
Enforcing Robust Declassification

Andrew C. Myers
Department of Computer Science

Cornell University
andru@cs.cornell.edu

Andrei Sabelfeld∗

Department of Computer Science
Chalmers University of Technology

andrei@cs.chalmers.se

Steve Zdancewic
Dept. of Computer and Information Science

University of Pennsylvania
stevez@cis.upenn.edu

Abstract

Noninterference requires that there is no information
flow from sensitive to public data in a given system. How-
ever, many systems perform intentional release of sensitive
information as part of their correct functioning and there-
fore violate noninterference. To control information flow
while permitting intentional information release, some sys-
tems have a downgrading or declassification mechanism.
A major danger of such a mechanism is that it may cause
unintentional information release. This paper shows that a
robustness property can be used to characterize programs
in which declassification mechanisms cannot be exploited
by attackers to release more information than intended. It
describes a simple way to provably enforce this robustness
property through a type-based compile-time program anal-
ysis. The paper also presents a generalization of robustness
that supports upgrading (endorsing) data integrity.

1. Introduction

Information flow controls have some appealing proper-
ties as a security enforcement mechanism. Unlike access
controls, they track the propagation of information and pre-
vent sensitive information from being released publicly, re-
gardless of how information is transformed by the system.
Dually, information flow controls may be used to enforce
data integrity. One common formal underpinning of these
mechanisms is thenoninterferencesecurity property [16],
which imposes an end-to-end requirement on the behavior
of the system: sensitive data cannot affect public data. How-
ever, in practice noninterference is too strong; real systems

∗ This work was partly done while the author was at Cornell University.

leak some amount of sensitive information as part of their
proper functioning.

One way to accommodate information release is to allow
explicit downgrading or declassification of sensitive infor-
mation (e.g., [13, 24, 5]). These mechanisms are inherently
unsafe and there is the possibility that a downgrading chan-
nel that is part of a larger system may be exploited to re-
lease information in a way that was not intended.

Given that noninterference is not satisfied, we would like
to know that the information release occurs in accordance
with some presumably more flexible security policy. How-
ever, it seems to be difficult in general to express these poli-
cies precisely and even more difficult to show that systems
satisfy them. Therefore a reasonable strategy is instead to
identify and enforce importantaspectsof the intended se-
curity policy rather than trying to express and enforce the
entire policy.

A recent example of this approach isrobust declassifi-
cation, a security property defined by Zdancewic and My-
ers [43]. The intuition is that although the system may re-
lease information, an attacker should have no control over
what information is released. More generally, in a system
that is separated into untrusted and trusted components, the
untrusted components should not be able to affect informa-
tion release. Zdancewic and Myers captured this idea for-
mally in the context of a state transition system, but offered
no practical way to analyze whether a program satisfied ro-
bust declassification.

This paper generalizes the previous work on robustness
in three ways. First, it shows how to express the property
in a language-based setting; specifically, for a simple im-
perative programming language. Second, it generalizes the
property so that—unlike the earlier robustness property—
untrusted code and data are explicitly part of the system
rather than appearing only when there is an active attacker.

Third, it introduces a security guarantee calledqualified ro-
bustnessthat provides untrusted code with a limited ability
to affect information release.

The key technical result of the paper is a demonstra-
tion that both robustness and qualified robustness can be
enforced by a compile-time program analysis based on a
simple type system. A type system is given that tracks
data confidentiality and integrity in the imperative program-
ming language, similarly to the type system defined by
Zdancewic [42]. This paper also takes the new step of prov-
ing that all well-typed programs satisfy the language-based
robustness condition it defines.

The rest of the paper is structured as follows. Section 2
presents some of the basic assumptions and models used
for this work, including a simple imperative language with
an explicit declassification construct that downgrades confi-
dentiality levels. Section 3 presents and generalizes the ro-
bustness condition in this language-based setting, and gives
some motivating code fragments that are used as running
examples. Section 4 presents a security type system for the
imperative language. This type system tracks both the con-
fidentiality and integrity of data and imposes integrity re-
quirements on declassification operations. It also ensures
that any well-typed program satisfies the robust declassifi-
cation condition. Section 5 presents more detailed examples
and shows how the robust declassification condition gives
insight into program security. Section 6 generalizes the ro-
bust declassification condition to allow untrusted code lim-
ited control over information release, and shows that useful
code examples satisfy this limited robustness property. Sec-
tion 7 discusses related work, and Section 8 concludes.

2. Language and attacker model

2.1. Security lattice

We assume that the security levels form asecurity lat-
ticeL. The ordering specifies the relationship between dif-
ferent security levels. To enable reasoning about both confi-
dentiality and integrity, the security latticeL is a product of
confidentialityandintegrity lattices,LC andLI , with order-
ingsvC andvI , respectively. IfC vC C ′ (I vI I ′) then
data at levelC (I) is no more confidential (no less trustwor-
thy) than data at levelC ′ (I ′). An element̀ of the prod-
uct lattice is a pair(C(`), I(`)) (which we sometimes write
asC(`)I(`) for brevity), where we denote the confidential-
ity and integrity parts of̀ by C(`) andI(`), respectively.
The ordering onL, LC , andLI corresponds to the restric-
tions on how data at a given security level can be used. The
use of high-confidentiality data is more restricted than that
of low-confidentiality data, which helps prevent informa-
tion leaks. Dually, the use of low-integrity data is more re-

LLHH

HL

LH

Figure 1. Security lattice LLH .

stricted than that of high-integrity data, which helps prevent
information corruption.

An exampleLLH of a security lattice is displayed in Fig-
ure 1. This lattice is a product of a simple confidentiality lat-
tice (with elementsL andH of low and high confidential-
ity so thatL vC H) and a dual integrity lattice (with ele-
mentsL andH of low and high integrity so thatH vI L).
At the bottom of the lattice is the levelLH for data that
may be used arbitrarily. This data has the lowest confiden-
tiality and highest integrity level. At the top of the lattice is
the data that is most restrictive in usage. This data has the
highest confidentiality and lowest integrity level.

2.2. Attacker model

The goal of this paper is to characterize programs in
which untrusted components cannot improperly affect what
information is released. These untrusted components are as-
sumed to be under the control of some attacker. This is
a very general model of the system. This attacker may in
fact be an ordinary user, in which case the goal is to un-
derstand whether program users can cause unintended in-
formation release, perhaps by providing unexpected inputs.
Alternatively, as in the work on secure program partition-
ing [45, 46], the system might be a distributed program in
which some of the program code runs on untrusted hosts
and is assumed to be controlled by a malicious attacker.

In all these scenarios, the attacker is described by a con-
fidentiality levelCA representing the confidentiality of data
the attacker is expected to be able to read, and an integrity
levelIA defining the integrity of data that the attacker is ex-
pected to be able to affect. Thus, the robustness of a sys-
tem is with respect to the attacker parameters(CA, IA). As
far as a given attacker is concerned, the four-point lattice
LLH captures the relevant features of the general latticeL.
Let us define high- and low-confidentiality areas ofL by
HC = {` | C(`) 6v CA} andLC = {` | C(`) v CA}, re-

HH LL

HL

LH

CA

Attacker can modify

Attacker can read
IA

Figure 2. Attacker’s view of a general lattice.

spectively. Similarly, we define low- and high-integrity ar-
eas byLI = {` | IA v I(`)} andHI = {` | IA 6v I(`)},
respectively. The four key areas of latticeL correspond ex-
actly to the four points of latticeLLH :

LH ∼ LC ∩HI HH ∼ HC ∩HI

LL ∼ LC ∩ LI HL ∼ HC ∩ LI

This correspondence is illustrated in Figure 2. From the at-
tacker’s point of view, areaLH describes data that is visible
but cannot be modified; areaHH describes data that is not
visible and cannot be modified; areaLL describes data that
is both visible and can be modified; and, finally, areaHL de-
scribes data that is not visible but can be modified by the at-
tacker. Because of this correspondence betweenLLH and
L, results obtained for the latticeLLH generalize naturally
to the full latticeL.

2.3. Language

This paper uses a simple sequential language consisting
of expressions and commands. It is similar to several other
security-typed imperative languages (e.g., [40, 2]), and its
semantics are largely standard (cf. [41]).

Definition 1. The language syntax is defined by the follow-
ing grammar:

e ::= val | v | e1 op e2 | declassify(e, `)
c ::= skip | v := e | c1; c2

| if e then c1 else c2 | while e do c

whereval ranges over valuesVal = {false, true, 0, 1, . . . },
v ranges over variablesVar , op ranges over arithmetic and
boolean operations on expressions, and` ranges over the
security levels.

