
WatchdogLite: Hardware-Accelerated
Compiler-Based Pointer Checking

Santosh Nagarakatte
Rutgers University

santosh.nagarakatte@cs.rutgers.edu

Milo M. K. Martin Steve Zdancewic
University of Pennsylvania

milom@cis.upenn.edu stevez@cis.upenn.edu

Abstract
Lack of memory safety in C is the root cause of a multitude of seri-
ous bugs and security vulnerabilities. Numerous software-only and
hardware-based schemes have been proposed to enforce memory
safety. Among these approaches, pointer-based checking, which
maintains per-pointer metadata in a disjoint metadata space, has
been recognized as providing comprehensive memory safety. Soft-
ware approaches for pointer-based checking have high performance
overheads. In contrast, hardware approaches introduce a myriad
of hardware structures and widgets to mitigate those performance
overheads.

This paper proposes WatchdogLite, an ISA extension that pro-
vides hardware acceleration for a compiler implementation of
pointer-based checking. This division of labor between the com-
piler and the hardware allows for hardware acceleration while us-
ing only preexisting architectural registers. By leveraging the com-
piler to identify pointers, perform check elimination, and insert
the new instructions, this approach attains performance similar to
prior hardware-intensive approaches without adding any hardware
structures for tracking metadata.

Categories and Subject Descriptors C.1 [Computer Systems Or-
ganization]: Processor Architectures; D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.3.4 [Programming Languages]:
Processors

General Terms Languages, Performance, Security

Keywords memory safety, spatial safety, temporal safety, bounds
checking, use-after-free checking

1. Introduction
C and C++ are the languages of choice for implementing infras-
tructure code and all kinds of low-level software. Such languages
remain in common usage both for legacy reasons and because
they provide low-level access to underlying hardware, explicit con-
trol over memory management, and high performance. However,
a longstanding problem with code written in C/C++ is the lack
of memory safety: accessing beyond the bounds (spatial safety
violations) and accessing unallocated/deallocated memory loca-
tions (temporal safety violations). The lack of memory safety
causes simple programming errors to become the root cause of
a multitude of memory corruption bugs and security vulnerabili-
ties [7, 37, 38].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO ’14 February 15-19 2014, Orlando, FL, USA
Copyright c© 2014 ACM 978-1-4503-2670-4/14/02. . . $15.00
http://dx.doi.org/10.1145/2544137.2544147

Efficiently and comprehensively detecting and protecting against
memory safety violations is unsurprisingly a well researched topic
with numerous proposals over the years [1, 2, 4, 9–14, 27, 29, 31,
36]. These include both software-only tools [1, 2, 4, 8, 11, 13,
14, 27, 29, 31] and hardware instantiations [9, 10, 12, 25, 36].
Beyond academia, recent tools from industry—such as Google’s
Address Sanitizer [40] in the LLVM compiler and Intel’s Pointer
Checker compiler [15], patent application [35], and recently an-
nounced MPX ISA extensions [19]—illustrate the importance of
detecting memory safety violations.

Prior proposals for detecting memory safety violations pro-
vide a wide spectrum of protection ranging from partial counter-
measures to comprehensive memory safety. These proposals make
tradeoffs along the dimensions of performance, protection, and
compatibility with existing applications. Szekeres et al. [43] sur-
veyed the entire space of memory safety vulnerabilities and en-
forcement mechanisms and identified pointer-based checking as the
only approach to provide comprehensive and non-probabilistic de-
tection of memory safety vulnerabilities.

Pointer-based checking [2, 10, 12, 15, 27–29, 29, 36, 47] gives
every pointer a view of memory that it can legally access by main-
taining per-pointer metadata. To retain memory layout compatibil-
ity, some proposals place this per-pointer metadata in a disjoint-
metadata space [12, 15, 27, 28]. The per-pointer metadata is prop-
agated on pointer operations. Conceptually, every pointer derefer-
ence is checked using its metadata.

Comprehensive memory safety requires detecting both spatial
(bounds) violations and temporal (dangling pointer or use-after-
free) violations. To detect spatial safety violations, base and bounds
metadata is maintained with each pointer. Temporal violations may
be detected using unique identifier based checking on memory
accesses [2, 10, 25, 28, 36, 47] or by invalidating the bounds of
all pointers to an object when deallocating the object [15, 16, 42]
so that subsequent bounds checks will fail.

Pointer-based checking can be implemented in various parts of
the system stack—via source code rewriting, the compiler, and/or
in hardware. Recent compiler-based implementations have reduced
the performance overhead for comprehensive memory safety to
approximately 2× on average. These overheads are attained by
instrumenting optimized code and using information available to
the compiler. Unfortunately, this overhead is likely still too large for
production use. As a consequence, researchers have proposed using
hardware to accelerate pointer checking [10, 12, 16, 25, 35], but
these hardware proposals—including Watchdog [25], our own prior
proposal—introduce significant hardware complexity and require
various hardware structures dedicated to recording metadata state.
See Section 2 for a comparison of these strategies.

This paper proposes WatchdogLite, an ISA extension to accel-
erate pointer-based checking without adding any new hardware for
maintaining metadata state. The proposed instructions accelerate
the three key memory-safety checking operations: loading and stor-
ing metadata, bounds checking, and use-after-free checking. The
instructions operate on the ISA’s preexisting architectural registers.

http://dx.doi.org/10.1145/2544137.2544147

int **p, *q;
...

q = *p;

(b) Pointer Load (c) Pointer Store

q = p + index;
// or &p[index]

(a) Pointer Arithmetic

 q_base = p_base;
 q_bound = p_bound;
 q_key = p_key;
 q_lock = p_lock;

 scheck(p, p_base, p_bound);
 tcheck(p_key, p_lock);

 q_base = lookup(p)->base;
 q_bound = lookup(p)->bound;
 q_key = lookup(p)->key;
 q_lock = lookup(p)->lock;

int **p, *q;
...

*p = q;

 scheck(p, p_base, p_bound);
 tcheck(p_key, p_lock);

 lookup(p)->base = q_base;
 lookup(p)->bound = q_bound;
 lookup(p)->key = q_key;
 lookup(p)->lock = q_lock;

free(p);

(f) Temporal Check
p = malloc(size);

 p_key = next_key++;
 p_lock = allocate_lock();
 *(p_lock) = p_key;
 p_ base = p;
 p_bound = p != 0 ? p+size: 0;

 *(p_lock) = INVALID;
 deallocate_lock(p_lock);

 tcheck(p_key, p_lock) {
 if (p_key != *(p_lock))
 raise exception();
 }

(d) Memory Allocations

(e) Memory Deallocations

(g) Spatial Check

 scheck(p, p_base, p_bound, size) {
 if (p < p_base ||
 p + size >= p_bound)
 raise exception();
 }

Figure 1. (a) Pointer metadata propagation with pointer arithmetic, (b) metadata propagation through memory with metadata lookups on
loads, (c) metadata lookups with pointer stores, (d) pointer metadata creation on memory allocations, (e) identifier metadata being invalidated
on memory deallocations, (f) lock and key checking using identifier metadata, and (g) spatial check performed using bounds metadata.

