language with case analysis of
circuits and dependent types (Section 6) to express programs
that cannot be written in existing circuit languages.

2. QWIRE by Example
We start by taking a look at some code written in a host language
that has access toQWIRE circuits. Circuits are constructed by a box
operator that binds the input, represented as a wire name, inside of
a circuit. Each wire name is identified with a wire type, which is
either a bit, a qubit, or a (possibly empty) product of wire types.

For example, the identity circuit is written id = box w ⇒
output w and has the type Circ(W ,W) for any wire type W . The
wire name w is not a regular variable as one would use in a classical
programming language like the host language. For one, a wire is not
first class: it is not by itself a circuit. For another, wire variables can
only be used inside a circuit, and must be used linearly—once it is
used, the same wire cannot be used again.

Gate application is the most important operation on wires. For
example, the following circuit applies a Hadamard gate (H) to its
input wire, followed by a measurement gate. Each gate has an
associated input and output type and can only be applied to wires
of the appropriate type.

hadamard-measure : Circ(qubit,bit) =
box w =>

w’ <- gate H w;
b <- gate meas w’;
output b

H meas

Note that we sometimes write (gate g w) as shorthand for the
(w’ <- gate g w; output w’) that appears in the example.

The reason wires must be treated linearly is that applying a gate
changes the nature of the wire w. It is meaningless to apply two
gates to the same wire, because wires (and in particular qubits)
cannot be duplicated. The following code, for example, is absurd:

absurd = box w =>
x <- gate meas w;
w’ <- gate H w;
output (x,w’)

Similarly, it is dangerous to implicitly discard references to
wires, which might be entangled in a greater quantum system. In
QWIRE the discard gate explicitly discards a bit-valued wire,
whereas qubit-valued wires must be measured before being dis-
carded.

Since gates act on wires and not entire circuits, the expression
gate meas (gate H w) is ill-formed. However, circuits can be
composed by connecting the output of one circuit to the input
of another. This type of composition is most useful when using
circuits that have previously been constructed by a box operator.
Boxed circuits can be unboxed by connecting some free input wires
to the input of the box. The following function composes two boxed
circuits in sequence, resulting in one complete circuit:

inSeq (c1 : Circ(W1,W2)) (c2 : Circ(W2,W3))
: Circ(W1,W3) = box w1 =>

w2 <- unbox c1 w1;
unbox c2 w2

W1
c1

W2
c2

W3

The type system guarantees that the output wire of the first cir-
cuit matches the input wire to the second. More complex composi-

Paykin, Rand & Zdancewic 2 2016/11/8

tion is also possible. For instance, inPar composes any two circuits
in parallel, with no restriction on their wire types.

inPar (c : Circ(W1,W2)) (c’ : Circ(W1’,W2’)
: Circ(W1⊗W1’, W2⊗W2’) =
box (w1,w1’) =>

w2 <- unbox c w1;
w2’ <- unbox c’ w1’;
output (w2,w2’)

W1

W ′
1

c

c’

W2

W ′
2

W2 ⊗W ′
2

In the host language, we can write functions that compute cir-
cuits based on classical values, such as the following initialization
function for qubits that determines which initialization gate gets
applied.

init (b : Bool) : Circ(1,qubit) =
if b then box () => gate init1 ()

else box () => gate init0 ()

Quantum teleportation. The quantum teleportation algorithm
(adapted from Green et al.’s introduction to the Quipper lan-
guage, 2013b) highlights the relationship between boxed and un-
boxed circuits more clearly. Figure 1 shows the quantum telepor-
tation circuit, broken up into four parts. Alice is trying to send
a qubit q, the input to the teleport circuit, to Bob. The circuit
bell00 initializes two qubits in the zero state (written |0〉), places
qubit a in a superposition of |0〉 and |1〉 via the Hadamard (H) gate,
and entangles it with qubit b by applying a controlled-not (CNOT)
gate. Qubit a is then given to Alice, and qubit b to Bob. Alice en-
tangles a and q and measures them, outputting a pair of bits x and
y. Bob then uses these to transform his own qubit into the state of
the original qubit q.

Communication via lifting. In the teleportation example, the bit-
valued wires x and y are treated as controls in the bob circuit.
Intuitively, the bits x and y contain classical information, and so
they should be able to be manipulated in by the host language. The
dynamic lifting operation promotes bits to the host language so they
can be manipulated using classical reasoning principles.1 The bob
circuit could be written instead using dynamic lifting:

bob-dyn : Circ(bit⊗bit⊗qubit, qubit) =
box (w1,w2,q) =>

(x1,x2) <= lift (w1,w2);
q <- unbox (if x2 then X_gate else id) q;
unbox (if x1 then Z_gate else id) q

where X_gate = box w => gate X w and similarly for Z_gate.
On the one hand, dynamic lifting produces legible code that is

easy to understand because it concentrates more computation in the
host language. On the other hand, dynamic lifting is inefficient be-
cause the host language code must be run on a classical computer,
during which time the quantum computer must remain suspended,
waiting for the remainder of the circuit to be computed. Although
dynamic lifting is not necessary in the case of quantum teleporta-
tion, it is an integral part of many quantum algorithms including
quantum error correction, and so must be accounted for coherently.

The examples shown so far describe all of the ways to construct
circuits inQWIRE. However, when describing quantum algorithms,
circuits are ultimately intended to be executed on a quantum com-
puter. The final piece of the story is therefore the run operation,
which takes a circuit with no input and produces a value. For ex-
ample, the following code implements a quantum coin toss:

1 Dynamic lifting can be applied to qubits as well as bits by implicitly
measuring the qubit before producing a host-language value.

bell00 : Circ(1,qubit⊗qubit) =
box () =>

a <- gate init0 ();
b <- gate init0 ();
a <- gate H a;
gate CNOT (a,b)

alice : Circ(qubit⊗qubit, bit⊗bit) =
box (q,a) =>

(q,a) <- gate CNOT on (q,a)
q <- gate H q;
x <- gate meas q;
y <- gate meas a
output (x,y)

bob : Circ(bit⊗bit⊗qubit, qubit) =
box (x,y,b) =>

(y,b) <- gate (bit-control X) (y,b);
(x,b) <- gate (bit-control Z) (x,b);
() <- gate discard y;
() <- gate discard x;
output b

teleport : Circ(qubit,qubit) =
box q =>

(a,b) <- unbox bell00 ();
(x,y) <- unbox alice (q,a);
unbox bob (x,y,b)

bell00

|0〉

|0〉 H

alice

H meas

meas

bob

X Z

Figure 1. AQWIRE implementation of quantum teleportation.

flip : Bool =
run (q <- gate init0 ();

q <- gate H q;
b <- gate meas q;
output b)

|0〉 H meas

3. The QWIRE Circuit Language
This section introduces the syntax and type theory of QWIRE and
the interface for integratingQWIRE circuits into a host language.

3.1 Circuit language
As shown above, a circuit can be thought of as a sequence of gates
on wires. These wires are described by their wire type W , which is
either unit (has no data), a bit or qubit, or a tuple of wire types.2

W ::= 1 | bit | qubit |W1 ⊗W2

2 Strictly speaking, the collection of wire types, along with the patterns for
each wire type, could be thought of as an input to the system, provided that
typing judgments for patterns are all syntax-directed. For example, we could
consider a system without bit-valued wires, where measurement is only
done via dynamic lifting. Alternatively we could consider more complex
quantum data types in the style of Quipper (Green et al. 2013a). All wire
types should be finite, however; see the discussion in Section 7.4 for more.

Paykin, Rand & Zdancewic 3 2016/11/8

QWIRE is parameterized by a collection of gates G, which each
come equipped with input and output types. We write G(W1,W2)
for the set of gates with input W1 and output W2. The gate set could
consist of any collection of gates, but in the setting of quantum
circuits it is conventional to choose a universal subset U ⊆ G of
unitary gates such that, for every u ∈ U(W ,W), we also have

u† ∈ U(W ,W)

control u ∈ U(qubit ⊗W , qubit ⊗W)

bit-control u ∈ U(bit ⊗W , bit ⊗W)

Additionally, for the sake of this paper we assume we have initial-
ization gates for bits and qubits:

new0, new1 ∈ G(1, bit), init0, init1 ∈ G(1, qubit)

as well as a measurement gate meas ∈ G(qubit, bit) and a discard
gate discard ∈ G(bit, 1) for bits.

