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Abstract
The serious bugs and security vulnerabilities facilitated by C/C++’s
lack of bounds checking are well known, yet C and C++ remain
in widespread use. Unfortunately, C’s arbitrary pointer arithmetic,
conflation of pointers and arrays, and programmer-visible memory
layout make retrofitting C/C++ with spatial safety guarantees ex-
tremely challenging. Existing approaches suffer from incomplete-
ness, have high runtime overhead, or require non-trivial changes
to the C source code. Thus far, these deficiencies have prevented
widespread adoption of such techniques.

This paper proposes SoftBound, a compile-time transformation
for enforcing spatial safety of C. Inspired by HardBound, a previ-
ously proposed hardware-assisted approach, SoftBound similarly
records base and bound information for every pointer as disjoint
metadata. This decoupling enables SoftBound to provide spatial
safety without requiring changes to C source code. Unlike Hard-
Bound, SoftBound is a software-only approach and performs meta-
data manipulation only when loading or storing pointer values. A
formal proof shows that this is sufficient to provide spatial safety
even in the presence of arbitrary casts. SoftBound’s full checking
mode provides complete spatial violation detection with 67% run-
time overhead on average. To further reduce overheads, SoftBound
has a store-only checking mode that successfully detects all the se-
curity vulnerabilities in a test suite at the cost of only 22% runtime
overhead on average.

Categories and Subject Descriptors D.3.3.4 [Programming Lan-
guages]: Processors; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms Languages, Performance, Security, Reliability

Keywords spatial memory safety, buffer overflows, C

1. Introduction
The serious bugs and security vulnerabilities facilitated by C/C++’s
lack of bounds checking are well known. The lack of spatial mem-
ory safety leads to bugs that cause difficult-to-diagnose crashes,
silent memory corruption, and incorrect results. Worse yet, it is
the underlying root cause of a multitude of security vulnerabili-
ties [14, 38, 44]. Even though modern operating systems and com-
pilers employ partial countermeasures (e.g., guarding the return ad-
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dress on the stack, address space randomization, non-executable
stack), vulnerabilities persist. For one example, in November 2008
Adobe released a security update that fixed several serious buffer
overflows [2]. Attackers have reportedly exploited these buffer-
overflow vulnerabilities by using banner ads on websites to redi-
rect users to a malicious PDF document crafted to take complete
control of the victim’s machine [1]. For another example, as of
March 2009, millions of computers worldwide were infected with
the Conficker worm, which spreads primarily via a buffer-overflow
vulnerability [39].

Safe languages, such as Java and C#, enforce memory safety
and thus completely prevent this entire class of bugs and security
vulnerabilities [14]. Such languages have thankfully become main-
stream, however C and C++ are still widely used. C provides low-
level control of memory layout, proximity to the underlying hard-
ware, requires minimal runtime support, and is the gold standard
for performance. Today’s operating systems, virtual machine mon-
itors, language runtimes, enterprise database management systems,
embedded software, and web browsers are all generally written in
C/C++. Furthermore, altogether such systems comprise millions of
lines of C/C++ code, preventing the complete transition away from
C/C++ anytime soon.

As a recognition to the importance of this problem, many pro-
posals have pursued techniques for retrofitting C (or close vari-
ants) to provide complete or near-complete spatial memory safety
[4, 5, 10, 11, 17, 28, 29, 32, 35, 37, 41, 47, 48].1 Unfortunately,
several aspects of C, such as its conflation of arrays and singleton
pointers, unchecked array indexing, pointer arithmetic, pointers to
the middle of objects, arbitrary casts, user-visible memory layout,
and structures with internal arrays all interact to greatly increase
the difficulty of retrofitting C with spatial memory safety guaran-
tees. As a result, prior proposals suffer from one or more practical
difficulties that may prevent wide adoption, such as: high runtime
overheads, incomplete detection of spatial violations, incompatible
pointer representations (by changing memory layout), or requiring
non-trivial changes to existing C source code. Moreover, the pro-
posals with the lowest performance overheads generally employ
whole-program compiler analyses (e.g., [4, 17, 35]) which compli-
cates separate compilation and use of dynamically linked libraries.
Section 2 provides additional background on these proposals.

Hardware-assisted techniques have been proposed for mitigat-
ing the runtime overheads and other limitations of these software-

1 Although temporal safety violations are also a source of bugs (i.e., dan-
gling pointers) and vulnerabilities (i.e., use-after-free vulnerabilities), Soft-
Bound focuses exclusively on the spatial safety issues of C. Other previ-
ously proposed complementary techniques such as conservative garbage
collection [9], reference-counted smart pointers, probabilistic approxima-
tions of an infinite-sized heap [6], temporal capabilities [5, 47], or region-
based memory management [19, 23, 25] may be employed to detect or pre-
vent temporal violations.
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only schemes. One such proposal is HardBound [16], which de-
scribes extensive hardware support for bounded pointers, including
automatically propagating pointer bounds information, efficiently
checking every memory access, and transparently recording pointer
bounds metadata in a hardware-managed shadow space. This hard-
ware/software approach may provide low-overhead enforcement of
spatial memory safety that is complete and highly compatible with
existing C code, but such hardware support is unlikely to be avail-
able any time soon, if ever.

This paper describes SoftBound, a software-only approach in-
spired by HardBound’s disjoint metadata scheme for highly com-
patible enforcement of spatial safety for C programs. SoftBound is
a compile-time transformation that inserts code for runtime prop-
agation and checking of pointer bounds. SoftBound enforces spa-
tial safety using the pointer-based approach, which associate base
and bound metadata with every pointer. Unlike prior pointer-based
approaches that change pointer representations and thus object lay-
outs [5, 28, 35], SoftBound records the base and bound metadata
in a disjoint metadata facility that is accessed via explicit table
lookups on loads and stores of pointer values only. SoftBound
performs a simple intra-procedural transformation that instruments
each function to propagate and check pointer metadata. Functions
with pointer arguments or pointer return values are extended with
additional parameters for base and bound metadata. This overall
approach provides SoftBound with the following attributes:

• Source compatibility. SoftBound is highly compatible with ex-
isting C source code because its disjoint metadata (1) avoids
any program-visible memory layout changes, (2) allows arbi-
trary casts by preventing the coercion of metadata that could
otherwise occur with in-line metadata. Our experiments with
23 benchmark applications and two network daemons (272K
lines of code in total) show that SoftBound can be successfully
applied to unmodified C programs.

• Completeness. By default the SoftBound transformation guar-
antees spatial safety. In essence, SoftBound provides the same
spatial safety guarantees as CCured, and Section 4 includes the
sketch of a formal proof that SoftBound’s core mechanisms en-
force a well-formed memory property similar to that provided
by CCured [35]. Our experiments show that SoftBound catches
errors not caught by Valgrind’s memcheck tool [42] or GCC’s
Mudflap [21].

• Separate compilation. SoftBound’s simple intra-procedural
analysis, disjoint metadata, and function cloning provide
transparent support for separate compilation, allowing library
code to be recompiled with SoftBound and dynamically linked.
This extends checking into library code and can reduce the
need for the library wrappers used by prior proposals.

SoftBound provides two modes of checking. For low-overhead
debugging and security-critical software, SoftBound’s full check-
ing mode provides spatial safety at the cost of a 67% runtime over-
head on average over a range of 23 benchmarks. In contrast to
heavyweight instrumentation used selectively during the develop-
ment process [21, 27, 36, 42], SoftBound’s full checking overheads
are low enough to use continuously throughout the software devel-
opment process. For security-critical applications, such overheads
are also likely acceptable.

For lower overhead protection against security vulnerabilities
and the memory corruption caused by out-of-bounds writes, Soft-
Bound provides a store-only checking mode. In this mode, Soft-
Bound propagates all metadata, but inserts bounds checks only
for memory writes. As observed previously [4, 48], store-only
checking is sufficient to stop just about any security vulnerability,

because attacks typically require performing at least one out-of-
bounds write. Out-of-bound writes are particularly subversive bugs
in that the memory corruption caused by such bugs often manifests
much later and in a different part of the program code. Our ex-
periments show store-only SoftBound reduces the average runtime
overhead to just 22% while still preventing all the vulnerabilities
in a security vulnerability suite. SoftBound’s store-only checking
overhead is low enough for many benchmarks (over half of the
benchmarks evaluated have less than 15% runtime overhead) to be
used in end-user production code.

2. Background
The problem of detecting and preventing spatial violations in the C
programming language is a well researched topic. Many techniques
were initially proposed primarily as debugging aids [5, 29, 37], but
have now been improved immensely [15, 17, 28, 35, 41, 47]—
nearly to the point of being ready for deployment in production
systems.

