
Available

CAV
Evaluation

Artifact

Functional

CAV
Evaluation

Artifact

Synthesizing Trajectory Queries from Examples⋆

Stephen Mell1(�)[0009−0003−7469−8974], Favyen Bastani2[0000−0002−1100−4192],
Steve Zdancewic1[0000−0002−3516−1512], and Osbert Bastani1[0000−0001−9990−7566]

1 University of Pennsylvania, Philadelphia PA 19104, USA
{sm1,stevez,obastani}@cis.upenn.edu

2 Allen Institute for AI, Seattle WA 98104, USA
favyenb@allenai.org

Abstract. Data scientists often need to write programs to process pre-
dictions of machine learning models, such as object detections and trajec-
tories in video data. However, writing such queries can be challenging due
to the fuzzy nature of real-world data; in particular, they often include
real-valued parameters that must be tuned by hand. We propose a novel
framework called Quivr that synthesizes trajectory queries matching a
given set of examples. To efficiently synthesize parameters, we introduce
a novel technique for pruning the parameter space and a novel quanti-
tative semantics that makes this more efficient. We evaluate Quivr on
a benchmark of 17 tasks, including several from prior work, and show
both that it can synthesize accurate queries for each task and that our
optimizations substantially reduce synthesis time.

1 Introduction

Over the past decade, deep neural networks (DNNs) have successfully solved
challenging artificial intelligence problems [47,70]. Abstractly, these models can
be thought of as providing interfaces to real-world data—e.g., they can pro-
vide object classes [47,30], detections [60,59], and trajectories [11,83,10]. Then,
these predictions are processed by programs, e.g., to identify driving patterns [5],
events in TV broadcasts [28], or animal behaviors [67].

However, writing such programs can be challenging since they must still ac-
count for the fuzziness of real data. To do so, these programs typically include
real-valued parameters that need to be manually tuned by the user. For exam-
ple, consider a query over car trajectories designed to identify instances where
one car turns in front of another. This query must capture the shape of the
trajectory of both the turning car and the car crossing the intersection. In addi-
tion, the user must select the appropriate maximum duration from the first car
changing lanes to the second car crossing the intersection. Even an expert would
require significant experimentation to determine good parameter values; in our
experience, it can take up to an hour to tune the parameters for a single query.

⋆ Appendices are available in the technical report [51].

https://doi.org/10.5281/zenodo.7875957

2 S. Mell et al.

We focus on programs that query databases of trajectories output by an
object tracker [40,28,41,42,7,8,54,5]. Given a video, the tracker predicts the po-
sitions of objects in each frame (e.g., cars, people, or mice), as well as associ-
ations between detections of the same object across successive frames. Appli-
cations often require subsequent analysis of these trajectories. For example, in
autonomous driving, when a risky scenario is encountered, engineers typically
search for additional examples of that driving pattern to improve their plan-
ner [63,64,66]—e.g., cars driving too close [82] or stopping in the middle of the
road [6]. Object tracking has also been used to track robots [58,81], animals for
behavioral analysis [75,12,67], and basketball players for sports analytics [85,67].

We propose an algorithm for synthesizing queries over object trajectories
given just a handful of input-output examples. A query takes as input a repre-
sentation of a trajectory as a sequence of states (e.g., position, velocity, and ac-
celeration) in successive frames of the video, and outputs whether the trajectory
matches its semantics. Our query language is based on regular expressions—in
particular, a query is a composition of a user-extensible set of predicates using
the sequencing, conjunction, and iteration operators. For instance, trajectories
might correspond to cars in a video; Figure 1 shows a query for identifying cars
turning at an intersection. As we discuss in Section 6, the full query language
semantics is rich enough to subsume (variants of) Kleene algebras with tests
(KAT) [46] and signal temporal logic (STL) [50]; however, such generality is sel-
dom needed, so we use a pared-down query language that works well in practice.

Our algorithm performs enumerative search over the space of possible queries
to identify ones that are consistent with the given examples. A key challenge in
our setting is that our predicates have real-valued parameters that must also
be synthesized. Thus, our strategy enumerates sketches, which are partial pro-
grams that only contain holes corresponding to real-valued parameters. For each
sketch, we search over the space of real-valued parameters, while using an ef-
ficient pruning strategy to reduce the search space. At a high level, we use a
quantitative semantics to directly compute “boundary parameters” at which a
given example switches from being labeled positive to negative. Then, depending
on the target label, we can prune the entire region of the search space on one
side of these boundary parameters. We prove that this synthesis strategy comes
with soundness and (partial) completeness guarantees.

We implement our approach in a system called Quivr.3 Our implementation
focuses on videos from fixed-position cameras. While our language and synthesis
algorithm are general, the predicates we design are tailored to specific settings.
We evaluate Quivr on identifying driving patterns in traffic videos, including
ones inspired by recent work on autonomous driving [64,63,66], on behavior de-
tection in a dataset of mouse trajectories [72], and on a synthetic task from the
temporal logic synthesis literature [44]. We demonstrate how both our parame-
ter pruning strategies and our query evaluation optimizations lead to substantial
reductions in the running time of our synthesizer.

3 Quivr stands for QUery Induction for Video tRajectories.

Synthesizing Trajectory Queries from Examples 3

(a) (b)

⟨InLane1⟩ ;
〈
Any

〉
; ⟨InLane2⟩

Fig. 1. (a) A video frame from a traffic camera, along with object trajectories (red) and
manually annotated lanes (black). (b) The trajectories selected by the query (bottom),
which selects cars turning at the intersection.

In summary, our contributions are:

– A language for querying object trajectories (Section 3) and an algorithm for
synthesizing such queries from examples (Section 4).

– An efficient parameter pruning approach based on a novel quantitative se-
mantics (Section 4), yielding a 5.0× speedup over the state-of-the-art quan-
titative pruning technique from the temporal logic synthesis literature.

– An implementation of our approach in Quivr, and an evaluation of Quivr
on identifying driving behaviors in traffic camera video and mouse behaviors
in a dataset of mouse trajectories (Section 5), demonstrating substantially
better accuracy than neural network baselines.

2 Overview

We consider a hypothetical scenario where an engineer is designing a control
algorithm for an autonomous car and would like to identify certain driving pat-
terns in video data. We show how they can use our framework to synthesize a
query to identify car trajectories that exhibit a given behavior.

Video data. Traffic cameras are a rich source of driving behaviors [61,13,5]; one
dataset used in our evaluation is YTStreams [7], which includes video from
several such cameras. Figure 1 (a) shows a single frame from such a video; we
have used an object tracker [83] to identify all car trajectories (in red).

Predicates. Quivr assumes it is given a set of predicates that match portions
of trajectories exhibiting behaviors of interest; during synthesis, it considers
queries composed of these predicates. In Figure 1 (a), the engineer has manually
annotated the lanes of interest in this video (black), to specify four InLaneK
predicates that select trajectories of cars driving in each lane K visible in the

4 S. Mell et al.

(〈
InLane1(A)

〉
;
〈
Any

〉
;
〈
InLane2(A)

〉)
∧
〈
InLane2(B)

〉
Fig. 2. A single match (top) for the multi-object query (bottom) which captures one
car, A, turning into a lane behind another car, B, that is in that lane. The trajectories
change color from red to green as a function of time. As can be seen, the car making
the right turn does so just after the car going straight passes through the intersection.

video. Predicates may be configured by real-valued parameters. For example,

⟨InLane1⟩ ∧ ⟨DispLtθ⟩

searches for trajectories where the car stays in lane 1 for a period of time and
the car has a displacement at most θ between the beginning and end of that
period. Note that atomic predicates, like ⟨DispLtθ⟩, can match multiple time-
steps, whereas in formalisms like regular expressions and temporal logic, atomic
predicates are over single time-steps. A key feature of our framework is that the
set of available predicates is highly extensible, and the user can provide their
own. See Section 5.1 for the predicates we use in our evaluation.

Synthesis. To specify a driving pattern, the engineer provides a small number of
initial positive and negative examples of trajectories; then, Quivr synthesizes a
query that correctly labels these examples. In Figure 1 (b), we show the result of
executing the query shown, which is synthesized to identify left turns in the data.
Often, there are multiple queries consistent with the initial examples. While it
may be hard for users to sift through the video for positive examples, it is usually
easy for them to label a given trajectory. Thus, to disambiguate, Quivr asks
the user to label additional trajectories [62,19,36].

Multi-object queries. So far, we have focused on queries that identify trajectories
by processing each trajectory in isolation. A key feature of our framework is that
users can express queries over multiple trajectories—for example,(

⟨InLane1(B)⟩ ∧ ⟨ChangeLane2To1(A)⟩
)
; ⟨InFront(A,B)⟩.

This query says that car B is in lane 1 while car A changes from lane 2 to lane
1, and car A ends up in front of car B. Note that the predicates now include
variables indicating which object they refer to, and the predicate InFront(A,B)
refers to multiple objects. An example of a pair of trajectories selected by a
multi-object query is shown in Figure 2.