A typing judgment Γ ;Ω ` C : W specifies when a circuit is
well-formed. In this judgment,

• C is a circuit;
• Ω = w1 :W1, . . . ,wn :Wn is a context of input wire names

with their wire types;
• Γ = x1 :A1, . . . , xn :An is a context of host language variables

with their host language types; and
• W is the output type of the circuit.

Thus, all well-typed circuits have the following shape:

C

Ω
W

Wires in QWIRE are linear, which means that they cannot be
duplicated or discarded,3 and when we write Ω,Ω′ we assume that
Ω and Ω′ contain only disjoint wire names. Both Ω and Γ are
thought of as unordered contexts.

The output of a circuit is built up as a pattern of its input wires:

Ω ⇒ p :W

Γ ;Ω ` output p :W

Ω

W

A pattern is just a tuple of wires identifying a single wire type.

· ⇒ () :1 w :W ⇒ w :W

Ω1 ⇒ p1 :W1 Ω2 ⇒ p2 :W2

Ω1, Ω2 ⇒ (p1, p2) :W1 ⊗W2

A gate can be applied to a pattern of wires when permitted by
the signature of the gate. The output of that gate is then decomposed
by another pattern. The wires exiting the gate can then be used in
the remainder of the circuit.

g ∈ G(W1,W2)
Ω1 ⇒ p1 :W1 Ω2 ⇒ p2 :W2 Γ ;Ω2, Ω ` C :W

Γ ;Ω1, Ω ` p2 ← gate g p1;C :W

C
W

Ω

Ω1
g Ω2

3 Of course, gates may exist that duplicate or discard bits, but wires them-
selves are linear structures.

We compose circuits by connecting the output of one circuit to
the input wires of another. This operation differs from sequential
composition in that the second circuit may have additional inputs.

Γ ;Ω1 ` C :W Ω ⇒ p :W Γ ;Ω,Ω2 ` C ′ :W ′

Γ ;Ω1, Ω2 ` p ← C ;C ′ :W ′

C ′
W ′

Ω2

Ω1

C
Ω

3.2 Host language
In the QRAM model, a classical computer works together with a
quantum computer. The classical computer communicates with the
quantum computer by sending it instructions—that is, circuits in
QWIRE. Terms in the host language, meanwhile, describe compu-
tations on the classical computer. We refer to the host language as
HOST and describe some of its properties.

We assume that HOST is statically typed, and write its types
as A. Furthermore, we assume that for each wire type there is a
corresponding classical type—for example, a host-level boolean
might correspond to the qubit and bit wire types, and tensor wire
types correspond to pairs. In addition, we add a type represent-
ing the QWIRE circuits between two wire types, which we write
Circ(W1,W2). Of course, HOST will often contain many other
types, including functions and inductive data types, but the inter-
face with QWIRE does not depend on the particular structure of
HOST. For this reason we say that HOST is arbitrary: many differ-
ent languages could fill in for the host language ofQWIRE.

Overall, we can summarize the types of HOST as follows:

A ::= · · · | Unit | Bool | A×A | Circ(W1,W2)

The typing judgment for HOST terms is written Γ ` t :A where Γ
is a context of variables with their associated types.

Boxing and Unboxing. The Circ type bridges QWIRE circuits
and HOST terms. The type Circ(W1,W2) is a wrapper around
QWIRE circuits of the form Γ ;Ω ` C : W2, where the wires in
Ω come from a pattern destructing the input type W1.

Ω ⇒ p :W1 Γ ;Ω ` C :W2

Γ ` box (p :W1)⇒ C :Circ(W1,W2)
C

Ω W

A boxed term of type Circ(W1,W2) can be coerced back into a
QWIRE circuit by describing how to match up the available input
wires to the input type of the boxed representation.

Γ ` t :Circ(W1,W2) Ω ⇒ p :W1

Γ ;Ω ` unbox t p :W2

t
Ω W2

Lifting. In the QRAM model described above, the quantum com-
puter also communicates with the classical computer by sending it
the results of measurement. For example, given a circuit with no
input wires and a bit output, running that circuit should result in a
host language boolean value.

Γ ; · ` C :bit

Γ ` run C :Bool

We can generalize this operation so that running a circuit that out-
puts a qubit implicitly measures that qubit and returns the corre-
sponding boolean. In fact this relationship generalizes to any wire
type, which can be lifted to a classical type as follows:

|bit| = Bool

|qubit| = Bool

|1| = Unit

|W1 ⊗W2| = |W1| × |W2|

Paykin, Rand & Zdancewic 4 2016/11/8

The run operator now has the following form:

Γ ; · ` C :W

Γ ` run C : |W |
Run is a static lifting operator, meaning that there is no residual

state left on the quantum computer after run C has completed. In
contrast, dynamic lifting describes the case when, over the course
of a quantum computation, a subset of the wires are measured and
communicated to the classical computer. In this case, the classi-
cal computer uses those results to compute the remainder of the
quantum circuit, and eventually sends the results to the quantum
computer. Dynamic lifting is expensive because while the classical
computer is computing the rest of the circuit, the existing state on
the quantum computer must continuously undergo error correction
to prevent degradation. However, dynamic lifting is a fundamental
form of communication between the two machines, and is needed
to implement algorithms like quantum error correction.

We write the dynamic lifting operator x ⇐ lift p;C to mean
that the wires in p are measured, lifted to the classical computer as
the host variable x , and used to compute the circuit C .

Ω ⇒ p :W Γ , x : |W |;Ω′ ` C :W ′

Γ ;Ω,Ω′ ` x ⇐ lift p;C :W ′

The dynamic and static lifting operations are not mutually deriv-
able, as they represent two fundamentally different ways to com-
municate the results of measurement between the two systems.

3.3 Static semantics
To summarize, the syntax of QWIRE circuits and HOST terms
include the following:

(Patterns) p ::= () | w | (p, p)
(Circuits) C ::= output p | p2 ← gate g p1;C | p ← C ;C

| x ⇐ lift p;C | unbox t p

(Terms) t ::= · · · | run C | box (p :W)⇒ C

The typing rules are summarized in Figure 2. Note that we often
write box p ⇒ C instead of box (p :W) ⇒ C when the type of
the input pattern is clear. Note that typing contexts are unique for
both patterns and circuits:

Lemma 1. If Ω1 ⇒ p :W and Ω2 ⇒ p :W then Ω1 = Ω2. If
Γ ;Ω1 ` C :W and Γ ;Ω2 ` C :W then Ω1 = Ω2.

4. Operational semantics: circuit normalization
Circuits inQWIRE represent instructions to be executed on a quan-
tum computer: either apply a particular gate, or request a dynamic
lifting operation. Composition and unbox operations are more like
meta-operations: they describe ways to construct more complex
combinations of gates. In this section we define an operational se-
mantics that eliminates all instances of unboxing and composition,
resulting in a small set of normal forms. The subset of QWIRE cir-
cuits in normal forms are identified by two main properties.

First, normal circuits should operate only on bits and qubits, not
on the tuples of wires described by arbitrary wire types W . We
call a circuit concrete when all of its input wires are either bits or
qubits:

·;Q ` C :W where Q ::= · | Q,w :bit | Q,w :qubit.

A concrete circuit is called normal when it consists only of gate
applications, outputs, and dynamic lifting operations.