The compiler explicitly inserts these instructions, uses pre-
existing static optimizations to eliminate many checks, and per-
forms in-register metadata propagation by copy elimination and
standard register allocation. Relying on the compiler to perform
these tasks largely eliminates the need for various previously pro-
posed dedicated hardware structures that track and cache metadata.

Experiments based on extensions to our SoftBound+CETS
compiler instrumentation show that the performance overhead
for enforcing comprehensive memory safety is reduced on av-
erage from 90% (without hardware acceleration) to 29% (with
the new instructions). This overhead is similar to prior hardware
schemes, which use extensive hardware structures to track and
propagate metadata state, which indicates that the proposed ISA
extension is a more pragmatic approach for hardware acceleration
of memory safety enforcement than prior hardware-centric propos-
als [12, 25, 35].

Concurrent with this work, Intel developed Memory Protec-
tion Extensions (MPX) [19] and released the ISA specification
in 2013. The work described in this paper was largely completed
in 2012 (see Chapter 6 of [24]). The WatchdogLite ISA exten-
sions described in this work and Intel’s MPX are similar in many
ways, including: using pointer-based checking with disjoint meta-
data, adding new instructions for efficiently accessing the meta-
data shadow space, and adding instruction for accelerating bounds
checking. One difference is that MPX does not include support for
accelerating use-after-free checking. The differences and similari-
ties are discussed further in Section 5.

2. Background on Pointer Checking
This section provides background on the pointer-based checking
approach [2, 10, 12, 15, 27–29, 29, 36, 47] and describes vari-
ous prior proposals for implementing it in either software or hard-
ware. Although there are many memory-checking proposals, this
discussion focuses on pointer-based checking with disjoint meta-
data [12, 15, 27, 42] for several reasons. This approach has been
shown to be highly compatible with existing code [12, 15, 27, 42],
a recent paper surveying the entire space of memory vulnerabili-
ties [43] identified this approach as the only one to provide compre-
hensive and non-probabilistic detection of memory safety vulnera-
bilities (see Table II of Szekeres et al. [43]), it has been formally
shown to provide strong memory safety properties [48], and it has
been embraced by Intel in a recently released commercial software
product [15] and a patent application [35].

2.1 Pointer-Based Checking with Disjoint Metadata
Enforcing memory safety prevents memory corruption bugs and
prevents the entire class of memory corruption vulnerabilities [43].

Such vulnerabilities—including buffer overflows and use-after-free
vulnerabilities—are still pervasive but they are not new [37, 43].
Informally, enforcing memory safety has two primary components:
preventing spatial violations (out-of-bounds memory accesses and
buffer overflows of all sorts) and preventing temporal safety vio-
lations (memory accesses to deallocated memory, a.k.a. dangling
pointer or use-after-free violations).

Pointer-based metadata. In a pointer-based approach, meta-
data is maintained with each pointer, providing it a view of the
memory that it can safely access according to the language speci-
fication. This representation permits the creation of out-of-bounds
pointers and pointers to the internal elements of objects/structs and
arrays (both of which are allowed in C/C++). Figure 1 illustrates
the pointer-based metadata propagation and checking abstractly us-
ing pseudo C code notation. The metadata—base, bound, lock, and
key—are associated with a pointer whenever a pointer is created.
These metadata are propagated on pointer manipulation operations
such as copying a pointer or pointer arithmetic (Figure 1a).

The per-pointer metadata may be maintained inline, as in fat-
pointer approaches [2, 10, 29], or in a disjoint metadata space for
pointers in memory [12, 16, 25, 27, 28]. Using a disjoint meta-
data space protects the metadata from malicious corruption and
leaves the memory layout of the program intact, retaining compat-
ibility with existing code. With disjoint metadata, the metadata is
loaded/stored from the disjoint metadata shadow space whenever
a pointer is loaded/stored (Figure 1b and Figure 1c, respectively).
This disjoint metadata space can be implemented in various ways,
including a linear region of memory [12, 25, 27], a hash table [27],
or a trie data structure [15, 28, 30].

Spatial checking. To enforce spatial safety, the base and bound
of the legal region of the memory accessible via the pointer is
associated with the pointer when it is created. The base and bound
are each typically 64-bit values, so they can encode arbitrary byte-
granularity bound information. These per-pointer base and bounds
metadata fields are sufficient to perform a bounds check prior to a
memory access (Figure 1g).

Temporal checking. To enforce temporal safety, a unique iden-
tifier is associated with each memory allocation (Figure 1d). Each
allocation is given a unique 64-bit identifier and these identifiers are
never reused. To ensure that this unique identifier persists even after
the object’s memory has been deallocated, the identifier is associ-
ated with pointers.1 On a pointer dereference, the system checks
that the unique allocation identifier associated with the pointer is
still valid.

1 Szekeres et al. [43] note: “The only way to detect a use-after-free attack
reliably is to associate the temporal information with the pointer and not
with the object.”

Safety Instrumentation Metadata Avoids new Static check Checking Performance
checking method organization arch. state? optimization? method overhead

Chuang et al. [10] Spatial & Compiler + inline No No Implicit 30%
Temporal Hardware (fat pointers)

HardBound [12] Spatial Hardware disjoint No No Implicit 5-9%†

(shadow space)
SafeProc [16] Spatial & Compiler disjoint No Yes∗ Explicit 93%‡

Temporal (256-entry CAM)
Watchdog [25] Spatial & Hardware disjoint No No Implicit 25%

Temporal (shadow space)
Intel’s MPX [19] Spatial Compiler disjoint No Yes∗ Explicit N/A
(concurrent work) (two-level trie)
WatchdogLite Spatial & Compiler disjoint Yes Yes Explicit 29%

(this work) Temporal (shadow space)
†HardBound uses a special low-overhead encoding for small objects and does not perform temporal checking.
∗These proposals benefit from static check optimization, but results with such optimizations are not reported.
‡The SafeProc paper reports performance overheads as low as 9%, but only when checks are delayed and queued into a 256-entry
FIFO memory updated buffer (MUB) and executed by a separate dedicated controller.

Table 1. Comparison of hardware implementations of pointer-based checking schemes along the following dimensions: type of safety
checking (spatial vs temporal), instrumentation method, metadata organization, avoiding new architectural state, employing static check
optimizations in the compiler, checking method (implicit vs explicit), and performance overhead.

Performing a validity check on each memory access using a
hashtable or splay tree can be expensive [2, 20], so an alternative
is to pair each pointer with two pieces of metadata: an allocation
identifier—the key—and a lock that points to a location in memory
called lock location [10, 25, 28, 36, 47]. The key and value at the
lock location will match if and only if the underlying memory for
the object is still valid (i.e., it has not been deallocated). Rather
than a hash table lookup, a dereference check then becomes a
direct lookup operation—a simple load from the lock location and
a comparison with the key (Figure 1f). Freeing an allocated region
changes the value at the lock location, thereby invalidating any
other (now-dangling) pointers to the region (Figure 1e). Because
the keys are unique, a lock location itself can be reused after the
space it guards is deallocated.