The security environmentΓ : Var → L describes the
type of each program variable as a security level. The se-
curity lattice and security environment together constitute

a security policy, specifying that information flow from a
variable v1 to a variablev2 is allowed only if Γ(v1) v
Γ(v2).

The only non-standard language expression is the con-
struct declassify(e, `), which declassifiesthe security
level of the expressione to the level̀ ∈ L. Operationally,
the result ofdeclassify(e, `) is the same as that ofe re-
gardless of̀ . The intention is that declassification is used
for controlling the security level of information without af-
fecting the execution of the program.

The evaluation semantics are defined in terms of small-
step transitions between configurations. A configuration
〈M, c〉 consists of a memoryM (which is a finite map-
ping M : Var → Val from variables to values) and a
command (or expression)c. A transition from configuration
〈M, c〉 to configuration〈M ′, c′〉 is denoted by〈M, c〉 −→
〈M ′, c′〉. A transition from configuration〈M, c〉 to a ter-
minating configuration with memoryM ′ is denoted by
〈M, c〉 −→ M ′. As usual,−→∗ is the reflexive and tran-
sitive closure of−→. Configuration〈M, c〉 terminatesin
M ′ if 〈M, c〉 −→∗ M ′, which is denoted by〈M, c〉 ⇓ M ′

or, simply,〈M, c〉 ⇓ whenM ′ is unimportant. If there is an
infinitely long sequence of transitions from the initial con-
figuration 〈M, c〉 then that configurationdiverges, written
〈M, c〉 ⇑. We assume that operations used in expressions
are total, and, hence, expression configurations always ter-
minate (while command configurations might diverge). The
traceTr(〈M, c〉) of the execution of configuration〈M, c〉 is
the sequence[M,M ′,M ′′, . . .] of memories extracted from
the sequence of configurations〈M, c〉 −→ 〈M ′, c′〉 −→
〈M ′′, c′′〉 −→ Similarly to configurations, a tracet ter-
minates (inM), written t ⇓ (t ⇓ M) whent is finite (and
the last memory int is M); t diverges, writtent ⇑, if t is in-
finite.

3. Robustness condition

A common way of specifying confidentiality is as non-
interference [16], a security property that says that in-
puts of high confidentiality do not affect outputs of lower
confidentiality. Recent work on language-based security
(e.g., [40, 1, 17, 36, 38, 2, 34, 28, 35, 44, 3, 29]) has used
various definitions of noninterference as the definition of se-
curity. However, noninterference cannot characterize the se-
curity of a program designed to declassify confidential in-
formation as part of its proper functioning. Therefore we
propose a security condition that captures important aspects
of the information release policy. This security condition
is based on robust declassification [43], which intuitively
states that declassification may not be abused by the attacker
to gain more knowledge about secrets than intended. In Sec-
tion 6, we also consider howendorsement(a dual primitive

that upgrades theintegrityof data) affects the security char-
acterization.

Let us define the view of the memory at level`. The
idea is that the observer at level` may only distinguish
data whose security level is at or below`. Formally, mem-
oriesM1 andM2 are indistinguishable at a level` (writ-
tenM1 =` M2) if ∀v.Γ(v) v ` =⇒ M1(v) = M2(v).
The restriction M |` of memoryM to the security level̀
is defined by restricting the mapping to variables whose se-
curity level is at or beloẁ . Define theprojection t|` of
tracet to the security level̀ by the trace consisting of the
sequence of memories restricted to variables at or below
`. Formally, [M1, . . . ,Mn, . . .]|` = [M1|`, . . . ,Mn|` . . .].
Because computation steps can be observed only if they
make changes to the observable part of memory, we identify
traces up tohigh-stutteringwith respect to a security level
`. Tracest1 andt2 for configurations〈M1, c1〉 and〈M2, c2〉
are related (t1 ∼` t2) if M1 =` M2 and the subsequences
(of t1 andt2) of memories resulting from̀-observable as-
signments inc1 andc2 are`-indistinguishable. Two traces
t1 andt2 areindistinguishable up tò (written t1 ≈` t2) if
whenever botht1 andt2 terminate thent1 ∼` t2. We lift in-
distinguishability from memories and traces to configura-
tions by the following definition:

Definition 2. Two configurations〈M1, c1〉 and 〈M2, c2〉
are weakly indistinguishable up tò (written 〈M1, c1〉 ≈`

〈M2, c2〉) if Tr(〈M1, c1〉) ≈` Tr(〈M2, c2〉). We say that
two configurations arestrongly indistinguishable up tò
(written 〈M1, c1〉 u` 〈M2, c2〉) if 〈M1, c1〉 ⇓, 〈M2, c2〉 ⇓,
and〈M1, c1〉 ≈` 〈M2, c2〉.
Note that weak indistinguishability is timing- and
termination-insensitive because it allows one trace to end
prematurely; strong indistinguishability requires the ter-
mination of both configurations so that the traces remain
related throughout their entire execution.

Noninterference says that if two memories are indistin-
guishable at a certain level, then the executions of a given
program on these two memories are also (at least weakly)
indistinguishable at that level:

Definition 3 (Noninterference). A commandc satisfies
noninterferenceunderΓ if

∀`,M1,M2.M1 =` M2 =⇒ 〈M1, c〉 ≈` 〈M2, c〉

Because noninterference flatly rejects dependencies at
any security level, it is overly restrictive for many systems.
(However, it is still useful for reasoning about fragments
of a larger program.) As described by Zdancewic and My-
ers [43], robust declassification ensures that declassification
cannot be abused by the attacker. More precisely, a system
is secure if an active attacker (who can observe and modify
a part of the system state) may not learn more sensitive in-
formation than a passive attacker (who can merely observe

visible data). Here we model both kinds of attackers rela-
tive to a pointA in a security lattice. A passiveA-attacker
may read data at or belowCA (i.e., at or below(CA,>I) in
the product lattice) whereas an activeA-attacker may mod-
ify data at or aboveIA (i.e., at or above(⊥C , IA) in the
product lattice). In general, an attacker may run any pro-
gram satisfying a combination of conditions on what data
can be read and modified. We call such programsfair at-
tacks.

Definition 4. A commanda is a fair attackif it is formed
according to the following grammar (for some` ∈ LL):

a ::= skip
| v := e (∀x ∈ Vars(e).Γ(x) = ` = Γ(v)) | a1; a2

| if b then a1 else a2 (∀x ∈ Vars(b).Γ(x) = `)
| while b do a (∀x ∈ Vars(b).Γ(x) = `)

Attacker-controlled low-integrity computation may be
interspersed with high-integrity code. To distinguish the
two, the high-integrity code is represented as a program in
which some statements are missing, replaced by holes (•).
The idea is that the holes are places where the attacker can
insert arbitrary low-integrity code. There may be multiple
holes in the high-integrity code, represented by the nota-
tion~•. The high-integrity computation is then acontextc[~•]
in which the holes can be replaced by a vector of attacker
code fragments,~a to obtain a complete programc[~a]. An at-
tack is thus a vector of such code fragments.

Although the assumption that attackers are constrained
to interpolating sequential code may seem artificial, it is
a reasonable assumption to make both in a single-machine
setting where the attacker’s code can be statically checked
before it is run, and in a distributed setting where the at-
tacker has complete power to change the untrusted code,
but where that code is limited in its ability to affect the ma-
chines on which trusted code is run [45].

High-integrity contexts are defined formally as follows:

Definition 5. High-integrity contexts, or commands with
holes,c[~•] are defined by extending the command grammar
from Definition 1 with:

c[~•] ::= . . . | [•]

Using this definition, robust declassification can be trans-
lated into the language-based setting. Robust declassifica-
tion holds if for all~a, whenever programc[~a] cannot dis-
tinguish the behaviors of the program on some memories,
then any change of the attacker’s code to any other attack
~a′ still cannot distinguish the behaviors of the program on
these memories. In other words, the attacker’s observations
aboutc[a′] may not reveal any secrets apart from what the
attacker already knows from observations aboutc[a]. This
is formally expressed in the following definition.

Definition 6 (Robustness).Commandc[~•] hasrobustness
with respect to fair attacks if

∀M1,M2,~a, ~a′. 〈M1, c[~a]〉 uA 〈M2, c[~a]〉 =⇒
〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉

As noted, the attacker can observe data below the lattice
point (CA,>I). This level is used for the relationsuA

and≈A, requiring equality for the low-confidentiality parts
of memories and configurations, respectively. Note that
〈M1, c〉 uA 〈M2, c〉 implies thatM1 =A M2 by Defini-
tion 2.

