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Abstract
Temporal memory safety errors, such as dangling pointer derefer-
ences and double frees, are a prevalent source of software bugs in
unmanaged languages such as C. Existing schemes that attempt to
retrofit temporal safety for such languages have high runtime over-
heads and/or are incomplete, thereby limiting their effectiveness as
debugging aids. This paper presents CETS, a compile-time trans-
formation for detecting all violations of temporal safety in C pro-
grams. Inspired by existing approaches, CETS maintains a unique
identifier with each object, associates this metadata with the point-
ers in a disjoint metadata space to retain memory layout compati-
bility, and checks that the object is still allocated on pointer deref-
erences. A formal proof shows that this is sufficient to provide tem-
poral safety even in the presence of arbitrary casts if the program
contains no spatial safety violations. Our CETS prototype employs
both temporal check removal optimizations and traditional com-
piler optimizations to achieve a runtime overhead of just 48% on
average. When combined with a spatial-checking system, the aver-
age overall overhead is 116% for complete memory safety.

Categories and Subject Descriptors D.3.3.4 [Programming Lan-
guages]: Processors; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms Languages, Performance, Reliability

Keywords Memory safety, temporal errors, dangling pointers, C

1. Introduction
Unmanaged languages such as C/C++ are the de facto standard for
implementing operating systems, virtual machine monitors, lan-
guage runtimes, database management systems, embedded soft-
ware, and performance-critical software of all kinds. Such lan-
guages provide low-level control of memory layout, explicit mem-
ory management, and proximity to the underlying hardware. How-
ever, all of this control comes at a price—lack of bounds check-
ing leads to buffer overflows (spatial safety violations) and manual
memory management leads to dangling pointer and double-free er-
rors (temporal safety violations). Both types of memory errors can
result in crashes, silent data corruption, and severe security vulner-
abilities. Recognizing the gravity of the problem, there have been
many proposals for detecting or preventing one or both kinds of
errors [4–6, 9, 10, 13–15, 18–20, 22, 23, 25–28, 30, 31].

This paper focuses on debugging tools for runtime prevention
of temporal safety violations. Temporal safety errors include: dan-
gling pointer dereferences (referencing an object that has been deal-
located), double free’s (calling free() on the same object multi-
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int *p, *q, *r;
p = malloc(8);
...
q = p;
...
free(p);
r = malloc(8);
...
... = *q;

int* q;
void foo() {
  int a;
  q = &a;
}
int main() {
  foo();
  ... = *q;
}

Heap based Stack based

Figure 1. Dangling pointer errors involving the heap and stack.
On the left, freeing p causes q to become a dangling pointer. The
memory pointed to by q could be reallocated by any subsequent
call to malloc(). On the right, foo() assigns the address of stack-
allocated variable a to global variable q. After foo() returns, its
stack frame is popped, thereby q points to a stale region of the
stack, which any intervening function call could alter. In both cases,
dereferencing q can result in garbage values or data corruption.

ple times), and invalid frees (calling free() with a non-heap ad-
dress or pointer to the middle of a heap-allocated region). Figure 1
shows two examples of common kinds of temporal memory safety
errors, including a dangling reference to a re-allocated heap loca-
tions (left) and a dangling pointer to the stack (right).

Although there has been considerable effort in detecting tem-
poral errors [6, 14, 15, 18, 25, 26, 28], challenges remain. For ex-
ample, consider the widely used Valgrind Memcheck tool [25]. Al-
though an important debugging aid, Memcheck fails to detect dan-
gling pointers to reallocated data locations, and it exhibits runtime
overheads in excess of 10x [25], partly due to its use of dynamic
binary instrumentation. Other approaches modify malloc() to al-
locate only one object per page and unmap the page at deallocation
time, thus using the processor’s virtual address translation hard-
ware to detect dangling pointers dereferences. For programs with
many small objects, this approach can inflate memory use dramati-
cally (e.g., allocating a 4k page for a 40-byte object causes a 100x
increase in memory footprint). Recent work has reduced physical
memory usage [14], but such approaches do not detect dangling ref-
erences to stack locations, and the system calls per allocation/deal-
location can result in significant runtime overheads for programs
that frequently allocate memory [14]. Conservative garbage collec-
tion side-steps this problem for heap allocations, however it also
fails to detect dangling pointers to the stack, and it is not suitable
for all applications domains. Furthermore, it typically masks such
errors (rather than reporting them), which is less useful in the con-
text of a debugging tool.

Overall, prior proposals suffer from one or more of the follow-
ing deficiencies: high runtime overheads, high memory overheads,
failure to detect all temporal errors (for example, to the stack, to re-
allocated heap locations, or in the face of arbitrary casts), requiring
annotations inserted by the programmer, or altering memory layout
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(which breaks compatibility with existing C code). These draw-
backs have typically led developers to employ such techniques se-
lectively rather than using them by default throughout the software
development and testing process.

Our proposal, CETS (Compiler Enforced Temporal Safety),
is built upon the hypothesis that compiler-based instrumentation
and efficient metadata structures can yield a low-overhead and
highly compatible system for detecting all violations of temporal
safety. CETS addresses the above deficiencies through a synergis-
tic combination of two existing techniques. First, CETS uses an
identifier-based scheme, which assigns a unique key for each al-
location region to identify dangling pointers [5, 27, 30]. Second,
this per-pointer metadata is tracked using a disjoint shadowspace,
yielding high compatibility because memory layout is unchanged.
Such shadowspace approaches for tracking per-pointer metadata
have been applied previously in the context of spatial safety [22].
We demonstrate the correctness of this approach by describing a
machine-checked formal proof that CETS instrumented programs
detect all temporal errors for a small, but realistic, fragment of C.

For our CETS prototype implementation, we developed sev-
eral simple temporal-check elimination optimizations (analogous
to, but different from, bounds-check elimination optimizations [7,
17, 29]). Our experiments show that such static optimizations re-
duce the number of checks by 70% on average. The combination
of these optimizations and standard optimizations applied after in-
strumentation results in a runtime overhead of 48% on average for
a set of 17 SPEC benchmarks. Furthermore, when coupled with our
prior work on spatial safety [22], the average runtime overhead is
116% for detecting all spatial and temporal errors.