2.2 Compiler Implementations of Pointer Checking
The pointer-based checking described above can be implemented
on either the source code of the program with source-to-source
translation [29, 47] or within the compiler [15, 27, 28, 42].
Compiler-based implementations provide three primary benefits:
(1) checking can be performed on optimized code after executing
an entire suite of conventional compiler optimizations, (2) pointers
and memory allocations/deallocations can be identified precisely
by leveraging the information available to the compiler, and (3) a
large number of checks can be eliminated statically using check-
elimination optimizations. By implementing pointer-based check-
ing within the compiler, such approaches [15, 27, 28, 42] have
reduced the performance cost of enforcing comprehensive memory
safety to approximately 2× performance overhead on average, but
this is likely still too costly for widespread use in production code.

2.3 Hardware Implementations of Pointer Checking
To overcome the performance overheads of software-only ap-
proaches, researchers have proposed implementing pointer-based
checking primarily in hardware [10, 12, 16, 25, 35]. There are three
main dimensions that distinguish these proposals: (1) whether they
perform implicit or explicit checking, (2) how they identify point-
ers, and (3) the organization of the in-memory metadata. These
design decisions have implications on the safety provided, the hard-
ware structures required, and how well they can be optimized. Ta-

Hardware Structures
Chuang et al. [10] (1) µop injection

(2) 32-entry metadata check table
(3) Metadata base register map
(for each register)

HardBound [12] (1) µop injection
(2) Pointer tag cache accessed
on each memory access

SafeProc [16] (1) 256-entry hardware CAM
(associatively searched on every
memory access check)
(2) Hardware hash table
(3) 256-entry FIFO update buffer

Watchdog [25] (1) µop injection
(2) lock location cache used
on each memory access
(3) changes to the register renamer

Table 2. Hardware structures used by various hardware ap-
proaches. A CAM is a content addressable memory.

ble 1 compares the prior hardware proposals on these dimensions.
Table 2 lists the hardware structures used by the proposals.

Hardware with implicit checking uses µop injection to check
and propagate metadata. Prior proposals such as the work of
Chuang et al. [10], HardBound [12] and Watchdog [25] fall into
this category. To mitigate the performance overhead of perform-
ing extra metadata accesses on every memory operation in such
approaches, various pointer tag caches [12] and special caches for
lock locations [25] have been proposed. Although implicit check-
ing can be efficiently implemented by introducing such hardware
structures, these proposals have not leveraged the benefits of static
check optimizations. In contrast, explicit checking approaches such
as SafeProc [16] modify the software tool-chain to insert instruc-
tions. Although the evaluation in the SafeProc paper did not lever-
age static check elimination in the compiler, its explicit checking
approach would allow compilers to eliminate checks while preserv-
ing the hardware acceleration benefits for the remainder.

A hardware pointer-checker needs to identify pointers. This in-
formation is typically absent in binaries. HardBound [12] accesses

the metadata on every memory access, but introduces a hardware
pointer tag cache to reduce the cost of such accesses in the common
case. Watchdog [25] uses conservative heuristics to reduce meta-
data accesses by filtering out all non-pointer-sized memory oper-
ations. SafeProc [16] and the work of Chuang et al. [10] provide
ISA extensions to allow the compiler to precisely identify pointer
operations.

The metadata organization is an important aspect of providing
comprehensive safety. The fat pointers in the work of Chuang et
al.—like any proposal that uses inline metadata [29]—can be cor-
rupted in the presence of arbitrary type casts. Approaches that use
disjoint metadata either as a shadow space or a hardware table pre-
vent such corruption, allowing for comprehensive protection. In
Chuang et al. metadata may only reside in memory (not registers
or other hardware structures), so each check operation is fairly ex-
pensive as it must load all the metadata from memory into the core
as part of performing bounds and use-after-free checking (adding
approximately four memory accesses per check, and checks are by
default performed on every memory access).

Among the prior approaches, the explicit checking performed
by SafeProc [16] is most closely related to the proposal described
in this paper. SafeProc uses ISA extensions to identify pointers and
insert checks. However, SafeProc uses bounds invalidation to de-
tect temporal safety violations; when an object is deallocated, the
system must find all of the pointers that point to the object and set
their bounds information to invalid so that subsequent accesses will
fail [16, 42]. To implement this approach, SafeProc places all per-
pointer metadata into a 256-entry hardware CAM (content address-
able memory) that is associatively searched on every memory ac-
cess check (matching on pointer address) and on every object deal-
location (matching on object address). As programs can have more
than 256 pointers, the SafeProc hardware relocates pointer records
that overflow the CAM into an in-memory dual-indexed hash table
data structure that supports hardware walking of the data structure
to lookup the record for a pointer address (used to perform bounds
checking) or all the pointer records that are associated with a partic-
ular object address (used to perform object deallocation), which in
turn necessitates other hardware extensions like the memory update
buffer [16] to mitigate performance overheads.

The goal of WatchdogLite is to provide memory safety accel-
eration using preexisting structures without adding any hardware
structures that maintain state. To accomplish this goal, Watchdog-
Lite (1) uses explicit checking, which enables the compiler to per-
form custom check optimizations eliminating the need for some of
the hardware structures (e.g. lock location cache, µop injection),
(2) employs hardware-accelerated lock-and-key checking for de-
tecting use-after-free violations rather than using object bounds
invalidation, and (3) relies on the compiler to perform metadata
propagation, copy elimination, and check elimination. This hard-
ware/software co-design approach has the potential to provide the
low performance overheads of prior hardware-intensive propos-
als without introducing any new hardware structures for recording
metadata state.

3. Instructions that Accelerate Checking
This paper proposes WatchdogLite, a set of instructions to pro-
vide hardware acceleration for three key memory safety checking
operations: (1) loading and storing metadata, (2) bounds check-
ing, and (3) use-after-free checking. Unlike the few prior propos-
als for hardware acceleration of pointer checking [10, 12, 25, 35],
the proposed instructions operate only on values in pre-existing
ISA architectural registers—they do not add any extra lookup ta-
bles, buffers, caches, sidecar/shadow registers, etc., nor do they
require mechanisms needed by prior schemes, such as µop injec-
tion [10, 25, 35], copy elimination register renaming tricks [25], or

replicated shadow datapaths with metadata accesses on every mem-
ory operation [12].

The key to this approach is to leverage the compiler to avoid the
aforementioned extra hardware state and mechanisms. Watchdog-
Lite does this by establishing a division of labor between the com-
piler and the hardware that harnesses the complementary benefits
of prior compiler-based and hardware-based approaches. The com-
piler generally knows which operations are manipulating point-
ers, so it can insert operations to perform metadata manipulation
only for those operations that actually require it. Instead of in-
register pointer manipulations resulting in explicit copying of meta-
data [10, 12, 16] or relying on dynamic copy elimination [25], the
compiler can simply employ its existing static copy propagation
optimization. The compiler is already responsible for managing
scarce register resources via standard register allocation. In addi-
tion, it has long been known that compilers can reduce checking
overhead by removing unnecessary or redundant checks [23].