In this section, we describe approaches most closely related to
our scheme, comparing them with respect to completeness, perfor-
mance and compatibility attributes. Because SoftBound is focused
on detecting spatial violations, this section does not discuss ap-
proaches for preventing temporal safety violations (i.e., dangling
pointers). Additional related work is discussed in Section 7.

2.1 Object-Based Approaches
Object-based approaches [15, 17, 21, 29, 41] track all allocated
regions of memory in a separate data structure. This data struc-
ture maps any location inside of an allocated region to the bounds
information associated with the corresponding object. Pointer ma-
nipulation operations are checked to ensure that they remain within
the bounds of the same object. The distinguishing characteristic of
this approach is that bounds information is tracked per object and
associated with the location of the object in memory, not with each
pointer to the object. Every pointer to the object therefore shares
the same bounds information.

The object-based approach has at least two important advan-
tages. First, the memory layout of objects is unchanged, which
improves source and binary compatibility. Second, all heap mem-
ory allocations (i.e., calls to malloc()) update the object-lookup
data structure, which allows every valid pointer to be mapped to an
object, even if it was allocated by un-instrumented code. This be-
havior allows object-based schemes to transparently interact with
legacy libraries that have not been instrumented, therefore improv-
ing the overall compatibility of the system.

However, the object-based approach has three disadvantages.
First, out-of-bounds pointers require special care. Object-based
schemes use special out-of-bounds proxy objects [17, 29] when
out-of-bound pointers occur. If an out-of-bound pointer is modi-
fied so that it is back in bounds, this proxy object is used to recreate
a valid pointer to the original object.

Second, the object-lookup is a range lookup: a pointer to any-
where in the object must correctly map to the object’s bounds in-
formation. This range lookup is often implemented as a splay tree,
which can be a performance bottleneck, yielding runtime overheads
of 5x or more [21, 29, 41]. Subsequent proposals have consider-
ably mitigated this issue, reducing the overhead of the object-table
by checking only strings [41] or using whole-program analysis to
perform automatic pool allocation to partition the splay trees and
eliminate lookup and checking for many scalar objects [15, 17].

The third significant drawback of the object-based approach is
that its implementations are generally incomplete—they do not de-
tect all spatial violations. For example, arrays inside structures are
not always checked. To see why, consider a contrived example:

2



struct {
char id[8];
int account_balance;

} bank_account;
char* ptr = &(bank_account.id);
strcpy(ptr, "overflow...");

In the above example code, pointers to bank_account and
bank_account.id are indistinguishable as they point to the same
location and thus are associated with the same object-based bounds
information. Hence the pointer &(bank_account.id) inherits
the bounds of the whole object. When ptr is passed to strcpy()
an overflow of bank_account.id can overwrite the rest of the
struct, including the struct’s account_balance field—even
if strcpy() is instrumented. The above example is admittedly
contrived, and we have not encountered any such sub-object
overflows in the benchmark code we have examined. However, this
example demonstrates that sub-object overflows have the potential
to result in serious bugs or security vulnerabilities.

Although object-based implementations have typically not tar-
geted or addressed the detection of such sub-object overflows, some
object-based proposals are more successful at preventing internal
overflows. For example, SAFECode [17, 18], the most recent and
most advanced instance of the object-based approach, uses whole-
program static type analysis and type-homogeneous pool allocation
to significantly improve coverage in such cases; it is capable of de-
tecting many, but not all, such sub-object violations.

2.2 Pointer-Based Approaches
An alternative approach is the pointer-based approach, which
tracks base and bound information with each pointer. This is typi-
cally implemented using a fat pointer representation that replaces
some or all pointers with a multi-word pointer/base/bound. Such a
fat pointer records the actual pointer value along with the addresses
of the upper and lower bounds of the object pointed by the pointer.
As two distinct pointers can point to the same object and have
different base and bound associated with them, this approach
avoids the sub-object problem with object-based approaches dis-
cussed above. When a pointer is involved in arithmetic, the actual
pointer portion of the fat pointer is incremented/decremented.
On a dereference, the actual pointer is checked to see whether
it is within the base and bound associated with it. Proposals
such as SafeC [5], CCured [35], Cyclone [28], MSCC [47], and
others [16, 36, 37] use this pointer-based approach to provide
spatial safety guarantees.

The pointer-based approach is attractive in that it can be
used to enforce complete spatial safety. However, propagating
and checking bounds for all pointers can result in significant
runtime overheads. To reduce these overheads, CCured [35] used
whole-program type inference to identify pointers that do not
require bounds checking. CCured classifies pointers into various
kinds: SAFE, SEQ, and WILD. SAFE pointers have negligible
performance overhead and are not involved in pointer arithmetic,
array indexing or typecasts. SEQ pointers are fat pointers that allow
only pointer arithmetic and array indexing and are not involved
in arbitrary typecasts. WILD pointers allow arbitrary casts, but
require additional metadata and also any non-pointer store through
a WILD pointer is required to update the additional metadata. This
approach reduces the runtime overhead significantly, but CCured
requires modifications to the source code to: (1) avoid introducing
inefficient WILD pointers and (2) handle the memory layout
incompatibility introduced by CCured’s use of fat pointers.

The most significant disadvantage of the pointer-based ap-
proach is that fat pointers change memory layout in programmer-
visible ways. This introduces significant source code compatibility
issues in that the source must be modified [35]. The modified mem-

Approach No src Detects Memory Arb. Dyn.
code sub-object layout casts link

change violations compat. lib
J&K [29] Yes No Yes Yes Yes
SafeC [5] Yes Yes No Yes No
CCured –

Safe/Seq [35] No Yes No No No
CCured –
Wild [35] Yes Yes No Yes No

MSCC [47] Yes Yes/No Yes No Yes
SoftBound Yes Yes Yes Yes Yes

Table 1. Comparison of representative object-based (Jones & Kel-
ley) and pointer-based approaches (SafeC, CCured, MSCC) in con-
trast to SoftBound with respect to attributes such as: source code
modification, completeness with respect to detecting subfield ac-
cess violations, memory layout compatibility, support for arbitrary
casts, and support for dynamically linked libraries.

ory layout also makes interfacing with library code challenging. To
address this issue, attempts have been made to split the metadata
from the pointer [35, 47]. These approaches partially mitigate
some of the compatibility issues, but such techniques can increase
overhead by introducing linked shadow structures that mirror
entire existing data structures. Furthermore, they do not handle
arbitrary casts (another compatibility issue) and MSCC’s [47]
optimized encoding loses the ability to detect sub-object overflows.

2.3 Comparison of Various Approaches
Object-based and pointer-based approaches have complementary
strengths and weaknesses. Object-based approaches are highly
compatible because they use a separate lookup tree for tracking
object metadata, and thus they do not change the memory layout.
In fact, they have been successfully applied to the entire Linux
kernel [15]. However, object-based approaches cannot always
enforce complete spatial safety because of sub-object overflows.
In contrast, pointer-based approaches typically change the pointer
representation and memory layout causing source code compat-
ibility problems. Handling arbitrary casts is another important
problem. For example, in CCured, arbitrary casts result in WILD
pointers (which further complicate library compatibility) and may
have significant performance ramifications. When whole-program
analysis is applied to reduce the overhead of either scheme [17, 35],
it can complicate the use of precompiled and dynamically loaded
libraries.

Table 1 summarizes the various object-based and pointer-based
approaches in contrast with SoftBound. Object-based approaches
such as Jones & Kelley [29] satisfy most of the attributes ex-
cept for the detection of all sub-object violations. CCured with
only Safe/Seq pointers has low overhead and is complete but lacks
source code compatibility. MSCC [47] uses split metadata and run-
time type information, but it has difficulties handling arbitrary casts
and it does not detect sub-object overflows in the configuration
with the lowest runtime overhead. In the next section, we describe
the SoftBound approach, which satisfies all the attributes listed in
the Table 1 by combining the disjoint metadata of object-based
schemes with the sub-object overflow detection of pointer-based
schemes.

3. The SoftBound Approach
SoftBound is a compile-time transformation for inserting runtime
bounds checks to enforce spatial safety of C programs. SoftBound
is highly compatible with existing C source code because its dis-
joint metadata representation avoids memory layout changes and
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allows arbitrary casts. SoftBound associates base and bound meta-
data with every pointer, but records that metadata in a disjoint meta-
data space that is accessed via explicit table lookups. This approach
is conceptually a pointer-based approach, but SoftBound’s disjoint
metadata provides the memory layout compatibility of object-based
approaches. This section describes SoftBound’s key ideas. Sec-
tion 4 formalizes SoftBound and sketches a proof of SoftBound’s
spatial memory safety guarantee. A full discussion of SoftBound’s
specific implementation choices and its handling of all of C’s fea-
tures is deferred to Section 5.