N ::= output p | p2 ← gate g p1;N | x ⇐ lift p;C

Ω ⇒ p :W

Γ ;Ω ` output p :W
OUTPUT

g ∈ G(W1,W2)
Ω1 ⇒ p1 :W1 Ω2 ⇒ p2 :W2 Γ ;Ω2, Ω ` C :W

Γ ;Ω1, Ω ` p2 ← gate g p1;C :W
GATE

Γ ;Ω1 ` C :W Ω ⇒ p :W Γ ;Ω,Ω2 ` C ′ :W ′

Γ ;Ω1, Ω2 ` p ← C ;C ′ :W ′
COMPOSE

Ω ⇒ p :W Γ , x : |W |;Ω′ ` C :W ′

Γ ;Ω,Ω′ ` x ⇐ lift p;C :W ′
LIFT

Γ ` t :Circ(W1,W2) Ω ⇒ p :W1

Γ ;Ω ` unbox t p :W2
UNBOX

Γ ; · ` C :W

Γ ` run C : |W |
RUN

Ω ⇒ p :W1 Γ ;Ω ` C :W2

Γ ` box (p :W1)⇒ C :Circ(W1,W2)
BOX

Figure 2. Typing rules forQWIRE.

Notice that the lifting operator x ⇐ lift p;C does not assume that
its continuation C is also normal. This is because C has a free host-
level variable x that cannot in general be normalized. For example,
consider the circuit x ⇐ lift w ; unbox (init x) (): the continuation
unbox (init x) () cannot be normalized because init x does not
reduce in the host language.

In the rest of this section we define the small-step operational
semantics that reduces concrete circuits typed by ·;Q ` C : W
to normal circuits. The operational rules rely on a fairly complex
substitution relation, which we briefly address.

Substitution. A substitution {p′/p} describes a finite map from
wire names to patterns. It is well-defined only when p generalizes
p′ (written p′ 4 p) in the following sense:

p′ 4 w () 4 ()

p′1 4 p1 p′2 4 p2

(p′1, p
′
2) 4 (p1, p2)

We say p′ ≺ p when p′ 4 p and ¬(p 4 p′), and we say
p is concrete for W when, for all Ω ⇒ p′ :W , ¬(p′ ≺ p).

Lemma 2. If Ω ⇒ p :W andQ ⇒ p′ :W , then p′ 4 p.

The substitution map is defined as follows:

{()/()} = ∅
{p′/w} = w 7→ p′

{(p′1, p′2)/(p1, p2)} = {p′1/p1}, {p′2/p2}

A well-defined substitution extends to total functions on pat-
terns, circuits, and wire contexts. For patterns, we have:

(){p′/p} = ()

w{p′/p} =

{
p0 if w 7→ p0 ∈ {p′/p}
w otherwise

(p1, p2){p′/p} = (p1{p′/p}, p2{p′/p})

Paykin, Rand & Zdancewic 5 2016/11/8

The operation on circuits is straightforward, assuming the usual
notions of capture-avoidance.

(output p0) {p′/p} = output (p0{p′/p})
(p2 ← gate g p1;C) {p′/p} = p2 ← gate g p1{p′/p};C {p′/p}

(x ⇐ lift p0;C) {p′/p} = x ⇐ lift p0{p′/p};C {p′/p}
(unbox t p0) {p′/p} = unbox t (p0{p′/p})

(p0 ← C ;C ′) {p′/p} = p0 ← C {p′/p};C ′ {p′/p}

A well-defined substitution {p′/p} is consistent with w at W
if (w , p0) ∈ {p′/p} implies that there is some (unique4) Ω0 such
that Ω0 ⇒ p0 :W . A substitution is consistent with a context Ω
when, for all w :W ∈ Ω, it is consistent with w at W .

For wire contexts, suppose {p′/p} is consistent with Ω. The
substitution Ω {p′/p} is defined by induction on Ω:

· {p′/p} = ·

(Ω′,w :W) {p′/p} =

Ω′ {p′/p}, Ω0 if w 7→ p0 ∈ {p′/p}

and Ω0 ⇒ p0 :W

Ω′ {p′/p},w :W otherwise

Lemma 3. Suppose p′ 4 p where Ω ⇒ p :W and Ω′ ⇒ p′ :W .
Then:

1. If Ω′′ is disjoint from Ω, then Ω′′ {p′/p} = Ω′′.
2. Ω {p′/p} = Ω′.
3. (Ω1, Ω2) {p′/p} = Ω1 {p′/p}, Ω2 {p′/p}.

Lemma 4. Suppose {p′/p} is consistent with Ω.

1. If Ω ⇒ p0 :W then Ω {p′/p} ⇒ p0{p′/p} :W .
2. If Γ ;Ω ` C :W then Γ ;Ω {p′/p} ` C {p′/p} :W ′.

Proof. Part 1 is immediate by induction. Part 2 is similarly by
induction on the typing judgment Γ ;Ω ` C : W . The only
difficult case concerns the bound patterns in gate and composition
substitutions. For example, consider the gate application rule:

g ∈ G(W1,W2)
Ω1 ⇒ p1 :W1 Ω2 ⇒ p2 :W2 Γ ;Ω2, Ω ` C :W

Γ ;Ω1, Ω ` p2 ← gate g p1;C :W

By part 1, we have Ω1 {p′/p} ⇒ p1{p′/p} :W1, and by the in-
ductive hypothesis we know Γ ; (Ω2, Ω) {p′/p} ` C {p′/p} :
W . By α-equivalence, we can assume that the wires in Ω2

are disjoint from the substitution {p′/p}, and so by Lemma 3,
(Ω2, Ω) {p′/p} = Ω2, (Ω {p′/p}). Thus
Γ ;Ω1 {p′/p}, Ω {p′/p} ` p2 ← gate g p1{p′/p};C {p′/p} : W .

Operational Semantics. The small-step operational semantics for
circuits is written C =⇒ C ′, and it depends on a similar opera-
tional semantics on terms, written t −→ t ′. The relation on terms
is made up of two parts, −→=−→H ∪ −→b, where

1. −→H is the operational semantics derived from the host lan-
guage alone, and

2. −→b is the operational semantics for boxed circuits.

It is reasonable to assume that the host language relation −→H
treats the type Circ(W1,W2) as an abstract data type, meaning
that all terms of the form box p ⇒ C are treated as uninterpreted
constants by the −→H relation. The relation −→b reduces such
a boxed circuit to one of the form box p′ ⇒ N where p′ is
concrete for the type W1. Let v refer to the values of HOST without

4 Recall that Ω0 is uniquely determined by the choice of p0 and W
(Lemma 1).

(Box)
p is concrete for W C =⇒ C ′

box (p :W)⇒ C −→b box (p :W)⇒ C ′
STRUCT

p′ ≺ p p′ is concrete for W
(box (p :W)⇒ C) −→b (box p′ ⇒ C {p′/p})

η

(Unbox)
t −→ t ′

unbox t p =⇒ unbox t ′ p
STRUCT

unbox (box (p :W)⇒ N) p′ =⇒ N {p′/p}
β

(Gate)
g ∈ G(W1,W2) p2 is concrete for W2 C =⇒ C ′

p2 ← gate g p1;C =⇒ p2 ← gate g p1;C ′
STRUCT

g ∈ G(W1,W2) p′2 ≺ p2 p′2 is concrete for W2

p2 ← gate g p1;C =⇒ p′2 ← gate g p1;C {p′2/p2}
η

(Composition)
C1 =⇒ C ′1

p ← C1;C2 =⇒ p ← C ′1;C2
STRUCT

p ← output p′;C =⇒ C {p′/p}
β

p ← (p2 ← gate g p1;N);C =⇒ p2 ← gate g p1; p ← N ;C
CC

p′ ← (x ⇐ lift p;C ′);C =⇒ x ⇐ lift p; p′ ← C ′;C
CC

Figure 3. Operational semantics of concrete circuits.

circuits. Then vH consists of values v along with boxed circuits
as uninterpreted constants, and vC consists of values along with
normalized boxed circuits:

vH ::= v | box p ⇒ C

vC ::= v | box p ⇒ N

We explicitly do not describe the operational behavior of run C
terms in this semantics. Instead, we assume that run operations
reduce under −→H; the host language has a facility to execute
circuits on a (simulation of) a quantum computer in an appropriate
way. Such an implementation is divorced from the construction
of circuits, which is what we are developing in this section. One
possibility is given in Section 5.1, where we give an example of a
probabilistic operational rule for run C based on the denotational
semantics of circuits.