Synthesizing Trajectory Queries from Examples 5

3 Query Language

We describe our query language for matching object trajectories in videos. Our
system first preprocesses the video using an object tracker to obtain trajectories,
which are sequences z = (x0, x1, ..., xn−1) of states xi ∈ X . Then, a query Q in
our language maps each trajectory z to a value B = {0, 1} indicating whether it
matches z. Our language is similar to both STL and KAT. One key difference is
that predicates are over arbitrary subsequences of z rather than single states x.
In the main paper, we consider a simpler language, but in Appendix A we show
how it can be extended to subsume both STL and KAT.

Trajectories. We begin by describing the input to a query in our language, which
is the representation of one or more concurrent object trajectories in a video.

Consider a space S corresponding to a single object detection in a single
video frame—e.g., s ∈ S ⊆ R6 might encode the 2D position, velocity, and
acceleration of s in image coordinates. When considering m concurrent objects,
let the space of states X = Sm, and then a trajectory z ∈ Z = X ∗ is a sequence
z = (x0, x1, ..., xn−1) of states of length |z| = n. We use the notation zi:j =
(zi, zi+1, ..., zj−1) to denote a subtrajectory of z.

Predicates. We assume a set of predicates Φ is given, where each predicate φ ∈ Φ
matches trajectories z ∈ Z; we use satφ(z) ∈ B = {0, 1} to indicate that φ
matches z. As discussed below, queries in our language compose these predicates
to match more complex patterns.

Next, predicates in our language may have real-valued parameters that must
be specified. We denote such a predicate φ with parameter θ ∈ R by φθ. To enable
our synthesis algorithm to efficiently synthesize these real-valued parameters, we
leverage the monotonicity in all such predicates we have used in our queries. In
particular, we assume that the semantics of these predicates have the form

JφθK(z) := 1(ιφ(z) ≥ θ),

where ιφ : Z → R is a scoring function. We also assume that the range of ιφ
is bounded (which can be achieved with a sigmoid function, if necessary). For
example, for the predicate DispLtθ, we have ιDispLt(z) = −∥z0 − zn−1∥. Thus,
ιDispLt(z) ≥ θ says the total displacement is at most −θ. We describe the predi-
cates we include in Section 5.1; they can easily be extended.

Syntax. The syntax of our language is

Q ::= φ | Q ; Q | Qk | Q ∧Q,

where Qk = Q;Q; ...;Q (k times). That is, the base case is a single predicate φ,
and queries can be composed using sequencing (Q ; Q) and conjunction (Q∧Q).
Operators for disjunction, negation, Kleene star, and STL’s “until” are discussed
in Appendix A.2. We describe constraints imposed on our language during syn-
thesis in Section 4.7.

Semantics. The satisfaction semantics of queries have type J·K : Q → Z → B,
where Q is the set of all queries in our language, Z is the set of trajectories, and

6 S. Mell et al.

JφK(z) := satφ(z)

JQ1 ∧Q2K(z) := JQ1K(z) ∧ JQ2K(z)

JQ1 ; Q2K(z) :=
n∨

k=0

JQ1K(z0:k) ∧ JQ2K(zk:n)

Fig. 3. Satisfaction semantics of our query language; z ∈ Z is a trajectory of length n
and φ ∈ Φ are predicates. Iteration (Qk) can be expressed as repeated sequencing.

B = {0, 1}. In particular, JQK(z) ∈ B indicates whether the query Q matches
trajectory z. The semantics are defined in Figure 3. The base case of a single
predicate φ checks whether φ matches z; conjunction Q1 ∧ Q2 checks if both
conjuncts match; and sequencing Q1 ; Q2 checks if z can be split into z = z0:kzk:n
in a way that Q1 matches z0:k and Q2 matches zk:n. The semantics can be
evaluated in time O(|Q| · n2).

4 Synthesis Algorithm

We describe our algorithm for synthesizing queries consistent with a given set
of examples. It performs a syntax-guided enumerative search over the space of
possible queries [3]. In more detail, it enumerates sketches, which are partial
programs where only parameter values are missing. For each sketch, it uses a
quantitative pruning strategy to compute the subset of the input parameters for
which the resulting query is consistent with the given examples. A key contribu-
tion is how our algorithm uses quantitative semantics for quantitative pruning.

4.1 Problem Formulation

Partial queries. A partial query is in the grammar

Q ::= ?? | φ?? | φ | Q ; Q | Qk | Q ∧Q.

Note that there are two kinds of holes: (i) a predicate hole h = ?? that can be
filled by a sub-query Q, and (ii) a parameter hole h = φ?? that can be filled by a
real value θh ∈ R. We denote the predicate holes of Q by Hφ(Q), the parameter
holes by Hθ(Q), and let H(Q) = Hφ(Q) ∪Hθ(Q). A partial query Q is a sketch
(denoted Q ∈ Qsketch) [71] if Hφ(Q) = ∅, and is complete (denoted Q ∈ Q̄)
if H(Q) = ∅. For example, for Q = ⟨DispLt??1⟩∧??2, we have Hθ(Q) = {??1}
and Hφ(Q) = {??2}. (We label each hole h = ??i with an identifier i ∈ N to
distinguish them.)

Refinements and completions. Given query Q ∈ Q, predicate hole h ∈ Hφ(Q),
and production R = Q → f(Q1, ..., Qk) we can fill h with R (denoted Q′ =
fill(Q, h,R)) by replacing h with f(??1, ..., ??k), where each ??i is a fresh hole,

Synthesizing Trajectory Queries from Examples 7

and similarly given a parameter hole h ∈ Hθ(Q) and a value θh ∈ R. We call Q′

a child of Q (denoted Q → Q′). Next, we call Q′′ a refinement of Q (denoted

Q
∗−→ Q′′) if there exists a sequence Q → ... → Q′′; if furthermore Q′′ ∈ Q̄, we

say it is a completion of Q. For example, we have

??1 → ??2 ; ??3 → ⟨InLane1⟩ ; ??3 →

Here, ⟨InLane1⟩ ; ??3 is a child (and refinement) of ??2 ; ??3 obtained by filling
??2 with Q→ ⟨InLane1⟩—i.e.,

⟨InLane1⟩ ; ??3 = fill(??2 ; ??3, ??2, Q→ ⟨InLane1⟩).

Parameters. We let θ ∈ R|Hθ(Q)| denote a choice of parameters for each h ∈
Hθ(Q), let θh ∈ Θh ⊆ R denote the parameter for hole h, and let Qθ denote the
query obtained by filling each h ∈ Hθ(Q) with θh. Note that if Q ∈ Qsketch, then
Qθ ∈ Q̄ is complete. For example, consider the sketch

Q = ⟨DispLt??1⟩ ∧ ⟨MinLength??2⟩.

This query has two holes, so its parameters are θ ∈ R2. If θ = (3.2, 5.0), then
θ??1 = 3.2 is used to fill hole ??1 and θ??2 = 5.0 is used to fill ??2. In particular,

Qθ = ⟨DispLt3.2⟩ ∧ ⟨MinLength5.0⟩.

Query synthesis problem. Given examples W ⊆ W = Z × B, where B = {0, 1},
our goal is to find a query Q ∈ Q̄ that correctly labels these examples—i.e.,

ψW (Q) :=
∧

(z,y)∈W

(JQK(z) = y).

Thus, ψW (Q) indicates whether Q is consistent with the labeled examples W .
Our goal is to devise a synthesis algorithm that is sound and complete—i.e., it
finds a query that satisfies ψW (Q) = 1 if and only if one exists.

4.2 Algorithm Overview

Our algorithm enumerates sketches Q ∈ Qsketch; for each one, it tries to compute
parameter values θ such that the completed query Qθ is consistent withW—i.e.,
ψW (Qθ) = 1. It can either stop once it has found a consistent query, or identify
additional queries that are consistent with W . Algorithm 1 shows this high-level
strategy—at each iteration, it selects a sketch Q, determines a region B of the
parameter space containing consistent parameters θ ∈ B, and adds (Q,B) to a
list of consistent queries that solve the synthesis problem.

The key challenge is searching over the space of continuous parameters θ
for a given sketch Q such that Qθ is consistent with W . For efficiency, we rely
heavily on pruning the search space. At a high level, consider evaluating a single
candidate parameter θ on a single example (z, y) ∈ W—i.e., check whether

8 S. Mell et al.

Algorithm 1 Synthesizes consistent queries using the subroutine in Algorithm 2

1: procedure SynthesizeQuery(W)
2: Qcon ← ∅
3: for Q ∈ Qsketch do
4: B ← SynthesizeParameters(W,Q)
5: Qcon ← {(Q,B)}
6: return Qcon

JQθK(z) = y. If this condition does not hold, then we can not only prune θ from
the search space, but also a significant fraction of additional candidates. For
instance, suppose JQθK(z) = 1 but y = 0; if θ′ ≤ θ (in all components), then by
a monotonicity property we prove for our semantics, we also have JQθ′K(z) = 1.
Thus, we can also prune θ′.

Previous work has leveraged this property to prune the search space [49,78,53].
Using a strategy based on binary search, for a given example (z, y) ∈W , we can
identify “boundary” parameters θ to accuracy ε in O(log(1/ε)) steps—i.e., com-
pute θ for which JQθ−ε⃗K(z) = 1 and JQθ+ε⃗K(z) = 0.