Our hypothesis is that compiler-based implementations will
benefit from new instructions that perform these common checking
and metadata shadow space operations more efficiently than build-
ing them from individual instructions, providing performance sim-
ilar to prior hardware-intensive approaches with much less invasive
hardware modifications. Overall, the instructions are intended to be
straightforward to understand and similar in implementation com-
plexity to adding a few additional SSE2/AVX or VFPv4/NEON
instructions, which have been added over the years to x86 and
ARM, respectively.

We investigate two variants of the proposed instructions: (1) in-
structions that operate on 64-bit “narrow” registers and (2) variants
that operate on 256-bit “wide” registers. In the first variant, the
instructions use only the preexisting 64-bit general-purpose reg-
isters and the compiler uses its standard register allocation to as-
sign general-purpose registers for holding each of the four words
of metadata per pointer. This variant is similar to how conventional
software-only checking schemes [15, 27] operate, and so it pro-
vides a natural point of experimental comparison.

The second variant further reduces overhead by leveraging pre-
existing 256-bit AVX “wide” registers found in today’s Core i7 x86
processors (%YMM0-%YMM15), packing the four words of metadata
into a single wide register. Although originally proposed for float-
ing point and vector operations, the x86 SSE2/AVX family of ex-
tensions also accelerates XML parsing, cyclic redundancy checks,
and encryption. Thus we explore a “wide” variant of the memory-
checking acceleration instructions that further exploits these regis-
ters. Packing the metadata into a single wide register has two main
advantages: it reduces register pressure on the general-purpose reg-
isters and it allows all four words of metadata to be loaded/stored
in a single 256-bit wide aligned cache access (rather than one cache
access per word of metadata).

3.1 Metadata Load and Store Instructions
The MetaLoad and MetaStore instructions accelerate loading and
storing the four 64-bit words of per-pointer metadata from the
disjoint shadow space when loading and storing pointers from/to
memory. Each time a pointer is loaded from memory into a regis-
ter, the compiler also inserts a MetaLoad instruction to bring the
pointer’s metadata into registers. Similarly, the compiler inserts a
MetaStore instruction following each store of a pointer to memory.

The location of the metadata in the shadow space is determined
by the address from which the pointer is being loaded. Similar to
a normal memory operation, the MetaLoad and MetaStore instruc-
tions support a “register plus offset” addressing mode to specify the
address. The MetaLoad instruction also specifies the destination
register for the loaded metadata; the MetaStore instruction speci-
fies the source register that holds the metadata to be written to the

(a) MetaLoad (b) MetaStore

in: %rax -- address of pointer
out: %ymm0 -- loaded metadata

 in: %rax -- address of pointer
 in: %ymm0 -- stored metadata

MetaLoad %ymm0, imm(%rax)

64

addr

Or<<

256

Disjoint metadata space

64

key lockbndbase

0x3f000…

32
imm 64

Or<<

256

Disjoint metadata space

+

64

32
imm

MetaStore %ymm0, imm(%rax)

64

<

>=

size

64

Exception?

(c) Spatial Check

 in: %rax -- pointer
 in: %ymm0 -- metadata

Schk.size %ymm0, imm(%rax)

64 64

!=

Exception?

(d) Temporal Check

 in: %ymm0 -- metadata

64

Tchk %ymm0

0x3f000…

%ymm0%rax %ymm0%rax

key lockbndbaseaddr

+

%ymm0%rax

key lockbndbaseaddr

%ymm0

key lockbndbase

+ 32
imm

+

memory

Figure 2. Operation of the MetaLoad (a), MetaStore (b), SChk (c), and TChk (d) instructions.

shadow space. These new instructions combine the shadow space
address generation/mapping operations with the memory access to
the shadow space into a single instruction.

The MetaLoad and MetaStore instructions have two variants.
When the metadata is held in four individual 64-bit registers, each
MetaLoad instruction loads one 64-bit word of metadata from
the shadow space into the register file (sub-opcode bits in the
instruction indicate which of the four words to access); when the
per-pointer metadata is packed into a single 256-bit register, a
MetaLoad instruction uses a single 256-bit wide cache access.

Shadow space metadata mapping. As in prior hardware
shadow space implementations [12, 25], the implementation of
these instructions assumes that the shadow space is a linear address
range mapped into a fixed location in the upper regions of the vir-
tual address space. (Alternatively, the start of the shadow memory
could be specified by the value in a control register, much like the
base of the page table.) This linear shadow space is more efficient
than using hash tables [27] or trie data structures [15, 28] to imple-
ment the shadow space, but it requires hardware and/or operating
system support.

Without hardware support, the operations to perform the map-
ping can add significant performance overhead. The instruction se-
quence generated by the compiler to perform metadata loads/stores
using a two-level trie data structure incurs about a dozen x86 in-
structions, and even a linear shadow space encoding requires a few
shift/mask/and instructions to map the pointer address to the ad-
dress of the corresponding shadow mapping. The MetaLoad and
MetaStore instructions hardcode these manipulations and perform
these bit manipulations internally using custom hardware as part of
the address generation stage. Figure 2(a) and Figure 2(b) summa-
rize the instruction interface and implementation.

3.2 Spatial (Bounds) Check Instruction
To accelerate bounds checks, we add a new instruction, SChk,
the spatial check instruction. This single instruction replaces the
five x86 instructions (cmp, br, lea, cmp, br) that perform a (lower
and upper) bounds check. The SChk instruction requires three val-
ues: the address being checked, the base, and the bound. Opcode
variants of this instruction encode the width of the access being
checked (in powers of two ranging from one to 32 bytes). When
the check fails, the instruction raises an exception.

The SChk instruction reads three 64-bit values from the register
file. It performs two parallel comparisons: the base with the pointer
and the bound with the pointer plus the access size. Because the
size of the access may be only 1/2/4/8/16/32 bytes, a fully general
adder is not required. This instruction does not produce output, so
the latency of the instruction need not be a single-cycle to obtain
low performance overheads.

The SChk instruction has two variants. The narrow variant uses
three 64-bit general purpose registers as inputs (address, base, and

bound). The wide variant reads the pointer value from a 64-bit
register and the base and bound from consecutive elements of a
single 256-bit wide register. Figure 2(c) summarizes the instruction
interface and provides the details of the implementation.

Comparison to the x86 bounds instruction. SChk is similar in
spirit to the bound instruction available on x86 processors since the
80286, but SChk is different in two key ways. First, SChk uses reg-
isters to hold all inputs. In contrast, early x86 processors had just
eight registers and no double-word datapaths, so the bound instruc-
tion required both the base and bound to be fetched from memory
for each check. As a result, when the base and bound were already
in registers, the bound instruction was typically more expensive
than a bounds check using other x86 instructions. Second, SChk
efficiently supports the byte-granularity checking used by bounds
checks. Byte-granularity checking provides the ability to prevent
a four-byte memory access to a three-byte object, but not flag a
two-byte access to the same address. SChk facilitates this by en-
coding the size of the memory access. In contrast, the x86 bound
instruction was designed for checking at the granularity of an array
index. Using bound would require additional instructions to adjust
the upper bound based on the size of the memory access.