To explore the design alternatives, we compare CETS’ temporal
checking to an allocation shadow bits scheme that is similar to the
best-effort temporal checking performed by Valgrind’s Memcheck,
but implemented within the compiler rather than by binary instru-
mentation. Although the approach has lower overhead than when
implemented using binary instrumentation, it is less complete and
has higher runtime overhead than CETS. These results show the ef-
fectiveness of compiler-based instrumentation and optimization for
creating checking tools with efficiency and compatibility sufficient
for use in all stages of the software development life cycle.

2. Temporal Checking Background
Detecting or preventing dangling pointer dereferences has been
a long-standing problem and several approaches have been pro-
posed [5, 6, 14, 15, 18, 25–28, 30]. This section describes the
approaches that CETS builds on, all of which track allocation in-
formation and perform extra run-time checking on pointer derefer-
ences [5, 18, 20, 25, 25, 27, 28, 30]. Table 1 summarizes the com-
parison of these techniques, which fall into two basic categories: (1)
object location approaches and (2) allocation identifier approaches.
Each are described in detail in the next two subsections. We defer
to Section 7 discussion of other approaches for handling temporal
errors (e.g., conservative garbage collection [8], probabilistically
approximating an infinite heap [6, 26], or using virtual memory or
segmentation hardware [14]).

2.1 Location-Based Temporal Checking
Object location-based approaches (e.g., [18, 20, 25, 28]) use the
location (address) of the object to determine whether it is allocated
or not. An auxiliary data structure records the allocated/deallocated
status of each location. This data structure is updated on memory
allocations (e.g., malloc()) and deallocations (e.g., free()). On
a memory access, these auxiliary structures are consulted to de-
termine whether the dereferenced address is currently valid (allo-
cated) memory. As long as deallocated memory locations are never
reallocated, this approach will detect all dangling pointer derefer-

ences. However, if a location has been reallocated, this approach
erroneously allows the pointer dereference to proceed—the infor-
mation tracked by this approach is insufficient to determine that the
pointer’s original allocation area was freed and is now being used
again for a potentially unrelated purpose. Thus, although such tech-
niques are able to detect many dangling pointer dereferences, they
cannot detect all temporal errors.

Tree-based location lookup. One approach to implementing the
auxiliary data structure is to record all allocated regions of memory
in a tree structure [20]. On a pointer dereference, a range lookup in
the tree identifies whether the address pointed to by the pointer is
currently allocated (when a mapping is found) or unallocated (when
no mapping is found). The memory overhead of this approach is
low because it is proportional to the number of live objects, but it
requires a potentially slow range lookup (i.e., splay tree walk) for
each dereference check.

Shadowspace-based location lookup. An alternative approach is
to use a shadowspace in which allocation/deallocation status is
maintained with each byte (or word) of memory [18, 24, 28]. A
shadowspace may be implemented as a large, directly accessed
memory region, a hashtable [22], or a trie-based data structure [24].
Accessing a shadow space entry is typically an efficient O(1) op-
eration, and thus provides fast checks. The memory usage is pro-
portional to the size of the memory rather than just the number of
allocated objects (as in the tree-based scheme), but tracking a bit
per word is only a few percent memory overhead.

2.2 Identifier-Based Temporal Checking
An alternative approach is the allocation identifier approach, which
associates a unique identifier with each memory allocation.1 Each
allocation is given a unique identifier and identifiers are never
reused. To ensure that this unique identifier persists even after the
object’s memory has been deallocated, the identifier is associated
with pointers. On a pointer dereference, the system checks that the
unique allocation identifier associated with the pointer is still valid.

Per-pointer metadata via fat pointers. One implementation of
pointer-based metadata is to expand all pointers into multi-word
fat pointers. Although use of fat pointers has been proposed in va-
riety of contexts [5, 19, 23, 30], fat pointers have the drawback
of changing memory layout in programmer-visible ways, and the
modified memory layout makes interfacing with libraries challeng-
ing [10, 23]. Furthermore, the combination of fat pointers and ar-
bitrary casts can lead to metadata corruption, which weakens the
guarantees provided or complicates their implementation. To miti-
gate the problems with fat pointers, using a disjoint pointer-based
metadata shadowspace has been proposed in the context of bounds
checking [22], but this specific technique has not previously been
applied to the detection of dangling pointer dereferences.

Set-based identifier checking. A set data structure (such as a hash
table) is one approach for determining whether an allocation iden-
tifier is still valid (i.e., the object has not been deallocated) [5].
The allocation identifier is inserted into the set during allocation
(e.g., malloc()) and removed from the set at deallocation (e.g.,
free()), and thus the set contains an identifier if and only if the
identifier is valid. Although set lookups can take just O(1) time,
performing a hash table lookup on every memory reference has the
potential for introducing significant runtime overheads.

Lock-and-key identifier checking. To avoid a set lookup on each
check, an alternative is to pair each pointer with two pieces of

1 Some prior work has referred to these unique allocation identifiers as
“pointer capabilities” [5, 30].
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Temporal checking Approach Instrumentation Runtime Metadata Handles Detects errors with
taxonomy method overhead organization arbitrary casts reallocations

Location based Shadowspace Memcheck [25] Binary > 10x Disjoint Yes NoTree J&K [20] Compiler > 10x Disjoint Yes

Identifier based

Set SafeC [5] Source > 10x Inline No

YesLock & Key
P&F [27] Source 5x Split No

MSCC [30] Source 2x Split No
CETS Compiler < 2x Disjoint Yes

Table 1. Comparison of representative location-based and identifier-based approaches.

metadata: an allocation identifier—the key—and a lock address that
points to a special lock location in memory [27, 30].2 The key and
lock value will match if and only if the pointer is valid. A deref-
erence check is then a direct lookup operation—a simple load and
compare—rather than a hash table lookup. Freeing an allocation
region changes the lock value, thereby invalidating any other (now-
dangling) pointers to the region. Because the keys are unique, a lock
location itself can be reused after the space it guards is deallocated.

2.3 Analysis of the Temporal Checking Design Space
The two general approaches described above have complementary
strengths and weaknesses. Using identifiers permits detection of
dangling pointer dereferences even if the memory has been real-
located to a new object. The disadvantages of identifiers stem from
tracking per-pointer metadata, which adds potentially significant
overhead to loads and stores of pointer values. Fat-pointer imple-
mentations also change data layout, which can reduce source com-
patibility and make interaction with libraries difficult. Fat pointers
also interact poorly with arbitrary type casts, because the in-line
metadata can potentially be overwritten via casts.