Our algorithm avoids this binary search process, which can lead to a signifi-
cant speedup in practice. The key idea is to devise a quantitative semantics for
queries that directly computes θ; in fact, this quantitative semantics is closely
related to robust temporal logic semantics, where the conjunction and disjunc-
tion of the satisfaction semantics are replaced with minimum and maximum,
respectively.

4.3 Pruning with Boundary Parameters

We begin by describing how “boundary parameters” can be used to prune a
portion of the search space over parameters. First, for any candidate parameters
θ, we can prune parameters θ′ ≤ θ (if JQθK(z) = 1 and y = 0) or θ′ ≥ θ (if
JQθK(z) = 0 and y = 1). Pruned regions of the parameter space take the form of
hyper-rectangles, which we call boxes. For convenience, let ∞⃗ := (∞, . . . ,∞).

Definition 1. Given x, y ∈ R̄d, where R̄ = R ∪ {±∞}, a box is an axis-aligned
half-open hyper-rectangle ⌊x, y⌉ := {v | xi < vi ≤ yi} ⊆ Rd.

The key property ensuring that parameters prune boxes of the search space is
that the semantics are monotonically decreasing in θ.

Lemma 1. Given sketch Q, trajectory z, and two candidate parameters θ, θ′ ∈
Rd such that θ ≤ θ′ component-wise, we have JQθK(z) ≥ JQθ′K(z).

The proof follows by structural induction on the query semantics: the base case
follows since the semantics 1(ιφ(z) ≥ θk) for predicates is monotonically de-
creasing in θk, and the inductive case follows since conjunction and disjunction
are monotonically increasing in their inputs (so they are also monotonically de-
creasing in θk). Below, we show how monotonicity ensures that we can prune
whole regions of the search space if we find boundary parameters.

Synthesizing Trajectory Queries from Examples 9

As an example, suppose we have two trajectories, z0 of a car driving quickly
and then slowly, and z1 of a car driving slowly and then quickly, and that we are
trying to synthesize a query for W = {(z0, 0), (z1, 1)}. For simplicity, we assume
both z0 = (0.9, 0.6) and z1 = (0.5, 0.8) have just two time steps each, with just
a single component representing velocity. Furthermore, we assume there is just
a single predicate ⟨VelGtθ⟩ matching time steps where the velocity is at least θ,
where θ is a real-valued parameter. Since ⟨VelGtθ⟩ matches single time steps,
the satisfaction semantics is 0 except on trajectories of length 1, so:

ιVelGt((z0)0:1) = 0.9 ιVelGt((z0)1:2) = 0.6 ιVelGt((z)i:i) = −∞
ιVelGt((z1)0:1) = 0.5 ιVelGt((z1)1:2) = 0.8 ιVelGt((z)0:2) = −∞

Consider the sketch Q = ⟨VelGt??1⟩; ⟨VelGt??2⟩. We can see that the candidate
parameters (0.5, 0.6) satisfy JQ(0.5,0.6)K(z1) = 1:

JQ(0.5,0.6)K((z1)0:n) =
2∨

k=0

J⟨VelGt0.5⟩K((z1)0:k) ∧ J⟨VelGt0.6⟩K((z1)k:n)

= J⟨VelGt0.5⟩K((z1)0:1) ∧ J⟨VelGt0.6⟩K((z1)1:2)
= 1(0.5 ≥ 0.5) ∧ 1(0.8 ≥ 0.6)

= 1,

where the second equality holds because ⟨VelGtθ⟩ matches only length-1 trajec-
tories, so the k = 0 and k = 2 cases evaluate to 0. Since the semantics are mono-
tonically decreasing, we have JQθK(z1) = 1 for any θ ∈ ⌊(−∞,−∞), (0.5, 0.6)⌉.

Notice, however, that if we were to move any ε⃗ > 0 upward, we would have
JQ(0.5+ε1,0.6+ε2)K(z1) = 1(0.5 ≥ 0.5 + ε1) ∧ 1(0.8 ≥ 0.6 + ε2) = 0. So we know
JQθK(z1) = 0 for any θ ∈ ⌊(0.5, 0.6), (∞,∞)⌉. This is because (0.5, 0.6) lies on the
boundary between {θ′ | JQθ′K(z) = 0} and {θ′ | JQθ′K(z) = 1}. This boundary
plays a key role in our algorithm.

Definition 2. Given a sketch Q with d parameter holes and a trajectory z, we
say θ ∈ Rd ∪ {⊥,⊤} is a boundary parameter if one of the following holds:

– θ ∈ Rd and JQθK(z) = 1, but JQθ′K(z) = 0 for all θ′ ∈ ⌊θ, ∞⃗⌉
– θ = ⊥ and JQθ′K(z) = 0 for all θ′ ∈ ⌊−∞⃗, ∞⃗⌉
– θ = ⊤ and JQθ′K(z) = 1 for all θ′ ∈ ⌊−∞⃗, ∞⃗⌉

In the first case, by monotonicity, we also have JQθ′K(z) = 1 for all θ′ ∈ ⌊−∞⃗, θ⌉;
thus, θ lies on the boundary between parameters θ′ where Qθ′ evaluates to 1 and
those where it evaluates to 0. The second and third cases are where Qθ′ always
evaluates to 0 and 1, respectively.

Given a boundary parameter θ for an example (z, y) ∈ W , we can prune
⌊θ, ∞⃗⌉ if y = 1 or ⌊−∞⃗, θ⌉ if y = 0. Intuitively, boundary parameters pro-
vide optimal pruning along a fixed direction in the parameter space. Thus, our
algorithm focuses on computing boundary parameters for pruning.

10 S. Mell et al.

Fig. 4. (a) shows a boundary parameter, θ1, for z1, and a region that is inconsistent
with z1 and can be pruned (red), as well as a region that is consistent with it (blue). (b)
similarly shows a boundary parameter θ0 for z0. (c) shows the pruning pair composed
of θ0 and θ1, a region consistent with both (blue), and regions inconsistent with either
(red). (d) is the same as (c), but if θ0 and θ1 swapped places. The labels b0 through b8
denote analogous boxes in (c) & (d). (e) shows how, if (d) were the result of the first
step of search and b6 were chosen next, search could proceed. (f) shows ground truth
consistent (blue) and inconsistent (red) regions that the search process in (d) & (e)
might converge toward.

In Figure 4 (a), if θ1 is a boundary parameter for z1, we know that the blue
region satisfies z1, and thus is consistent with the label 1, while the red region
dissatisfies z1, and thus is inconsistent with the label 1. Similarly, in Figure 4
(b), if θ0 is a boundary parameter for z0, we know that the red satisfies z1, and
thus is inconsistent with the label 0, while the blue dissatisfies z0, and thus is
consistent with the label 0.

4.4 Pruning with Pairs of Boundary Parameters

To extend pruning to the entire dataset W , we could simply prune the union of
the individual pruned regions for each (z, y) ∈ W . However, one important fea-
ture of our approach is that we can also establish regions of the parameter space
where the parameters are guaranteed to be consistent with W . To formalize this
idea, we introduce the concept of a “pruning pair”, which is a pair of boundary
parameters which might allow us to find such a consistent region.

Definition 3. Given a sketchQ and a datasetW , a pair of boundary parameters
θ−, θ+ ∈ Rd ∪ {⊥,⊤} is a pruning pair for Q and W if all of the following hold:

– θ+ is a boundary parameter for some z ∈ W+ and, for all z′ ∈ W+ such
that z′ ̸= z, we have JQθ+K(z′) = 1.

– θ− is a boundary parameter for some z ∈ W− and, for all z′ ∈ W− such
that z′ ̸= z, we have JQθ−K(z′) = 0.

– θ− < θ+ or θ− ≥ θ+.

If θ− < θ+, the pruning pair (θ−, θ+) is consistent, and inconsistent otherwise.

Our algorithm searches for pruning pairs along a fixed direction—i.e., it considers
a curve L ⊆ Rd and looks for the following pruning pair along L:

θ+ = sup

{
θ ∈ L

∣∣∣∣ ∧
z∈W+

JQθK(z) = 1

}
, θ− = inf

{
θ ∈ L

∣∣∣∣ ∧
z∈W−

JQθK(z) = 0

}
.

Synthesizing Trajectory Queries from Examples 11

Intuitively, θ+ is the largest θ that correctly classifies all positive examples, and
conversely for θ−. We restrict to curves L that are monotonically increasing in
all components, in which case the supremum and infimum are well defined since
L comes with a total ordering (from its smallest point to its largest) that is
consistent with the standard partial order on Rd. Then, (θ−, θ+) form a pruning
pair: since θ+ is a boundary parameter for z, if we take θ+ to be any larger, then
we must have JQθK(z) = 0 for some z ∈W+, and similarly for θ−.

Given a curve L, we can compute an approximation to θ+ and θ− via binary
search. However, our algorithm avoids the need to do so by directly computing
θ+ and θ− using a quantitative semantics, which we describe in Section 4.6.