The definition of robustness uses both strong and weak
indistinguishability, which is needed to deal properly with
nontermination. Because we are ignoring timing and termi-
nation channels, information is only really leaked if con-
figurations are not weakly indistinguishable. However, the
premise of the condition is based on strong indistinguisha-
bility because a sufficiently incompetent attacker may in-
sert nonterminating code and thus make fewer observations
than even a passive attacker who insertsskip into every
hole. We are not concerned with such attackers.

Note that the robustness definition quantifies over both
passive and active attacks. This is because neither passive
or active attacker behavior is known a priori. The vector of
skip commands is an example of a possible attack. Impor-
tantly, the robustness definition also guards against other at-
tacks (which might affect what critical fragments of the tar-
get program are reachable). For example, under latticeLLH

and attacker atLL, consider the following program (here
and in the rest of the paper the subscript of a variable indi-
cates its security level):

xLL := 1; [•]; while xLL > 0 do skip;
if xLL = 0 then yLH := declassify(zHH ,LH)

else skip

This program would be robust ifa in Definition 6 were fixed
to be theskip command (asc[a] would always diverge).
However, the attacker may tamper with the declassification
mechanism in the program because whether declassification
code is reachable depends on the attacker-controlled vari-
ablexLL. This is indeed captured by Definition 6, which
deems the program as non-robust (takea = xLL := −1 and
a′ = xLL := 0).

The robustness definition ensures that the attacker’s ac-
tions cannot lead the declassification mechanism to increase
the attacker’s observations about secrets. Note that robust-
ness is really a property of a high-integrity program context
rather than of an entire program. A full programc[~a] is ro-
bust if its high-integrity partc[~•] is itself robust. Because
the low-integrity code~a is assumed to be under the con-
trol of the attacker, the security property is insensitive to it.

LLHH

HL

LH

l

l'
Flow origins

Flow destinations

CA

IA

Figure 3. Effects of declassification.

For example, under latticeLLH and attacker atLL, con-
sider programs:

[•];xLH := declassify(yHH ,LH)

and

[•]; if xLH then yLH := declassify(zHH ,LH)
else skip

No matter what (terminating attack) fills the hole, these pro-
grams are rejected by noninterference although their declas-
sification operations are intended. On the other hand, these
programs have robustness because the attacker may not in-
fluence what is declassified (by assigning toyHH in the for-
mer program) or by manipulating the control flow leading
to declassification (by assigning toxLH in the latter pro-
gram). Indeed, no fair attack filling the hole may assign to
eitheryHH or xLH . However, the program

[•]; if xLL then yLL := declassify(zHH ,LH)
else skip

is rejected because the attacker might affect what is declas-
sified or when it is declassified, by controlling the decision
variablexLL.

4. Security type system for robustness

Figure 4 gives typing rules for the simple sequential lan-
guage. These are security typing rules because they impose
conditions on the security level components of type. As we
show later in this section, any program that is well-typed
according to these rules also satisfies the robustness prop-
erty. We writeΓ, pc ` e : ` to mean that an expressione has
type ` under an environmentΓ and a contextpc. For com-
mands, we writeΓ, pc ` c if commandc is well-typed un-
der an environmentΓ and a contextpc.

The typing rules control the information flow due to as-
signments and control flow in a largely standard fashion

Γ, pc ` val : `

Γ(v) = `

Γ, pc ` v : `

Γ, pc ` e : ` Γ, pc ` e′ : `

Γ, pc ` e op e′ : `

Γ, pc ` e : ` pc′ v pc ` v `′

Γ, pc′ ` e : `′

Γ, pc ` skip

Γ, pc ` e : ` ` t pc v Γ(v)
Γ, pc ` v := e

Γ, pc ` c1 Γ, pc ` c2

Γ, pc ` c1; c2

Γ, pc ` e : ` Γ, ` t pc ` c1 Γ, ` t pc ` c2

Γ, pc ` if e then c1 else c2

Γ, pc ` e : ` Γ, ` t pc ` c

Γ, pc ` while e do c

Γ, pc ` c pc′ v pc
Γ, pc′ ` c

Γ, pc ` e : `′ ` t pc v Γ(v)
I(`) = I(`′) I(pc), I(`′) ∈ HI

Γ, pc ` v := declassify(e, `)

Figure 4. Typing rules.

(cf. [40]). However, the key rule governing uses of declassi-
fication is non-standard, though similar to that proposed by
Zdancewic [42] (we discuss the relation at the end of this
section). This rule states that only high-integrity data is al-
lowed to be declassified and that declassification might only
occur in a high-integrity context (pc). The effect of this rule
can be visualized by considering the lattice depicted in Fig-
ure 3. The figure includes an arrow corresponding to a de-
classification from security level` to level`′. Restricting the
area of possible flow origins (beloẁ) to the high-integrity
area of the lattice prevents the attacker (who controls the
low-integrity area of the lattice) from compromising the de-
classification mechanism.

Using the type system, we defineA-attacks, programs
controlled by the attacker at levelA, which subsume fair at-
tacks. We prove that well-typed programs are robust with
respect toA-attacks (or simply “attacks” from here on) and

therefore with respect fair attacks.

Definition 7. A commanda is an A-attack under Γ if
Γ, (⊥C , IA) ` a anddeclassify does not occur ina.

Under latticeLLH and A = LL, examples of at-
tacks are programsxLL := yLL, while xHL do skip,
and (a harmless attack)skip. On the other hand, pro-
gramsxHH := yLH andxLH := declassify(yLH ,LH)
are not attacks as they manipulate high-integrity data.
Note that programsxLL := declassify(yHL,LL) and
if xLL then yLL :=declassify(zHH,LH) else skip
are not valid attacks becausedeclassify may not be
used in attacks. This is consistent with the discipline en-
forced by the type system that the attacker may not
control declassification. Recall the partition of data accord-
ing to the confidentiality (HC and LC) and integrity (LI

and HI) levels from Section 2.2. The following proposi-
tions provide some useful (and straightforward to prove)
properties of attacks.

Proposition 1. A fair attack is also anA-attack.

Proposition 2. An A-attack underΓ (i) does not have oc-
currences of assignments to high-integrity variables (such
v that Γ(v) ∈ HI); and (ii) satisfies noninterference un-
derΓ.

The type system can be used to enforce two interesting
properties: noninterference (ifdeclassify is not used) and
robust declassification (even if it is).

Theorem 1. If Γ, pc ` c anddeclassify does not occur
in c, thenc satisfies noninterference.

This result is proved with a straightforward induction on the
evaluation ofc [40].

The interesting question, however, is what the type sys-
tem guarantees when declassification is used. Observing
that declassification affects only confidentiality, we prove
that the integrity part of the noninterference property is pre-
served in the presence of declassification:

Theorem 2. If Γ, pc ` c then for all integrity levelsI we
have

∀M1,M2.M1 =(>C ,I) M2 =⇒ 〈M1, c〉 ≈(>C ,I) 〈M2, c〉

As for the confidentiality part, we show the key result of
this paper: typable programs satisfy robust declassification
and, thus, the attacker may not manipulate the declassifica-
tion mechanism to leak more information than intended.

For robustness it is important that holes not be placed
into high-confidentiality environments. This is achieved by
defining a suitable typing rule for holes:

C(pc) ∈ LC

Γ, pc ` •

This rule allows program contextsc[~•] to be type-checked.
The robustness result is:

Theorem 3. If Γ, pc ` c[~•] thenc[~•] satisfies robust declas-
sification.

The proof is found in Appendix A. It is a straightforward
induction on the structure ofc[~•].

It is worth clarifying the relation of the type system to
that defined by Zdancewic [42]. While both type systems re-
quire highpc integrity in the typing rule fordeclassify,
the present system also requires high integrity of the expres-
sion to be declassified. The purpose of the latter requirement
is illustrated by the following example:

[•]; if xHL then yHL := zHL else yHL := vHL;
wLL := declassify(yHL,LL)

This program is allowed by the typing rules presented by
Zdancewic [42]. However, the program clearly violates the
definition of robustness presented here. By requiring high
integrity of the declassified expression, the type system in
Figure 4 ensures that the program above is rejected.

5. Password checking example

This section applies robust declassification to a program
that performs password checking, illustrating how the type
system gives security types to password-checking routines
and prevents attacks.

Password checking in general releases information about
passwords when attempts are made to log on. This is true
even when the login attempt is unsuccessful, because the
user learns that the password isnot the password tried. A
password checker must therefore declassify the result of
password checking in order to report it to the user. The dan-
ger is that an attacker might exploit this login procedure by
encoding some other sensitive data as a password.