The relations =⇒ on circuits and −→b on boxed circuits are
given in Figure 3. Each rule is labeled as either a structural rule
(STRUCT), a β-reduction, an η-expansion, or a commuting conver-
sion (CC).

The structural rules reduce circuits underneath binders. For
composition and unboxing these structural rules are straightfor-
ward, in that they don’t have any preconditions restricting when
they apply. For boxes and gates, on the other hand, the continu-
ations C of the circuit have some additional inputs that are not
concrete even if the entire circuit is. For example, in the circuit
w ← gate CNOT (w1,w2);C , the continuation C has a com-
pound wire w even though the entire circuit has only concrete
wires w1 and w2. To address this issue, the η-expansion rules for

Paykin, Rand & Zdancewic 6 2016/11/8

gates and boxes show that any such binding is equivalent to one
with concrete inputs throughout.

Lemma 5. If p is concrete for W then there is a unique Q such
that Q ⇒ p :W . Furthermore, for every wire type W there exists
a p (not necessarily unique) such that p is concrete for W .

Since an unbox operator is not a normal circuit, we eliminate
it via a β rule once its argument t reaches a value of the form
box p ⇒ N . Similarly, the composition operator reduces its first
argument to a normal form before taking a step. When the argument
is an output output p′, the composition p ← output p′;C uses
substitution to take a β-reduction step. On the other hand, when the
argument consists of gate or lifting step, the semantics commutes
that command to the front of the circuit; we call these operators
commuting conversions.

4.1 Type safety.
We prove type safety with progress and preservation theorems,
provided that the relation −→H is also type safe.

Theorem 6 (Preservation). Suppose −→H satisfies preservation.

1. If ` t :A and t −→ t ′, then ` t ′ :A.
2. If ·;Q ` C : W and C =⇒ C ′, then ·;Q ` C ′ : W .

Proof. By induction on the step relation (??).

Theorem 7 (Progress). Suppose −→H satisfies progress with re-
spect to the values vH.

1. If · ` t :A then either t is a value vC or there is some t ′ such
that t −→ t ′.

2. If ·;Q ` C :W then either C is normal or there is some C ′

such that C =⇒ C ′.

Proof. By induction on the typing judgment (??).

Provided that −→H is strongly normalizing, we can also show
that circuits are strongly normalizing.

Theorem 8 (Normalization). Suppose that −→H is strongly nor-
malizing with respect to vH.

1. If · ` t :A, there exists some value vC such that t −→∗ vC.
2. If ·;Q ` C :W , there exists some normal circuit N such that

C =⇒∗ N .

Proof. By induction on the number of constructors in the term and
circuit (??).

5. Denotational Semantics
In this section we will give a denotational semantics for QWIRE
circuits. The state of a quantum system can be described in terms
of a density matrix, in which numbers along the diagonal represent
the probability of measuring a given state.5 Consider, for instance,
the entangled Bell pair produced by the following circuit:

|0〉

|0〉 H

5 Formally, a density matrix is a positive Hermitian matrix whose trace sums
to 1. Any pure state in column vector form can be transformed into a density
matrix by taking its outer product with itself.

This pair of qubits is represented by the density matrix
1/2 0 0 1/2
0 0 0 0
0 0 0 0
1/2 0 0 1/2

where the 1/2 in the top left represents the probability of measuring
two zeros, while the 1/2 in the bottom right represents the probabil-
ity of measuring two ones. If we measured this system, we would
obtain the mixed state density matrix

1/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/2

representing a distribution over |00〉 and |11〉.

Since a QWIRE circuit transforms some state to another, it will
be interpreted as a superoperator over density matrices. In the rest
of this section we will assume some familiarity with the mathemat-
ics of quantum computation; for reference we encourage readers to
consult Nielsen and Chuang’s standard text in the area (2010).

Given a Hilbert spaceH, we writeH∗ for the collection of den-
sity matrices seen as linear transformations from H to H. Given
a linear map on Hilbert spaces f : H (H′, f∗ is a superoper-
ator from H∗ to (H′)∗ defined by f∗ ρ = f ρ f†. In fact, every
superoperator can be written

Φρ =
∑
i∈X

M∗i ρ

for some indexed family of matrices {Mi}iinX . We define(
Φ ⊗ Φ′

)
ρ =

∑
(i,j)∈X×X′

(Mi ⊗M ′j)
∗ ρ.

In this model, a wire type is interpreted as a Hilbert space in the
following way:

[bit] = H2

[qubit] = H2

[1] = H1

[W1 ⊗W2] = [W1] ⊗ [W2]

The intention is that a circuit from W1 to W2 is interpreted as a
superoperator mapping density matrices corresponding to W1 to
density matrices corresponding to W2. Notice that the denotation
of bit and qubit are identical, which reflects the fact that bit-valued
wires on a quantum machine are implemented using qubits in the
|0〉 and |1〉 states.

For example, every gate g ∈ G(W1,W2) is be interpreted as a
superoperator between W1 and W2. Although the set of gates is a
parameter of the system, a unitary gate U should clearly correspond
to U∗, and the interpretation of other likely gates is as follows:

Jnew0K, Jinit0K = (|0〉 〈0|)∗

Jnew1K, Jinit1K = (|1〉 〈1|)∗

JmeasK = (|0〉 〈0|)∗ + (|1〉 〈1|)∗

JdiscardK = 〈0|∗ + 〈1|∗

QWIRE circuits are specified by an unordered context of input
wires Ω. However, we can equally well think of Ω as an ordered
context, along with an explicit permutation rule to change the order
of the wires.6

Γ ;Ω′ ` C :W π : Ω ≡ Ω′

Γ ;Ω ` C :W

6 We elide these details in Section 3 as they complicate the operational
semantics.

Paykin, Rand & Zdancewic 7 2016/11/8

Permutations are defined inductively.

ε : Ω ≡ Ω
π1 : Ω1 ≡ Ω2 π2 : Ω2 ≡ Ω3

π2 ◦ π1 : Ω1 ≡ Ω3

(swap Ω1 Ω2) : Ω,Ω1, Ω2, Ω′ ≡ Ω,Ω2, Ω1, Ω′

Note that permutations are reflected in the typing judgments of
circuits but not in the syntax. We extend the substitution relation
to permutations in a natural way, writing π {p′/p}.

ε {p′/p} = ε

(π2 ◦ π1) {p′/p} = π2 {p′/p} ◦ π1 {p′/p}
(swap Ω1 Ω2) {p′/p} = swap (Ω1 {p′/p}) (Ω2 {p′/p})

An ordered context of wires is now interpreted as a Hilbert space
by treating the comma as the tensor product:

[·] = H1 [w :W] = [W] [Ω1, Ω2] = [Ω1] ⊗ [Ω2]

Although the context of wires can be permuted inside a circuit, it
will not be permuted inside a pattern. Therefore, a pattern Ω ⇒ p :
W is just a reassociation of the input wires; all permutations must
be done outside the pattern. This means that wheneverΩ ⇒ p :W ,
it must be the case that [Ω] = [W].

A permutation π : Ω ≡ Ω′ will be interpreted as a linear
isomorphism from [Ω] to [Ω′], written [π], as follows:

[ε] = I

[π2 ◦ π1] = [π2] ◦ [π1]

[swap Ω1 Ω2](v0 ⊗ v1 ⊗ v2 ⊗ v3) = (v0 ⊗ v2 ⊗ v1 ⊗ v3)

Lemma 9. If π : Ω ≡ Ω′ and {p′/p} is consistent with Ω, then
[π {p′/p}] = [π].

Proof. Straightforward by induction on the permutation.

For · ` v : |W |, we define Jv : |W |K to be an element of [W]:

J∗ : UnitK = |∗〉
Jfalse : BoolK = |0〉
Jtrue : BoolK = |1〉

J(v1, v2) : |W1| × |W2|K = Jv1 : |W1|K ⊗ Jv2 : |W2|K

Now, for ·;Ω ` C :W , we write JΩ ` C : W K for its inter-
pretation as a superoperator between [Ω]∗ and [W]∗. Furthermore,
for · ` t :Circ(W1,W2), we write JtK for JΩ ` C : W2K where
t −→∗H box p ⇒ C in the host language and Ω ⇒ p :W1. This
operation is functional exactly when the host language semantics is
strongly normalizing.