Figure 4 (c) shows how the pair of boundary parameters θ0 for z0 and θ1 for
z1 (where L is the diagonal line) prunes the parameter space. The blue region is
guaranteed to be consistent with W , as it is the intersection of the region below
θ+, which must satisfy JQθK(z1) = 1, and the region above θ−, which must
satisfy JQθK(z0) = 0. Conversely, the red regions are inconsistent with either z0
or z1, and therefore with W . Thus, the red regions can be pruned, whereas the
blue regions are solutions to our synthesis problem. Note that the red region is
the union of the red regions in Figure 4 (a) & (b), whereas the blue region is the
intersection of the blue regions in Figure 4 (a) & (b).

This pattern holds for any consistent pruning pair (θ− < θ+); if instead
the pair is inconsistent (θ− ≥ θ+), then the resulting pattern is illustrated in
Figure 4 (d); in this case, we can prune the red regions as before, but there is
no blue region of solutions. In general, for a d dimensional parameter space, a
pruning pair divides the parameter space into 3d boxes (i.e., for each dimension,
the box can be below, in line with, or above the center box). The regions below
θ− and above θ+ can be pruned, and the region between θ− and θ+ (if one
exists) contains synthesis solutions. Precisely, it follows from the definitions and
monotonicity that:

Lemma 2. Every θ ∈ ⌊−∞⃗, θ−⌉ and θ ∈ ⌊θ+,∞⌉ is inconsistent with W , and
every θ ∈ ⌊θ−, θ+⌉ is consistent with W .

The remaining boxes need to be further analyzed by our algorithm.

4.5 Pruning Parameter Search Algorithm

Next, we describe Algorithm 2, which searches over the space of parameters to
fill a sketch Q for a given datasetW . The algorithm uses a subroutine that takes
a box and returns a pruning pair in that box, which we describe in Section 4.6.
Given this subroutine, our algorithm maintains a work-list of “unknown” boxes
(i.e., unknown whether parameters in these boxes are consistent or inconsistent
with W). At each iteration, it pops a box from the work-list (in first-in-first-out
order), uses the given subroutine to find a pruning pair inside that box, applies
the pruning procedure described in the previous section, and then adds each new
unknown box to the work-list.

For the last step, the current box b is divided into 3d smaller boxes. The
box bcenter := ⌊min{θ−, θ+},max{θ−, θ+}⌉ is pruned (added to Binc) if the pair

12 S. Mell et al.

Algorithm 2 Synthesizes consistent parameters for a given sketch

1: procedure SynthesizeParameters(W,Q)
2: Bcon ← ∅; Binc ← ∅, Bunk ← {binitial}
3: for i ∈ {1, ..., N} do
4: b← Pop(Bunk)
5: θ−, θ+ ← ComputePruningPair(W,Q, b)
6: bcenter ←

⌊
min{θ−, θ+},max{θ−, θ+}

⌉
7: blower, bupper, Bincomp, Bextra ← SplitBox(b, bcenter)
8: if θ− < θ+ then
9: Bcon ← Bcon ∪ {bcenter}
10: Binc ← Binc ∪ {blower, bupper}
11: Bunk ← Bunk ∪Bincomp ∪Bextra

12: else if θ− ≥ θ+ then
13: Binc ← Binc ∪ {bcenter, blower, bupper} ∪Bextra

14: Bunk ← Bunk ∪Bincomp

15: return Bcon

(θ−, θ+) is inconsistent, and contains solutions to the synthesis problem oth-
erwise (added to Bcon). The boxes blower = ⌊−∞⃗,min{θ−, θ+}⌉ and bupper =
⌊max{θ−, θ+}, ∞⃗⌉ are always pruned. The boxes b ∈ Bincomp are the remaining
corners of b, and always have indeterminate consistency (added to Bunk). The
remaining boxes b ∈ Bextra are indeterminate if (θ−, θ+) is consistent, and in-
consistent otherwise. In our example, if the first step of the algorithm yielded
Figure 4 (d), then the second step might pop b6 and yield Figure 4 (e).

The following soundness result follows directly from Lemma 2.

Theorem 1. In Algorithm 2, every θ ∈ Bcon is consistent with W for Q, and
every θ ∈ Binc inconsistent.

In addition, the algorithm is complete for almost all parameters:

Theorem 2. The Lebesgue measure of {θ ∈ b | b ∈ Bunk} → 0 as N → ∞.

See Appendix D.1 for the proof. In other words, all parameters outside a sub-
set of measure zero are eventually classified as consistent or inconsistent; in-
tuitively, the parameters that may never be classified are the ones along the
decision boundary. This result holds since at any search depth, the fraction of
the parameter space pruned can be lower-bounded.

4.6 Computing Pruning Pairs via Quantitative Semantics

The pruning algorithm depends on the ability to compute, given a box b, a
pruning pair (θ−, θ+) on the restriction of the parameter space to b. Recall
that θ+ must be a boundary parameter for some z+ ∈ W+ and must satisfy
JQθ+K(z) = 1 for all other z ∈ W+, and θ− must be a boundary parameter for
some z− ∈W−, and must satisfy JQθ−K(z) = 0 for all other z ∈W−.

Given a box b = ⌊θmin, θmax⌉, our algorithm takes L ⊆ Rd to be the diagonal
from θmin to θmax and computes the pruning pair along L. We can näıvely

Synthesizing Trajectory Queries from Examples 13

Jφ??iKqv,u(z) :=
ιφ(z)− vi

ui

JφKqv,u(z) :=

{
∞ if satφ(z) = 1

−∞ if satφ(z) = 0.

JQ1 ∧Q2Kqv,u(z) := min{JQ1Kqv,u(z), JQ2Kqv,u(z)}
JQ1 ; Q2Kqv,u(z) := max

0≤k≤n
min{JQ1Kqv,u(z0:k), JQ2Kqv,u(zk:n)}

Fig. 5. The quantitative semantics of our language, taking a sketch Q, trajectory z,
parameter v ∈ Rd, and positive vector u ∈ Rd

>0. n is the length of z.

use binary search: for θ+, we search for the parameters where
∧

z∈W+JQθK(z)
transitions from 0 to 1, and similarly for θ− and

∧
z∈W− ¬JQθK(z).

Instead, by leveraging a quantitative semantics, we can directly compute
θ+ and θ−, thereby reducing computation time substantially. Given a sketch
Q, trajectory z, parameter v ∈ Rd, and positive vector u ∈ Rd

>0, we devise a
quantitative semantics JQKqv,u(z) ∈ R̄ such that the parameter JQKv,u(z) · u+ v
is a boundary parameter. Intuitively, this semantics computes, starting at v,
how many u-sized steps must be taken to reach the boundary. (For the uses
in our algorithm, the number of steps is always in [0, 1].) Then, for a box b =
⌊θmin, θmax⌉, we can take v = θmin and u = θmax − θmin, and compute

θ+ =

(
min

z∈W+
JQKqv,u(z)

)
· u+ v, θ− =

(
max
z∈W−

JQKqv,u(z)
)
· u+ v.

We define the quantitative semantics in Figure 5. The base case of φ?? adjusts
and rescales ιφ by v and u, and the other cases replace conjunction and disjunc-
tion in the satisfaction semantics with minimum and maximum. We have the
following key result (where ∞·u := ⊤, −∞·u := ⊥, ⊤+v := ⊤, and ⊥+v := ⊥):

Theorem 3. For a sketch Q, trajectory z, parameter v ∈ Rd, and positive vector
u ∈ Rd

>0, we have that JQKqv,u(z) · u+ v is a boundary parameter of z for Q.

See Appendix D.2 for the full proof. For intuition, consider θmin = 0⃗ and θmax = 1⃗
(i.e., the current box b ⊆ Rd is the unit hypercube). Then, v = 0⃗ and u = 1⃗,
so JQKqv,u reduces to the standard max-min quantitative semantics for temporal
logic [25].

Now, if we consider the satisfaction semantics of a base predicate JφθiK =
1(ιφ(z) ≥ θi), then the value of θi where the sementics flips is just ιφ(z). So
any parameter with i-th component ιφ(z) is a boundary parameter, and since
L has the same slope in all dimensions, the boundary parameter along L is
ιφ(z) · 1⃗ + 0⃗ = Jφ??iK

q

0⃗,⃗1
(z) · 1⃗ + 0⃗.

In the inductive cases, it suffices to show that we can replace conjunction and
disjunction with minimum and maximum in the semantics. Since the satisfaction

14 S. Mell et al.

semantics is monotonically decreasing, as we move upward along L, at some point
we will transition from 1 to 0. A conjunction becomes 0 when either conjunct
becomes 0, so the transition will occur when we hit the first of the conjuncts’
transition points (their minimum). Dually, a disjunction becomes 0 when both
disjuncts become 0, so we will transition at the last of the disjuncts’ transition
points (their maximum).

Finally, the intuition behind u and v is that they “preprocess” the parameters

so that we evaluate along the diagonal of the current box instead of
⌊
0⃗, 1⃗

⌉
.

4.7 Implementation

We implement our approach in a system called Quivr. It begins by running
Algorithm 1 on a small number of labeled examples.