Location-based checking is attractive because its disjoint meta-
data does not change the program’s memory layout. By re-linking
with a different malloc() library, this approach works even for
objects allocated within libraries, and thus is highly compatible—
using it requires fewer source program changes. However, because
this approach tracks only allocations, it does not detect pointers that
erroneously point to reallocated regions of memory.

2.4 Program Instrumentation
Given the approaches explained above, there are several different
options for adding the checks necessary to enforce memory safety.

Binary instrumentation. One option is to instrument the program
at the binary level, after compilation. Mechanisms for doing so
range from completely static binary rewriting [18] (i.e., produce
a new executable from the old one) to partial emulation at the in-
struction level, intercepting control-flow transfers and interpolat-
ing new code [25]. The benefit of binary translation is that it op-
erates on unmodified binary code and dynamically linked libraries,
even when the source code is unavailable. However, the emulation
and instrumentation overhead can contribute to high runtimes (10x
slowdown is common [25]), in part because it is difficult to per-
form high-level optimizations. These tools are also inherently tied
to a specific instruction-set architecture.

Hardware-assisted instrumentation. Hardware support for mon-
itoring and checking execution (e.g., [12, 28]) captures the desir-
able properties of binary instrumentation but with potentially lower
runtime overhead and good backwards-compatability, at the ex-
pense of requiring new hardware.

2 We have intentionally reversed the meaning of lock and key from original
paper [27], because we find this terminology more intuitive—there can be
multiple copies of the key for each lock location.

Source-level instrumentation. A third option is source-level
transformation to insert runtime checks (e.g., [5, 23, 30]). This
approach allows for use of source-code type information, and
the resulting instrumented source is independent of any specific
C compiler or instruction-set architecture. The instrumentation
is applied before the code is optimized by the compiler (e.g.,
before variables are register allocated or code is hoisted out of
loops). Unfortunately, once the instrumentation code has been
added, the additional memory operations introduced may limit the
effectiveness of subsequent compiler optimization passes.

Compiler-based instrumentation. The final option is for the
compiler to instrument the code during compilation (e.g., GCC’s
compiler-inserted profiling instrumentation). This approach is sim-
ilar to source-level instrumentation, but adds two key advantages:
(1) it can introduce instrumentation after the compiler has applied
standard code optimizations and (2) the compiler can then reapply
the same optimizations to reduce the runtime overhead.

3. CETS Design and Implementation
CETS is intended to achieve several goals. Its primary goal is to de-
tect all dangling pointer dereference bugs (a property of identifier-
based approaches described in Section 2.2) while leaving memory
layout unchanged to provide high compatibility with existing C
source (a property associated with location-based approaches de-
scribed in Section 2.1). Furthermore, to provide higher utility as
a debugging aid, the runtime overhead introduced by CETS should
be low enough (less than 2x) for default deployment throughout the
software development and testing process.

To meet these goals, CETS employs a lock-and-key identifier-
based approach, but CETS avoids the compatibility problems of
fat pointers by borrowing the shadowspace mechanisms commonly
used in location-based approaches to support per-pointer metadata
without changing memory layout (see Figure 2). This disjoint meta-
data is tracked and propagated for each pointer, but memory lay-
out remains unchanged. To achieve its runtime efficiency goals,
CETS uses compiler-based instrumentation and directly-accessed
data structures. To reduce the runtime impact of instrumentation,
CETS invokes standard compiler optimizations both preceding and
following its instrumentation pass. The pass also performs the tem-
poral check elimination optimizations described in Section 5.

The remainder of this section describes CETS’ implementation
of lock-and-key temporal checking and its mechanisms for prevent-
ing double-frees (Sections 3.1 and 3.2) and CETS’ shadowspace
mechanisms for disjoint per-pointer metadata (Section 3.3). As dis-
cussed below, CETS’s temporal safety properties can be guaranteed
only if spatial safety is enforced too (otherwise metadata corruption
could occur). Section 4 formalizes a spatially-safe version of CETS
and sketches a proof of CETS’ temporal safety guarantees.

3.1 CETS Lock-and-Key Implementation
CETS augments each pointer with two additional word-sized fields:
(1) a unique allocation key and (2) a lock address that points to a
lock location, which is queried on temporal checks [27, 30]. By
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Figure 2. CETS pointer metadata for two pointers in memory. In
this example, the pointers point to locations within the same object
and thus have the same lock address and have the same key value.

incrementing a 64-bit next key counter, each allocation is given a
unique key and key values are never reused.3 The lock provides an
efficient mechanism for determining whether the memory allocated
for the pointer has been deallocated. When memory is deallocated,
CETS “changes the lock” on the memory, preventing pointers with
the now-stale key from accessing the memory (analogously to how
a landlord might change the lock on a door after tenants move out).

Whenever memory is allocated: (1) a unique key is associated
with the region of memory, (2) a lock location is allocated, and (3)
the lock value is initialized to the key value. The pointer is not a
dangling pointer if and only if the pointer’s key and the value of the
lock location (the location pointed to by the pointer’s lock address)
match. When the region is deallocated, the lock location is set to
INVALID_KEY and marked for possible reuse. A lock location can
be reused, but only as another lock location—never for some other
purpose. Even when the lock location is reused, because all the keys
are unique, the value of a lock location will never again match the
key of the now-dangling pointer. The lock address associated with
each source pointer makes the dangling-pointer check just a few
instructions (i.e., load, compare, and branch).

It is a temporal error to call free() on a pointer that was not re-
turned by malloc() or to call free() twice on the same pointer.4
To catch these errors, CETS maintains a mapping from keys to free-
able pointers—given a key that protects some region of memory,
there is at most one freeable pointer associated with that key (i.e.
the one originally returned by malloc()). CETS checks the free-
able pointer map upon deallocation requests.

3.2 Metadata Operations
For every pointer in the program (e.g., ptr), CETS instrumen-
tation introduces a key (e.g., ptr_key) and a lock address (e.g.,
ptr_lock_addr). This metadata must be propagated through reg-
isters and memory along with the underlying pointer value. Dis-
cussion of the encoding of pointers in memory is deferred to Sec-
tion 3.3, for now we describe how the metadata is created and used.