3.1 Pointer Checking and Metadata Propagation
The following description of SoftBound’s transformation assumes
the C code has been translated into a generic intermediate form
that contains only simple operations, uses explicit indexing and
memory access operations, and provides the abstraction of an un-
bounded number of non-memory intermediate values and tempo-
raries that will ultimately be mapped to registers.

Pointer dereference check For every pointer value in the pro-
gram’s intermediate representation, the SoftBound transformation
creates a corresponding base and bound intermediate value. When-
ever a pointer is used to access memory (i.e., dereferenced), Soft-
Bound inserts code (highlighted in grey) for checking the bounds
to detect spatial memory violations:

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

value = *ptr; // original load

Where check() is defined as:

void check(ptr, base, bound, size) {
if ((ptr < base) || (ptr+size > bound)) {
abort();

}
}

The dereference check explicitly includes the size of the memory
access to ensure that the entire access is in bounds (and not just
the first byte). For example, if a pointer to a single character is cast
to be a pointer to an integer, dereferencing that pointer is a spatial
violation. This dereference check is inserted for all pointer deref-
erences, but such a check is not required when accessing scalar
local or global variables, or when spilling/restoring register values
to/from the stack—we assume that the C compiler generates such
code correctly.

Creating pointers New pointers in C are created in two ways: (1)
explicit memory allocation (i.e. malloc()) and (2) taking the ad-
dress of a global or stack-allocated variable using the & operator.
At every malloc() call site, SoftBound inserts code to set the cor-
responding base and bound. The base value is set to the pointer
returned by malloc(). The bound value is set to either the pointer
plus the size of the allocation (if the pointer is non-NULL) or to
NULL (if the pointer is NULL):

ptr = malloc(size);

ptr_base = ptr;
ptr_bound = ptr + size;
if (ptr == NULL) ptr_bound = NULL;

For pointers to global or stack-allocated objects, the size of the
object is known statically, so SoftBound inserts code to set the base
to the pointer and bound to one byte past the end of the object:

int array[100];
ptr = &array;
ptr_base = &array[0];
ptr_bound = ptr_base + sizeof(array);

Pointer arithmetic and pointer assignment When an expression
contains pointer arithmetic (e.g., ptr+index), array indexing (e.g.,
&(ptr[index])), or pointer assignment (e.g., newptr = ptr;),
the resulting pointer inherits the base and bound of the original
pointer:

newptr = ptr + index; // or &ptr[index]
newptr_base = ptr_base;
newptr_bound = ptr_bound;

No checking is needed during pointer arithmetic because all point-
ers are bounds checked when dereferenced. As is required by C
semantics, creating an out-of-bound pointer is allowed. SoftBound
will detect the spatial violation whenever such a pointer is derefer-
enced. Array indexing in C is equivalent to pointer arithmetic, so
SoftBound applies this same transformation to array indexing.

Structure field accesses Accesses to the fields of a structure are
covered by the above transformations by conversion to separate
pointer arithmetic and dereference operations.

Optional narrowing of pointer bounds The pointer-based ap-
proach adopted by SoftBound enables the ability to easily narrow
the bounds of pointers, which in turn allows SoftBound to pre-
vent internal object overflows. Shrinking of bounds can result in
false violations for particularly pathological C idioms (discussed
below), so SoftBound shrinks pointer bounds only when explicitly
instructed by the programmer to do so (e.g., via a command-line
flag when invoking the compiler).

When instructed to check for overflows within an object, Soft-
Bound shrinks the bounds on a pointer when creating a pointer to
a field of a struct (e.g., when passing a pointer to an element
of a struct to a function). In such cases, SoftBound narrows the
pointer’s bounds to include only the individual field rather than the
entire object.

struct { ... int num; ... } *n;
...
p = &(n->num);
p_base = max(&(n->num), n_base);
p_bound = min(p_base + sizeof(n->num), n_bound);

The above code calculates the maximum base and minimum bound
to ensure that such an operation will never expand the bounds of a
pointer. Pointers to struct fields that are internal arrays (the size
of which are always known statically) are handled similarly:

struct { ... int arr[5]; ... } *n;
...
p = &(n->arr[2]);
p_base = max(&(n->arr), n_base);
p_bound = min(p_base + sizeof(n->arr), n_bound);

Although such narrowing of bounds may results in false posi-
tives, we have not encountered any false violations in any of our 23
benchmarks (approximately 272K lines of code). Yet, some legal
C programs may rely on certain idioms that cause false violations
when narrowing bounds. For example, a program that attempts to
operate on three consecutive fields of the same type (e.g., x, y, and
z coordinates of a point) as a three-element array of coordinates
by taking the address of x will cause a false violation. Another
example of an idiom that can cause false violations comes from
the Linux kernel’s implementation of generic containers such as
linked lists. Linux uses the ANSI C offsetof() macro to create
a container_of() macro, which is used when creating a pointer
to an enclosing container struct based only on a pointer to an in-
ternal struct [31]. Casts in SoftBound do not narrow bounds, so
one idiom that will not cause false violations is casting a pointer to
a struct to a char* or void*.
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Another case in which SoftBound does not narrow bounds
is when when creating a pointer to an element of an array.
Although tightening the bounds is such cases may often match the
programmer’s intent, C programs occasionally use array element
pointers to denote a sub-interval of an array. For example, a
program might use memset to zero only a portion of an array using
memset(&arr[4], 0, size) or use the C++ sort function to
sort a sub-array using sort(&arr[4], &arr[10]).

3.2 In-Memory Pointer Metadata Encoding
The above transformation only handled pointers as intermediate
values (i.e., values that can be mapped to registers). Pointers must
also be stored to and retrieved from memory. SoftBound uses a
table data structure to map an address of a pointer in memory to
the metadata for that pointer. SoftBound inserts a table lookup to
retrieve the base and bounds from the disjoint metadata space at
every load of a pointer value:

int** ptr;
int* new_ptr;
...

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

newptr = *ptr; // original load

newptr_base = table_lookup(ptr)->base;
newptr_bound = table_lookup(ptr)->bound;

Correspondingly, SoftBound inserts a table update for every store
of a pointer value:

int** ptr;
int* new_ptr;
...

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

(*ptr) = new_ptr; // original store

table_lookup(ptr)->base = newptr_base;
table_lookup(ptr)->bound = newptr_bound;

Only load and stores of pointers are instrumented; loads and stores
of non-pointer value are unaffected. Even though loads and stores
of pointers are only a fraction of all memory operations, fast table
lookups and updates are key to reducing overall overheads. The
implementation section (Section 5) explores two implementations
of the lookup table.

3.3 Metadata Propagation with Function Calls
When pointers are passed as arguments or returned from functions,
their base and bound metadata must also travel with them. If all
pointer arguments were passed and returned on the stack (i.e., via
memory and not registers), the above table-lookup approach for
handling in-memory metadata would suffice. However, the function
calling conventions of most ISAs specify that function arguments
are generally passed in registers.

To address this issue, SoftBound uses procedure cloning [12]
to transform every function declaration and function call site to in-
clude additional arguments for base and bound. For each pointer
argument, base and bound arguments are added to the end of the
list of the function’s arguments. As part of this transformation, the
function name is appended with a SoftBound-specific unique iden-
tifier, specifying this function has been transformed by SoftBound.
For example, the code:

int func(char* s)
{ ... }
int value = func(ptr);

is transformed to:

int sb_func(char* s, void* s_base, void* s_bound)
{ ... }
int value = sb_func(ptr, ptr_base, ptr_bound);

Functions that return a pointer are changed to return a three-
element structure by value that contains the pointer, its base, and
its bound.

The transformation at the call site is performed entirely based
on the arguments being passed to the function. Thus, this approach
works when the definition and call site are in different files, which
is necessary to support traditional separate compilation and exter-
nal libraries. In fact, even if the function prototype is unspecified
and incomplete (which is surprisingly common in actual C code),
as long as the arguments passed in the C code are correct, the trans-
formation will work as expected. This general approach has the
additional benefit that the transformation is independent of the tar-
get ISA and the generated code obeys the system’s standard call-
ing conventions (albeit with additional parameters). Support of safe
variable argument functions is discussed in Section 5.

3.4 Comparison with CCured’s WILD Pointers
In many respects, SoftBound’s pointer representation is merely a
more compatible and more efficient implementation of CCured’s
WILD pointers. Like CCured’s WILD pointers, SoftBound
provides memory safety even in the context of arbitrary casts.
CCured’s WILD pointers accomplish this by (1) including a base
field with each pointer, (2) including a size field at the beginning of
each allocation, and (3) using tag bits at the end of each allocation
to indicate which bytes in the allocation are pointers. These tag
bits are written whenever storing to such an object (set to one
when storing a valid pointer, set to zero otherwise) and read on
every pointer load. As formally shown [35], this approach prevents
corruption of the base pointer metadata stored inline within the
objects, even if those objects are accessed via arbitrarily cast
pointers. The key to this guarantee is that such stores will also set
the tag to zero and that all pointer loads check this tag.