The interpretation of circuits is defined in Figure 4.

Lemma 10. If ·;Ω ` C : W and {p′/p0} is consistent with Ω,
then

JΩ {p′/p} ` C {p′/p} : W K = JΩ ` C : W K.

Proof. By induction on the typing judgment. The proof is almost
completely straightforward because the interpretation of circuits
does not depend on the content of patterns.

Theorem 11 (Soundness). If ·;Q ` C :W and C =⇒ C ′, then

JQ ` C : W K = JQ ` C ′ : W K.

Proof. By induction on the typing judgment (??).

5.1 Operational behavior of run
In Section 4 we left the semantics of the run operator up to the
choice of implementation—to be executed as either a simulator or
on an actual quantum computer. Given the denotational semantics
described in this section, however, we specify the correctness of
run C as a probabilistic operation. If ·; · ` C : W , then

J· ` C : W KI1

is a density matrix for [W]. The basis for [W] is isomorphic to
{Jvi : |W |K | · ` vi : |W |}, corresponding to the values of |W |, so
we can write the density matrix JC KI asα11 · · · α1n

...
. . .

...
αn1 · · · αnn

according to this basis. Then for each i, we say that the probability
of C being vi is αi i , written prob(C =vi) = αi i . The operational
semantics rule for run C can be summarized with respect to this
relation: run C steps to vi with probability αi i .

prob(C =vi) = αi i

run C −→αi i vi

6. Extensions to HOST
In this section we consider two extensions to the host language that
expand the expressivity ofQWIRE.

6.1 Case analysis of circuits
Thanks to the operational semantics in Section 4, we know that
every circuit ` t :Circ(W1,W2) normalizes to box p ⇒ N , where
Q ⇒ p : W1 and ·;Q ` N : W2 for some concrete context Q.
Intuitively, this means that circuits can be inspected and analyzed
after they are created, by case analysis on the structure of N . In
this section we develop the infrastructure needed to do this kind of
case analysis on boxed circuits and illustrate a safe circuit reversal
function, written directly in the host language.7

Consider a function that reverses a circuit if all of its gates are
unitary:

reverse : Circ(W1,W2)→ Option Circ(W2,W1).

A first attempt at reverse examines the structure of the normal
circuit underneath the hood:
reverse x =

case x of
| (box p => output p’) -> Some (box p’ => output p)
| (box p => gate p2 = g p1 in N’) -> ?
| (box p => lift x = p’ in C) -> None
end.

When the circuit is a gate application, we would like to do further
case analysis on both the structure of N ′ and the gate g . However,
N ′ is a QWIRE circuit, not a host-language term of the Circ type,
so the recursive call would have to be on box p0 ⇒ N ′ for some
pattern p0 whose value we don’t know. More significantly, N ′ is
not a host-level variable at all, it is firmly in the circuit language, as
are the patterns p, p1, and p2, as well as the gate g .

In order to perform case analysis of circuits inside the host
language, we need two things: a host-level representation of gates
and patterns, and an inductive data structure that we can prove is
equivalent to Circ(W1,W2).

7 Circuit reversal is quite a common operation in quantum circuits. Existing
quantum circuit languages provide reverse as a built-in operation that may
fail at runtime if the circuit is not reversible (Green et al. 2013a; Wecker and
Svore 2014).

Paykin, Rand & Zdancewic 8 2016/11/8

Ω ⇒ p :W

·;Ω ` output p : W
JΩ ` output p : W K = I∗

·;Ω′ ` C : W π : Ω ≡ Ω′

·;Ω ` C : W
JΩ ` C : W K = JΩ′ ` C : W K ◦ [π]∗

· ` t :Circ(W1,W2) Ω ⇒ p :W1

·;Ω ` unbox t p : W2
JΩ ` unbox t p : W ′K = Jt : Circ(W ,W ′)K

g ∈ G(W1,W2)
Ω1 ⇒ p1 :W1 Ω2 ⇒ p2 :W2 ·;Ω2, Ω ` C : W

·;Ω1, Ω ` p2 ← gate g p1;C : W
JΩ1, Ω ` p2 ← gate g p1;C : W K = JΩ2, Ω ` C : W K ◦ (JgK⊗ I∗)

Ω ⇒ p :W x : |W |;Ω′ ` C :W ′

·;Ω,Ω′ ` x ⇐ lift p;C : W ′
JΩ,Ω′ ` x ⇐ lift p;C : W ′K =

∑
·`v:|W |

JΩ′ ` C{v/x} : W ′K ◦ ([v : |W |]† ⊗ I)∗

·;Ω1 ` C : W Ω0 ⇒ p :W ·;Ω0, Ω2 ` C ′ : W ′

·;Ω1, Ω2 ` p ← C ;C ′ : W ′
JΩ1, Ω2 ` p ← C ;C ′ : W ′K = JΩ0, Ω2 ` C ′ : W ′K ◦ (JΩ1 ` C : W K⊗ I∗)

Figure 4. Denotational semantics of circuits.

Gates. A host-level representation of gates is straightforward:

g ∈ G(W1,W2)

Γ ` g :Gate(W1,W2)

We expect a small number of operations on host-level gates, e.g.

isUnitary : Gate(W1,W2)→ Bool

transpose : Gate(W1,W2)→ Option Gate(W2,W1)

Patterns. A host-level pattern can be constructed in a similar
way to a host level circuit: we write pat p ⇒ p′ and think of it
as a function between wire types. Host-level patterns can also be
unpacked in a way similar to unboxing:

Γ ;Ω ⇒ p1 :W1 Γ ;Ω ⇒ p2 :W2

Γ ` pat (p1 :W1)⇒ p2 :Pat(W1,W2)

Γ ` t :Pat(W1,W2) Γ ;Ω ⇒ p :W1

Γ ;Ω ⇒ unpat t p :W2

The addition of the Pat(W1,W2) type means a few things: the
pattern typing judgment must include host-language variables, and
patterns now normalize just like circuits do. In particular, normal
patterns are any of the form

n ::= () | w | (n1,n2)

and unpacking patterns proceeds by the substitution we already
defined in Section 4.

unpat (pat p1 ⇒ p2) p =⇒ p2{p/p1}

Again, in order for substitution to be valid, it must be the case that
the underlying pattern is concrete, for example:

pat (p1 :W)⇒ p2 =⇒ pat p′1 ⇒ p2{p′1/p2}

when p′1 is concrete for W and p′1 ≺ p1.
The progress and preservation theorems for patterns fall out

naturally from the substitution lemma (Lemma 4).
We can reverse a host-level pattern in the following way:

reverse_pat (p : Pat(W1,W2)) : Pat(W2,W1) =
pat (unpat p w) => w

We can show that reverse_pat (reverse_pat p) = p. Sup-
pose p = (pat p1 ⇒ p2) where both p1 and p2 are concrete. Then:

reverse_pat p = pat (unpat p w1)⇒ w1

=η pat (unpat p p1)⇒ p1

=β pat (p2{p1/p1})⇒ p1 = (pat p2 ⇒ p1).

It follows immediately that reverse_pat (reverse_pat p) =
pat p1 ⇒ p2.

Pattern Matching. Given the host-language representations of
patterns and gates, we can start to axiomatize the structure of
circuits in the host language. For example, an output circuit of type
Circ(W1,W2) is represented by a host-level pattern Pat(W1,W2).

A gate application of g : Gate(W ′
1,W

′
2) consists first of a pat-

tern Pat(W1,W
′
1 ⊗W0) breaking the input W1 into two parts: the

input to the gate W ′
1 , and the unused wires W0. The continuation

of the circuit then has the type Circ(W ′
2 ⊗W0,W2).