3.3 Temporal (Dangling Pointer) Check Instruction
The TChk instruction accelerates the “lock and key” temporal
checks described in Section 2. A TChk instruction replaces three
x86 instructions (load, compare, branch). The instruction reads the
64-bit key and 64-bit lock value from the register file, performs
a 64-bit load using the lock part of the input, and checks that the
loaded value is equal to the key. When the check fails, it raises an
exception.

If the memory access datapath is extended to perform a post-
load comparison, this instruction can execute as a single µop. An
alternative implementation is to crack it into two µops: a load
µop and a new compare-and-fault µop. The TChk instruction does
not produce an output register, so performance is not particularly
sensitive to the instruction’s execution latency.

We evaluate two variants of the TChk instruction. The narrow
variant uses two 64-bit register inputs for the lock and key. The
wide variant obtains the two 64-bit words from elements of a
single 256-bit wide register. Figure 2(d) summarizes the instruction
interface and provides the details of the implementation.

4. Experimental Evaluation
This section provides an experimental evaluation of pointer check-
ing using the proposed instructions, highlights its effectiveness in
attaining low performance overheads, and analyzes the sources of
the performance overhead. The next subsection describes our ex-
perimental setup, the benchmarks, changes made to the entire tool
chain—compiler, assembler, and the simulator—and the experi-
mental methodology.

4.1 Experimental Methodology
Baseline compiler prototype for software-only checking. We use
the LLVM-based SoftBound+CETS prototype for our experiments,
both as a point of experimental comparison and to insert the pro-
posed instructions. The compiler performs the standard suite of op-
timizations on the LLVM intermediate representation (IR) prior to
inserting metadata propagation and checking operations. The pro-
totype instruments code by adding calls to helper functions written
in C that are later forcibly inlined prior to rerunning the full suite
of optimization passes.

To avoid changing the calling convention for functions, the
prototype implements a shadow stack that mirrors the call stack
of the program to pass/return metadata for pointer arguments to
function calls. The shadow stack also provides a mechanism for
dynamic typing between the arguments pushed at the call site and
the arguments retrieved by the callee preventing memory safety
errors with variable argument functions and calls with mismatched
function signatures [24].

The compiler elides many unnecessary checks (e.g., bounds
checking of scalar local variables or stack spill/restores) and per-
forms a simple intra-procedural dominator-based redundant check
elimination. The prototype compiler does not implement more so-
phisticated loop-based or constraint-based check eliminations [6],
which would further reduce its performance overhead.

Modifications to prototype compiler and assembler. We
modified the assembler and other binutils to accept the new in-
structions. For the “narrow” variant of the new instructions, we
simply replaced the aforementioned helper functions written in C
with inline assembly to invoke the new instructions. Supporting the
“wide” variant required changing the compiler to associate a single
wide temporary in the LLVM IR with each pointer rather than four
narrow registers. In both variants, using inline assembly to insert
the new instructions was not sufficient to utilize the “register plus
offset” addressing mode, resulting in many LEA instructions being
generated prior to check operations. For example, bounds checking
of the following memory access:

movq %rax, 8(%rbx)

translates into:

movq %rax, 8(%rbx)
lea %rcx, 8(%rbx)
SChk.q 0(%rcx), %ymm1

whereas, it would ideally just be:

movq %rax, 8(%rbx)
SChk.q 8(%rbx), %ymm1

We observe an increase in LEA instructions roughly proportional to
the number of bound check instructions (see Section 4.4), which is
consistent with most spatial check instructions being preceded with
an instruction to calculate the effective address.

Simulator. To evaluate the benefits of the WatchdogLite ISA
extensions, we use an in-house x86-64 simulator developed for mi-
croarchitecture research [17, 18]. The simulator executes the user-
level portions of statically linked 64-bit x86 programs. It decodes
x86 macro instructions and cracks them into a RISC-style µop ISA.
Table 3 describes the configurations used for each component of the
micro-architecture. The out-of-order processor configurations de-
scribed are designed to be similar to Intel’s Core i7 “Sandy Bridge”
processor. We model the details of Core i7 using the publicly avail-
able information such as the memory hierarchy (large L3 cache
split into banks on a ring interconnect with private L2/L1), and
structure sizes (ROB, LQ, SQ, IQ, etc.). We simulate a three level
cache hierarchy with private L1 and L2 caches of size 32KB and

Clock 3.2 GHz

Fr
on

t-
en

d Bpred 3-table PPM: 256x2, 128x4, 128x4,
8-bit tags,2-bit counters

Fetch 16 bytes/cycle. 3 cycle latency
Rename Max 6µops per cycle. 2 cycle latency
Dispatch Max 6µops per cycle. 1 cycle latency

W
in

do
w

/E
xe

c

Registers (160 int + 144 floating point), 2 cycle
ROB/IQ 168-entry ROB, 54-entry IQ
Issue 6-wide. Speculative wakeup.
Int FUs 6 ALU. 1 branch. 2 ld. 1 st. 2 mul/div
FP FUs 2 ALU/convert. 1 mul. 1 mul/div/sqrt.
LSQ size 64-entry LQ, 36-entry SQ

M
em

or
y

H
ie

ra
rc

hy

L1 I$ 32KB. 4-way, 64B blocks. 3 cycles
Prefetcher 2-streams, 4 blocks each
L1 D$ 32KB, 8-way, 64B blocks, 3 cycles
Prefetcher 4-streams, 4 blocks each
L1↔ L2 bus 32-bytes/cycle. 1 cycle.
Private L2$ 256KB, 8-way, 64B blocks, 10 cycles.
Prefetcher 8 streams. 16 blocks.
L2↔ L3 bus 8-stop bi-directional ring.

8-bytes/cycle/hop. 2.0GHz clock
Shared L3$ 16MB. 16-way, 64B blocks, 25 cycles
Mem. Bus 800MHz. DDR. 8-bytes wide.

Dual channel. 16ns latency

Table 3. Simulated processor configurations.

256KB respectively and a shared L3 cache of size 16MB divided
into four banks organized as a ring.

Benchmarks. We used the fifteen C SPEC benchmarks from
the SPEC2006 and SPEC2000 benchmark suites. We compiled the
benchmarks using the LLVM compiler version 3.0 with aggressive
analysis-based optimizations including SSE-4.2 related optimiza-
tions. Hence, the floating point benchmarks use the XMM/YMM reg-
isters for floating point values (and do not use the floating point
stack).

To ensure reasonable simulation times, we use train/test inputs
with 2% periodic sampling with each sample of 10 million instruc-
tions proceeded by a fast forward and a warmup of 480 and 10
million instructions per period, respectively. The number of sam-
ples executed varies across benchmarks (from a minimum of 32
samples to a maximum of 384 samples per benchmark). Based on
the SMARTS methodology [46], we calculated that this sampling
introduces 95% confidence intervals of approximately 1% to re-
ported execution times. Execution times are calculated using the
macro instruction IPC (instructions per cycle) and the number of
instructions executed. The instruction counts reported are not sam-
pled and thus have no sampling error.