Initialization. The allocation key value zero is reserved as
INVALID_KEY. INVALID_LOCK_ADDR, the lock location corre-
sponding to INVALID_KEY is allocated and set to any non-zero
value, so that any pointer with this key will fail its temporal check.
The 64-bit global counter variable next_key is initialized to one.

3 Even if a new object was allocated each cycle on a 3Ghz processor, it
would still take approximately 200 years to allocate 264 objects.
4 Unless malloc() has recycled the memory region and returns the same
heap address again. In this case CETS will reject attempts to call free()
on stale (old) pointers but permit the new pointer to be freed.

Heap allocation. For any code that allocates memory on the heap
(e.g., malloc() or mmap()), CETS inserts the code (highlighted in
gray, below) to: (1) associate a new key with the allocation pointer
by incrementing next_key, (2) obtain a new lock location, (3)
write the key into the lock location, and (4) record that the pointer
returned is freeable.

ptr = malloc(size);
ptr_key = next_key++;
ptr_lock_addr = allocate_lock();
*(ptr_lock_addr) = ptr_key;
freeable_ptrs_map.insert(ptr_key, ptr);

Pointer metadata propagation. All pointers derived from a
pointer inherit its key and lock address. CETS operates under the
assumption that either the program is free of spatial (bounds) errors
or that CETS is coupled with a system for spatial safety [22]. By
assuming spatial safety, CETS knows that any pointer manipula-
tion or arithmetic yields a pointer to the same memory allocation
as the original pointer, and thus the new pointer has the same key
and lock address:

newptr = ptr + offset; // or &ptr[index]

newptr_key = ptr_key;
newptr_lock_addr = ptr_lock_addr;

Dangling pointer check. CETS inserts code that checks for dan-
gling pointers on memory accesses. The check passes only if the
lock value (accessed via the lock address) has the same value as the
pointer’s key:

if (ptr_key != *ptr_lock_addr) { abort(); }
value = *ptr; // original load

Heap deallocation. For code that deallocates heap memory (e.g.,
free() or unmmap()), CETS inserts code to: (1) check for double-
free and invalid-free by querying the freeable pointers map, remov-
ing the mapping if the free is allowed, (2) setting the lock’s value
to INVALID_KEY, and (3) deallocating the lock location:

if (freeable_ptrs_map.lookup(ptr_key) != ptr) {
abort();

}
freeable_ptrs_map.remove(ptr_key);
free(ptr);
*(ptr_lock_addr) = INVALID_KEY;
deallocate_lock(ptr_lock_addr);

Allocation/deallocation of lock addresses. Lock address alloca-
tion/deallocation overhead is kept low by organizing the unallo-
cated lock addresses as a LIFO free list (allocate_lock pops an
address from the list; deallocate_lock pushes the address back
on to the list). The free list can share the memory space with lock
locations, so long as the lock addresses are disjoint from the key
values, for example, by requiring all keys to have the highest bit set
(effectively reducing the size of the key space to 263 keys).

Call stack allocations and deallocations. To detect dangling
pointers to the call stack, a key and corresponding lock address is
also associated with each stack frame. This key and lock address
pair is given to any pointer derived from the stack pointer (and
thus points to an object on the stack). Performing a stack allo-
cation is much like calling malloc(), except that stack pointers
are not freeable, so freeable_ptrs_map is unchanged. Stack
deallocation is analogous to calling free(). To reduce overhead
of allocating/reallocating lock addresses for stack frames, CETS
uses a separate pool of lock addresses that is itself managed as a
stack:
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void func() {
// Function prologue

local_key = next_key++;
local_lock_addr++; // allocate lock address
*(local_lock_addr) = local_key;

int var; // local variable
ptr = &var;

ptr_key = local_key;
ptr_lock_addr = local_lock_addr;

// Function epilogue

*(local_lock_addr) = INVALID_KEY;
local_lock_addr--; // deallocate lock address

}

To further reduce overhead, CETS elides the prologue and epilogue
code for functions whose stack variables are all register allocated
(or, more generally, any function in which no pointers to a local
variable can escape).

Metadata propagation with function calls. When pointers are
passed as arguments or returned from functions, the key and lock
address must also travel with them. If all arguments were passed
and returned on the stack (i.e., via memory and not registers), the
shadowspace approach for handling in-memory metadata would
suffice. However, the function calling conventions of most ISAs
specify that function arguments are generally passed in registers.

To address this issue, CETS uses procedure cloning to trans-
form every function declaration and function call site to include
additional arguments for key and lock address. For each pointer ar-
gument, key and lock address arguments are added to the end of the
list of the function’s arguments. Functions that return a pointer are
changed to return a three-element structure by value that contains
the pointer, its key, and its lock address.

3.3 Disjoint Pointer Metadata to Avoid Fat Pointers
Fat pointers and other in-line metadata encodings interact poorly
with arbitrary casts—if casts can overwrite metadata, the system
is not guaranteed to detect all temporal errors. CETS avoids fat
pointers by using disjoint pointer metadata, which allows arbitrary
casts while retaining strong safety guarantees. Separating metadata
from the main program memory also eliminates user-visible mem-
ory layout-changes that reduce compatibility with existing C source
code and pre-compiled libraries.

Trie-based shadowspace implementation. CETS’s metadata fa-
cility decouples the metadata from the pointers in memory. At its
simplest, CETS must map an address to the key and lock address
metadata for the pointer at that address (i.e., the lookup is based
on the location of the pointer being loaded or stored, not the value
of the pointer that is loaded or stored). CETS implements its shad-
owspace using a two-level lookup trie data structure, which pro-
vides the ability to shadow every word in memory efficiently [24].
A trie is a mapping structure much like a page table in which each
level of the trie is accessed using a set of bits from the index be-
ing accessed (see Figure 3). The current CETS prototype assumes
a 48-bit virtual address space and that pointers are word-aligned,
for a total of 45 bits to index the trie. CETS uses 222 first level en-
tries and 223 second level entries. Each second-level entry contains
the key and lock address (128 bits total). Each such trie lookup for
a pointer load/store is approximately eleven x86 instructions: four
loads, three shifts, two adds, compare, and branch.