We consider UNIX-style password checking where the
system database stores theimages(e.g., secure hashes) of
password-salt pairs. The salt is a publicly readable string
stored in the database for each user id, as a protection
against dictionary attacks. For a successful login, the user is
required to provide a query such that the hash of the string
and salt matches the image from the database.

Below are typed expressions/programs for comput-
ing the hash, matching the user input to the password
image from the database, and updating the password. Ar-
rows in the types for expressions indicate that under
the types of the arguments on the left from the ar-
row, the type of the result is on the right from the ar-
row. The expression hash(pwd , salt) concatenates
the passwordpwd with the salt salt and applies the
one-way hash functionbuildHash to the concatena-
tion (the latter is denoted by||). The result is declassi-
fied to the levelCsalt (whereCsalt ∈ LC). The command

match(pwdI , salt , pwd , hashR,matchR) checks whether
the password imagepwdI matches the hash of the pass-
word pwd with the saltsalt . It stores the result in the vari-
able matchR. We assume thatCv and Iv denote the
confidentialityC(Γ(v)) and integrityI(Γ(v)) of the vari-
ablev, respectively.

Γ, pc ` hash(pwd , salt) :
CpwdIpwd × CsaltIsalt → CsaltI

= declassify(buildHash(pwd ||salt), CsaltI)
Γ, pc ` match(pwdI , salt , pwd , hashR,matchR)

= hashR := hash(pwd , salt);
matchR := (pwdI == hashR)

whereCmatchR = CpwdI t Csalt , ImatchR = IpwdI t I,
I = Ipwd t Isalt ; andI, I(pc) ∈ HI . As before, basic se-
curity types are written in the formCI (e.g.,LH) whereC
is the confidentiality level andI is the integrity level. Let
us assume the latticeLLH from Figure 1 andA = LL. In-
stantiating the typings (and omitting the environmentΓ) for
these functions shows that they capture the desired intuition:

The users apply hash to a password and salt:
LH ` hash(pwd , salt) : HH × LH → LH

The users match a password to a password image:
LH ` match(pwdI , salt , pwd , hashR,matchR) :
LH × LH ×HH × LH × LH

Consider an attack that exploits declassification inhash
and match in order to leak information about whether
xHH (Γ(xHH) = HH) equalsyLL (Γ(yLL) = LL):

[•]; match(hash(xHH , 0), 0, yLL, hashR,matchR);
if matchR then zLL := 1 else zLL := 0

This attack is rejected by the type system because low-
integrity datayLL is fed tomatch. Indeed, this attack com-
promises robustness. For example, takeM1 andM2 such
that M1(xHH) = 2 andM2(xHH) = 3; a = yLL := 0;
anda′ = yLL := 2. We have〈M1, c[a]〉 uA 〈M2, c[a]〉 (the
else branch is taken regardless ofxHH) but〈M1, c[a′]〉 6≈A

〈M2, c[a′]〉 (which branch of the conditional is taken de-
pends on the outcome of thematch).

As a side note, this laundering attack is not defended
against in many approaches that are agnostic about the ori-
gin (or integrity) of data. For example, a typical intransitive
noninterference model accepts the attack as a secure pro-
gram. Clearly, robust declassification and intransitive non-
interference capture different aspects of safe downgrading.

The process of updating passwords can also be modeled
as a typable program that satisfies robustness. We might de-
fine a procedureupdate to which the users must provide

their old password in order to update to a new password:

Γ, pc ` update(pwdI , salt , oldP ,newP , hashR,matchR)
= match(pwdI , salt , oldP , hashR,matchR);

if matchR
then pwdI := hash(newP , salt)
else skip

whereCsalt(Isalt t IoldP t InewP) v CpwdI IpwdI and
Isalt , IoldP , InewP , I(pc) ∈ HI . In order for this code to
be well-typed, both the old passwordoldP and the new
passwordnewP must be high-integrity variables; other-
wise,hash would attempt to declassify low-integrity infor-
mationnewP (with the decision to declassify dependent on
low-integrity informationoldP), which the type system pre-
vents. Thus, an attacker is prevented from using the pass-
word system to launder information. Instantiating this typ-
ing to the simple latticeLLH andA = LL is as follows:

The users modify a password:
LH ` update(pwdI , salt , oldP ,newP , hR,mR) :
LH × LH ×HH ×HH × LH × LH

6. Endorsement and qualified robustness

Sometimes it makes sense to give untrusted code the
ability to affect what information is released by a program.
For example, consider an application that allows untrusted
users to select and purchase information. The information
provider does not care which information is selected, as-
suming that payment is forthcoming. This application is ab-
stractly described by the following code:

[•]; if xLL = 1 then zLH := declassify(yHH ,LH)
else zLH := declassify(y′HH ,LH)

There are two pieces of information available,yHH and
y′HH . The purchaser computes the choice in low-integrity
code•, which sets the variablexLL. The user expects to
receive output onzLH . This code obviously violates ro-
bust declassification because the “attacks”xLL := 1 and
xLL := 2 release different information, yet the program can
reasonably be considered secure.

6.1. Characterizing qualified robustness

To address this shortcoming, we generalize robust de-
classification to aqualified robustnessproperty in which un-
trusted code is given a limited ability to affect information
release. This ability is marked explicitly in the code by the
use of a new construct,endorse(e, `). This endorsement
operation has the same result as the expressione but up-
gradesthe integrity of the result, indicating that although
this value might be affected by untrusted code, the real se-
curity policy is insensitive to the value.

Suppose that the program contains endorsements of
some expressions. We wish to qualify the robust declas-
sification property to make it insensitive to how these
expressions evaluate. To do this we consider the be-
havior of the program under an alternate semantics for
endorse expressions, in which theendorse expres-
sion evaluates to a nondeterministically chosen new value
val :

〈M, endorse(e, `)〉 −→ val

Interpreting theendorse statement in this way makes the
evaluation semantics nondeterministic, so it is necessary to
modify the definitions of configuration indistinguishability
to reflect the fact that a given configuration may have mul-
tiple traces.

Two trace setsT1 andT2 are indistinguishable up tò
(written T1 ≈` T2) if ∀t1 ∈ T1.∃t2 ∈ T2. t1 ≈` t2 &
∀t2 ∈ T2.∃t1 ∈ T1. t1 ≈` t2, i.e., for any trace fromT1 we
can find a trace fromT2 so that if both terminate than they
are indistinguishable up tòand vice versa. We can now lift
Definition 2 to multiple-trace semantics:

Definition 8. Two configurations〈M1, c1〉 and 〈M2, c2〉
are weakly indistinguishable up tò (written 〈M1, c1〉 ≈`

〈M2, c2〉) if Tr(〈M1, c1〉) ≈` Tr(〈M2, c2〉). We say that
two configurations arestrongly indistinguishable up tò
(written 〈M1, c1〉 u` 〈M2, c2〉) if 〈M1, c1〉 ≈` 〈M2, c2〉
and both〈M1, c1〉 and〈M2, c2〉 always terminate.

Using this notation, the robust declassification property
can be qualified to express the idea that the attacker’s effect
on endorsed expressions does not matter:

Definition 9 (Qualified robustness). Commandc[~•] has
qualified robustnesswith respect to fair attacks if

∀M1,M2,~a, ~a′. 〈M1, c[~a]〉 uA 〈M2, c[~a]〉 =⇒
〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉

Note the similarity of qualified robustness to the original ro-
bustness property from Definition 6. In fact, the difference
is entirely contained in the generalized indistinguishability
relationsuA and≈A.

6.2. Enforcing qualified robustness

The use ofendorse is governed by the following typing
rule; in addition, attacker code may not useendorse:

Γ, pc ` e : `′ ` t pc v Γ(v) C(`) = C(`′)
Γ, pc ` v := endorse(e, `)

Adding this rule to the type system has no impact on con-
fidentiality when nodeclassify occurs in a program. To
be more precise, we have the following theorem:

Theorem 4. If Γ, pc ` c and nodeclassify occurs inc
then for all confidentiality levelsC we have

∀M1,M2.M1 =(C,>I) M2 =⇒ 〈M1, c〉 ≈(C,>I) 〈M2, c〉

The interesting question is what security assur-
ance is guaranteed in the presence of bothdeclassify
and endorse. The rule above rejects possible mis-
uses of the endorsement mechanism leading to undesired
declassification, as illustrated by the following exam-
ple:

[•]; if xLL then yLH := endorse(zLL,LH)
else skip;

if yLH then vLH := declassify(wHH ,LH)
else skip

In this example, the attacker has control overxLL which,
in turn, controls whether the variablezLL is endorsed for
assignment toyLH . It is through the compromise ofyLH

that the attacker might cause the declassification ofwHH .
This program does not satisfy qualified robustness (take
M1(wHH) = 2,M2(wHH) = 3,M1(yLH) = M2(yLH) =
0,M1(zLL) = M2(zLL) = 1, a = xLL := 0 and
a′ = xLL := 1 to receive〈M1, c[a]〉 uA 〈M2, c[a]〉 but
〈M1, c[a′]〉 6≈A 〈M2, c[a′]〉) and is rightfully rejected by
the type system (endorse fails to type check under a low-
integritypc). In general, we prove that all typable programs
(using the extended type system that includes the rule for
endorse) must satisfy qualified robustness:

Theorem 5. If Γ, pc ` c[~•] thenc[~•] satisfies qualified ro-
bust declassification.