4.2 Functional Evaluation
To evaluate the effectiveness in preventing bounds errors, we ran
multiple test suites: NIST Juliet Test Suite for C/C++ [32], SAFE-
Code test suite, and Wilander test suite [45]. These include more
than 2000 test cases exercising various kinds of buffer overflows.
To evaluate the effectiveness with use-after-free vulnerabilities, we
ran 291 test cases for use-after-free vulnerabilities (CWE-416 and
CWE-562) from the NIST Juliet Test Suite for C/C++ [32], which
are modeled after various use-after-free errors reported in the wild.
It successfully detected and prevented both buffer overflows and
use-after-free vulnerabilities without any false positives.

0%

50%

100%

150%

200%

250%

%
 r

u
n

ti
m

e
o

v
er

h
ea

d compiler narrow mode wide mode

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 3. Performance overhead with compiler, ISA extension in narrow (scalar) mode, and ISA extensions in wide mode.

0%

50%

100%

150%

%
 i

n
st

ru
ct

io
n
 o

v
er

h
ea

d

metastore

metaload

t-chk

s-chk

lea

ymm-spill

other

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 4. Instruction overhead breakdown in wide mode.

4.3 Runtime Execution Overheads
Figure 3 presents the percentage execution time overhead of
pointer-based checking with and without the proposed instruc-
tions over a baseline without any memory safety instrumenta-
tion (smaller bars are better as they represent lower runtime over-
heads). The benchmarks are sorted by frequency of pointer meta-
data loads and stores (less frequent on the left to more frequent
on the right). The graph contains three bars for each bench-
mark. The height of the leftmost bar represents the overhead of
compiler-based instrumentation. The compiler instrumentation in-
curs an overhead of 90% on average for these benchmarks to pro-
vide comprehensive memory safety, which is similar to the over-
heads reported by prior work on compiler-based pointer check-
ers [24, 27, 28].

The height of the middle and rightmost bars present the per-
formance overhead with both the narrow and wide variants of the
proposed instructions (45% and 29% on average, respectively). The
wide variant of the instructions improves performance not only by
accelerating the checks but also by reducing the integer register
pressure and the number of loads/stores performed with metadata
loads/stores. The benchmarks on the right, which have a large num-
ber of metadata loads and stores, receive more benefit from the
wide instructions.

4.4 Contributions to Performance Overhead
To understand the contribution of the various operations to the over-
all overhead, Figure 4 reports the breakdown of instruction over-

head by type of instruction. The total height of the bar represents
the total percentage increase in instructions over the unsafe base-
line for the new instructions in wide register mode (81% more in-
structions on average, which results in a 29% average performance
overhead). The percent increase in instruction overhead correlates
well with the performance overheads in Figure 3, but note that
the percent increase in instructions is larger than the percent in-
crease in performance overhead; adding these off-the-critical-path
instructions increases the ILP available in the program and adding
such checking typically does not increase the time spent waiting on
cache misses, thus lowering the memory stalls per instruction.

Metadata load and store instructions. The top two segments
in each bar represent the contribution of MetaStore (1% on average)
and MetaLoad (2% on average) instruction overhead, respectively.
As each of these operations in the software-only baseline previ-
ously required approximately a dozen instructions, the availability
of these new instructions successfully reduced the instruction over-
head from a significant contributor (estimated to be approximately
35%) to the small single-digits.

Check instructions. The next two segments (third and fourth
from the top) in each bar represent the contribution of TChk (11%
on average) and SChk (23% on average) instruction overhead, re-
spectively. There are fewer temporal checks than spatial checks, as
static optimizations are more effective at removing them. SChk is
the largest single contributor to the instruction overhead, and this
overhead is understated because most of these SChk instructions
are paired with an LEA or other instruction to calculate the effective

0%

20%

40%

60%

80%

100%

%
 c

h
ec

k
s

el
im

in
at

ed

spatial checks temporal checks

lbm go

equake

hmmer
milc

sje
ng
bzip2

ammp
comp

h264 art vpr

lib
quantummcf

parse
r
Avg

Figure 5. Percentage of memory access checks eliminated by
static compiler optimizations.

address. We measured the increase in the number of LEA instruc-
tions versus the baseline (17% on average) and plotted it as the next
segment (fifth from the top). Together, the SChk and extra address
generation instructions represent about half of the instruction over-
head (40% of 81%). The two most promising ways to further re-
duce this overhead are: (1) to modify the compiler’s code generator
to use the “register plus offset” addressing mode and (2) implement
better bounds check elimination optimizations.

Additional spills/restores. Placing pointer metadata in the
%XMM/%YMM registers increases register pressure, which could lead
to more spill and restore operations on these registers. The seg-
ment second from the bottom represents the additional instructions
that load or store %XMM/%YMM registers (5% on average). These ad-
ditional operations are not negligible, but the additional register
pressure is not the dominant source of overhead for any of these
benchmarks.

Other overheads. The bottom segment of each bar is the re-
maining instruction overhead not accounted for by any of the prior
categories (22% on average). Although we do not have an exact
breakdown, this category includes additional instructions to estab-
lish a new lock and key on each function call, restore the lock and
key on a return, and maintain the shadow stack for passing and
returning per-pointer metadata on function calls [24]. The bench-
marks go, sjeng, and parser all have significant “other” segments
and also have high rates of function calls; in contrast, benchmarks
such as lbm and equake perform few function calls and report
fewer instructions in the “other” category. Changing the calling
convention and stack layout would allow these operations to be per-
formed more efficiently (by putting them on the main stack rather
than a separate shadow stack), albeit at the risk of reducing com-
patibility with existing code and libraries.

Memory overheads. The memory overhead (due to shadow
memory) is on average 56% for the benchmarks (unique physi-
cal pages touched, which are allocated on demand). These mem-
ory overheads are similar to prior disjoint pointer-based meta-
data schemes such as Watchdog [25] because the memory lay-
out/mapping is identical.

4.5 Estimating the Benefit of Static Check Elimination
Unlike prior hardware proposals that perform implicit checking on
every memory access [10, 12, 25, 25, 35], the instruction-based
hardware acceleration described in this paper leverages compile-
time static check elimination. To estimate the benefits of static
check elimination, Figure 5 reports an estimate of the number of
regular memory operations in each of the benchmarks that is not
paired with a spatial check (left bar in each group) or temporal
check (right bar in each group). On average, the static optimiza-
tions implemented in our compiler prototype eliminates 72% of the

temporal checks and 40% of the spatial checks. Conservatively ex-
trapolating the instruction counts from Figure 4, not using static
check elimination would increase the number of temporal checks
by at least 3.5× and the spatial checks by 1.6×. Together this would
almost double (1.8×) the overall instruction overhead (from 81%
to 147%).