Active learning. With a small number of examples, there are typically many
queries that are consistent with the labels, and yet which disagree on the labels of
the remaining data. To disambiguate, we use an active learning strategy, asking
the user to label specific trajectories that we choose, which are then added to
our set of labeled examples. Queries that are not consistent with the new label
are discarded. The labeling process continues until the set of consistent queries
agrees on the labels of all unlabeled data.

When choosing the trajectory z∗ to query the user for next, we select the
one on which the set of consistent queries C disagrees most—i.e.,

z∗ = argmin
z∈Z

∣∣∣∣J(z)− 1

2

∣∣∣∣ ,
where

J(z) := |C|−1
∑

Qθ∈C

1
(
ψ(z,y)(Qθ)

)
is the fraction of consistent queries that predict a positive label for trajectory z.

Search implementation. In some cases, searching for consistent parameters may
take a very long time. To improve performance, we impose a timeout: for each
sketch, we pause search if either: (i) we find some consistent box of parameters
or (ii) we’ve exceeded 25 steps. In both cases, we save the sets of consistent,
inconsistent, and unknown boxes. At each step of active learning, the newly
labeled example may render previously consistent parameters inconsistent, so
we mark all consistent boxes as unknown. We then resume search, again until
(i) we find some consistent box (which may be the same one we had before), or
(ii) we again exceed 25 steps.

Note that while this timeout may cause us to query the user more often than
is strictly necessary, it does not affect either the soundness or completeness of
our approach, as we continue search after querying the user.

Complete query selection. Active learning and evaluation of F1 scores (in Sec-
tion 5) both require complete queries with specific parameters, rather than

Synthesizing Trajectory Queries from Examples 15

Table 1. The predicates used for the YTStreams dataset.

Predicate Description

InLaneK(A) Whether, at every time-step in the interval, object A is sufficiently close to
the annotated curve for lane K and A’s movement direction is sufficiently
in line with the curve for K.

DurationNotShort Whether the interval spans at least 5 seconds.

AvgAccelGtθ Whether the average acceleration over the interval is at least θ.

DistanceLtθ Whether, at every time-step in the interval, the distance between the two
objects is less than θ.

SpeedRatioGtθ(A,B) Whether, at every time-step in the interval, the speed of A divided by the
speed of B is at least θ.

DispLtθ(A) Whether the distance between the position in the first frame of the interval
and the position in the last frame is less than θ.

sketches with boxes of parameters. Since the set C of consistent queries is in-
finitely large, we instead we use one query for each sketch that is known to
have consistent parameters (sketches where search timed-out are thus not in-
cluded). For those sketches, we pick the middle of the box of known-consistent
parameters.

5 Evaluation

We demonstrate how our approach can be used to synthesize queries to solve
interesting tasks: in particular, we show that (i) given just a few initial examples,
it can synthesize queries that achieve good performance on a held-out test set,
and (ii) our optimizations significantly reduce the synthesis time.

5.1 Experimental Setup

Datasets. We evaluate on two datasets of object trajectories: YTStreams [7],
consisting of video and extracted object trajectories from fixed-position traffic
cameras, and MABe22 [72], consisting of trajectories of up to three mice interact-
ing in a laboratory setting. We also evaluate on a synthetic maritime surveillance
task from the STL synthesis literature [44]. On YTStreams, we use two traffic
cameras, one in Tokyo and one in Warsaw, and we consider single cars or pairs
of cars. On MABe22, we consider pairs of mice. For the predicates used, see
Table 1 for YTStreams, Appendix Table 5 for MABe22, and Appendix Table 6
for maritime surveillance.

Tasks.On YTStreams, we manually wrote 5 ground truth queries. Several queries
apply to multiple configurations (e.g., different pairs of lanes), resulting in 10
queries total (tasks H-Q in Table 2). The real-valued parameters were chosen
manually, by visually examining whether they were selecting the desired tra-
jectories. These queries cover a wide range of behaviors; for instance, they can

16 S. Mell et al.

Table 2. Ground-truth queries for the YTStreams dataset. “IDs” indicates which
tasks are instances of a given query. Multiple instantiations correspond to different
lanes being used for “lane 1” and “lane 2”. The first is a one-object Shibuya query, the
second is a one-object Warsaw query, and the rest are two-object Warsaw queries.

IDs Query

H, I, J, K

〈
InLane1(A)

〉
;
〈
Any

〉
;
〈
InLane2(A)

〉
Matches cars that turn, starting in lane 1 and ending in lane 2.

L, M

〈
InLane1(A)

〉
∧

〈
AvgAccelGt(A)

〉
?? ∧ ⟨DurationNotShort⟩

Matches cars that accelerate for a significant period of time while in lane 1.

N

(〈
InLane1(A)

〉
;
〈
Any

〉
;
〈
InLane2(A)

〉)
∧

〈
InLane2(B)

〉
Matches pairs of cars where car B is in lane 2 for the entire duration of A turning

from lane 1 into lane 2.

O, P

〈
InLane1(A)

〉
∧

〈
InLane2(B)

〉
∧ ⟨DurationNotShort⟩ ∧

〈
SpeedFactorGt(A,B)

〉
??

Matches pairs of cars in parallel lanes, 1 and 2, where car A is going faster than car
B for a significant period of time.

Q

〈
InLane1(A)

〉
∧

〈
InLane2(B)

〉
∧ ⟨DurationNotShort⟩ ∧

〈
DistanceLt(A,B)

〉
??

Matches pairs of cars in parallel lanes, 1 and 2, where the cars are close for a
significant period of time.

Fig. 6. Trajectories selected by multi-object queries. Each image shows two objects;
the color of each one changes from red to green to denote the progression of time. Left:
Unprotected right turn into lane with oncoming traffic. Middle: Bottom car drives
faster than the top one and passes it. Right: One car driving closely behind the other.

capture behaviors such as human drivers making unprotected turns, an impor-
tant challenge for autonomous cars [64], as well as cars trying to pass [66]. We
show examples of trajectories selected by three of our multi-object queries in
Figure 6. MABe22 describes 9 queries for scientifically interesting mouse behav-
ior. We implemented the 6 most complex to use as ground truth queries (tasks
A-F in Appendix Table 7). The maritime surveillance task has trajectory labels
and so does not need a ground truth query (task G).

Synthesis. For each task, we divide the set Z of all trajectories into a train
set Ztrain and a test set Ztest, using trajectories in the first half of the video
for training, and those in the second half for testing. We randomly sample a
set of initial labeled examples W from Ztrain, with 2 samples being positive
and 10 being negative, and then actively label 25 additional examples from
Ztrain. For YTStreams and MABe22, labels are from the ground truth query.
For tractability, we limit search to sketches with at most three predicates, at

Synthesizing Trajectory Queries from Examples 17

Table 3. F1 score after n steps of active learning, with our algorithm for selecting tracks
to label (“Q”), an active learning ablation (“R”), an LSTM (“L”), and a transformer
(“T”). For Q and R, there may be many queries consistent with the labeled data, so
the median F1 score is reported. Bold indicates best score at a given number of steps.

ID
0 Steps 5 Steps 10 Steps 25 Steps

Q R L T Q R L T Q R L T Q R L T

A 0.69 0.69 1.00 0.74 1.00 1.00 1.00 0.74 1.00 1.00 1.00 0.74 1.00 1.00 1.00 0.74
B 0.99 0.99 0.47 0.20 0.99 0.99 0.47 0.25 0.99 0.99 0.47 0.05 0.99 0.98 0.47 0.06
C 0.96 0.96 0.38 0.09 0.99 0.96 0.38 0.08 0.99 0.96 0.38 0.02 0.99 0.98 0.38 0.01
D 0.77 0.77 0.52 0.27 0.99 0.96 0.52 0.28 0.99 0.99 0.52 0.32 0.99 1.00 0.52 0.08
E 1.00 1.00 0.44 0.29 1.00 1.00 0.44 0.14 1.00 1.00 0.44 0.13 1.00 1.00 0.44 0.07
F 0.88 0.88 0.78 0.38 0.99 0.96 0.78 0.39 1.00 0.96 0.78 0.18 1.00 0.96 0.78 0.27
G 0.68 0.68 0.65 0.78 1.00 1.00 0.65 0.77 1.00 1.00 0.65 0.77 1.00 1.00 0.65 0.77
H 0.30 0.30 0.12 0.22 0.34 0.34 0.13 0.23 0.92 0.92 0.13 0.22 0.92 0.92 0.13 0.37
I 0.37 0.37 0.13 0.00 1.00 0.37 0.13 0.00 1.00 1.00 0.13 0.00 1.00 1.00 0.13 0.31
J 0.07 0.07 0.01 1.00 0.41 0.07 0.01 0.86 0.80 0.09 0.04 0.75 0.80 0.09 0.04 0.86
K 0.28 0.28 0.15 0.00 0.99 0.27 0.15 0.00 0.99 0.99 0.15 0.00 0.99 0.99 0.15 0.00
L 0.67 0.67 0.07 0.37 0.96 0.88 0.07 0.42 0.96 0.88 0.07 0.08 0.96 0.88 0.07 0.31
M 0.92 0.92 0.10 0.37 0.99 0.92 0.10 0.46 0.99 0.92 0.10 0.00 0.99 0.92 0.10 0.18
N 0.60 0.60 0.02 0.00 0.20 0.09 0.02 0.00 0.11 0.21 0.02 0.00 0.18 0.78 0.02 0.31
O 0.11 0.11 0.01 0.04 0.50 0.17 0.01 0.21 0.70 0.17 0.01 0.21 1.00 0.21 0.01 0.00
P 0.16 0.16 0.04 0.04 0.23 0.21 0.03 0.04 0.82 0.21 0.03 0.14 1.00 0.29 0.03 0.14
Q 0.07 0.07 0.02 0.02 0.16 0.12 0.01 0.31 0.92 0.12 0.01 0.18 1.00 0.12 0.01 0.20

most two of which may have parameters. In most cases, this excludes the ground
truth from the search space.