A proof is sketched in Appendix B. Below we consider
two examples of typable and, thus, secure programs that in-
volve both declassification and endorsement.

6.3. Password update example revisited

The first example is a variant of the password update
code in which the requirement that the old and new pass-
words have high integrity is explicitly lifted (the assump-
tion, in this case, is that checking the old password pro-
vides sufficient integrity assurance). Under the simple lat-
ticeLLH :

LH ` update(pwdI , salt , oldP ,newP , hashR,matchR)
= oldH := endorse(oldP ,LH);

newH := endorse(newP ,LH);
match(pwdI , salt , oldH , hashR,matchR);
if matchR

then pwdI = hash(newH , salt)
else skip

which enables the following typing for password update:

The users modify a password:
LH ` update(pwdI , salt , oldP ,newP , hR,mR) :
LH × LH ×HL×HL× LH × LH

Under this typing, the above variant ofupdate satisfies
qualified robustness by Theorem 5.

6.4. Battleship game example

The second example is based on the game of Battleship,
an example used by Zheng et al. [46]. Initially, two play-
ers place ships on their grid boards in secret. During the
game they try to destroy each other’s ships by firing shots at
locations of the opponent’s grid. On each move the player
making a shot learns whether it hit a ship or not. The game
ends when all squares containing a player’s ships are hit.
It is critical to the security of a battleship implementation
that information is disclosed one location at a time. Because
the locations are initially secret, this disclosure must hap-
pen through declassification. However, a malicious oppo-
nent should not be able to hijack the control over the declas-
sification mechanism to cause additional leaks about the se-
cret state of the board. On the other hand, the opponent does
have some control over what is disclosed because the oppo-
nent picks the grid location to hit. To allow the opponent to
affect the declassification in this way,endorse can be used
to express the idea that any move by the opponent is accept-
able.

Without loss of generality, let us consider the game from
the viewpoint of one player only. The security classes can
again be modeled by the simple latticeLLH with A = LL.
Consider the following core fragment of the main battleship
program loop:

while not done do
[•1];
m′

2 := endorse(m2,LH);
s1 := apply(s1,m

′
2);

m′
1 := get move(s1);

m1 := declassify(m′
1,LH);

not done := declassify(not final(s1),LH);
[•2]

We suppose thats1 stores the first player’s state (the secret
grid and the current knowledge about the opponent) where
Γ(s1) ∈ HH . While the game is not finished the program
gets a move from the opponent, computed in[•1] and stored
in m2 whereΓ(m2) ∈ LL. In order to authorize the oppo-
nent to decide what location ofs1 to disclose, the movem2

is endorsed in the assignment tom′
2 whereΓ(m′

2) ∈ LH .
The states1 is updated by a functionapply . Then the first
player’s movem′

1 (whereΓ(m′
1) ∈ HH) is computed us-

ing the current state. This move includes information about
the location to be disclosed to the attacker. Hence, it is de-
classified to variablem1 (whereΓ(m1) ∈ LH) before the

actual disclosure, which takes place in[•2]. The informa-
tion whether the game is finished (which determines when
to leave the main loop) is public:not done ∈ LH . Hence,
when updatingnot done, the value ofnot final(s1) is
downgraded toLH .

Clearly, this program is typable. Hence, from Theorem 5
we know that no more secret information is revealed than
intended.

7. Related work

Protecting confidential information in computer systems
is an important problem that has been studied from many
angles. This work has focused on language-based security,
which has its roots in Cohen and Denning’s work [7, 9, 11].
See the recent survey by Sabelfeld and Myers [32] for an
overview of the language-based approach.

Related to this paper is Myers’ and Liskov’s work on the
decentralized label model[25], which provides a rich policy
language that includes a notion ofownershipof the policy.
Downgrading a principal’s policy requires their authority.
The decentralized label model has been implemented in the
Jif compiler [26]. Work by Zdancewic and Myers [43, 42]
also has similar goals to the work presented here, as dis-
cussed in the introduction. The major contribution of this
work is that it connects a semantic security condition for ro-
bustness directly to a type-based enforcement mechanism;
this connection has not been previously established.

Giambiagi’s and Dam’s work onadmissible flows[8, 15]
takes a similar approach to ours. Their security condition
requires that the implementation reveal no more informa-
tion than the specification of a protocol. This is appealing
but the intended leaks are explicit in the syntax of the speci-
fication. In our approach, this is not necessary as robustness
is expressed purely in terms of semantics.

The alternate semantics forendorse that are used to de-
fine the qualified robustness are inspired by the “havoc” se-
mantics that Joshi and Leino used to model confidential-
ity [18]. They are also similar to some aspects of the gen-
eralization of noninterference proposed by Giacobazzi and
Mastroeni [14], based on abstract interpretation; in partic-
ular, the abstraction that causes “deceptive” flows to be ig-
nored.

Despite their importance, general downgrading mecha-
nisms and their related security policies are not yet thor-
oughly understood.Partial information flow policies [7, 18,
35] weaken noninterference by partitioning the domain of
confidential information into subdomains such that nonin-
terference is required only within each subdomain.Quan-
titative information flow policies [10, 21, 6] restrict the
information-theoretic quantity of downgraded information.
Complexity-theoreticinformation flow policies [19, 20] fa-
cilitate preventing complexity-bound attackers from laun-

dering information through programs that declassify the re-
sult of encryption.Approximate noninterference[12] re-
laxes noninterference by allowing confidential processes to
be (in a probabilistic sense) approximately similar for the
attacker.

Intransitive noninterferencepolicies [31, 27, 30, 22] al-
ter noninterference so that the interference relation is intran-
sitive. Certain information flows are designated as down-
ward and must pass through trusted system components.
The language-based work by Bevier et al. oncontrolled in-
terference[4] similarly allows policies for information re-
leased to a set ofagents. Mantel and Sands [23] consider
the problem of specifying and enforcing intransitive nonin-
terference in a multi-threaded language-based setting. Such
policies are attractive, but the concept of robustness in this
paper is largely orthogonal to intransitive noninterference
(cf. the discussion on the laundering attack in Section 5),
suggesting that it may be profitable to combine the two ap-
proaches.

Volpano and Smith [39] consider a restricted form of de-
classification, in the form of a built inmatchh(l) operation,
intended to model the password example. They requireh to
be an unmodifiable constant when introducingmatchh(l),
but this means that password may no be updated. Volpano’s
subsequent work [37] models one-way functions by primi-
tives f(h) and amatch-like f(h) = f(h) (whereh andr
correspond to the password and user query, respectively),
which are used in a hash-based password checking. The
assumption is however, that one-way functions may not
be applied to modifiable secrets. Both studies argue that
one could do updates in an independent program that sat-
isfies noninterference. However, in general this opens up
possibilities for laundering attacks. Thematch, f(h), and
f(h) = f(h) primitives are less general than declassifica-
tion.

Recently, Sabelfeld and Myers have developed a model
for delimited information release[33]. Delimited release al-
lows a program to release information via “escape hatches”.
These escape hatches are represented by expressions that
might legitimately leak sensitive information. Delimited re-
lease guarantees that the program may leak no more infor-
mation than the escape hatch expressions alone.

8. Conclusions

This paper presents a language-based robustness prop-
erty that characterizes an important aspect of security poli-
cies for information release: that information release mech-
anisms cannot be exploited to release more information than
intended. The language-based security condition general-
izes the earlier robustness condition of Zdancewic and My-
ers [43] expressing the property in a language-based set-
ting: specifically, for a simple imperative programming lan-

guage. Second, untrusted code and data are explicitly part
of the system rather than an aspect that appears only when
there is an active attacker. This removes an artificial mod-
eling limitation of the earlier robustness condition. Third, a
generalized security condition calledqualified robustnessis
introduced that grants untrusted code a limited ability to af-
fect information release.