A dynamic lifting operator similarly starts with a pattern
Pat(W1,W ⊗W ′) that breaks up the input into the part that will
be measured and the continuation of the circuit. The continuation
is represented as a function from the result of the lifting, |W |, to a
circuit Circ(W ′,W2).

Put another way, the type Circ(W1,W2) is isomorphic to the
following indexed data type:

type ICirc W1 W2 =
| Output : Pat W1 W2 -> ICirc W1 W2
| Gate : Pat W1 (W1’⊗W0) -> Gate W1’ W2’ ->

Circ(W2’⊗W0, W2) -> ICirc W1 W2
| Lift : Pat W1 (W⊗W’) ->

(|W| -> Circ(W’,W2)) -> ICirc W1 W2.

We can write the function that embeds an inductive circuit into a
QWIRE circuit directly in the host language:

fromICirc (t : ICirc W1 W2) : Circ(W1,W2) =
case t of
| Output p -> box w1 => output (unpat p w1)
| Gate p g c ->

box (unpat (reverse_pat p) (w1,w0)) =>
w2 <- gate g w1;
unbox c (w2,w0)

| Lift p f ->
box (unpat (reverse_pat p) (w,w’)) =>

x <- lift w;
unbox (f x) w’

end

Paykin, Rand & Zdancewic 9 2016/11/8

The function from Circ(W1,W2) to ICirc W1 W2 is loosely the
algorithm described above, and has the type signature

toICirc (t : Circ(W1,W2)) : ICirc W1 W2
However, toICirc is not expressible directly in the host language,
since it relies on induction on the typing structure of circuits.
Instead we describe it in the meta-theory. If Q ⇒ p : W1 and
·;Q ` N : W2 then toICirc (box p ⇒ N) is defined on the
typing structure of N , as shown in Figure 5.

Theorem 12. For all terms t of type ICirc W1 W2 and c of type
Circ(W1,W2), we have:

toICirc (fromICirc t) = t
fromICirc (toICirc c) = c

Proof. By induction on the typing judgment (??).

Reversing circuits. The circuit reversal function can be written
by interfacing with the ICirc type.

reverse (c : Circ(W1,W2)) : Option (Circ(W2,W1)) =
case toICirc c of
| Output p -> fromICirc (Output (reverse_pat p))
| Gate p g c’ ->

case reverse (toICirc c’), reverse_gate g of
| Some c_rev, Some g_rev ->

let p_rev = reverse_pat p in
let i_rev = Gate id_pat g_rev (Output p_rev) in
inSeq c_rev (fromICirc i_rev)

| _, _ -> None
end

| Lift _ _ -> None
end

where id_pat = pat w => w and inSeq is the sequential com-
position operator defined in Section 2. We also assume the exis-
tence of an operation reverse_gate on gates that is semantically
valid, so that if reverse_gate g = Some g ′, then

JgK ◦ Jg ′K = I∗ = Jg ′K ◦ JgK.

In that case, we can prove the following correctness condition:

Theorem 13. If reverse c = Some c’ then

JcK ◦ Jc′K = I∗ and Jc′K ◦ JcK = I∗.

Proof. By induction on terms (??).

Other operations expressible in the host language with case
analysis include:

• Less naive circuit reversal algorithms; for example qubit initial-
ization can be reversed and treated as an ancilla if every opera-
tion following initialization can be reversed;

• Special purpose quantum simulators;
• A safe control operator on circuits that adds a control wire to

every unitary gate and outputs None if it encounters a lift or
non-unitary gate;

• Resource analyzers that count the number of gates in a circuit
up to a dynamic lifting operation;

• An optimizer that collects the gates in a circuit into a data struc-
ture, runs an optimization pass, and reconstructs the circuit;

• A transformation that maps one set of unitary gates to another;
• A static analysis tool to determine whether two circuits are

equivalent (Staton 2015).

Another way to gain expressivity of circuits is by adding depen-
dent types to the host language.

6.2 Dependent types
Consider the quantum Fourier transform, which is a circuit with n
inputs and n outputs. It is natural for the wire types of the Fourier
circuit reflect this dependency on n. In the language of dependent
types, it might have the signature

fourier : Π (n :Nat).Circ(
⊗

n qubit,
⊗

n qubit)

where tensor is a type-level function that duplicates the argument
wire type (qubit) some number of times (defined below).

Combining linear and dependent types is still an area of active
research (Krishnaswami et al. 2015; McBride 2016) but thanks to
the separation between the circuit and host languages, we can get
away with a limited form of dependent types due to Krishnaswami
et al. (2015). Under this strategy, types can depend on terms, but
only terms of classical (non-linear) type. These include dependen-
cies on wire types themselves, which are considered classical terms
in the universe hierarchy.

To be more precise, let W be the kind of wire types, and
consider an indexed hierarchy of host language typesAi . We define
the following well-formedness judgment: first,W has type Ai for
any index i , and Ai has type Ai+1:

Γ ` W : Ai Γ ` Ai : Ai+1

In addition, we introduce a new host-language type Π (x : A).B
with the following well-formedness condition:8

Γ ` A :Ai Γ , x :A ` B :Ai

Γ ` Π (x :A).B :Ai

Π types have the usual introduction and elimination rules:

Γ , x :A1 ` t :A2

Γ ` λx .t :Π (x :A1).A2

Γ ` t :Π (x :A1).A2 Γ ` t ′ :A1

Γ ` t t ′ :A2{t ′/x}
A more thorough analysis of this type structure is needed, but is

beyond the scope of this paper.

A dependent QFT. Under this framework, we can start with the
type-level function tensor:

tensor (n : Nat) (W : L) : L =
case n of
| 0 => 1
| 1 => W
| S n’ => W ⊗ tensor n’ W
end

We write
⊗

nW for tensor n W .
Next we use these length-indexed tuples to write a dependently-

typed quantum Fourier transform in the style of Green et al.
(2013b). Our version of the Fourier circuit ensures that the number
of qubits in the input and output are always the same.

First, we define the rotation circuits. We assume the presence of
a family of gates RGate m that rotates its input along the z-axis by
2πi
2m

(Green et al. 2013b). The rotations circuit takes two natural
number inputs: m, the argument given to the controlled R gates;
and n, the number of bits in the input.

rotations (m:Nat) : Π (n:Nat).
CIRC(

⊗
(n+1) qubit,

⊗
(n+1) qubit) =

fun n => case n of
| 0 -> id
| 1 -> id
| S n’ -> box (c,(q,qs)) =>

(c,qs) <- unbox rotations m n’ (c,qs);
(c,q) <- gate (control (RGate (2+m-n’))) (c,q);
output (c,(q,w))

end

8 The presentation in this section is actually a simplification of the work of
Krishnaswami et al. (2015), as we do not consider linear types with any
dependencies.

Paykin, Rand & Zdancewic 10 2016/11/8

Q ⇒ p′ :W2

·;Q ` output p′ : W2

Q1 ⇒ p1 :W
′
1

Ω2 ⇒ p2 :W
′
2 ·;Ω2,Q ` N ′ : W2

·;Q1,Q ` p2 ← gate g p1;N
′ : W2

Q′ ⇒ p′ :W x : |W |;Q ` C :W2

·;Q′,Q ` x ⇐ lift p′;C : W2

toICirc (box p ⇒ output p′) = Output (pat p ⇒ p′)

toICirc (box p ⇒ p2 ← gate g p1;N
′) = Gate (pat p ⇒ (p1,

−→
Q)) g (box (p2,

−→
Q)⇒ N ′)

toICirc (box p ⇒ x ⇐ lift p′;C) = Lift (pat p ⇒ (p′,
−→
Q)) (λx .box

−→
Q ⇒ C)

Figure 5. Definition of toICirc by induction on the structure of normal circuits.
−→
Q is a canonical pattern made up from the wires inQ.

The Fourier transform can now be defined in a type-safe way:

fourier : Π(n:Nat). CIRC(
⊗

n qubit,
⊗

n qubit)=
fun n => case n of
| 0 => id
| 1 => hadamard
| S n’ => box (q,w) =>

w <- unbox fourier n’ w;
unbox rotations (S n’) n’ (q,w)

where hadamard = box w => gate H w.