5.2 Accuracy of Synthesized Queries

We show that Quivr synthesizes accurate queries from just a few labeled exam-
ples. We evaluate the F1 score of the synthesized queries on Ztest. Recall that
our algorithm returns a list C of consistent queries; we report the median F1

score across Q ∈ C.

Baselines. We compare to (i) an ablation where we replace our active learning
strategy with an approach that labels z uniformly at random from the remaining
unlabeled training examples; (ii) an LSTM [33,16] neural network; and (iii) a
transformer neural network [77,29,26]. Because neural networks perform poorly
on such small datasets, we pretrain the LSTM on an auxiliary task, namely,
trajectory forecasting [43]. Then, we freeze the hidden representation of the
learned LSTM, and use these as features to train a logistic regression model
on our labeled examples. The neural network baselines do active learning by
selecting among the unlabeled trajectories the one with the highest predicted
probability of being positive.

Results. We show the F1 score of each of the 17 queries in Table 3 after 0, 5,
10, and 25 steps of active learning. After just 10 steps, our approach provides
F1 score above 0.99 on 10 of 17 queries, and after 25 steps, it yields an F1 score
above 0.9 on all but 2 queries. Thus, Quivr is able to synthesize accurate queries
with relatively little user input. The neural networks achieve poor performance,
particularly on the more difficult queries.

18 S. Mell et al.

Table 4. Running time (seconds) of synthesis (mean ± standard error) using binary
search (B) and quantitative semantics (Q) running on CPU and GPU, with 25 steps
of active learning.

ID
CPU GPU

B Q B Q

A 8, 460 ± 1, 517 3, 343 ± 202 737 ± 36 174 ± 14
B 3, 511 ± 549 2, 291 ± 237 428 ± 37 110 ± 9
C 3, 319 ± 505 2, 007 ± 359 376 ± 6 113 ± 9
D 2, 728 ± 476 2, 714 ± 334 370 ± 8 119 ± 2
E 1, 264 ± 176 599 ± 54 225 ± 3 50 ± 1
F 1, 689 ± 360 748 ± 81 285 ± 7 60 ± 1
G 661 ± 141 133 ± 23 219 ± 77 30 ± 1
H 399 ± 70 147 ± 9 185 ± 94 32 ± 17
I 400 ± 74 84 ± 13 163 ± 85 23 ± 12
J 544 ± 120 173 ± 5 227 ± 121 36 ± 19
K 493 ± 77 125 ± 25 163 ± 83 30 ± 16
L 732 ± 47 286 ± 73 252 ± 133 57 ± 29
M 697 ± 40 253 ± 49 245 ± 128 56 ± 30
N 5, 691 ± 272 977 ± 176 1, 393 ± 590 264 ± 136
O 8, 306 ± 521 2, 314 ± 476 811 ± 12 127 ± 2
P 11, 326 ± 673 4, 198 ± 1, 333 970 ± 60 167 ± 8
Q 12, 430 ± 962 2, 915 ± 508 1, 141 ± 101 183 ± 11

5.3 Synthesis Running Time

Next, we show that quantitative pruning and using a GPU each significantly re-
duce synthesis time, evaluating total running time for 25 steps of active learning.

Ablations. We compare to two ablations: (i) using the binary search approach
of [53] to find pruning pairs, rather than using our quantitative semantics, and
(ii) evaluating the matrix semantics (Appendix A.1) on a CPU rather than a
GPU.

Results. In Figure 4, we report the running time of our algorithms on a CPU (2×
AMD EPYC 7402 24-Core) and a GPU (1× NVIDIA RTX A6000). For binary
search, on average, the GPU is 7.6× faster than the CPU. On a GPU, using the
quantitative semantics rather than binary search offers another 5.0× speed-up.

6 Related Work

Monotonicity for parameter pruning. We build on [49] for our parameter pruning
algorithm. Their approach has been applied to synthesizing STL formulas for
sequence classification by first enumerating sketches and then using monotonicity
to find parameters, similar to our binary search baseline [53]. We replace binary
search with our novel strategy based on quantitative semantics, leading to 5.0×
speedup. There is also work building on [49] to create logically-relevant distance
metrics between trajectories by taking the Hausdorff distance between parameter
satisfaction regions (which they call “validity domains”), with applications to
clustering [78]. For logics like STL, our quantitative semantics could provide a
speedup to their approach.

Synthesis of temporal logic formulas. More broadly, there has been work synthe-
sizing parameters in a variant of STL by discretizing the parameter space and

Synthesizing Trajectory Queries from Examples 19

then walking the satisfaction boundary [24]; in one dimension, their approach
becomes binary search, inheriting its shortcomings. There has been work on syn-
thesizing STL formulas that are satisfied by a closed-loop control model [38], but
they assume the ability to find counterexample traces for incorrect STL formu-
las, which is not applicable to our setting. Another approach is to synthesize
parameters in STL formulas using gradient-based optimization [35] or stochastic
optimization [45], but we found these methods to be ineffective in our setting,
and they do not come with either soundness or completeness guarantees. There
is work using decision trees to synthesize STL formulas [44,48,14,1], but these
operate on a restricted subset of STL, namely Boolean combinations of a fixed
set of template formulas. This restriction prevents these approaches from syn-
thesizing temporal structure, which is a key component of the queries in our
domains. Finally, there has been work on active learning of STL formulae using
decision trees [48], but it assumes the ability to query for equivalence between
a particular STL formula and the ground truth, which is not possible in our
setting.

Synthesizing constants. There is work on synthesizing parameters of programs
using counterexampled-guided inductive synthesis and different theory solvers,
including Fourier–Motzkin variable elimination and an SMT solver [2]. Though
our synthesis objective can be encoded in the theory of linear arithmetic, it is
extremely large, and we have found such solvers to be ineffective in practice.

Querying video data. There has been recent work on querying object detections
and trajectories in video data [40,28,41,42,7,8,54,5]. The main difference is our
focus on synthesis; in addition, these approaches focus on SQL-like operators
such as select, inner-join, group-by, etc., over predefined predicates, which can-
not capture compositions such as the sequencing and iteration operators in our
language, which are necessary for identifying more complex behaviors.

Neurosymbolic models. There has been recent work on leveraging program syn-
thesis in the context of machine learning. For instance, there has been work on
using programs to represent high-level structure in images [23,22,74,84,21], for
reinforcement learning [80,9,34,79], and for querying websites [18]; in contrast,
we use programs to classify trajectories. The most closely related work is on syn-
thesizing functional programs operating over lists [76,67]. Our language includes
key constructs not included in their languages. Most importantly, we include
sequencing; in their functional language, such an operator would need to be rep-
resented as a nested series of if-then-else operators. In addition, their language
does not support predicates that match subsequences; while such a predicate
could be added, none of their operators can compose such predicates.

Quantitative synthesis. There has been work on program synthesis with quanti-
tative properties—e.g., on synthesis for producing optimized code [65,57,37], for
approximate computing [52,15], for probabilistic programming [56], and for em-
bedded control [17]. These approaches largely focus on search-based synthesis,
either using constraint optimization [52], continuous optimization [17], enumer-

20 S. Mell et al.

ative search [15,57], or stochastic search [65,56,37]. While we leverage ideas from
this literature, our quantitative semantics based pruning strategy is novel.

Quantitative semantics. Our quantitative semantics is similar to the “robustness
degree” [25] of a temporal logic formula. The difference is that, by adjusting the
denotations of the base predicates, our quantitative semantics gives a parameter
on the satisfaction boundary. More broadly, there has been work on quantitative
semantics for temporal logic for robust constraint satisfaction [25,73,20], and to
guide reinforcement learning [39]. There has been work on quantitative regular
expressions (QREs) [4], though in general, QREs cannot be efficiently evaluated
due to their nondeterminism, and our language is restricted to ensure efficient
computation. There has been work on synthesizing QREs for network traffic
classification [68], using binary search to compute decision thresholds. Similarly,
there has been work using the Viterbi semiring to obtain quantitative semantics
for Datalog programs [69], which they use in conjunction with gradient descent
to learn the rules of the Datalog program. In contrast, we use our quantitative
semantics to efficiently prune the parameter search space in a provably correct
way. Finally, there has been work on using GPUs to evaluate regular expres-
sions [55]; however, they focus on regular expressions over strings.