Disjoint metadata operation. For pointer metadata associated
with register-allocated variables and temporaries, CETS simply
inserts the associated metadata as additional temporaries into the
compiler’s intermediate representation (IR) (see the paragraph

Trie root ptr
Primary trie Secondary trie

22 bits 23 bits

Pointer 

Memory

ptr

(key, lock addr)

Figure 3. Organization of the trie for pointer metadata

labeled “pointer metadata propagation” above). Loading a pointer
value from memory, however, requires CETS to insert code that
accesses the shadowspace and loads the corresponding key and
lock address pair:

int** ptr;
int* newptr;

if (ptr_key != *ptr_lock_addr) { abort(); }

newptr = *ptr; // original load

newptr_key = trie_lookup(ptr)->key;
newptr_lock_addr = trie_lookup(ptr)->lock_addr;

CETS handles writes of pointers to memory analogously:

int** ptr;
int* newptr;

if (ptr_key != *ptr_lock_addr) { abort(); }

(*ptr) = newptr; // original store

trie_lookup(ptr)->key = newptr_key;
trie_lookup(ptr)->lock_addr = newptr_lock_addr;

Only loads and stores of pointers are instrumented; loads and stores
of non-pointer value are unaffected.

Global variables. As global variables are never deallocated,
CETS associates the constant identifier GLOBAL_KEY and the
always-valid lock location GLOBAL_LOCK_ADDR with any pointer
derived from a pointer to a global:

int var; // global variable
ptr = &var;

ptr_key = GLOBAL_KEY;
ptr_lock_addr = GLOBAL_LOCK_ADDR;

For pointer values that are in the global space and initialized to
non-zero values, CETS adds code that explicitly initializes the in-
memory keys and lock addresses. This initialization is implemented
with the same compiler hooks that C++ uses to run code for con-
structing global objects (functions with constructor attributes).

3.4 Multithreading
Multithreaded environments are generally challenging for memory
checking techniques. The CETS prototype does not support multi-
threading, but many of CETS’s data structures can be made thread-
local to avoid races without incurring synchronization overheads.
The 64-bit key space is divided among the threads, and each thread
uses its own thread-local next key counters. Allocation and deallo-
cation of lock locations can use a per-thread pool of locations.

If the program is properly synchronized (free of data races),
this is sufficient for CETS to be thread safe. However, programs
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with data races may exhibit two sorts of races. First, another thread
could free() an object between the temporal check and the ac-
tual memory operation, potentially resulting in a missed violation.
Second, one thread may write a pointer while another thread reads
it. As metadata updates are not naturally atomic, the loading pro-
cessor may see a mixture of metadata and pointer value from the
old and new pointer. This race can be avoided by specifying a lock
bit in each metadata entry. CETS would lock the entry, perform the
pointer load/store and the metadata loads/stores, and then release
the lock. As this would certainly increase overhead, it could be
used selectively (e.g., only those pointers marked with the atomic
or volatile keyword, which would likely be required to satisfy
the C memory model anyway).

3.5 Integration with Spatial Checking and Casts
Spatial safety. As mentioned above, CETS assumes that the un-
derlying C program is free of spatial safety violations. This is nec-
essary to ensure that the key and lock address metadata is not clob-
bered accidentally (or maliciously) by using casts or pointer arith-
metic operations. Though CETS alone will provide improved tem-
poral safety, especially for debugging purposes (it is unlikely that
the shadowspace metadata will be accidentally modified in a way
that causes CETS to fail silently), CETS’s protection is complete
only when spatial safety is also enforced. Our prototype therefore
builds upon the SoftBound [22] prototype, which provides the nec-
essary spatial safety guarantees. The disjoint metadata space ap-
proach used by CETS is the same strategy used in SoftBound, so
the two techniques mesh well together.

Arbitrary casts and unions. C supports arbitrary type conversion
by explicit casts and implicit conversions via unions. CETS defers
to the spatial safety mechanisms to ensure that these casts do not
corrupt the disjoint metadata structures. CETS alone ensures that a
pointer dereference can only succeed for locations that are allocated
and not stale; it does not provide any assurance about the types of
those memory locations.

By default CETS sets the key and lock address metadata of a
pointer created from a non-pointer value (such as an integer) to
INVALID_KEY and INVALID_LOCK_ADDR, respectively. This is a
safe default (any dereference of such a pointer will trigger a safety
violation), but may cause false positives in particularly perverse C
programs. To handle such cases—although we have not encoun-
tered any code that requires this feature in the applications we have
examined—and to support custom memory allocators, CETS pro-
vides an interface that allows the programmer to manually set the
pointer key and lock address metadata.

4. Formal Model of Memory Safety
As described above, CETS’ temporal safety properties can only be
guaranteed if spatial safety is also enforced. This section presents
a formal model for CETS, which builds on the prior formalization
for spatial safety in SoftBound [22] and shows that the combination
completely captures both spatial and temporal safety. These claims
have been mechanized using the Coq proof assistant [11], and all
the Coq proof developments are available online [2].

The grammar in Figure 4 gives the fragment of C we con-
sider. To account for temporal errors, we extend the earlier syn-
tax with free and a simple form of function call that has no ar-
guments or results, but does allow stack pointers to escape via the
heap. The presentation proceeds in three steps. First, we formalize a
non-standard partial operational semantics for (simplified, straight-
line, and single-threaded) C programs that tracks information about
which memory addresses have been allocated. It is undefined when-
ever a program would cause a memory-safety violation. Second, we
augment the operational semantics to abstractly model the results

Atomic Types a ::= int | p*
Pointer Types p ::= a | s | n | void

Struct Types s ::= struct{ · · ·;ai:idi; · · ·}
Functions f ::= id(){a1:x1 · · ·an:xn;c}

LHS Expressions lhs ::= x | *lhs | lhs.id | lhs->id
RHS Expressions rhs ::= i | rhs+rhs | malloc(rhs) | &lhs

| lhs | (a)rhs | sizeof(p)
Commands c ::= c ; c | lhs = rhs | f() | free(lhs)

Figure 4. Syntax for the formal development.

of combined spatial and temporal safety instrumentation of the C
program. Finally, we define a well-formedness predicate on syntax
that captures invariants ensured by the instrumented program, and
prove that starting from a well-formed initial program state, the in-
strumented version will never get stuck trying to access memory in
a way that is either spatially or temporally unsafe. This approach
is similar to those used in both CCured’s [23] and Cyclone’s [16]
formal developments.