WILD pointers have three key disadvantages. First, WILD
pointers introduce source code compatibility issues because they
change memory layout in programmer-visible ways. Second,
WILD pointer’s base pointer must point to the start of an
allocation, thus disallowing sub-object bounds information and
failing to detect sub-object overflows. Third, all stores to a WILD
object must update the metadata bits, adding runtime overhead. For
these reasons (and the fact that WILD pointers disrupt CCured’s
whole-program type inference), all performance results for CCured
are presented for benchmarks in which the need for WILD pointers
was totally eliminated by program source modifications, program
annotations, or insertion of unsafe trusted casts [35].

SoftBound’s pointer representation improves upon WILD point-
ers while maintaining their spatial safety properties. First, Soft-
Bound’s metadata is recorded in a disjoint metadata space, avoid-
ing the memory layout incompatibility of WILD pointers. Second,
by using base/bound metadata that is totally decoupled from the
pointer in memory, SoftBound avoids the object size header and
tag bits, which in turn allows SoftBound to address the second de-
ficiency of WILD pointers by allowing arbitrary sub-object bound-
ing to detect sub-object overflows. Third, as SoftBound’s metadata
is disjoint, normal program memory operations cannot corrupt the
metadata, eliminating both the tag bits and the need for every store
operation to update these tag bits. With these improvements over
WILD pointers, SoftBound pointer representation is highly com-
patible, provides reasonable performance overheads, and provides
spatial safety even in the presence of arbitrary casts. The next sec-
tion provides a formal proof that shows SoftBound’s pointers pro-
vide the same well-formed memory guarantees (and thus spatial
safety guarantees) as CCured’s WILD pointers.
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4. Formal Proof of Spatial Safety
This section sketches a safety proof for the key components of Soft-
Bound’s enforcement mechanisms, namely pointer metadata propa-
gation and assertion checking. These claims have been mechanized
using the Coq proof assistant [13]. A longer description of the proof
and accompanying Coq source is publicly available [43].

Due to the size and complexity of the full SoftBound implemen-
tation, we concentrate our efforts on a fragment of C that covers
covers almost all of SoftBound’s features, including the address-of
operator &, malloc, and named structure types, which permit re-
cursive data structures. The formalism does not model SoftBound’s
checking of function pointers or capture its shrinking of bounds for
detecting sub-object spatial violations.

At a high level, the proof has several steps. We first develop a
non-standard operational semantics for (simplified, straight-line,
and single-threaded) C programs that tracks information about
which memory addresses have been allocated. To facilitate check-
ing of spatial memory errors, our formalism axiomatizes properties
of the C runtime with primitives for accessing memory: read,
write, and malloc. As SoftBound targets spatial errors only, this
formalism excludes free and other sources of temporal errors.
Crucially, this semantics is partial—it is undefined whenever a bad
C program would cause a spatial-safety violation; for programs
without spatial memory errors, this semantics agrees with C.

Next, we augment the operational semantics so that it both prop-
agates the bounds metadata and performs bounds-check assertions,
aborting the program upon assertion failure. This step abstractly
models the results of SoftBound instrumentation of the C program.

Finally, we define a well-formedness predicate on syntax that
captures invariants ensured by a combination of the C compiler
(e.g., that local variables map to stack addresses) and SoftBound
instrumentation. Standard preservation and progress results then
establish that, starting from a well-formed initial program state, the
SoftBound instrumented version will either terminate with a value,
exhaust memory, or abort—it will never get stuck trying to access
unallocated memory. This approach is similar to those used in both
CCured’s [35] and Cyclone’s [24] formal developments. The rest
of this section explains this proof strategy in more detail.

4.1 Syntax
The grammar in Figure 1 gives the fragment of C used in our proof.
Commands consist of straight-line sequence of assignments, where
the left-hand-side (lhs) is either a variable, a pointer dereference, or
the field of a struct. The right-hand-side (rhs) of an assignment can
be an integer constant, the result of an arithmetic operation, a lhs,
the address of a lhs, the result of a cast, the size of a pointer type,
or the result of malloc.

Atomic types are integers or pointers to pointer types, which
include anonymous structure types, named structures and void in
addition to atomic types. Here, n ranges over named structures, and
id ranges over C identifiers. We assume that we have a partial map
from names to anonymous structure types that represents typedefs
in the source code.

4.2 Operational Semantics
The operational model is intended to represent programs after they
have already been compiled to a fairly low level intermediate repre-
sentation in which all code and data structures have been flattened
and all operations are expressed in terms of atomic data types (ints
and pointers). Our Coq proof defines a well-formedness predicate
on syntax that picks out a subset of programs with these invari-
ants, but we omit the details here and simply assume that all syn-
tax mentioned in the rules below is well formed with respect to
these invariants. Note that, because the compiler transformations
that yield code in this intermediate form depend on source-program

Atomic Types a ::= int | p*
Pointer Types p ::= a | s | n | void

Struct Types s ::= struct{ · · ·;idi:ai; · · ·}
LHS Expressions lhs ::= x | *lhs | lhs.id | lhs->id
RHS Expressions rhs ::= i | rhs+rhs | lhs | &lhs

| (a)rhs | sizeof(p)
| malloc(rhs)

Commands c ::= c ; c | lhs = rhs

Figure 1. Syntax for the formal development.

Name Specification
read M l return some data at the address l, if accessible;

none otherwise
write M l d update data to d at the address l, if accessible;

none otherwise
malloc M i allocate a memory block with the size i

if the free memory space is available;
fail otherwise

Table 2. Memory operations.

type information (to calculate struct field indices, for example) and
SoftBound’s instrumentation itself uses types, our non-standard se-
mantics depends on source type information.

The operational semantics for this C fragment also relies on an
environment E, that has two components: A map, S, from vari-
able names to their addresses and atomic types (modeling a stack
frame), and a partial map, M, from addresses to values (modeling
memory).

A memory M is defined only for addresses that have been al-
located to the program by the C runtime. The C runtime provides
three primitive operations for accessing memory: read, write, and
malloc. Rather than committing to a particular implementation of
these primitives, our formalism axiomatizes properties that any rea-
sonable implementation should satisfy. Most of the axioms state
simple properties like “reading a location after storing to it returns
the value that was stored” and “storing to a location ` does not af-
fect any other location.” The most notable axioms involve malloc;
they enforce properties like “malloc returns a pointer to a region of
memory that was previously unallocated” and “malloc doesn’t alter
the contents of already allocated locations.” Both read and write
can fail if they try to access unallocated memory; malloc can fail
if there is not enough space. Table 2 summarizes these operations.

Given these operations, we define a straightforward operational
semantics for this fragment of C that is undefined for programs that
access unallocated memory locations. The standard operational se-
mantics of C evaluates a left-hand-side of an assignment to an ad-
dress. The value at that address is overwritten by the value that the
corresponding right-hand-side evaluates to. To model SoftBound’s
behavior, we augment this operational semantics to keep track of
metadata and potential memory errors:

Results r ::= v(b,e) | l | OK | Abort | OutOfMem

A result r can be a value v(b,e) (the result of a right-hand-side)
including the base (b) and bound (e) information along with the
underlying data v. For example, if v is the value of a pointer to an
array array, b and e are the start and end addresses of array; if v
is the value of an integer, its base and bound information are zero.
A result r can also be an address, l (the result of a left-hand-side),
OK which is the the result of a successful command c, Abort when
bounds check fails, or OutOfMem when memory allocation fails.

As mentioned above, to fully capture the instrumentation per-
formed by SoftBound, it is also necessary for the operational se-
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mantics to propagate some type information. For example, before
doing a dereference, SoftBound must do the bounds check accord-
ing to pointers’ base and bound information and the size of their
types. Similarly, when casting integers to pointers SoftBound sets
pointers’ base and bound information to zero.

These considerations lead to three large-step evaluation rules.
Left-hand-sides evaluate to a result r (which must be an address l
if successful) and its atomic type a. Such an evaluation has no ef-
fect on the environment, so we write the rule as: (E, lhs) ⇒l r : a.
Evaluating a right-hand-side expression also yields a typed result,
but it may also modify the environment E via memory alloca-
tion or assignment, causing it to become E ′: (E,rhs)⇒r (r :a,E ′)
(where r must be v(b,e) if successful). Commands simply evaluate
to a result, which must be OK if successful, and final environment:
(E,c)⇒c (r,E ′), where assignment statements can update the en-
vironment.