Query languages. Our language is closely related to both signal temporal logic
(STL) [50] and Kleene algebras with tests (KAT) [46]. In particular, it can
straightforwardly be extended to subsume both (see Appendix A for details),
and our pruning strategy applies to this extended language. The addition of
Kleene star, required to subsume KAT, worsens the evaluation time. STL has
been used to monitor safety requirements for autonomous vehicles [32]. Spatio-
Temporal Perception Logic (SPTL) is an extension of STL to support spatial
reasoning [31]. Many of its operators are monotone, and thus would benefit
from our algorithm. Scenic [27] is a DSL for creating static and dynamic driving
scenes, but its focus is on generating scenes rather than querying for behaviors.

7 Conclusion

We have proposed a novel framework called Quivr for synthesizing queries over
video trajectory data. Our language is similar to KAT and STL, but supports
conjunction and sequencing over multi-step predicates. Given only a few exam-
ples, Quivr efficiently synthesizes trajectory queries consistent with those ex-
amples. A key contribution of our approach is the use of a quantitative semantics
to prune the parameter search space, yielding a 5.0× speedup over the state-of-
the-art. In our evaluation, we demonstrate that Quivr effectively synthesizes
queries to identify interesting driving behaviors, and that our optimizations dra-
matically reduce synthesis time.

Acknowledgements We thank the anonymous reviewers for their helpful feed-
back. This work was supported in part by NSF Award CCF-1910769, NSF Award
CCF-1917852, and ARO Award W911NF-20-1-0080.

Synthesizing Trajectory Queries from Examples 21

References

1. Aasi, E., Vasile, C.I., Bahreinian, M., Belta, C.: Classification of time-series
data using boosted decision trees. In: 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). pp. 1263–1268 (2022).
https://doi.org/10.1109/IROS47612.2022.9982105

2. Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Counterexample
guided inductive synthesis modulo theories. In: Chockler, H., Weissenbacher, G.
(eds.) Computer Aided Verification. pp. 270–288. Springer International Publish-
ing, Cham (2018)

3. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. IEEE
(2013)

4. Alur, R., Mamouras, K., Ulus, D.: Derivatives of quantitative regular expressions.
In: Models, algorithms, logics and tools, pp. 75–95. Springer (2017)

5. Bastani, F., Bastani, O., Balasingam, A., He, S., Jiang, Z., Mittal, R., Alizadeh,
M., Balakrishnan, H., Kraska, T., Madden, S.: Skyquery: Optimizing video queries
over uavs (2019)

6. Bastani, F., Bastani, O., Balasingam, A., He, S., Jiang, Z., Mittal, R., Alizadeh,
M., Balakrishnan, H., Kraska, T., Madden, S.: Skyquery: Optimizing video queries
over uavs. In: Onward! (2021)

7. Bastani, F., He, S., Balasingam, A., Gopalakrishnan, K., Alizadeh, M., Balakrish-
nan, H., Cafarella, M., Kraska, T., Madden, S.: Miris: Fast object track queries
in video. In: Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. pp. 1907–1921 (2020)

8. Bastani, F., Moll, O., Madden, S.: Vaas: video analytics at scale. Proceedings of
the VLDB Endowment 13(12), 2877–2880 (2020)

9. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy
extraction. In: Advances in neural information processing systems. pp. 2494–2504
(2018)

10. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles.
In: Proceedings of the IEEE international conference on computer vision. pp. 941–
951 (2019)

11. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-
convolutional siamese networks for object tracking. In: European conference on
computer vision. pp. 850–865. Springer (2016)

12. Betke, M., Hirsh, D.E., Bagchi, A., Hristov, N.I., Makris, N.C., Kunz, T.H.: Track-
ing large variable numbers of objects in clutter. In: 2007 IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1–8. IEEE (2007)

13. Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L.: The ind
dataset: A drone dataset of naturalistic road user trajectories at german intersec-
tions. arXiv preprint arXiv:1911.07602 (2019)

14. Bombara, G., Belta, C.: Offline and online learning of signal temporal logic for-
mulae using decision trees. ACM Trans. Cyber-Phys. Syst. 5(3) (mar 2021).
https://doi.org/10.1145/3433994, https://doi.org/10.1145/3433994

15. Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 775–788 (2016)

https://doi.org/10.1109/IROS47612.2022.9982105
https://doi.org/10.1145/3433994
https://doi.org/10.1145/3433994

22 S. Mell et al.

16. Chang, M.F., Lambert, J.W., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang,
D., Carr, P., Lucey, S., Ramanan, D., Hays, J.: Argoverse: 3d tracking and forecast-
ing with rich maps. In: Conference on Computer Vision and Pattern Recognition
(CVPR) (2019)

17. Chaudhuri, S., Clochard, M., Solar-Lezama, A.: Bridging boolean and quantitative
synthesis using smoothed proof search. In: Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 207–220 (2014)

18. Chen, Q., Lamoreaux, A., Wang, X., Durrett, G., Bastani, O., Dillig, I.: Web
question answering with neurosymbolic program synthesis. In: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation. pp. 328–343 (2021)

19. Dasgupta, S.: Analysis of a greedy active learning strategy. In: Advances in neural
information processing systems. pp. 337–344 (2005)

20. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Ro-
bust online monitoring of signal temporal logic. Formal Methods in System Design
51(1), 5–30 (2017)

21. Ellis, K., Nye, M., Pu, Y., Sosa, F., Tenenbaum, J., Solar-Lezama, A.: Write,
execute, assess: Program synthesis with a repl. In: Advances in Neural Information
Processing Systems. pp. 9169–9178 (2019)

22. Ellis, K., Ritchie, D., Solar-Lezama, A., Tenenbaum, J.: Learning to infer graphics
programs from hand-drawn images. In: Advances in neural information processing
systems. pp. 6059–6068 (2018)

23. Ellis, K., Solar-Lezama, A., Tenenbaum, J.: Unsupervised learning by program syn-
thesis. In: Advances in neural information processing systems. pp. 973–981 (2015)

24. Ergurtuna, M., Gol, E.A.: An efficient formula synthesis method with
past signal temporal logic. IFAC-PapersOnLine 52(11), 43–48 (2019).
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.09.116, https://www.
sciencedirect.com/science/article/pii/S2405896319307451, 5th IFAC Conference
on Intelligent Control and Automation Sciences ICONS 2019

25. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009)

26. Franco, L., Placidi, L., Giuliari, F., Hasan, I., Cristani, M., Galasso, F.: Under the
hood of transformer networks for trajectory forecasting. Pattern Recognition 138,
109372 (2023). https://doi.org/https://doi.org/10.1016/j.patcog.2023.109372,
https://www.sciencedirect.com/science/article/pii/S0031320323000730

27. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Se-
shia, S.A.: Scenic: a language for scenario specification and scene generation. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 63–78 (2019)

28. Fu, D.Y., Crichton, W., Hong, J., Yao, X., Zhang, H., Truong, A., Narayan, A.,
Agrawala, M., Ré, C., Fatahalian, K.: Rekall: Specifying video events using com-
positions of spatiotemporal labels. arXiv preprint arXiv:1910.02993 (2019)

29. Giuliari, F., Hasan, I., Cristani, M., Galasso, F.: Transformer networks for trajec-
tory forecasting (2020)

30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

31. Hekmatnejad, M., Hoxha, B., Deshmukh, J.V., Yang, Y., Fainekos, G.: Formalizing
and evaluating requirements of perception systems for automated vehicles using
spatio-temporal perception logic (2022)

https://doi.org/https://doi.org/10.1016/j.ifacol.2019.09.116
https://www.sciencedirect.com/science/article/pii/S2405896319307451
https://www.sciencedirect.com/science/article/pii/S2405896319307451
https://doi.org/https://doi.org/10.1016/j.patcog.2023.109372
https://www.sciencedirect.com/science/article/pii/S0031320323000730

Synthesizing Trajectory Queries from Examples 23

32. Hekmatnejad, M., Yaghoubi, S., Dokhanchi, A., Amor, H.B., Shrivastava, A.,
Karam, L., Fainekos, G.: Encoding and monitoring responsibility sensitive safety
rules for automated vehicles in signal temporal logic. In: Proceedings of the 17th
ACM-IEEE International Conference on Formal Methods and Models for System
Design. MEMOCODE ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3359986.3361203, https://doi.org/10.1145/
3359986.3361203

33. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

34. Inala, J.P., Bastani, O., Tavares, Z., Solar-Lezama, A.: Synthesizing programmatic
policies that inductively generalize. In: International Conference on Learning Rep-
resentations (2019)

35. Jha, S., Tiwari, A., Seshia, S.A., Sahai, T., Shankar, N.: Telex: learning signal
temporal logic from positive examples using tightness metric. Formal Methods in
System Design 54(3), 364–387 (Nov 2019). https://doi.org/10.1007/s10703-019-
00332-1, https://doi.org/10.1007/s10703-019-00332-1

36. Ji, R., Liang, J., Xiong, Y., Zhang, L., Hu, Z.: Question selection for interactive
program synthesis. In: Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 1143–1158 (2020)

37. Jia, Z., Thomas, J., Warszawski, T., Gao, M., Zaharia, M., Aiken, A.: Optimizing
dnn computation with relaxed graph substitutions. In: Proceedings of the 2nd
Conference on Systems and Machine Learning (SysML’19) (2019)

38. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements
from closed-loop control models. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 34(11), 1704–1717 (2015).
https://doi.org/10.1109/TCAD.2015.2421907

39. Jothimurugan, K., Alur, R., Bastani, O.: A composable specification language for
reinforcement learning tasks. In: Advances in Neural Information Processing Sys-
tems. pp. 13041–13051 (2019)

40. Kang, D., Bailis, P., Zaharia, M.: Blazeit: optimizing declarative aggregation and
limit queries for neural network-based video analytics. Proceedings of the VLDB
Endowment 13(4), 533–546 (2019)

41. Kang, D., Mathur, A., Veeramacheneni, T., Bailis, P., Zaharia, M.: Jointly opti-
mizing preprocessing and inference for dnn-based visual analytics. arXiv preprint
arXiv:2007.13005 (2020)

42. Kang, D., Raghavan, D., Bailis, P., Zaharia, M.: Model assertions for monitoring
and improving ml model. arXiv preprint arXiv:2003.01668 (2020)

43. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In:
European conference on computer vision. pp. 201–214. Springer (2012)

44. Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anoma-
lous behavior. IEEE Transactions on Automatic Control 62(3), 1210–1222 (2017).
https://doi.org/10.1109/TAC.2016.2585083

45. Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., Belta, C.: Temporal
logic inference for classification and prediction from data. In: Proceedings of the
17th International Conference on Hybrid Systems: Computation and Control.
p. 273–282. HSCC ’14, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2562059.2562146, https://doi.org/10.1145/
2562059.2562146

46. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 19(3), 427–443 (1997)

https://doi.org/10.1145/3359986.3361203
https://doi.org/10.1145/3359986.3361203
https://doi.org/10.1145/3359986.3361203
https://doi.org/10.1007/s10703-019-00332-1
https://doi.org/10.1007/s10703-019-00332-1
https://doi.org/10.1007/s10703-019-00332-1
https://doi.org/10.1109/TCAD.2015.2421907
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1145/2562059.2562146
https://doi.org/10.1145/2562059.2562146
https://doi.org/10.1145/2562059.2562146

24 S. Mell et al.

47. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Communications of the ACM 60(6), 84–90 (2017)

48. Linard, A., Tumova, J.: Active learning of signal temporal logic specifications. In:
2020 IEEE 16th International Conference on Automation Science and Engineering
(CASE). pp. 779–785 (2020). https://doi.org/10.1109/CASE48305.2020.9216778

49. Maler, O.: Learning Monotone Partitions of Partially-Ordered Domains (Work in
Progress) (Jul 2017), https://hal.science/hal-01556243, working paper or preprint

50. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems. pp. 152–166. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004)

51. Mell, S., Bastani, F., Zdancewic, S., Bastani, O.: Synthesizing trajectory queries
from examples. Tech. Rep. MS-CIS-23-02, Department of Computer and Informa-
tion Science, University of Pennsylvania, Philadelphia, Pennsylvania (July 2023)

52. Misailovic, S., Carbin, M., Achour, S., Qi, Z., Rinard, M.C.: Chisel: Reliability-and
accuracy-aware optimization of approximate computational kernels. ACM Sigplan
Notices 49(10), 309–328 (2014)

53. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M.,
Donzé, A.: Interpretable classification of time-series data using efficient enumer-
ative techniques. In: Proceedings of the 23rd International Conference on Hybrid
Systems: Computation and Control. HSCC ’20, Association for Computing Ma-
chinery, New York, NY, USA (2020). https://doi.org/10.1145/3365365.3382218,
https://doi.org/10.1145/3365365.3382218

54. Moll, O., Bastani, F., Madden, S., Stonebraker, M., Gadepally, V., Kraska, T.:
Exsample: Efficient searches on video repositories through adaptive sampling.
arXiv preprint arXiv:2005.09141 (2020)

55. Naghmouchi, J., Scarpazza, D.P., Berekovic, M.: Small-ruleset regular expression
matching on gpgpus: quantitative performance analysis and optimization. In: Pro-
ceedings of the 24th ACM International Conference on Supercomputing. pp. 337–
348 (2010)

56. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. ACM SIGPLAN Notices 50(6), 208–217 (2015)

57. Phothilimthana, P.M., Thakur, A., Bodik, R., Dhurjati, D.: Scaling up superopti-
mization. In: Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. pp. 297–310
(2016)

58. Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: A large nano-
quadcopter swarm. In: 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA). pp. 3299–3304. IEEE (2017)

59. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

60. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

61. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette:
Human trajectory prediction in crowded scenes. In: European Conference on Com-
puter Vision (ECCV) (2016)

62. Roy, N., McCallum, A.: Toward optimal active learning through sampling estima-
tion of error reduction. int. conf. on machine learning (2001)

https://doi.org/10.1109/CASE48305.2020.9216778
https://hal.science/hal-01556243
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.1145/3365365.3382218

Synthesizing Trajectory Queries from Examples 25

63. Sadigh, D., Sastry, S.S., Seshia, S.A., Dragan, A.: Information gathering actions
over human internal state. In: 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). pp. 66–73. IEEE (2016)

64. Sadigh, D., Sastry, S., Seshia, S.A., Dragan, A.D.: Planning for autonomous cars
that leverage effects on human actions. In: Robotics: Science and Systems. vol. 2.
Ann Arbor, MI, USA (2016)

65. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. ACM
SIGARCH Computer Architecture News 41(1), 305–316 (2013)

66. Schmerling, E., Leung, K., Vollprecht, W., Pavone, M.: Multimodal probabilistic
model-based planning for human-robot interaction. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). pp. 1–9. IEEE (2018)

67. Shah, A., Zhan, E., Sun, J., Verma, A., Yue, Y., Chaudhuri, S.: Learning differen-
tiable programs with admissible neural heuristics. Advances in Neural Information
Processing Systems 33 (2020)

68. Shi, L., Li, Y., Loo, B.T., Alur, R.: Network traffic classification by program synthe-
sis. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems. pp. 430–448. Springer International Publishing, Cham
(2021)

69. Si, X., Raghothaman, M., Heo, K., Naik, M.: Synthesizing datalog programs using
numerical relaxation. In: IJCAI (2019)

70. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. nature 529(7587),
484–489 (2016)

71. Solar-Lezama, A.: Program synthesis by sketching. University of California, Berke-
ley (2008)

72. Sun, J.J., Geuther, B., Kumar, V., Robie, A., Schretter, C., Sheppard,
K., Chakraborty, D., Branson, K., Kennedy, A.: The mabe22 bench-
marks for representation learning of multi-agent behavior (Jun 2022).
https://doi.org/10.22002/D1.20186

73. Tabuada, P., Neider, D.: Robust linear temporal logic. Computer Science Logic
2016 (2016)

74. Tian, Y., Luo, A., Sun, X., Ellis, K., Freeman, W.T., Tenenbaum, J.B., Wu, J.:
Learning to infer and execute 3d shape programs. arXiv preprint arXiv:1901.02875
(2019)

75. Tweed, D., Calway, A.: Tracking multiple animals in wildlife footage. In: Object
recognition supported by user interaction for service robots. vol. 2, pp. 24–27. IEEE
(2002)

76. Valkov, L., Chaudhari, D., Srivastava, A., Sutton, C., Chaudhuri, S.: Houdini: Life-
long learning as program synthesis. In: Advances in Neural Information Processing
Systems. pp. 8687–8698 (2018)

77. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(eds.) Advances in Neural Information Processing Systems. vol. 30. Curran As-
sociates, Inc. (2017), https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

78. Vazquez-Chanlatte, M., Ghosh, S., Deshmukh, J.V., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Time-series learning using monotonic logical properties. In: Colombo,
C., Leucker, M. (eds.) Runtime Verification. pp. 389–405. Springer International
Publishing, Cham (2018)

https://doi.org/10.22002/D1.20186
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

26 S. Mell et al.

79. Verma, A., Le, H., Yue, Y., Chaudhuri, S.: Imitation-projected programmatic re-
inforcement learning. In: Advances in Neural Information Processing Systems. pp.
15752–15763 (2019)

80. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically in-
terpretable reinforcement learning. In: ICML (2018)

81. Weinstein, A., Cho, A., Loianno, G., Kumar, V.: Visual inertial odometry swarm:
An autonomous swarm of vision-based quadrotors. IEEE Robotics and Automation
Letters 3(3), 1801–1807 (2018)

82. Wishart, J., Como, S., Elli, M., Russo, B., Weast, J., Altekar, N., James, E., Chen,
Y.: Driving safety performance assessment metrics for ads-equipped vehicles. SAE
Technical Paper 2(2020-01-1206) (2020)

83. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep
association metric. In: 2017 IEEE international conference on image processing
(ICIP). pp. 3645–3649. IEEE (2017)

84. Young, H., Bastani, O., Naik, M.: Learning neurosymbolic generative models via
program synthesis. In: ICML (2019)

85. Zhan, E., Tseng, A., Yue, Y., Swaminathan, A., Hausknecht, M.: Learning cali-
bratable policies using programmatic style-consistency. In: ICML (2020)

	Synthesizing Trajectory Queries from Examples