The key contribution of the paper is a demonstration
that robustness can be enforced by a compile-time program
analysis based on a simple type system. A type system is
given that tracks data confidentiality and integrity in the im-
perative programming language, similarly to the type sys-
tem defined in [42]; this paper takes the new step of proving
that all well-typed programs satisfy a language-based ro-
bustness condition. In addition, the analysis is generalized
to accommodate untrusted code that is explicitly permitted
to have a limited effect over information release.

Robust declassification appears to be a useful property
for describing a variety of systems. The work was especially
motivated by the work on Jif/split, a system that transforms
programs to run securely on a distributed system [45, 46].
Jif/split automatically splits a sequential program into frag-
ments that it assigns to hosts with sufficient trust levels.
This system maps naturally onto the formal framework de-
scribed here; holes correspond to low-integrity computa-
tion that can be run on untrusted host machines. In general,
being anA-attack (cf. Definition 7) is required for a pro-
gram to be placed on anA-trusted host. Thus, the results of
this paper are a promising step toward the goal of establish-
ing the robustness of the Jif/split transformation for the full
Jif/split language.

The security model in this paper assumes, as is common,
a termination-insensitive attacker. However, we anticipate
no major difficulties in adapting the robustness model and
the security type system to enforce robust declassification
for termination-sensitive attacks. This is a worthwhile di-
rection for future investigations.

Much further work is possible in this area. Although
we have argued that the sequential programming model is
reasonable, and certainly a reasonable starting point, con-
sidering the impact of concurrency and concurrent attack-
ers would be an important generalization. Combining ro-
bust declassification with other security properties related to
downgrading (such as intransitive noninterference) would
also be of interest.

Acknowledgments

Thanks are due to David Naumann, David Sands, and
Stephen Chong for their useful feedback.

This work was supported by the Department of the Navy,
Office of Naval Research, under ONR Grant N00014-01-1-
0968. Any opinions, findings, conclusions, or recommen-

dations contained in this material are those of the authors
and do not necessarily reflect the views of the Office of
Naval Research. This work was also supported by the Na-
tional Science Foundation under Grant Nos. 0208642 and
0133302, and by an Alfred P. Sloan Research Fellowship.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core
calculus of dependency. InProc. ACM Symp. on Principles
of Programming Languages, pages 147–160, Jan. 1999.

[2] J. Agat. Transforming out timing leaks. InProc. ACM Symp.
on Principles of Programming Languages, pages 40–53, Jan.
2000.

[3] A. Banerjee and D. A. Naumann. Secure information flow
and pointer confinement in a Java-like language. InProc.
IEEE Computer Security Foundations Workshop, pages 253–
267, June 2002.

[4] W. R. Bevier, R. M. Cohen, and W. D. Young. Connection
policies and controlled interference. InProc. IEEE Com-
puter Security Foundations Workshop, pages 167–176, June
1995.

[5] T. Chothia, D. Duggan, and J. Vitek. Type-based distributed
access control. InProc. IEEE Computer Security Founda-
tions Workshop, pages 170–186, 2003.

[6] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of
the leakage of confidential data. InProc. Quantitative As-
pects of Programming Languages, volume 59 ofENTCS. El-
sevier, 2002.

[7] E. S. Cohen. Information transmission in sequential pro-
grams. In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and
R. J. Lipton, editors,Foundations of Secure Computation,
pages 297–335. Academic Press, 1978.

[8] M. Dam and P. Giambiagi. Confidentiality for mobile code:
The case of a simple payment protocol. InProc. IEEE Com-
puter Security Foundations Workshop, pages 233–244, July
2000.

[9] D. E. Denning. A lattice model of secure information flow.
Comm. of the ACM, 19(5):236–243, May 1976.

[10] D. E. Denning.Cryptography and Data Security. Addison-
Wesley, Reading, MA, 1982.

[11] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow.Comm. of the ACM, 20(7):504–
513, July 1977.

[12] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-
interference. InProc. IEEE Computer Security Foundations
Workshop, pages 1–17, June 2002.

[13] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Providing
flexibility in information flow control for object-oriented sys-
tems. InProc. IEEE Symp. on Security and Privacy, pages
130–140, May 1997.

[14] R. Giacobazzi and I. Mastroeni. Abstract non-interference:
Parameterizing non-interference by abstract interpretation.
In Proc. ACM Symp. on Principles of Programming Lan-
guages, pages 186–197, Jan. 2004.

[15] P. Giambiagi and M.Dam. On the secure implementation
of security protocols. InProc. European Symp. on Pro-
gramming, volume 2618 ofLNCS, pages 144–158. Springer-
Verlag, Apr. 2003.

[16] J. A. Goguen and J. Meseguer. Security policies and security
models. InProc. IEEE Symp. on Security and Privacy, pages
11–20, Apr. 1982.

[17] N. Heintze and J. G. Riecke. The SLam calculus: program-
ming with secrecy and integrity. InProc. ACM Symp. on
Principles of Programming Languages, pages 365–377, Jan.
1998.

[18] R. Joshi and K. R. M. Leino. A semantic approach to secure
information flow.Science of Computer Programming, 37(1–
3):113–138, 2000.

[19] P. Laud. Semantics and program analysis of computationally
secure information flow. InProc. European Symp. on Pro-
gramming, volume 2028 ofLNCS, pages 77–91. Springer-
Verlag, Apr. 2001.

[20] P. Laud. Handling encryption in an analysis for secure infor-
mation flow. InProc. European Symp. on Programming, vol-
ume 2618 ofLNCS, pages 159–173. Springer-Verlag, Apr.
2003.

[21] G. Lowe. Quantifying information flow. InProc. IEEE Com-
puter Security Foundations Workshop, pages 18–31, June
2002.

[22] H. Mantel. Information flow control and applications—
Bridging a gap. InProc. Formal Methods Europe, volume
2021 ofLNCS, pages 153–172. Springer-Verlag, Mar. 2001.

[23] H. Mantel and D. Sands. Controlled downgrading based on
intransitive (non)interference. Draft, July 2003.

[24] A. C. Myers and B. Liskov. A decentralized model for in-
formation flow control. InProc. ACM Symp. on Operating
System Principles, pages 129–142, Oct. 1997.

[25] A. C. Myers and B. Liskov. Protecting privacy using the de-
centralized label model.ACM Transactions on Software En-
gineering and Methodology, 9(4):410–442, 2000.

[26] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow. Software release. Located
athttp://www.cs.cornell.edu/jif, July 2001–2003.

[27] S. Pinsky. Absorbing covers and intransitive non-inter-
ference. InProc. IEEE Symp. on Security and Privacy, pages
102–113, May 1995.

[28] F. Pottier and S. Conchon. Information flow inference for
free. InProc. ACM International Conference on Functional
Programming, pages 46–57, Sept. 2000.

[29] F. Pottier and V. Simonet. Information flow inference for
ML. In Proc. ACM Symp. on Principles of Programming
Languages, pages 319–330, Jan. 2002.

[30] A. W. Roscoe and M. H. Goldsmith. What is intransitive
noninterference? InProc. IEEE Computer Security Founda-
tions Workshop, pages 228–238, June 1999.

[31] J. M. Rushby. Noninterference, transitivity, and channel-
control security policies. Technical Report CSL-92-02, SRI
International, 1992.

[32] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, Jan. 2003.

[33] A. Sabelfeld and A. C. Myers. A model for delimited infor-
mation release. InProc. International Symp. on Software Se-
curity (ISSS’03), LNCS. Springer-Verlag, 2004. To appear.

[34] A. Sabelfeld and D. Sands. Probabilistic noninterference for
multi-threaded programs. InProc. IEEE Computer Security
Foundations Workshop, pages 200–214, July 2000.

[35] A. Sabelfeld and D. Sands. A per model of secure informa-
tion flow in sequential programs.Higher Order and Sym-
bolic Computation, 14(1):59–91, Mar. 2001.

[36] G. Smith and D. Volpano. Secure information flow in a
multi-threaded imperative language. InProc. ACM Symp.
on Principles of Programming Languages, pages 355–364,
Jan. 1998.

[37] D. Volpano. Secure introduction of one-way functions.
In Proc. IEEE Computer Security Foundations Workshop,
pages 246–254, July 2000.

[38] D. Volpano and G. Smith. Probabilistic noninterference in
a concurrent language.J. Computer Security, 7(2–3):231–
253, Nov. 1999.

[39] D. Volpano and G. Smith. Verifying secrets and relative se-
crecy. InProc. ACM Symp. on Principles of Programming
Languages, pages 268–276, Jan. 2000.