Space precludes showing the full set of operational rules (most
of which are completely standard or obvious). Instead, we highlight
a few cases that illustrate the salient features. For instance, the fol-
lowing examples show how to evaluate a pointer dereference when
the bounds check succeeds (left) and fails (right):

(E, lhs)⇒l l :a*
read (E.M) l = some l′(b,e)
l′ ∈ [b,e− sizeof(a)]

(E,*lhs)⇒l l′ :a

(E, lhs)⇒l l :a*
read (E.M) l = some l′(b,e)
l′ 6∈ [b,e− sizeof(a)]

(E,*lhs)⇒l Abort :a

Here, lhs is first evaluated to l, which is the address of a pointer
with type a*. If the address l is allocated, the function read (E.M) l
returns l′(b,e) the value of that pointer l′ and its metadata b and e.
Because pointers can be out-of-bounds due to pointer arithmetic,
before doing the dereference, these rules check whether l′ is within
the bounds, and yield the error Abort when the bounds check fails.
Note that it is a memory violation if read (E.M) l = none, in which
case neither rule above applies. However, according to the type
safety properties described below (Section 4.3), read will not fail
at runtime.

As another example, the operational semantics performs bounds
checking for access through a struct field using the following rule:

(E, lhs)⇒l l :s* read (E.M) l = some l′(b,e)
l′ ∈ [b,e− sizeof(s)] getField s id = some(offset,a)

(E, lhs->id)⇒l l′+offset :a

Here, getField returns a field offset, which is less than or equal
to sizeof(s), along with the atomic type a of the field id in struct
type s.

Other rules keep track of pointers’ values and their metadata
when evaluating pointer arithmetic (left) and type casts (right):

(E, ptr)⇒r (l(b,e) : p*,E ′)
(E ′, i)⇒r (n(b′,e′) :int,E ′′)
l′=l+n*sizeof(p)

(E, ptr+i)⇒r (l′(b,e) : p*,E ′)

(E,rhs)⇒r (v(b,e) :a,E ′)
(b′,e′)=(a==int)?(0,0) : (b,e)

(E,(a′)rhs)⇒r (v(b′,e′) :a′,E ′)

As shown above, the metadata on the results of a pointer arithmetic
operation is just the metadata associated with the original pointer.
Casts also propagate the metadata unchanged, except in the case of
casting an integer to a pointer, in which case the base and bound are
both set to zero. Subsequent bounds checks on the resulting point-
ers will fail, ensuring that pointers created from integers cannot
be dereferenced. This rule follows the SoftBound implementation,
which associates metadata only with pointers stored in memory; as
a consequence, when casting an integer to a pointer, the only sound
choice is to zero-out the metadata. This approach is conservative,

but in practice C programs rarely cast from pointers to integers and
then back again, which is the case that might benefit from more
accurate metadata propagation.

At runtime pointers can be temporarily out-of-bounds. The op-
erational semantics will not yield an error in such cases until the
program attempts a dereference through the illegal pointer. Once a
bounds check fails or a memory allocation failure occurs, the rules
propagate memory errors to the top level, analogously to raising an
exception:

(E,c1)⇒c (r,E ′)
r is Abort or OutOfMem

(E,c1 ; c2)⇒c (r,E ′)

(E,c1)⇒c (OK,E ′)
(E ′,c2)⇒c (r,E ′′)
r is Abort or OutOfMem

(E,c1 ; c2)⇒c (r,E ′)

4.3 Safety
The safety result relies on showing that certain well-formedness
invariants are maintained by the SoftBound instrumented program.
A well-formed environment `E E consists of a well-formed stack
frame S, which ensures that all variables are allocated in a valid
memory block and have well-formed type information, and a well-
formed memory M. A memory M is well formed when the metadata
associated with each allocated location is well formed:

∀l,d,b,e.(read M l = some d(b,e))⇒ M `D d(b,e))

`M M

M `D d(b,e) , (b = 0)∨ [(b 6= 0)∧ (∀l ∈ [b,e]. val M l)∧
(minAddr ≤ b ≤ e < maxAddr)]

Here, val M l is a predicate that holds when location l is allocated
in memory M and minAddr and maxAddr bound the range of legal
memory addresses where program data can reside. The judgment
`M M guarantees that if any address is accessible, its value is in-
bounds according to its metadata. A command is well-formed with
respect to a stack frame S, written S `c c, when c typechecks ac-
cording to standard C conventions assuming that each of the vari-
ables mentioned in c has the atomic type assigned by S.

With the above well-formedness conditions in place,
Lemma 4.1 shows that if a left-hand-side evaluates to an ad-
dress l without yielding any spatial memory violation, l must point
to an allocated memory block that lies within the legal memory
addresses range, and if a right-hand-side successfully evaluates to
a value, its metadata represents a range of allocated memory.

LEMMA 4.1 (Successful Evaluation Ensures Safety).

1. If `E E, (E, lhs) ⇒l l : a, then val E.M l ∧minAddr ≤ l ∧ l +
sizeof(a)< maxAddr.

2. If `E E, (E,rhs)⇒r (vb,e :a,E ′), then E ′.M `D v(b,e).

With Lemma 4.1, the type safety theorems show that SoftBound
can detect memory violations at runtime.

THEOREM 4.1 (Preservation). If `E E, E.S `c c and (E,c) ⇒c
(r,E ′), then `E E ′.

THEOREM 4.2 (Progress). If `E E and E.S `c c, then ∃ E ′.
(E,c)⇒c (ok,E ′) or ∃ E ′. (E,c)⇒c (OutofMem,E ′) or ∃ E ′.
(E,c)⇒c (Abort,E ′).

The proofs of these theorems are straightforward inductions on
the structure of the typing derivations, and the type safety proper-
ties of lhs expressions and rhs expressions which also follow by
inductions on the structure of the typing derivations. These theo-
rems also imply the following corollary:

COROLLARY 4.1 If `E E, E.S `c c and ∃ E ′. (E,c)⇒c (ok,E ′),
then the original C program will not cause any spatial memory
violation.
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5. Implementation
The previous sections have described SoftBound’s basic approach
and formal justification. This section describes the specific imple-
mentation of SoftBound’s metadata facility and specifically how
SoftBound handles various aspects of C (global variables, separate
compilation, memcpy(), function pointers, arbitrary casts, and vari-
able argument functions).

5.1 Metadata Facility Implementation
SoftBound’s metadata facility completely decouples the metadata
from the pointers in memory. At its simplest, SoftBound must map
an address to the base and bound metadata for the pointer at that
address (i.e., the lookup is based on the location being loaded or
stored, not the value of the pointer that is loaded or stored). This
mapping can be implemented in several ways, including lookup
trees or tables; SoftBound uses table lookup.

As the metadata accesses can be a significant source of run-
time and memory overhead, we explore two implementations of the
metadata facility: a hash table and a tag-less shadowspace. Each
organization comes with its own set of trade-offs with respect to
memory and performance overheads.

Hash table The conceptually most straightforward implementa-
tion of the metadata facility is a simple hash table. Each entry in
the table has three entries: tag, base, and bound. Assuming 64-bit
pointers, each entry is 24 bytes. To reduce runtime overhead, this
implementation uses a simple hash function: the double-word ad-
dress modulo the number of entries in the table. By keeping the
number of entries in the table a power of two, this calculation is
a simple shift-and-mask operation. Collisions are handled using
open hashing. Collisions are minimized by sizing the table large
enough to keep average utilization low. In the common case of no
collisions, the lookup is approximately nine x86 instructions: shift,
mask, multiply, add, three loads, tag compare, and branch.

Shadow space The shadow space implementation reduces the
overhead of the hash table by allocating a large enough table in
the virtual address space such that collisions are guaranteed not
to occur. With this guarantee, the tag field and checking is elimi-
nated, reducing both worst-case memory overhead and instruction
count. A shadow space lookup is approximately five x86 instruc-
tions: shift, mask, add, and two loads.

To ensure no collisions occur, the stack and heap are each lim-
ited to the top and bottom eighth of the virtual address space,
respectively. The system reserves a large region of memory in
the middle of the virtual address space for the shadow space. In
essence, this approach reduces the size of the virtual address space
by two bits. The SoftBound prototype uses mmap() to create a zero-
initialized region in virtual memory, and the operating system then
allocates physical pages for this region on demand (i.e., when each
page is first accessed).

5.2 Implementation Considerations
Handling arbitrary C programs requires addressing several issues.

Global variables For global arrays, the base and bound are
compile-time constants. Thus, SoftBound sets these bounds
without requiring writing the metadata to memory. However,
for pointer values that are in the global space and are initialized
to non-zero values, SoftBound adds code to explicitly initialize
the in-memory base and bounds for these variables. This can be
implemented using the same hooks C++ uses to run code for
constructing global objects.