7. Discussion
Thus far we have shown thatQWIRE is a small, safe, and expressive
circuit language. In the remainder of the paper we take a closer look
at the similarities and differences between QWIRE and existing
quantum circuit languages, with an eye towards future work.

7.1 The QRAM model
The driving design of QWIRE is the separation of classical com-
putations in the host language from quantum computations in the
circuit language. The inspiration for this model comes from two
main sources.

On the logical side,QWIRE draws on Benton’s (1995) linear/non-
linear logic (LNL), which partitions the exponential from Girard’s
linear logic (1987) into a purely linear fragment and a purely non-
linear fragment connected via a categorical adjunction. Variations
on LNL have extended the logical framework to type systems for
other substructural logics (Pfenning and Griffith 2015), polarized
logics (Zeilberger 2008), and dependently-typed logics as in Sec-
tion 6.2 (Krishnaswami et al. 2015).

On the quantum computing side, the QRAM model postulates a
classical computer working alongside a quantum computer. QRAM
is widely accepted as a programming model, although there is no
clear consensus as to the degree to which the structure of quantum
programming languages should reflect this separation.

At one end of the QRAM spectrum of language design is
QWIRE, which syntactically separates quantum data inside circuits
from classical data, and treats these two syntactic fragments as dis-
tinct languages. Bettelli et al.’s Q programming language (2003),
takes a similar approach, treating circuits (called quantum opera-
tors) as an isolated subsystem inside a generic host language.

Quipper and LIQUi|〉 are based on the Quantum IO Monad (Al-
tenkirch and Green 2010), which isolates quantum operations
behind a monad. Indeed, the adjoint structure of QWIRE, when
viewed from the host language, forms a similar monad, where the
bind of the monad is implemented with dynamic lifting. However,
unlike in QWIRE, qubits are first-class data in these systems, even
though they cannot be constructed outside of the monad.

The separation between circuits and ordinary data has proved
useful in the design of classical circuit languages as well. For ex-
ample, in Haskell the arrow type class can be used to describe func-
tional structures such as those corresponding to circuits (Hughes

2005). The fundamental constructor of arrows, which coerces a
function in the host language to an arrow type, is not valid for
QWIRE, although arrows have applications for non-circuit models
of quantum computation (Vizzotto et al. 2009).

On the opposite end of the spectrum are languages like QML (Al-
tenkirch and Grattage 2005), the quantum λ-calculus (Selinger and
Valiron 2009), and QPL (Selinger 2004), which avoid dealing with
circuits entirely by treating qubits as data. Having first-class qubits
may lead to more natural programming abstractions, like partially
applied higher-order functions or imperative loops. However it re-
quires a much more involved type theory (for instance, linear sub-
typing in the quantum λ-calculus) to achieve type safety.

7.2 Type systems for well-formed circuits
QWIRE provides a type-safe circuit language within an arbitrary
(type-safe) host language by keeping the circuit language minimal
and pushing the remaining infrastructure to the host language. Em-
bedded languages like Quipper and LIQUi|〉 do not cleanly sepa-
rate embedded circuits from the host language, which means that
verifying the embedded language requires verifying the combina-
tion host and circuit languages. For QWIRE we have shown that
runtime errors in circuits can only arise from the host language,
which is a maximal guarantee while still allowing arbitrary classi-
cal computations.

The type-safety guarantees gained from linear logic (e.g. re-
specting the no-cloning theorem) have been well-established by the
quantum λ-calculus (Selinger and Valiron 2009). Quipper comes
equipped with a programming idiom that recommends using quan-
tum variables linearly except in certain circumstances, but pro-
grammers are unlikely to consistently follow this convention be-
cause it is neither enforced at compile time nor presented as a col-
lection of unambiguous rules.

The Proto-Quipper project is an attempt to apply these founda-
tions to a core language for Quipper with the goal of better run-
time guarantees (Ross 2015). However, Proto-Quipper covers only
a small subset of Quipper, and does not include measurement or
initialization of qubits. Further, the classical component of Proto-
Quipper is fixed, as it must be compatible with the underlying linear
type system. Proto-Quipper is not a pure language, because its oper-
ational semantics imperatively constructs a circuit as the program
runs and there is no equational theory. In contrast, the semantics
of QWIRE is pure and equational reasoning is valid. Finally, the
type system of Proto-Quipper makes extensive use of subtyping to
account for linear use of quantum data. Although the type system
makes it easier to write code without linearity annotations, it makes
it harder to know when a term is well-typed. In QWIRE, the sepa-
ration between the host language and circuit language makes linear
typing easy and subtyping unnecessary.

An alternative to a linear type system is the Quantum IO
Monad (Altenkirch and Green 2010). Although the monadic ap-
proach is sufficient to enforce no-cloning, by itself it is not strong

Paykin, Rand & Zdancewic 11 2016/11/8

enough to avoid all runtime errors. For example, Altenkirch and
Green point out that extra semantic conditions based on the weak-
ening property from linear logic are needed to safely type locally-
bound ancilla and unitary conditional statements.

Although LIQUi|〉’s type system is loosely based on the Quan-
tum IO monad, in LIQUi|〉 qubits and circuits are dynamically
typed, and so certain operations, such as circuit reversal, may fail
at runtime. Furthermore, LIQUi|〉 gates can always be applied to a
list of qubits with the intention of operating on only a finite prefix
of them. If the list is empty, any such operation could fail.

7.3 Denotational semantics and formal verification
Proto-Quipper has a type-safe operational semantics, but not a
denotational semantics against which to compare. Conversely,
LIQUi|〉 has a built-in denotational semantics since entangled
qubits are represented directly by their ket state, which allows for
the formal analysis of algorithms.

Although formal verification of algorithms is time-consuming,
in the case of quantum computing the cost is likely worthwhile:
quantum computing resources will be expensive for the foresee-
able future, debugging is doubly difficult in a quantum setting,
and testing using simulations is not scalable. Verification efforts
related to LIQUi|〉 include an efficient compiler for a reversible
fragment of the language in the formal theorem-prover F ∗ (Amy
et al. 2016). Other verification projects based on denotational se-
mantics for a variety of quantum languages exist on paper but not
as machine-checked proofs for various simple quantum program-
ming languages (D’Hondt and Panangaden 2006; Kakutani 2009;
Ying 2011).

We expect QWIRE to be amenable to a similar kind of verifi-
cation based on the denotational semantics presented in Section 5.
In particular, we are interested in using a dependently-typed theo-
rem prover like Coq (Coq Development Team 2015) as a host lan-
guage, and using it to prove theorems about circuits. In fact, the
dependently-typed infrastructure described in Section 6.2 was in-
spired by our investigations into a Coq implementation.

Verification based on equational theories of quantum computa-
tion (Staton 2015) is also well-suited forQWIRE. These equational
theories characterize the semantic equivalence of circuits, such as
the fact that inSeq H H is equivalent to the identity circuit. Such a
theory could justify circuit optimizations provide a syntactic frame-
work for program verification.

7.4 Usability
As a core circuit language, QWIRE is still missing many of the
advanced features provided by Quipper and LIQUi|〉. As we look
towards implementations of QWIRE in various host languages, we
can learn from the features of more mature languages.

Parametric operators on circuits. Quipper and LIQUi|〉 both
provide operations that globally transform circuits, including cir-
cuit reversal replacing one universal gate set with another, and ap-
plying optimizations. In general these operations are built into the
language, and may fail at runtime if various conditions are not met.
In QWIRE we have already illustrated how these operations can be
written directly in the host language by (safely) extending it with a
case analysis operation on circuits.

Automatic generation of quantum oracles. Quipper’s quantum
oracle feature uses Template Haskell (Sheard and Jones 2002) to
generate a quantum circuit from an arbitrary classical function.
By using Haskell as a host language we can imagine a similar
extension toQWIRE.