[40] D. Volpano, G. Smith, and C. Irvine. A sound type system
for secure flow analysis.J. Computer Security, 4(3):167–
187, 1996.

[41] G. Winskel. The Formal Semantics of Programming Lan-
guages: An Introduction. MIT Press, Cambridge, MA, 1993.

[42] S. Zdancewic. A type system for robust declassification.
In Proc. Mathematical Foundations of Programming Seman-
tics, ENTCS. Elsevier, Mar. 2003.

[43] S. Zdancewic and A. C. Myers. Robust declassification.
In Proc. IEEE Computer Security Foundations Workshop,
pages 15–23, June 2001.

[44] S. Zdancewic and A. C. Myers. Secure information flow and
CPS. InProc. European Symp. on Programming, volume
2028 ofLNCS, pages 46–61. Springer-Verlag, Apr. 2001.

[45] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Un-
trusted hosts and confidentiality: Secure program partition-
ing. In Proc. ACM Symp. on Operating System Principles,
pages 1–14, Oct. 2001.

[46] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using
replication and partitioning to build secure distributed sys-
tems. InProc. IEEE Symp. on Security and Privacy, pages
236–250, May 2003.

Appendix A

This appendix presents the proof of the main robustness
result of the paper. If a commandc is well-typed underΓ
then it is robust with respect to the attacker-controlled code.
The robustness theorem says that the attacker-controlled
code may not increase the attacker’s observations about the
system. Before proving the theorem, we present a few help-
ful propositions.

One such proposition says that if a sequential composi-
tion of well-typed commands may not distinguish two low-
equivalent memories (through terminating execution), then
the first command of the composition may not distinguish
between the memories (which implies that it terminates in
some low-equivalent intermediate memories). Further, the
second command may not distinguish between these in-
termediate memories. This property is achieved due to the
trace-level granularity of the security condition: the indis-
tinguishability of configurations requires the indistinguisha-
bility of traces (up to high-stuttering).

Proposition 3. If Γ, pc ` c1; c2 and 〈M1, c1; c2〉 uA

〈M2, c1; c2〉 then〈M1, c1〉 uA 〈M2, c1〉. Further, we have
〈M1, c1〉 ⇓ N1 and〈M2, c1〉 ⇓ N2 for someN1 andN2 so
that 〈N1, c2〉 uA 〈N2, c2〉.

The following proposition relates the executions of two
well-typed programs formed by filling a target program
with two different attacks. The proposition says that if for
some memory both programs terminate then they agree on
high-integrity data (if the latter exist) at the end of computa-
tion. This is a form of noninterference of low-integrity code
with high-integrity values.

Proposition 4. If HI 6= ∅, Γ, pc ` c[~•], 〈M, c[~a]〉 ⇓ N ,
and〈M, c[~a′]〉 ⇓ N ′ for some attacks~a and~a′ thenN(v) =
N ′(v) for all v such thatΓ(v) ∈ HI .

Suppose we have a typable command and two memories
forming configurations with this command. The next propo-
sition states that whenever the terminating behaviors of the
configurations are indistinguishable for the attacker then
no alteration of the attacker-controlled part of the mem-
ory may make the behaviors distinguishable for the attacker.
The key idea is that because declassification is not allowed
in a low-integrity context, no change of a low-integrity
value at the beginning of computation may reflect on low-
confidentiality behavior of the computation.

Proposition 5. If Γ, pc ` c and 〈M1, c〉 uA 〈M2, c〉 for
someM1 andM2 then for any valueval and variablev so
that Γ(v) ∈ LI we have〈M ′

1, c〉 ≈A 〈M ′
2, c〉 whereM ′

1 =
M1[v 7→ val] andM ′

2 = M2[v 7→ val].

We are now ready to prove Theorem 3.

Theorem 3. If Γ, pc ` c[~•] thenc[~•] satisfies robust declas-
sification.

Proof. If HI = ∅ then declassification is disallowed by
the typing rules, and the theorem follows form Theorem 1.
In the rest of the proof we assumeHI 6= ∅. Induction
on the structure ofc[~•]. Suppose that for somec[~a] and
memoriesM1 andM2 we have〈M1, c[~a]〉 uA 〈M2, c[~a]〉
(which, in particular, impliesM1 =A M2). We need to
show〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉 for all ~a′. If c[~•] has the

form skip or v := e then the command has no holes, im-
plying c[~a] = c[~a′], which is a vacuous case. Note that this
case covers (trusted) assignments withdeclassify in the
right-hand side. The casec[~•] = [•] is straightforward be-
cause by Proposition 2 attacka′ satisfies noninterference.
Structural cases onc[~a] (where appropriate, we assume that
~a is split into two vectors~a1 and ~a2):

c1[~a1]; c2[~a2] We have 〈M1, c1[~a1]; c2[~a2]〉 uA

〈M2, c1[~a1]; c2[~a2]〉. By Proposition 3 we infer
〈M1, c1[~a1]〉 uA 〈M2, c1[~a1]〉. By the induction hy-
pothesis we obtain〈M1, c1[~a′1]〉 ≈A 〈M2, c1[~a′1]〉.
If one, say 〈M1, c1[~a′1]〉, of the configurations di-
verges then〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉 because
potential computation ofc2[~a′2] in the second config-
uration may not change the relation. If both configu-
rations 〈M1, c1[~a′1]〉 and 〈M2, c1[~a′1]〉 terminate, we
have〈M2, c1[~a′1]〉 ≈A 〈M1, c1[~a′1]〉. Thus, there ex-
ist someM ′

1 and M ′
2 so that 〈M1, c1[~a′1]〉 ⇓ M ′

1,
〈M1, c1[~a′1]〉 ⇓ M ′

2, andM ′
1 =A M ′

2.
Because〈M1, c1[~a1]〉 uA 〈M2, c1[~a1]〉, we have

〈M1, c1[~a1]〉 ⇓ N1 and 〈M2, c1[~a1]〉 ⇓ N2 for
some N1 and N2. Applying Proposition 4 twice,
we haveM ′

1(v) = N1(v) and M ′
2(v) = N2(v)

for all high-integrity variables v. Because
〈M1, c[~a]〉 uA 〈M2, c[~a]〉 andN1 =A N2, by Propo-
sition 3 we have〈N1, c2[~a2]〉 uA 〈N2, c2[~a2]〉.
The application of Proposition 5 yields
〈M ′

1, c2[~a2]〉 ≈A 〈M ′
2, c2[~a2]〉 By the induction hy-

pothesis we have〈M ′
1, c2[~a′2]〉 ≈A 〈M ′

2, c2[~a′2]〉.
Connecting the traces forc1 and c2, we receive
〈M1, c1[~a′1]; c2[~a′2]〉 ≈A 〈M2, c1[~a′1]; c2[~a′2]〉.

if b then c1[~a1] else c2[~a2] If Vars(b) ⊆ LC then
b evaluates to the same value, saytrue, under
both M1 and M2, i.e., the execution of the condi-
tional reduces to the same branch in both mem-
ories. We have 〈M1, c[~a]〉 −→ 〈M1, c1[~a1]〉
and 〈M2, c[~a]〉 −→ 〈M2, c1[~a1]〉 as well as
〈M1, c[~a′]〉 −→ 〈M1, c1[~a′1]〉 and 〈M2, c[~a′]〉 −→
〈M2, c1[~a′1]〉. As 〈M1, c[~a]〉 uA 〈M2, c[~a]〉 we have
〈M1, c1[~a1]〉 uA 〈M2, c1[~a1]〉. By the induction hy-
pothesis〈M1, c1[~a′1]〉 ≈A 〈M2, c1[~a′1]〉. This implies
〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉.

If Vars(b) 6⊆ LC , i.e., a high-confidentiality vari-
able occurs inb, then we observe that there are no holes
in the program, implyingc[~a] = c[~a′], which is a vac-
uous case.

while b do c1[~a] The case whenVars(b) 6⊆ LC is handled
in the same way as for conditionals. IfVars(b) 6⊆ HI

then no declassification may occur inwhile b do c1[~a′]
by the definition of the type system and attacks. By

Theorem 1, the proof iswhile b do c1[~a′] satisfies non-
interference, which completes the proof. The remain-
ing case isVars(b) ⊆ LC ∩ HI . Expressionb evalu-
ates to the same value under bothM1 andM2. If this
value isfalsethen both〈M1, c[~a′]〉 and〈M2, c[~a′]〉 ter-
minate in one step with no change to the memoriesM1

andM2, yielding〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉.
If, on the other hand, the value ofb is true then for

〈M1, while b do c1[~a]〉 uA 〈M2, while b do c1[~a]〉
it is necessary that〈M1, c1[~a]〉 uA 〈M2, c1[~a]〉. By
the induction hypothesis, we have〈M1, c1[~a′]〉 ≈A

〈M2, c1[~a′]〉. If either 〈M1, c1[~a′]〉 or 〈M2, c1[~a′]〉 di-
verges then the top-level loop also diverges underM1

(or M2), implying 〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉. If both
configurations terminate, then there exist someM ′

1 and
M ′

2 so that〈M1, c1[~a′]〉 ⇓ M ′
1, 〈M2, c1[~a′]〉 ⇓ M ′

2, and
M ′

1 =A M ′
2. Note that the value ofb is the same un-

der M1 andM2. If this value isfalse then the proof
is finished. Otherwise, we need to further unwind the
loop.