4.1 Operational Semantics
The operational semantics for this C fragment relies on an envi-
ronment E, that has four components: a map, M, from addresses to
values (modeling memory), a map, G, from variable names to their
addresses and atomic types (modeling global variables), a map, B,
from start addresses of allocated memory regions to size of regions
(modeling runtime memory regions), and a stack, S which models
function frames, where each frame fr maps variable names to their
addresses and atomic types.

A memory M is defined only for addresses that have been allo-
cated to the program by the C runtime. Our formalism axiomatizes
properties of six primitive operations for accessing memory: read,
write, malloc, free, function frame allocation push, and func-
tion frame deallocation pop. The axioms of malloc and free en-
force properties like “malloc returns a pointer to a region of mem-
ory that was previously unallocated, and stores this region in B”,
“free only deallocates a memory region stored at B, and removes
this region from B”, and “malloc and free do not alter the con-
tents of irrelevant locations.” push allocates a new frame on the
top of the stack S without changing allocated memory. pop sim-
ply removes the latest frame from the stack. read and write fail
if they try to access unallocated memory; malloc and push fail if
there is not enough space; free fails if it tries to deallocate a mem-
ory region that is not in B; pop fails if the runtime removes a frame
from an empty stack.

To model the instrumentation behavior, we extend the memory
model with three additional components: a map, Meta, from ad-
dresses to metadata (modeling metadata storage), a map, L, from
lock address to lock (modeling lock table), and a nk, which
is next_key. Each allocated location has associated metadata in-
cluding a base (b), bound (e), key (k), and lock address (la). A
location with INVALID_KEY (0) indicates an unallocated address.
The GLOBAL_KEY (1) is assigned to all global objects along with a
unique gla(GLOBAL_LOCK_ADDR). Each frame fr in a stack has its
own key and lock address.

With the above machinery in place, we formalized the com-
bination of CETS and SoftBound [22] in three large-step evalua-
tion rules. Most of the rules are straightforward, and available in
our Coq proofs. Left-hand-sides evaluate to a result r (which must
be an address l if successful) and its atomic type a: (E, lhs)⇒l
r : a with no effect on the environment. Evaluating a right-hand-
side expression also yields a typed result, but it may also mod-
ify the environment E via memory allocation, causing it to be-
come E ′: (E,rhs)⇒r (r :a,E ′) (where r must be a value with its
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metadata v(b,e,k,la) if successful). Commands simply evaluate to
a result, which must be OK if successful, and final environment:
(E,c)⇒c (r,E ′). In all cases, r is Abort when memory-safety
check fails, or SysError when malloc, free, push or pop fails.

4.2 Safety
The safety result relies on showing that certain well-formedness
invariants are maintained by the instrumented program. A well-
formed environment `E E consists of a well-formed global stor-
age G, which ensures that global variables are allocated with well-
formed type information, a well-formed stack S, which ensures that
local variables of a function are allocated at a frame with well-
formed type information, and later frames are of larger key than
earlier frames, well-formed allocated memory regions B that must
be disjoint from each other, a nk that is larger than 1 (so it is neither
invalid or global), and a well-formed memory M. A memory M is
well-formed when the metadata associated with each allocated lo-
cation l is well-formed. If l is accessible, its value v(b,e,k,la) satisfies
the properties:

1. (k < nk) ∧ ((b = 0) ∨ ((b 6= 0) ∧ (k 6= 0) ∧ (L(la) = k =⇒
∀l ∈ [b,e). val M l))). Here, val M l is a predicate that holds
when a location l is allocated in memory M.

2. If k is equal to the key of another accessible value, then their
lock addresses are also equal. Particularly, if k is 1, la must be
gla; if k is equal to the key of a frame fr, la is same as the lock
address of that frame.

3. [b,e) is within the range of global variables if and only if k =
1∧ la = gla. Similarly, [b,e) is within the range of a frame on
the stack if and only if k and la are equal to the key and lock
address of that frame.

4. If [b,e) is within an allocated memory region in B, then for
any accessible value v′(b′,e′,k′,la′) that is also within this range,
k 6= k′ =⇒ (L(la) 6= k ∨ L(la′) 6= k′); If [b,e) is within the
range of a frame on the stack, and k is not equal to the key
of that frame, then L(la) 6= k.

With the above well-formedness conditions, the type safety the-
orems show that CETS+SoftBound can detect memory violations
at runtime. E.G,E.S `c c defines a well-formed command that en-
sures that each variable in a command c has an atomic type assigned
by global variables G, or stack frames S in an environment E.

THEOREM 4.1 (Preservation). If `E E, E.G,E.S `c c and
(E,c)⇒c (r,E ′), then `E E ′.

THEOREM 4.2 (Progress). If `E E and E.G,E.S `c c, then ∃ E ′.
(E,c)⇒c (ok,E ′) or ∃ E ′. (E,c)⇒c (SystemError,E ′) or ∃ E ′.
(E,c)⇒c (Abort,E ′).

THEOREM 4.3 (Backward Simulation). If `E E, E.G,E.S `c c
and (E,c)⇒c (ok,E ′), then the original C program will not cause
any memory violation.

5. Temporal Check Elimination
Although bounds check elimination is an established and long-
studied problem (e.g., [7, 17, 29]), there is little published work
on eliminating temporal safety checks. This section describes and
evaluates simple optimizations we developed for removing tempo-
ral checks. These optimizations can apply to other temporal check-
ing schemes (such as those described in Section 2), but we have im-
plemented and studied their effectiveness in the context of CETS.
Our temporal check optimizations fall into two categories: removal
of unnecessary checks and removal of redundant checks.

5.1 Unnecessary check elimination
Some temporal checks are unnecessary. No temporal checks are re-
quired for any pointer that is directly derived from the stack pointer
within the corresponding function call, because the stack frame is
guaranteed to live until the function exits. In the same vein, check-
ing stack spills and restores is unnecessary. As CETS works on an
intermediate representation (IR) with infinite registers, spills and
restores are not visible at the IR level, so such checks are simply
not inserted. In addition, performing temporal checks to pointers
known to point to global objects is unnecessary, because global ob-
jects are never deallocated. CETS uses simple dataflow analysis to
identify these pointers and elides their checks.