Scalability. Quipper and LIQUi|〉 have both been used to suc-
cessfully implement many nontrivial quantum algorithms (Siddiqui

et al. 2014; Green et al. 2013a; Wecker and Svore 2014), in which
the size of quantum circuits can grow into the millions of gates. One
approach to scalability, embraced by LIQUi|〉, involves aggressive
optimization and simulation, and is compatible with QWIRE using
circuit case analysis. Another approach is to represent some cir-
cuits as black boxes when they are to be reused many times, record-
ing their definition only once and (for example) precomputing their
simulated behavior. This feature could be integrated into QWIRE
by means of a function of type Circ(W1,W2) → Gate(W1,W2)
that coerces boxed circuits into host-level gates.

Quantum data types. A quantum data type is any data type con-
sisting of qubits, which is useful for describing modules like the
quantum integers. Quipper provides a typeclass-based approach to
quantum data types consisting of a data type of qubits along with
a corresponding classical data type of booleans (corresponding to
the lifted type |W | in the syntax of QWIRE). In this paper we
only consider tuples, but an extended system could easily allow
other finite data types. Infinite data types are more problematic—
in Quipper, infinite data types like lists must be instantiated at a
finite size before generating circuits for them. A better solution is
to include finitely indexed data types, such as the n-ary tuples of
qubits shown in Section 6.2. Instantiation is enforced by the fact
that Π (x : Nat).Circ(

⊗
x qubit,

⊗
x qubit) is not itself a cir-

cuit; it is a family of circuits that can be instantiated by feeding it a
concrete natural number.

7.5 Conclusion
QWIRE is a minimal and highly modular core circuit language. It
is minimal in that QWIRE has only five distinct commands, two of
which are eliminated in the normalization procedure. It is mod-
ular in that QWIRE isn’t attached to any specific programming
language. We expect that the QWIRE interface will be useful in
dependently-typed host languages like Coq for verification and for-
mal analysis of circuits, in higher-order functional languages like
Haskell, OCaml or F#, or potentially even in imperative languages
like Python, Java, or C.
QWIRE uses linear types to enforce no-cloning, but does not

allow them to spill over into the host language. This is crucial
because linear types are the most natural way to enforce no-cloning,
but are tremendously difficult to integrate into existing languages.
QWIRE gets the best of both worlds by ensuring that circuits are
linearly typed while allowing an arbitrarily powerful type system
in the classical host language.

As a circuit description language, QWIRE is a low-level piece
in the development of sophisticated quantum programming lan-
guages. Ultimately however, all quantum computation will boil
down to circuit generation, necessitating the use of a circuit lan-
guage likeQWIRE. HavingQWIRE as a safe, small circuit language
is an excellent building block on which to rest the complex world
of quantum computation.

Acknowledgments
We are grateful to Peter Selinger for his insights into quantum
programming languages. This work is supported in part by the
ONR MURI No. FA9550-16-1-0082, and by NSF Grants No. CCF-
1421193 and DGE-1321851.

Paykin, Rand & Zdancewic 12 2016/11/8

References
T. Altenkirch and J. Grattage. A functional quantum programming

language. In Logic in Computer Science, 2005. LICS 2005.
Proceedings. 20th Annual IEEE Symposium on, pages 249–258. IEEE,
2005.

T. Altenkirch and A. S. Green. The quantum IO monad. Semantic
Techniques in Quantum Computation, pages 173–205, 2010.

M. Amy, M. Roetteler, and K. M. Svore. Verified compilation of
space-efficient reversible circuits. Technical Report MSR-TR-2016-22,
Microsoft Research, March 2016. URL https://
www.microsoft.com/en-us/research/publication/verified-
compilation-of-space-efficient-reversible-circuits/.

C. Badescu and P. Panangaden. Quantum alternation: Prospects and
problems. In Proceedings 12th International Workshop on Quantum
Physics and Logic, QPL 2015, Oxford, UK, July 15-17, 2015., pages
33–42, 2015. doi: 10.4204/EPTCS.195.3.

P. Benton. A mixed linear and non-linear logic: Proofs, terms and models.
In L. Pacholski and J. Tiuryn, editors, Computer Science Logic, volume
933 of Lecture Notes in Computer Science, pages 121–135. Springer
Berlin Heidelberg, 1995. doi: 10.1007/BFb0022251.

S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum
programming. The European Physical Journal D, 25(2):181–200, 2003.

Coq Development Team. The Coq Proof Assistant Reference Manual,
Version 8.4. 2015. Electronic resource, available from
http://coq.inria.fr.

E. D’Hondt and P. Panangaden. Quantum weakest preconditions.
Mathematical Structures in Computer Science, 16(03):429–451, 2006.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
A. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron.

Quipper: A scalable quantum programming language. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2013, pages 333–342, 2013a.

A. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. An
introduction to quantum programming in Quipper. In Proceedings of
the 5th International Conference on Reversible Computation, volume
7948 of Lecture Notes in Computer Science, pages 110–124, 2013b.
ISBN 978-3-642-38985-6.

J. Hughes. Programming with Arrows, pages 73–129. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005. doi: 10.1007/11546382_2.

Y. Kakutani. A logic for formal verification of quantum programs. In
Advances in Computer Science-ASIAN 2009. Information Security and
Privacy, pages 79–93. Springer, 2009.

E. H. Knill. Conventions for quantum pseudocode. Technical Report
LAUR-96-2724, Los Alamos National Laboratory, 1996.

N. R. Krishnaswami, P. Pradic, and N. Benton. Integrating linear and
dependent types. SIGPLAN Notices, 50(1):17–30, Jan. 2015. doi:

10.1145/2775051.2676969.

C. McBride. I Got Plenty o’ Nuttin’, pages 207–233. Springer
International Publishing, 2016. doi: 10.1007/978-3-319-30936-1_12.

M. A. Nielsen and I. L. Chuang. Quantum computation and quantum
information. Cambridge university press, 2010.

F. Pfenning and D. Griffith. Polarized substructural session types. In
A. Pitts, editor, Foundations of Software Science and Computation
Structures, volume 9034 of Lecture Notes in Computer Science, pages
3–22. Springer Berlin Heidelberg, 2015. doi:
10.1007/978-3-662-46678-0_1.

N. J. Ross. Algebraic and Logical Methods in Quantum Computation.
PhD thesis, Dalhousie University, 2015.

P. Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527–586, Aug. 2004.

P. Selinger and B. Valiron. Quantum lambda calculus. In S. Gay and
I. Mackie, editors, Semantic Techniques in Quantum Computation,
pages 135–172. Cambridge University Press, 2009.

T. Sheard and S. P. Jones. Template meta-programming for haskell. In
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell
’02, pages 1–16, New York, NY, USA, 2002. ACM. doi:
10.1145/581690.581691.

S. Siddiqui, M. J. Islam, and O. Shehab. Five quantum algorithms using
Quipper. arXiv preprint arXiv:1406.4481, 2014.

S. Staton. Algebraic effects, linearity, and quantum programming
languages. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15,
pages 395–406, New York, NY, USA, 2015. ACM. doi:
10.1145/2676726.2676999.

J. K. Vizzotto, A. R. Du Bois, and A. Sabry. The arrow calculus as a
quantum programming language. In H. Ono, M. Kanazawa, and
R. de Queiroz, editors, Proccedings of Logic, Language, Information
and Computation: 16th International Workshop, WoLLIC 2009, pages
379–393. Springer Berlin Heidelberg, June 2009. doi:
10.1007/978-3-642-02261-6_30.

D. Wecker and K. M. Svore. LIQUi|>: A software design architecture and
domain-specific language for quantum computing. arXiv:1402.4467
[quant-ph], 2014.

M. Ying. Floyd–hoare logic for quantum programs. ACM Transactions on
Programming Languages and Systems (TOPLAS), 33(6):19, 2011.

M. Ying. Quantum recursion and second quantisation. May 2014.
arXiv:1405.4443 [quant-ph].

N. Zeilberger. On the unity of duality. Annals of Pure and Applied Logic,
153(1–3):66–96, 2008. doi: 10.1016/j.apal.2008.01.001. Special Issue:
Classical Logic and Computation (2006).

Paykin, Rand & Zdancewic 13 2016/11/8