The compiler’s static check elimination assists WatchdogLite in
obtaining performance (29% performance overhead) similar to our
recently proposed hardware-injection scheme Watchdog [25, 26]
(which reports 24% on average for spatial and temporal check-
ing) without requiring the extra state and hardware structures in-
troduced by Watchdog to accelerate metadata checking and prop-
agation (e.g., the lock location cache, µop injection, move elim-
ination via modified register renaming, and a full suite of wide
shadow registers). Our prototype compiler performs only simple
check optimizations. A more sophisticated implementation would
likely eliminate more checks and thus further reduce the overheads,
potentially allowing WatchdogLite to outperform Watchdog while
relying on simpler hardware.

5. Related Work
Memory safety enforcement for C/C++ is a well-researched topic.
Apart from the techniques described in Section 2, there are other
related approaches that seek to prevent memory safety errors ei-
ther directly or indirectly. Please see the recent survey paper by
Szekeres et al. [43] for a complete coverage of the efforts in this
direction.

Hardware support for memory safety. Some hardware pro-
posals, such as Memtracker [44], provide detection of some mem-
ory safety violations by maintaining valid/invalid metadata bits
for each memory location and checking these bits before mem-
ory accesses [40, 41]. SafeMem [39] uses ECC to implement the
valid/invalid metadata to detect some memory safety violations
with low overhead. Log-based architectures (LBA) [9] accelerate
valid/invalid status bit checking by executing the checks on a dif-
ferent core. LBA also provides idempotent filters and mapping in-
structions to reduce performance overheads.

Probabilistic mitigation. Probabilistic approaches randomize
the locations of objects to make memory safety vulnerabilities
more difficult to exploit in practice. Such approaches approximate
an infinite heap with various kinds of randomization, including:
instruction-set randomization [3, 21], address space randomization,
and data randomization [5]. Other probabilistic approaches [4, 22,
33, 34] mitigate many memory safety vulnerabilities by allocating
objects far apart and controlling memory reuse.

Intel MPX Extensions. Intel recently announced the specifica-
tion of Memory Protection Extensions (MPX) [19] for providing
hardware acceleration for compiler-based pointer-based checking
with disjoint metadata. There are many similarities between Intel’s
concurrent work on MPX and WatchdogLite: both (1) provide hard-
ware acceleration for compiler-based pointer-based checking, (2)
use disjoint metadata for the pointers in memory, and (3) provide
ISA support for efficient bounds checking. Differences between the
proposals include: (1) MPX introduces four new multi-word bound
registers (B0-B3) in contrast to reusing the existing wide AVX
registers, (2) MPX extends interoperability by storing the pointer
value redundantly in the metadata space to be permissive when non-
instrumented code modifies the pointer and does not properly up-
date the bounds metadata, (3) MPX accesses the disjoint metadata
using a two-level trie [28, 30], and (4) most significantly, MPX does
not detect all memory safety errors, specifically use-after-free er-
rors, whereas WatchdogLite provides comprehensive detection via
lock-and-key use-after-free checking. Intel has thus far provided
only the MPX ISA specification with no published evaluation or
analysis of MPX.

6. Conclusion
This paper targets the elimination of an entire class of low-level
bugs and security vulnerabilities by providing hardware accel-
eration of pointer-based comprehensive enforcement of memory
safety. The proposed WatchdogLite ISA extension consists entirely
of a few new instructions that operate on existing architectural
registers. Even without the hardware search tables, sidecar reg-
isters, µop injection, and/or metadata caches used by prior hard-
ware proposals, WatchdogLite attains low performance overheads.
WatchdogLite accomplishes this with a division of labor between
the compiler and the hardware: the compiler identifies pointers,
propagates in-register metadata, eliminates unnecessary and redun-
dant checks, and inserts the new instructions; the hardware sim-
ply provides a few new instructions to more efficiently perform
the bounds checking, use-after-free checking, and storing/loading
metadata to/from memory.

The most important contribution of this paper is therefore not
necessarily the details of the proposed instructions, but rather our
experimental finding that the various previously proposed hardware
widgets and structures for metadata tracking and propagation are
not fundamentally required to provide low-overhead enforcement
of comprehensive memory safety.

Acknowledgments
We would like to thank Emery Berger for his comments and sug-
gestions about this work and Andrew Hilton for use of his simula-
tor. This research was funded in part by donations from Intel Cor-
poration and the U.S. Government by ONR award N000141110596
and NSF grants CNS-1116682 and CCF-1065166. The views and
conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

References
[1] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy Bounds

Checking: An Efficient and Backwards-Compatible Defense Against
Out-of-Bounds Errors. In Proceedings of the 18th USENIX Security
Symposium, Aug. 2009.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detection of
All Pointer and Array Access Errors. In Proceedings of the SIGPLAN
1994 Conference on Programming Language Design and Implemen-
tation, June 1994.

[3] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi. Randomized Instruction Set Emulation to Disrupt Binary Code
Inject Attacks. In Proceedings of the 10th ACM Conference on Com-
puter and Communications Security, 2003.

[4] E. D. Berger and B. G. Zorn. DieHard: Probabilistic Memory Safety
for Unsafe Languages. In Proceedings of the SIGPLAN 2006 Con-
ference on Programming Language Design and Implementation, June
2006.

[5] S. Bhatkar and R. Sekar. Data Space Randomization. In Proceedings
of the 5th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, 2008.

[6] R. Bodı́k, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds
Checks on Demand. In Proceedings of the SIGPLAN 2000 Conference
on Programming Language Design and Implementation, June 2000.

[7] S. Bradshaw. Heap Spray Exploit Tutorial: Internet Explorer Use Af-
ter Free Aurora Vulnerability. http://www.thegreycorner.com/
2010/01/heap-spray-exploit-tutorial-internet.html.

[8] M. Castro, M. Costa, and T. Harris. Securing Software by Enforcing
Data-Flow Integrity. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation, Nov. 2006.

[9] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C.
Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos.

Flexible Hardware Acceleration for Instruction-Grain Program Mon-
itoring. In Proceedings of the 35th Annual International Symposium
on Computer Architecture, June 2008.

[10] W. Chuang, S. Narayanasamy, and B. Calder. Accelerating Meta Data
Checks for Software Correctness and Security. Journal of Instruction-
Level Parallelism, 9, June 2007.

[11] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula. Depen-
dent Types for Low-Level Programming. In Proceedings of the 16th
European Symposium on Programming, Apr. 2007.

[12] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hard-
bound: Architectural Support for Spatial Safety of the C Programming
Language. In Proceedings of the 13th International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, Mar. 2008.

[13] D. Dhurjati and V. Adve. Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead. In Proceedings of the 28th
International Conference on Software Engineering (ICSE), 2006.

[14] F. C. Eigler. Mudflap: Pointer Use Checking for C/C++. In GCC
Developer’s Summit, 2003.

[15] K. Ganesh. Pointer Checker: Easily Catch Out-of-Bounds Memory
Accesses. Intel Corporation, 2012. http://software.intel.com/
sites/products/parallelmag/singlearticles/issue11/
7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf.

[16] S. Ghose, L. Gilgeous, P. Dudnik, A. Aggarwal, and C. Waxman. Ar-
chitectural Support for Low Overhead Detection of Memory Viloat-
ions. In Proceedings of the Design, Automation and Test in Europe,
Mar. 2009.