Applying Proposition 4 twice, we infer
〈M1, c1[~a]〉 ⇓ N1 and〈M2, c1[~a]〉 ⇓ N2 for someN1

andN2 so thatM ′
1(v) = N1(v) andM ′

2(v) = N2(v)
for all high-integrity variablesv. This, in particu-
lar, implies thatb evaluates totrue in both N1 and
N2.

Because〈M1, c[~a]〉 uA 〈M2, c[~a]〉 andN1 =A N2,
by Proposition 3 we have〈M1, c1[~a]〉 uA 〈M2, c1[~a]〉
and therefore〈N1, c[~a]〉 uA 〈N2, c[~a]〉 (becausec[~a]
corresponds to unwinding the loop).

Note that we have mimicked ac[~a] iteration by a
c[~a′] iteration (with the possibility that the latter might
diverge due to an internal loop caused by low-integrity
computation). During this iteration we have preserved
the invariant that the executions for bothM1 andM2

give low-confidentiality indistinguishable traces (for
eachc1[~a] and c1[~a′]), and low-confidentiality high-
integrity data in the final states of all traces is the same
regardless of the memory (M1 or M2) and the com-
mand (c1[~a] or c1[~a′]). By finitely repeating this con-
struction (with the possibility of finishing the proof at
each step due to an internal loop ofc1[~a′]), we reach
the state whenb evaluates tofalse, which corresponds
to the termination of the top-level loop for bothc1[~a]
andc1[~a′]. That〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉we receive
by concatenating low-assignment traces from each it-
eration.

Appendix B

This appendix extends the proof of robustness to show
that the type system with the rule forendorse guaran-
tees qualified robustness. The proof structure is as in Ap-

pendix A. We lift the proof technique to a possibilistic set-
ting by reasoning about the existence of individual traces
that originate from a given configuration and possess de-
sired properties. In parentheses, we provide references to
the respective propositions and definitions for the non-
qualified version of robustness.

Proposition 6 (2). An A-attack underΓ (i) does not
have occurrences of assignments to high-integrity vari-
ables (suchv thatΓ(v) ∈ HI); and (ii) satisfies (possibilis-
tic) noninterference underΓ.

Proposition 7 (3). If Γ, pc ` c1; c2 and
〈M1, c1; c2〉 uA 〈M2, c1; c2〉 then〈M1, c1〉 uA 〈M2, c1〉.
If t1 ∈ Tr(〈M1, c1〉) (assumingt1 terminates inN1) and
t2 ∈ Tr(〈M2, c1〉) (assumingt2 terminates inN2) so that
t1 ≈A t2 then〈N1, c2〉 uA 〈N2, c2〉.

Proposition 8 (4). If HI 6= ∅ andΓ, pc ` c[~•] for attacks
~a and ~a′ so that and〈M, c[~a]〉 always terminates then for
any t′ ∈ Tr(〈M, c[~a′]〉) so thatt′ terminates there exists
t ∈ Tr(〈M, c[~a]〉) so thatt ∼` t′ for all such` that` ∈ HI .

Proposition 9 (5). If Γ, pc ` c and 〈M1, c〉 uA 〈M2, c〉
for someM1 andM2 then for any valueval and variable
v so thatΓ(v) ∈ LI we have〈M ′

1, c〉 ≈A 〈M ′
2, c〉 where

M ′
1 = M1[v 7→ val] andM ′

2 = M2[v 7→ val].

Theorem 5. If Γ, pc ` c[~•] thenc[~•] satisfies qualified ro-
bust declassification.

Proof. If HI = ∅ then declassification is disallowed by
the typing rules, and the theorem follows form Theorem 4.
In the rest of the proof we assumeHI 6= ∅. Induction
on the structure ofc[~•]. Suppose that for somec[~a] and
memoriesM1 andM2 we have〈M1, c[~a]〉 uA 〈M2, c[~a]〉
(which, in particular, impliesM1 =A M2). We need to
show〈M1, c[~a′]〉 ≈A 〈M2, c[~a′]〉 for all ~a′. If c[~•] has the
form skip or v := e then the command has no holes,
implying c[~a] = c[~a′], which is a vacuous case because
uA⊆≈A. Note that this case covers (trusted) assignments
with declassify andendorse in the right-hand side. The
casec[~•] = [•] is straightforward because by Proposition 6
attacka′ satisfies noninterference.

Considering structural cases onc[~•], the most interesting
case is sequential composition:c[~•] = c1[~•1]; c2[~•2] where
the vector~• is split into two vectors~•1 and ~•2. We only
show this case as the rest of the cases can be reconstructed
straightforwardly from the proof of Theorem 3.

The premise of the theorem states that
〈M1, c1[~a1]; c2[~a2]〉 uA 〈M2, c1[~a1]; c2[~a2]〉.
We need to show 〈M1, c1[~a′1]; c2[~a′2]〉 ≈A

〈M2, c1[~a′1]; c2[~a′2]〉, i.e., by unfolding Defini-
tion 8, ∀t1 ∈ Tr(〈M1, c1[~a′1]; c2[~a′2]〉).∃t2 ∈
Tr(〈M2, c1[~a′1]; c2[~a′2]〉). t1 ≈A t2 along with the symmet-
ric condition whereM1 and M2 are swapped (which is

proved analogously). We assume thatt1 terminates (other-
wise the case is vacuous).

Supposet1 = t′1t
′′
1 where t′1 ∈ Tr(〈M1, c1[~a′1]〉),

〈M1, c1[~a′1]〉 terminates witht′1 in some stateM ′
1, and

t′′1 ∈ Tr(〈M ′
1, c2[~a′2]〉). By Proposition 7 we deduce

〈M1, c1[~a1]〉 uA 〈M2, c1[~a1]〉. By the induction hypothe-
sis we obtain〈M1, c1[~a′1]〉 ≈A 〈M2, c1[~a′1]〉. In particular,
∃t′2 ∈ Tr(〈M2, c1[~a′1]〉). t′1 ≈A t′2.

If t′2 diverges, then we have found the necessaryt2 (it
is simplyt′2) to finish the proof. In the remaining case both
tracest′1 and t′2 terminate andt′1 ∼A t′2. This means that
there exist someM ′

1 andM ′
2 so that〈M1, c1[~a′1]〉 ⇓ M ′

1,
corresponding to tracet′1, 〈M1, c1[~a′1]〉 ⇓ M ′

2, correspond-
ing to tracet′2, andM ′

1 =A M ′
2.

Applying Proposition 8 twice, there exist
u′1 ∈ Tr(〈M1, c[~a]〉) and u′2 ∈ Tr(〈M2, c[~a]〉) where
t′1 ∼` u′1 and t′2 ∼` u′2 for all such` that ` ∈ HI . This
leads tou′1 ∼A u′2. We assume〈M1, c1[~a1]〉 ⇓ N1, corre-
sponding to traceu′1 and〈M2, c1[~a1]〉 ⇓ N2, corresponding
to traceu′2, for someN1 andN2.

As u′1 ≈A u′2 and 〈M1, c[~a]〉 uA 〈M2, c[~a]〉
we have 〈N1, c2[~a2]〉 uA 〈N2, c2[~a2]〉 by Propo-
sition 7. The application of Proposition 9 yields
〈M ′

1, c2[~a2]〉 ≈A 〈M ′
2, c2[~a2]〉 By the induction hy-

pothesis we have〈M ′
1, c2[~a′2]〉 ≈A 〈M ′

2, c2[~a′2]〉.
Connecting the traces forc1 and c2, we construct
t2 ∈ Tr(〈M2, c1[~a′1]; c2[~a′2]〉) such thatt1 ≈A t2, imply-
ing 〈M1, c1[~a′1]; c2[~a′2]〉 ≈A 〈M2, c1[~a′1]; c2[~a′2]〉.