Separate compilation and library code Unlike proposals that ex-
ploit whole-program analysis [17, 35], SoftBound easily supports

separate compilation. As described earlier, SoftBound uses proce-
dure cloning [12] to transform functions to take additional param-
eters and changes the function name to signify that it has been
transformed. Separate compilation works naturally—the static or
dynamic linker matches up caller and callee as usual. This sup-
port for separate compilation has two important ramifications. First,
SoftBound supports build environments in which a large program
is built by compiling many distinct modules via separate compi-
lation. Second, SoftBound can be applied directly to library code,
allowing a library writer to create and distribute a single library
archive with both transformed (spatially safe) and untransformed
(unsafe) versions of each function. For libraries that have not (yet)
been transformed, SoftBound employs library function wrappers
similar to those used in MSCC [47] or CCured [35] (but without
the marshaling issues caused by incompatible memory layout).

Memcpy() Among various C standard library calls, memcpy
requires special attention. First, to reduce runtime overhead, the
source and targets of the memcpy are checked for bounds safety
once at the start of the copy. Second, memcpy must also copy
the metadata corresponding to any pointer in the region being
copied. SoftBound could take the safe (but slow) approach of
always inserting code to copy the metadata, yet most calls to
memcpy involve buffers of non-pointer values. To address this
inefficiency, SoftBound infers whether the source of the memcpy
contains pointers by looking at the type of the argument at the
call site. Although not foolproof, we have found this heuristic
sufficient to identify the few uses of memcpy involving pointers in
our benchmarks.

Function pointers To protect function pointers, the SoftBound
prototype sets the base and bound for function pointers to be equal
to the pointer. Such an encoding is not used by data objects (it
would correspond to a zero-sized object), so SoftBound can check
for this metadata when the program calls through a function pointer.
Although this encoding prevents data pointers or non-pointer data
from being interpreted as a function pointer, casts between func-
tion pointers of incompatible types presents a challenge because
calling a function with arbitrary values may allow the manufac-
ture of improper base and bounds. Though not yet implemented in
our prototype, to ensure complete protection, a full implementation
would encode the pointer/non-pointer signature of the function’s ar-
guments, allowing a dynamic check to properly handle such cases.

Creating pointers from integers By default SoftBound sets the
base and bound of a pointer created from a non-pointer value to
NULL. This is a safe default (any dereference of such a pointer
will trigger a bounds violation), but may cause false violations in
particularly perverse C programs. Although we have not encoun-
tered such code in the applications we have examined, SoftBound
supports such casts by providing a setbound() function that al-
lows the programmer to bypass safety guarantees by explicitly set-
ting the bound for a pointer (including completely “unbounding”
a pointer to provide unchecked access to arbitrary memory loca-
tions if the programmer so desires). The programmer may also use
the setbound() function to explicitly shrink bounds, for example,
when employing a custom memory allocator.

Arbitrary casts and unions C supports arbitrary type conversion
by explicit casts and implicit conversions via unions. SoftBound al-
lows all such casts, because separating the metadata and program
data ensures that pointer bounds are not unsafely manipulated by
casts. In contrast, inline fat pointer schemes [5, 35, 47] have diffi-
culty supporting arbitrary casts. In SoftBound, casts among pointer
types simply inherit the same bounds. Like CCured’s WILD point-
ers, SoftBound enforces spatial memory safety as defined by well-
formed memory invariants (Section 4.3). That is, SoftBound en-
sures that a pointer can only dereference memory locations within
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its bounds, and that all those memory locations are valid; it does not
provide an assurance about the types of those memory locations.

Variable argument functions Variable argument functions are
another source of unsafe behavior of C programs. An approach
to handling variable arguments functions is to introduce a safer
calling convention for variable argument functions by including
two extra parameters: the number of parameters passed (in bytes)
and the number of pointers passed (and thus the number of extra
base/bound arguments passed to the function). The va_start and
va_arg macros could then check that neither too many arguments
nor too many pointer arguments are decoded. Our SoftBound pro-
totype does not yet implement this safer calling convention for vari-
able argument functions.

6. Experiments
In this section, we describe and experimentally evaluate our proto-
type implementation of SoftBound. The goal of this evaluation is
to (1) show SoftBound is effective in preventing spatial violations,
(2) measure its runtime and memory overheads, and (3) to show
SoftBound is compatible with existing C code.

6.1 The SoftBound Prototype
The SoftBound prototype uses LLVM [33] version 2.4 as its foun-
dation. SoftBound operates on LLVM’s fully typed single static as-
signment (SSA) intermediate form. LLVM invokes the SoftBound
pass after it has performed its full set of optimizations. Applying
SoftBound post-optimization ensures that SoftBound’s instrumen-
tation does not prevent code optimization. Furthermore, as register
promotion and other optimizations have already reduced the num-
ber of memory operations, this strategy reduces the amount of ad-
ditional instrumentation introduced by SoftBound.

The SoftBound pass inserts code to (1) create a base and bound
value for each pointer non-memory value in the program, (2) per-
form base/bound metadata manipulation prior to every memory op-
eration that reads or writes a pointer, (3) perform a bounds check
before memory operations and (4) rewrite all function calls to pass
the base and bounds as was described in Section 3. To eliminate
some obviously redundant checks of the same pointer, our proto-
type performs a simple intra-procedural dominator-based redun-
dant check elimination. These transformations are all strictly lo-
cal (intra-procedural) transformations, without using any whole-
program type inference or alias analysis. Calls to external functions
(i.e., any library function that has not been SoftBound transformed)
are mapped to wrapper functions.

SoftBound uses standard C functions to implement the code to
access the base/bound metadata and to perform the bounds checks.
The SoftBound pass invokes these routines by inserting appropriate
function calls that are later forcibly inlined by subsequent LLVM
passes.

After SoftBound has transformed the intermediate code, it re-
runs the full suite of LLVM optimizations on the instrumented
code. This simplifies the SoftBound pass, because subsequent op-
timization passes will remove dead code and factor out common
sub-expressions. To reduce compilation time in production environ-
ments, SoftBound would likely become an internal pass performed
after early optimizations such as register promotion and function
inlining, but before the most time-consuming optimization passes.

The SoftBound pass operates on LLVM’s ISA-independent in-
termediate form, so the SoftBound pass is independent of any spe-
cific ISA. We selected 64-bit x86 as the ISA for evaluation due to
its ubiquity. The SoftBound pass is approximately 5000 lines of
C++ code, and we plan to make the SoftBound source code pub-
licly available [43].

Attack and Target Detection
Store-only Full

Buffer overflow on stack all
the way to the target

Return address yes yes
Old base pointer yes yes
Function ptr local variable yes yes
Function ptr parameter yes yes
Longjmp buffer local variable yes yes
Longjmp buffer function parameter yes yes

Buffer overflow on heap/BSS/data
all the way to the target

Function pointer yes yes
Longjmp buffer yes yes

Buffer overflow of a pointer on
stack and then pointing to target

Return address yes yes
Base pointer yes yes
Function pointer variable yes yes
Function pointer parameter yes yes
Longjmp buffer variable yes yes
Longjmp buffer function parameter yes yes

Buffer overflow of pointer on
heap/BSS and then pointing to target

Return address yes yes
Old base pointer yes yes
Function pointer yes yes
Longjmp buffer yes yes

Table 3. Various synthetic attacks proposed by Wilander et al. [45]
and SoftBound’s ability to detect them with full checking and store-
only checking.

6.2 Effectiveness in Preventing Vulnerabilities and Bugs
To evaluate the effectiveness of SoftBound in detecting violations
of spatial safety, we applied SoftBound to a suite of security viola-
tions [45] and to versions of programs with well-documented secu-
rity violations [34]. SoftBound detects all the spatial violations and
prevents all the security vulnerabilities in these tests without any
false positives.

We use a testbed of buffer overflow attacks [45] that includes
overflows on the stack, heap, and global segments to overwrite var-
ious return addresses, data pointers, function pointers, and longjmp
buffers. Table 3 lists the attacks based on the technique adopted,
location of the overflow, and the attack target that is used to change
the control flow. SoftBound detects and prevents all these attacks
in both full and store-only checking mode. Publicly available tools
such as StackGuard, ProPolice, Libsafe and Libverify miss more
than 50% of these test cases [45].

We also evaluated SoftBound’s ability to detect spatial bugs
using actual spatial errors from real programs obtained from the
BugBench suite [34]: go, compress, gzip, and polymorph. These
bugs are a mixture of one or more read or write overflows on the
heap, stack, and globals. Table 4 lists the benchmarks and the de-
tection ability of SoftBound and various memory checking tools.
SoftBound with full checking was able to detect and prevent all
of the errors. SoftBound with checking only for stores was able to
detect all of the store overflows, but not the load overflows.