5.2 Redundant check elimination
A temporal check is redundant if: (1) there is an earlier check to
pointers that share the same values for key and lock address (i.e.,
points to the same object) and (2) the check is not killed by a call
to free(). Our algorithm for finding redundant checks constructs
a dominator tree and standard dataflow analysis to identify the root
object accessed by each reference. Any check dominated by an
earlier check that is not killed along the path is removed. In our
current implementation a temporal check is killed when there is any
function call along the path—that is, we conservatively assume that
any function could potentially free() any pointer. This analysis
could be further improved by using an interprocedural analysis to
identify which functions call free().

Example. Consider the code snippet below:

if (ptr1_key != *ptr1_lock_addr) { abort(); }
... = *(ptr1+offset1);
*(ptr2) = ...; // potentially aliasing store
if (ptr1_key != *ptr1_lock_addr) { abort(); }
... = *(ptr1+offset2);

Naive temporal check insertion would insert two temporal checks
(shaded). Our temporal-check elimination optimization removes
the second check as redundant, because it knows that (1) the checks
are to the same object and (2) the intervening code does not kill
the validity of temporal check (a store can not deallocate memory
and thus cannot cause ptr1 to dangle). The store to ptr2 however
blocks standard compiler optimizations from removing the redun-
dant loads of *ptr1_lock_addr. However, if the store was not
present (or with better alias analysis) standard compiler optimiza-
tions alone would easily eliminate the second temporal check.

This example also illustrates two key differences between spa-
tial and temporal check elimination. First, even though the two
loads are to different addresses, the temporal check is redundant
whereas a bounds check would generally not be redundant. Sec-
ond, a function call between the two loads would block a tempo-
ral check removal, whereas the redundancy of spatial check to the
same address is independent of the intervening code.

5.3 Check removal effectiveness
The graph in Figure 5 shows the percentage of runtime temporal
checks eliminated as a percentage of runtime checks preformed by
CETS without such temporal-check specific optimizations—taller
bars are better. Unnecessary-check elimination (the striped segment
of each bar) removes on average 46% of the temporal checks. For
benchmarks like go, crafty and sjeng, which operate on large
number of global arrays, more than 80% of the checks are elimi-
nated. The solid segments of each bar in Figure 5 represent the per-
centage of temporal checks removed as a result of redundant check
elimination. In benchmarks such as lbm and ammp, more than 75%
of the temporal checks are removed. On an average for the bench-
marks, the combination of both redundant and unnecessary check
elimination removes 70% of the temporal checks.
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Figure 6. Normalized execution time overhead of CETS with (left bar) and without (right bar) the optimizations described in Section 5.
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Figure 5. Percentage of temporal dereference check eliminated
with various optimizations over CETS without optimizations.

6. Experiments
This section describes the CETS prototype and experimental eval-
uation. The goal of the evaluation is (1) to show that CETS is ef-
fective in detecting temporal violations, (2) to measure the runtime
overhead, (3) to show the impact of optimization in reducing the
runtime overhead, (4) to contrast it with our implementation of
other proposals for temporal checking and (5) to evaluate the over-
head of providing complete memory safety for C by coupling CETS
with SoftBound [22].

6.1 Prototype
We implemented CETS by modifying the publicly available
SoftBound code base because CETS employs a similar disjoint
per-pointer metadata approach. We replaced SoftBound’s existing
metadata space code with our own trie-based shadowspace im-
plementation. The prototype is built upon LLVM [21] version 2.6
and operates on the LLVM’s typed single static assignment (SSA)
form. LLVM invokes a standard suite of optimizations both before
and after the CETS pass. The instrumentation code inserted by
CETS is written as C functions that are subsequently forcibly
inlined by LLVM. The CETS pass itself is approximately 7K lines
of C++ code, and we plan to make the source code publicly avail-
able [2]. CETS operates on LLVM’s ISA-independent intermediate
form so it is architecture independent, but we selected 64-bit x86
as the ISA and a 2.66Ghz Intel Core 2 Duo for reporting runtime
results.

Benchmarks We used 17 benchmarks selected from the SPECint
and SPECfp benchmark suites to evaluate CETS’s performance.
The CETS prototype is not yet robust enough to compile all of the

C programs in the SPEC benchmark suites, but we present data
for the benchmarks we examined for which our prototype compiles
correctly. In all the graphs presented in this paper, the benchmarks
are ordered (from left to right) by the ratio of the number of pointer
metadata accesses to the number of pointer dereferences carried out
by the program.

Effectiveness To evaluate the effectiveness of CETS in detect-
ing temporal violations, we applied CETS to a set of thirty pro-
grams with temporal errors from the NIST-SAMATE benchmark
suite [1] and our own suite consisting of several test programs ex-
ercising various temporal errors involving both the stack and the
heap. CETS successfully detected all the temporal errors in these
two test suites. No false violations were reported for the suites or
the SPEC benchmarks used in our runtime experiments.

Runtime Overhead Figure 6 presents the percentage runtime
overhead of CETS (smaller bars are better as they represent
lower runtime overheads). This graph contains a pair of bars for
each benchmark. The left bar of each group show that CETS’s
overall average runtime overhead for detecting all violations of
temporal safety is 48%. As 70% of temporal checks on average are
eliminated (Section 5) the temporal checks themselves are not the
overwhelming source of overhead for many benchmarks.

The non-check overheads come from a variety of different
sources. The benchmarks on the right side of the graph have
a higher percentage of loads and stores of pointers, which
corresponds to higher instruction overhead and cache pressure
caused by frequent shadowspace accesses. To estimate another
source of overhead, we measured the runtime overhead of just
allocating/deallocating the lock locations and unique keys. We
generally found this overhead to be negligible (one exception was
the call-intensive benchmark mesa, with an overhead of 52% just
for such allocations/deallocations). To better understand the re-
maining sources of overhead, we recorded the number of memory
operations to the stack in the baseline and CETS configurations.
We found that some benchmarks exhibited a dramatic increase in
the number of stack accesses (5x in some cases). These results and
examination of the assembly code generated by LLVM indicate
that tracking the key and lock location values increases register
pressure enough—x86-64 has only 16 registers—to introduce
spills and restores to comprise a significant component of the
remaining overheads for some benchmarks.