[17] A. Hilton and A. Roth. Decoupled Store Completion/Silent Determin-
istic Replay: Enabling Scalable Data Memory for CPR/CFP Proces-
sors. In Proceedings of the 37th Annual International Symposium on
Computer Architecture, June 2010.

[18] A. D. Hilton, S. Nagarakatte, and A. Roth. iCFP: Tolerating All-
Level Cache Misses in In-Order Processors. In Proceedings of the
15th Symposium on High-Performance Computer Architecture, Feb.
2009.

[19] Intel Corporation. Intel Architecture Instruction Set Exten-
sions Programming Reference, 319433-015 edition, July 2013.
http://download-software.intel.com/sites/default/
files/319433-015.pdf.

[20] R. W. M. Jones and P. H. J. Kelly. Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs. In Third Interna-
tional Workshop on Automated Debugging, Nov. 1997.

[21] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-
Injection Attacks With Instruction-Set Randomization. In Proceed-
ings of the 10th ACM Conference on Computer and Communications
Security, 2003.

[22] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and
M. Prvulovic. Comprehensively and Efficiently Protecting the Heap.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, Oct.
2006.

[23] V. Markstein, J. Cocke, and P. Markstein. Optimization of Range
Checking. In Proceedings of the 1982 SIGPLAN symposium on Com-
piler Construction, 1982.

[24] S. Nagarakatte. Practical Low-Overhead Enforcement of Memory
Safety for C Programs. PhD thesis, University of Pennsylvania, 2012.

[25] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Watchdog:
Hardware for Safe and Secure Manual Memory Management and Full
Memory Safety. In Proceedings of the 39th Annual International
Symposium on Computer Architecture, June 2012.

[26] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Hardware-
Enforced Comprehensive Memory Safety. IEEE Micro, 33(3),
May/June 2013.

[27] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. Soft-
Bound: Highly Compatible and Complete Spatial Memory Safety for
C. In Proceedings of the SIGPLAN 2009 Conference on Programming
Language Design and Implementation, June 2009.

http://www.thegreycorner.com/2010/01/heap-spray-exploit-tutorial-internet.html
http://www.thegreycorner.com/2010/01/heap-spray-exploit-tutorial-internet.html
http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
http://download-software.intel.com/sites/default/files/319433-015.pdf
http://download-software.intel.com/sites/default/files/319433-015.pdf

[28] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. CETS:
Compiler Enforced Temporal Safety for C. In Proceedings of the 2010
International Symposium on Memory Management, June 2010.

[29] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
CCured: Type-Safe Retrofitting of Legacy Software. ACM Transac-
tions on Programming Languages and Systems, 27(3), May 2005.

[30] N. Nethercote and J. Seward. How to Shadow Every Byte of Mem-
ory Used by a Program. In Proceedings of the 3rd ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, 2007.

[31] N. Nethercote and J. Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the SIG-
PLAN 2007 Conference on Programming Language Design and Im-
plementation, June 2007.

[32] NIST. NIST Juliet Test Suite for C/C++, 2010. http://samate.
nist.gov/SRD/.

[33] G. Novark and E. D. Berger. DieHarder: Securing the Heap. In Pro-
ceedings of the 17th ACM Conference on Computer and Communica-
tions Security, 2010.

[34] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically
Correcting Memory Errors with High Probability. In Proceedings of
the SIGPLAN 2007 Conference on Programming Language Design
and Implementation, June 2007.

[35] B. V. Patel, R. Gopalakrishna, A. F. Glew, R. J. Kushlis, D. A. V.
Dyke, J. F. Cihula, A. K. Mallick, J. B. Crossland, G. Nelger, S. D.
Rodgers, M. G. Dixon, M. J. Charney, and J. Gottelieb. Managing
and Implementing Metadata in Central Processing Unit Using Register
Extensions, Mar. 2011. US Patent Pub No: US 2011/0078389 A1.

[36] H. Patil and C. N. Fischer. Low-Cost, Concurrent Checking of Pointer
and Array Accesses in C Programs. Software — Practice & Experi-
ence, 27(1):87–110, 1997.

[37] J. Pincus and B. Baker. Beyond Stack Smashing: Recent Advances
in Exploiting Buffer Overruns. IEEE Security & Privacy, 2(4):20–27,
2004.

[38] P. Porras, H. Saidi, and V. Yegneswaran. An Analysis of Conficker’s
Logic and Rendezvous Points. Technical report, SRI International,
Feb. 2009.

[39] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory for
Detecting Memory Leaks and Memory Corruption During Production
Runs. In Proceedings of the 11th Symposium on High-Performance
Computer Architecture, Feb. 2005.

[40] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Ad-
dressSanitizer: A Fast Address Sanity Checker. In Proceedings of the
USENIX Annual Technical Conference, 2012.

[41] J. Seward and N. Nethercote. Using Valgrind to Detect Undefined
Value Errors with Bit-Precision. In Proceedings of the 2005 USENIX
Annual Technical Conference, Apr. 2005.

[42] M. S. Simpson and R. K. Barua. MemSafe: Ensuring the Spatial and
Temporal Memory Safety of C at Runtime. In IEEE International
Workshop on Source Code Analysis and Manipulation, 2010.

[43] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in
Memory. In Proceedings of the 2013 IEEE Symposium on Security
and Privacy, 2013.

[44] G. Venkataramani, B. Roemer, M. Prvulovic, and Y. Solihin. Mem-
Tracker: Efficient and Programmable Support for Memory Access
Monitoring and Debugging. In Proceedings of the 13th Symposium
on High-Performance Computer Architecture, Feb. 2007.

[45] J. Wilander and M. Kamkar. A Comparison of Publicly Available
Tools for Dynamic Buffer Overflow Prevention. In Proceedings of the
Network and Distributed Systems Security Symposium, 2003.

[46] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical
Sampling. In Proceedings of the 30th Annual International Sympo-
sium on Computer Architecture, June 2003.

[47] W. Xu, D. C. DuVarney, and R. Sekar. An Efficient and Backwards-
Compatible Transformation to Ensure Memory Safety of C Programs.
In Proceedings of the 12th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2004.

[48] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. For-
malizing the LLVM Intermediate Representation for Verified Program
Transformations. In Proceedings of The 39th ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages, Jan. 2012.

http://samate.nist.gov/SRD/
http://samate.nist.gov/SRD/

	Introduction
	Background on Pointer Checking
	Pointer-Based Checking with Disjoint Metadata
	Compiler Implementations of Pointer Checking
	Hardware Implementations of Pointer Checking

	Instructions that Accelerate Checking
	Metadata Load and Store Instructions
	Spatial (Bounds) Check Instruction
	Temporal (Dangling Pointer) Check Instruction

	Experimental Evaluation
	Experimental Methodology
	Functional Evaluation
	Runtime Execution Overheads
	Contributions to Performance Overhead
	Estimating the Benefit of Static Check Elimination

	Related Work
	Conclusion