As a point of comparison, Table 4 also reports the efficacy of
memcheck [42] and ptrcheck [36] from version 3.4.1 of Valgrind,
Mudflap [21] from GCC 4.2.0, and the Jones and Kelly [29] mod-
ification to version 4.0.0 of GCC. Like SoftBound, the Jones and
Kelly version of GCC detected all violations. In contrast, both Val-
grind and Mudflap detect some of the violations, but they also fail
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Violation Detected?
SoftBound Valgrind GCC’s J&K

Benchmark Store Full memcheck ptrcheck Mudflap
go no yes no no no yes
compress yes yes yes yes yes yes
polymorph yes yes no yes yes yes
gzip yes yes yes yes yes yes

Table 4. Programs with overflows and the detection efficacy
of SoftBound (store-only and full checking), Valgrind’s mem-
check [42], Valgrind’s ptrcheck [36], GCC’s Mudflap [21], and
Jones and Kelly [29].

to detect violations that SoftBound detects. For example, Valgrind’s
memcheck tool does not detect overflows on the stack, leading to
its failure to detect some of the bugs.

6.3 Runtime Overhead Evaluation
Benchmarks We used 23 benchmarks selected from the SPECint,
SPECfp, and Olden benchmark suites to evaluate SoftBound’s per-
formance. The Olden benchmarks [40] were used because they
have been used in the most significant prior work in this area [17,
35, 47]. Our SoftBound prototype is not yet robust enough to com-
pile all of the C programs in the SPEC benchmark suites, but we
present data for the benchmarks we examined for which SoftBound
works correctly. All runs are performed on a 2.66 Ghz Intel Core 2
processor. Hardware performance counters were used to measure
dynamic instruction count and cache effects.

Benchmark characterization One of the main sources of over-
head in SoftBound is the runtime overhead of metadata accesses,
which is highly dependent on the frequency of such accesses. Our
experiments show that the frequency of metadata accesses varies
significantly from benchmark to benchmark. Figure 2 shows the
benchmarks sorted by the percentage of memory operations that
load or store a pointer value. The SPEC benchmarks are dark bars;
Olden benchmarks are white bars. Several of the benchmarks have
metadata access ratios of less than 10%, including eleven of the
sixteen selected SPEC benchmarks. In the other extreme, over half
of the memory operations in several of the Olden benchmarks are
loads and stores of pointers. To more easily show the correlation of
metadata accesses and runtime performance, the remaining graphs
will present the benchmarks in this sorted order.

Runtime overheads of full checking Figure 3 presents the per-
centage of runtime overhead of SoftBound over an uninstrumented
baseline (smaller bars are better as they represent lower runtime
overheads). This graph contains a pair of bars for each benchmark.
The total height of each bar corresponds to the overhead of full
checking using the hash table (left bar of each pair) and shadow
space implementations (right bar of each pair) of the metadata fa-
cility. The average runtime overhead is 93% (for the hash table
implementation) and 67% (for the shadow space implementation).
For all the benchmarks these runtimes overheads are likely more
than acceptable for debugging, internal and external testing, and
for mission-critical applications.

The benchmarks on the left of the graph (those with a lower fre-
quency of metadata accesses) generally have lower runtime over-
heads. On those benchmarks the overhead is largely due to the
actual checking of the bounds, so the specific metadata encoding
scheme has little impact on the overhead. The SoftBound proto-
type’s simple dominator-based redundant check elimination does
reduce the overheads of bounds checking—it reduces the overall
average runtime overhead from 80% to 67%—but more advanced
bounds check elimination techniques (e.g., [8, 46]) would further
reduce the overheads.
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Figure 2. The percentage of memory operations that load or store a
pointer from/to memory, thus requiring a metadata access. Bench-
marks from SPEC are represented by shaded bars; Olden bench-
marks are represented by white bars.

In contrast to the benchmarks on the left whose overhead was
primarily dominated by bounds checks, the benchmarks on the
right of the graph perform frequent metadata accesses. For these
benchmarks, metadata accesses are a large source of overhead,
and they are significantly impacted by the metadata encoding.
The shadow space encoding outperforms the hash table encoding,
sometimes substantially. For a few benchmarks (equake, li, and
em3d), the shadow space reduces the runtime overhead by more
than half.

Runtime overhead of store-only checking Our experiments with
the security vulnerabilities reinforce the intuition that checking
only stores can prevent security vulnerabilities. Moreover, in our
experience, store overflow bugs are more insidious because they
are harder to diagnose and the manifestation of the bug is often
widely separated from the root cause location at which the mem-
ory corruption occurred. The height of just the bottom segment
(stripe pattern) of each bar in Figure 3 represents the overheads
for checking the bounds only for store operations. Checking only
stores reduces the number of check operations. However, the num-
ber of metadata writes is unchanged, because all the same pointer
metadata must be propagated through memory to check subsequent
store dereferences. When using the shadow space implementation,
LLVM’s dead code elimination also removes many of the metadata
reads (those that feed only load dereference checks). However, as
the hash table implementation uses a loop, LLVM is unable to re-
move the metadata reads. As a result, in the current SoftBound pro-
totype, store-only checking benefits the hash table implementation
less than the shadow space implementation, for average runtime
overheads of 54% and 22%, respectively. Furthermore, the runtime
overhead of store-only checking using the shadow space is less than
15% for more than half of the benchmarks, which is likely low
enough for production code.

Dynamic instruction count overhead Figure 4 is similar in form
to the previous figure, except it shows the dynamic instruction
count overheads (rather than execution time overhead) for the vari-
ous configurations. This graph confirms that accessing the hash ta-
ble shadow space executes more instructions than the shadow space
implementation. In most cases, this larger number of instructions is
the primary source of additional overhead of the hash table imple-
mentation.

The dynamic instruction count overheads are highly correlated
with the runtime overheads, but the dynamic instruction count is
generally much larger than the corresponding runtime overhead. On
average SoftBound’s full checking increases the instruction count
by 173% (hash table) and 133% (shadow space), which is almost

10



0%

50%

100%

150%

200%

250%

ru
nt

im
e 

ov
er

he
ad

Hash Table - Full

Hash Table - Store-only

Shadow Space - Full

Shadow Space - Store-only

go lb
m

gz
ip

hm
m

er
co

m
pr

es
s

bz
ip

2
ijp

eg
cr

af
ty

sj
en

g
m

es
a

sp
hi

nx bh vp
r

ar
t

ts
p

lib
qu

an
t

pe
rim

et
er

eq
ua

ke
bi

so
rt

m
st li

em
3d

tre
ea

dd
m

ea
n

26
3

34
8

Figure 3. Normalized execution time overhead of SoftBound with full checking and store-only checking with two metadata organizations.
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Figure 4. Dynamic instruction overhead of SoftBound.

double the runtime overheads. This data implies that the instruction
per cycle (IPC) is higher when executing code instrumented by
SoftBound.

In essence, SoftBound’s metadata manipulation and bounds
checking add to the instruction count, but they also increase
the available instruction-level parallelism (ILP). The dataflow
subgraph of base and bound metadata manipulations is disjoint
from the dataflow graph of the original program computation.
These manipulations are also not on the control-flow critical path
of the program’s execution, assuming the processor correctly
predicts both (1) the never-taken branch that is part of the bounds
check and (2) the rarely-taken branch as part of the hash table tag
check. The Intel Core 2 processor we used for these experiments
is a dynamically scheduled processor with a large instruction
window and sophisticated branch predictor that can execute up to
four micro-operations per cycle. As few programs have enough
ILP to sustain four-wide execution, some of the instructions added
by SoftBound are executed “for free” by the unused execution
capacity. For example, hardware performance counters report that
the benchmark lbm has a high data cache miss rate of one miss
every 20 instructions. The resulting low IPC (just 0.22) provides
plenty of spare execution capacity to hide SoftBound overheads,
which explains lbm’s runtime overhead of only 3% while its
instruction execution overhead is 82%.

This finding has several ramifications. First, today’s sophisti-
cated processors are partly responsible for the low overheads ex-
hibited by SoftBound. Second, the runtime overhead of spatial

safety enforcement will be higher when running on low-cost power-
efficient processors commonly used in mobile devices and embed-
ded systems. Third, if SoftBound or any of the other proposals
for enforcing spatial safety become widely adopted, it could sig-
nificantly impact the tradeoffs in the design of microprocessors.
Conversely, future microprocessor designs could significantly pos-
itively or negatively impact the runtime overheads of enforcing spa-
tial safety for C programs.

Memory overheads One cost of SoftBound is that its disjoint
metadata increase the program’s memory footprint. Figure 5 shows
the normalized memory overheads based on the total number of
4KB pages touched during the entire execution for SoftBound with
both the hash table and the shadow space encoding. For programs
with many linked data structures (and thus many in-memory point-
ers), the worst-case memory footprint overhead can be as high as
300% for the hash table (one 24-byte entry for each 64 bits of mem-
ory) or 200% for the shadow space (one 16-byte entry for each 64
bits of memory). However, the memory overhead for many bench-
marks is much lower. The average memory overheads are 87% and
64%, respectively. The hash table in these experiments is sized to be
large enough maintain metadata for every allocated memory loca-
tion with few collisions in the table, effectively trading space to re-
duce instruction count overheads. A smaller hash table would have
the reverse effect.