Impact of Compile-Time Optimizations The right bar in each
group in Figure 6 shows the runtime overhead of CETS without
the temporal-specific optimizations described in Section 5. Some
benchmarks see substantial performance improvements (67% to
26% for ammp and 56% to 16% for bzip2), and the overall run-
time overhead improves from 66% to 48%. The relatively smaller
impact than suggested by the 70% reduction in temporal checks
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Figure 7. Normalized execution time overhead of CETS, CETS-Set, Alloc-Check and CETS+SoftBound over the baseline.

(Section 5) is mostly likely explained by two effects. First, as dis-
cussed above, other non-check overheads are significant in many
benchmarks. Second, the standard compiler optimizations applied
after instrumentation (enabled for both configurations in Figure 6)
alone eliminates many redundant checks.

6.2 Design Alternatives
We also compared CETS instrumentation some alternative tem-
poral checking designs. To provide an informative comparison,
these alternatives were implemented within the compiler and bene-
fit from the temporal check optimization (Section 5).

Comparison to CETS-Set. CETS-Set is a set-based variant (Sec-
tion 2.2) that performs a hash table lookup on each temporal check
to determine whether the key is valid. This approach maintains just
the key (no lock address) with each pointer, reducing the meta-
data per pointer by half in exchange for a more expensive tem-
poral check. The second bar of each group in Figure 7 illustrates
the runtime overhead of CETS-Set. The runtime overhead of such
a scheme is higher than CETS—77% versus 48% on average—
justifying our selection of the lock-and-key approach for CETS.

Comparison to Alloc-Check. Alloc-Check is a shadowspace-
based location-lookup approach to temporal checking (described
in Section 2.1). This design point is intended to represent a
compiler-based implementation of the incomplete temporal check-
ing provided by tool such as Valgrind’s Memcheck. As this is a
location-based approach, dangling pointers to reallocated locations
are not detected. This scheme maintains one bit with each word in
memory to record the allocation status of the word. The metadata
space is implemented using the same two-level trie as CETS uses
for its per-pointer metadata shadowspace. Every dereference check
involves a trie lookup to confirm the memory being accessed is
allocated. The third bar of each benchmark in Figure 7 presents
the runtime overhead of Alloc-Check. The runtime overhead of
Alloc-Check is 122% on average, which is higher overhead than
CETS while providing weaker detection. We also experimented
with an alternative implementation of Alloc-Check that uses a
splay tree to track each object, but the average overhead increases
to 314% (not shown). Alloc-Check also provides some detection
of spatial errors as well, so we next evaluate CETS combined with
spatial checking.

6.3 Combined Spatial and Temporal Checking
We also tested CETS in combination with SoftBound because to-
gether they provide detection of all temporal and spatial viola-
tions of memory safety. The combined approach extends the meta-
data maintained with each pointer from two to four words: base,
bound, key and lock address to enable both spatial and tem-
poral checks. The fourth bar of each group in Figure 7 shows the

average runtime overhead for detecting all spatial and temporal er-
rors is 116%. Spatial checking alone (not shown) has 83% over-
head, so adding CETS’s temporal checking to SoftBound increases
overhead by only 33%.

7. Related Work
In addition to the various approaches described in Section 2, we
describe other related approaches in this section.

Garbage collection. Garbage collection (either conservative
garbage collection [8] or reference counting [10]) is an alternative
approach to eliminating dangling pointers for application domains
in which garbage collection is suitable. When combined with
“heapification” [23] of escaping stack objects, garbage collection
can eliminate all dangling pointers. Garbage collection masks
temporal errors rather than reporting them, so it may not be ideal
in a debugging context.

Infinite heap abstraction based approaches. DieHard [6] pro-
vides probabilistic memory safety by approximating an infinite
sized heap using the runtime. It uses a randomized memory man-
ager which places objects randomly across a heap. Randomized
allocation makes it unlikely that a newly freed object will soon
be overwritten by a subsequent allocation thus avoiding dangling
pointer errors. Exterminator [26] builds on top of DieHard, and it
carries out error detection and correction based on data accumu-
lated from multiple executions without programmer intervention.

Using page-level permissions. Other proposals provide infinite
heap abstractions using the virtual address translation mechanism
to detect temporal errors without inserting any checking code. The
open-source tools Electric Fence, PageHeap, and DUMA allocate
each object on a different physical and virtual page. Upon deallo-
cation, the access permission on individual virtual pages are dis-
abled, causing high runtime overheads for allocation-intensive pro-
grams [14]. As these schemes allocate one object per virtual and
physical page, large memory overheads can result for programs
with many small objects. More recently, proposals have addressed
the physical memory overhead issue by placing multiple objects per
physical page, but mapping a different virtual page for each object
to the shared page [14].

Indirect temporal safety. Other relevant proposals are those that
perform checking aimed at other types of errors and the same
checks will also catch a subset of temporal safety violations, but
temporal safety is not the primary aim of these proposals. Exam-
ples include: control flow integrity [3], dataflow integrity based
on reaching definition analysis calculated statically [9], or using
pointer analysis to compute the approximate set of objects written
by each instruction [4].
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Another approach based on automatic pool allocation [15] as-
signs all heap-allocated objects to type homogenous pools, where
each member has the same type and alignment. On reallocation of
freed memory, new object will have the same type and alignment
as the old object. Thus, dereferencing dangling pointers to reallo-
cated memory cannot cause violations of type safety. This approach
does not prevent dereferences through dangling pointers but only
ensures that such dereferences do not violate type safety.

8. Conclusion
This paper proposed CETS, a compile time instrumentation for
detecting all violations of temporal safety for C. The primary
goal was to explore the design choices and the optimizations for
a compiler based system. In this regard, CETS uses a key and
lock address with each pointer in a disjoint metadata space and
checks pointer dereferences. A mechanized formal proof showed
that the CETS’s approach provided complete temporal safety even
in the presence of arbitrary casts and reallocations. Further, CETS
post-optimization based instrumentation, subsequent optimizations
passes, and temporal check removal optimizations, enabled it to
achieve an average execution overhead of 48%. When coupled
with a system providing complete spatial safety, CETS provides
complete memory safety for C at an average execution time
overhead of 116%. This runtime overhead meets our goals by
providing a memory error checking tool that has low enough
runtime overhead as to be practical for used by default in all stages
of the software development life cycle.
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