Cache effects Another impact of SoftBound’s metadata is addi-
tional cache misses and cache capacity pressure. Figure 5 plots the
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Figure 5. Memory footprint overhead for various benchmarks

0

20

40

60

80

100

da
ta

 c
ac

he
 m

is
se

s 
(M

K
PI

)

Hash Table - Full

Hash Table - Store-only

Shadow Space - Full

Shadow Space - Store-only

go lb
m

gz
ip

hm
m

er
co

m
pr

es
s

bz
ip

2
ijp

eg
cr

af
ty

sj
en

g
m

es
a

sp
hi

nx bh vp
r

ar
t

ts
p

lib
qu

an
t

pe
rim

et
er

eq
ua

ke
bi

so
rt

m
st li

em
3d

tre
ea

dd
m

ea
n

15
3

12
9

Figure 6. Data cache misses per 1000 base instructions for various benchmarks.

miss rate of the processor’s 32KB first-level data cache. The miss
rates are given as misses for every thousand instructions executed
by the baseline non-SoftBound execution, which prevents differ-
ences in the number of dynamic instructions executed by the four
SoftBound configurations from obfuscating the data. The horizon-
tal line across each pair of bars represents the miss rate of the base-
line execution. The benchmarks with few metadata accesses (those
on the left of the graph) show no difference in the baseline misses
and the misses for the SoftBound configurations (i.e., the horizontal
line is at the top of the stack of bars). For the benchmarks with more
frequent metadata accesses (those on the right side of the graph)
show an increase in the number of cache misses. In some cases, the
miss rate more than doubles (e.g., bh, bisort, mst, li). Unsur-
prisingly, the benchmarks with high baseline miss rates and with
significantly more misses also have high runtime overheads. The
hash table implementation shows little difference in miss rates be-
tween full and store-only checking, because few metadata loads are
eliminated (as was discussed above).

6.4 Source Code Compatibility Case Studies
To evaluate our claim that SoftBound is highly compatible with
existing source code and interfaces well with existing libraries,
we applied SoftBound to two network server applications: a
fully-functional FTP server (tinyftp-0.2) and high-performance
web server with CGI support from NullLogic (nhttpd-0.5.1). The
NullLogic HTTP server is multithreaded and capable of handling
thousands of simultaneous connections. SoftBound successfully
transformed these network applications without requiring any
source code modifications and no false positives during program
execution. Apart from these network applications, SoftBound
also successfully transformed the 23 benchmarks used in the
performance evaluation. In total, these benchmarks and network

servers are approximately 272K total lines of code, all of which
were successful transformed, further supporting SoftBound’s
source code compatibility claim.

6.5 Performance Comparison to Related Approaches
Table 5 reports the overhead of two publicly available compiler-
based object-based implementations. The overheads are generally
much higher than SoftBound’s overhead: 12.1x, 24.1x and 7.7x for
Jones and Kelly, Mudflap with full checking and MudFlap with
store only checking respectively. Table 5 also includes the over-
heads of two memory checking tools Valgrind, which are based on
dynamic binary instrumentation.

CCured [35] and MSSC [47] are two pointer-based schemes
closely related to SoftBound. CCured has low runtime overheads,
ranging from 3% to 87% [35]. CCured’s whole-program type infer-
ence statically removes many metadata manipulations, resulting in
overheads that are lower on average than SoftBound. However, on
benchmarks whose overhead is dominated by dereference bounds
check overhead (e.g., the SPEC benchmark compress), SoftBound
and CCured have similar overheads. Furthermore, applying CCured
to a program requires non-trivial changes to the source code. Al-
though some of the changes are simple, restructuring a program
to avoid all casts that cause WILD pointers may require exten-
sive code changes such as runtime type information annotations
and tagged unions —or ultimately giving up on complete safety by
marking casts as trusted [35]. Lu et al. used CCured to investigate
its bug detection ability and have described these code modifica-
tions as “moderate” to “hard” and ultimately failed to apply CCured
to one benchmark [34].

MSCC [47] has higher overheads than CCured, partly because it
eschews whole-program analysis (as does SoftBound). When con-
figured to perform only spatial safety checking, MSCC’s overheads

12



J&K Mudflap Valgrind
Benchmark Store Full memcheck ptrcheck
go 28.3x 300.4x 316.0x 19.8x 98.5x
lbm 4.8x 1.4x 1.9x 4.6x 12.0x
gzip 9.9x 2.1x 2.8x 19.1x 86.1x
hmmer — 2.5x 4.8x 13.8x 86.4x
compress 14.1x 1.5x 3.5x 12.8x 54.1x
bzip2 17.3x 8.9x 10.3x 13.8x 75.0x
ijpeg 40.1x 69.4x 71.1x 16.2x 95.3x
crafty 13.9x 166.9x 170.2x 41.3x 209.2x
sjeng 25.7x 19.8x 19.8x 27.3x 27.3x
mesa 31.8x 193.9x 197.0x 35.5x 154.0x
sphinx 24.8x 4.7x 43.8x 24.4x 61.5x
bh 32.4x — — 14.4x 62.7x
vpr 25.5x 2.5x 9.6x 21.9x 130.1x
art 242.4x 2.9x 91.1x 16.9x 49.2x
tsp 9.0x 2.7x 15.9x 24.2x 93.7x
libquant 35.5x 3.0x 118.5x 12.7x 66.7x
perimeter 10.8x 6.1x 13.1x 14.9x 73.6x
equake 4.5x 28.4x 208.1x 13.3x 70.7x
bisort 18.3x 23.3x 32.5x 9.4x 37.0x
mst 22.4x 1.9x 11.2x 3.8x 11.1x
li 22.7x 20.0x 20.0x 27.8x 176.1x
em3d — 6.7x 40.1x 13.1x 58.6x
treeadd 7.5x 7.1x 756.4x 44.2x —
Average 12.1x 7.7x 24.1x 16.7x 65.8x

Table 5. Runtime overhead of Jones & Kelly [29], Mudflap [21]
with store only and complete checking, Valgrind’s memcheck [42]
and, Valgrind’s ptrcheck [36]. Entries with “—” indicate an inter-
nal compiler error, spurious runtime exceptions, or trials discarded
because of extremely long runtimes.

range from 15% to 185% with an average overhead of 68% [47].
Our own experimentation with MSCC and the published results in-
dicate that SoftBound’s overhead is generally similar to or some-
what lower than MSCC’s overhead on common benchmarks.

7. Additional Related Work
Many other approaches other than enforcing full spatial safety
have been explored for detecting and diagnosing bounds violations
or preventing bounds-related security vulnerabilities. Many static
analyses that detect buffer overflows have been proposed, includ-
ing using abstract interpretation [7, 20] and integer programming
[22]. Static analysis has also been coupled with lightweight pro-
grammer or inferred annotations (e.g., [11, 26]). Static checking
tools generally either have false positives or false negatives (they
are incomplete), but are certainly useful complementary techniques
to dynamically enforced spatial memory safety.

Other approaches monitor control flow transfers [30], ensure
control flow integrity [3], or enforce dataflow integrity based on
reaching definition analysis calculated statically [10]. Pointer anal-
ysis can also be used to compute the approximate set of objects
written by each instruction [4]. In all four cases, these proper-
ties are checked dynamically, but neither strategy directly enforces
memory safety. Probabilistic memory safety approaches, such as
DieHard [6], prevent many security vulnerabilities in the heap by
using a randomized runtime system and achieving probabilistic
memory safety by approximating to an infinite size heap.

8. Conclusion
SoftBound is a compile time transformation system to provide spa-
tial safety for the C programming language without changes to the
source code. SoftBound accomplishes this using a pointer-based
approach with a disjoint metadata space. Further, the mechanized

formal proof shows SoftBound’s metadata propagation is sufficient
to provide spatial safety even for programs with arbitrary casts.

We experimentally verified SoftBound’s ability to catch spa-
tial violations using real benchmarks with overflows and a suite
of security vulnerabilities. We found that SoftBound successfully
transformed several benchmarks and two network daemons (around
272K lines of code total) with no source code modifications. Soft-
Bound’s performance overhead is 67% and 22% on an average in
its full and store-only checking modes, respectively. SoftBound’s
store-only checking mode has less than 15% overhead for more
than half of the benchmarks. This runtime overhead is likely low
enough to be employed in production code, giving SoftBound the
potential to substantially improve the security and robustness of
real-world software systems.
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