
Unifying Confidentiality and Integrity in Downgrading Policies

Peng Li Steve Zdancewic
Department of Computer and Information Science

University of Pennsylvania
{lipeng,stevez}@cis.upenn.edu

May 13, 2005

Abstract

Confidentiality and integrity are often treated as dual properties in formal models of information-flow con-
trol, access control and many other areas in computer security. However, in contrast to confidentiality policies,
integrity policies are less formally studied in the information-flow control literature. One important reason is
that traditional noninterference-based information-flowcontrol approaches give very weak integrity guarantees
for untrusted code. Integrity and confidentiality policiesare also different with respect to implicit information
channels.

This paper studies integrity downgrading policies in information-flow control and compares them with their
confidentiality counterparts. We examine the drawbacks of integrity policies based on noninterference formal-
izations and study the integrity policies in the framework of downgrading policies and program equivalences.
We give semantic interpretations for traditional securitylevels for integrity, namely,tainted anduntainted, and
explain the interesting relations between confidentialityand integrity in this framework.

Keywords: language-based security, information flow, integrity, downgrading, security policy.

1 Introduction

Language-based information-flow security [11] provides end-to-end guarantees on the dependency and the propa-
gation of information in the system, which is usually formalized asnoninterference[2, 5] properties. Such security
guarantees are ideal for protectingconfidentiality, where secret information is not permitted to propagate to pub-
lic places. On the other hand, information-flow control can also be used to provideintegrity guarantees, where
important data in the system is not allowed to be affected by untrusted sources of information. Confidentiality
and integrity can be viewed as duals [1] in many areas of computer security. In information flow, confidentiality
policies prevent secret data from being leaked out to the adversary, while integrity policies restrict the use of data
coming from the adversary.

There are very practical applications of information-flow policies for integrity. For example, an unsafe script
on the web server could use strings from untrusted inputs to compose a SQL query string and then have the
database management system execute the query, which potentially allow the attacker to execute commands in the
database. The Perl programming language provides built-insupport for dynamic information-flow checking. Data
from user inputs and the network is marked as tainted, while system calls require untainted data. Tainted data
can be converted to untainted data through pattern matching, which effectively forces the programmer to examine
untrusted data and avoid malicious attacks. Code analysis tools such as cqual [12] perform static information-
flow checking to detect the use of dangerous data. Such tools have been used to find bugs in large-scale software
systems.

1



Despite the practical interests, integrity policies are often less formally studied in the literature of language-
based information-flow security. Many formal studies are focused on confidentiality and merely mention that
confidentiality and integrity are duals. In fact, confidentiality and integrity are not symmetric in traditional ap-
proaches based on noninterference. The noninterference property is too emphasized for confidentiality and it is
not appropriate for integrity. For example, noninterference does not give useful integrity guarantees for untrusted
code, and it is often too strong for practical use because it rules out all implicit information flows, most of which
are not harmful. Noninterference also does not handle downgrading. Section 2 identifies these challenges on
integrity policies in information-flow.

To fix the aforementioned weaknesses of noninterference-based integrity policies, we need alternative formal-
izations for information flow. Out recent research [4] uses downgrading policies and program equivalences to
formalize the goals of language-based information-flow security. The original motivation is to achieve an end-
to-end security guarantee like noninterference whendowngrading(or declassification) is available in the system.
While this framework was originally focused on confidentiality, it also provides a basis for very expressive in-
tegrity downgrading policies. Moreover, it is possible to achieve a better formal security goal for integrity that
avoids the drawbacks of noninterference-based definitions. Section 3 extends the framework of downgrading poli-
cies with integrity policies. We discuss how to formalize the security goal for integrity present a highly symmetric
view over confidentiality and integrity in this framework.

2 Challenges of Integrity

2.1 Policy expressiveness

The formal definition of noninterference gives an intuitiveand absolute meaning of confidentiality, but its rela-
tionship with integrity is less straightforward. In general, integrity has many meanings in computer security. For
example, Pfleeger’s security textbook [8] describes integrity policies that require that: data is modified only by
authorized principals, data is modified in permitted ways, data is consistent, valid, meaningful and correct, etc.
The actual meaning of integrity depends on the specific context. Noninterference only provides a particular kind
of integrity guarantee, that is, trusted data is not affected by the propagation of untrusted data. Apparently, there
are many information integrity policies that noninterference cannot express. Most useful integrity policies involve
accurate description of the actual computation. Integritypolicies should not only specify who modified the data,
but also specify how the data is manipulated.

2.2 Untrusted code

For untrusted code, noninterference gives a strong and practically useful guarantee for data confidentiality. This
makes information-flow control a killer application for safely executing untrusted programs while giving them
accesses to secret information.

However, traditional noninterference gives almost no integrity guarantee for untrusted code. The reason is that,
when the code is not trusted, the adversary can manipulate trusted data in arbitrary ways in the program. For
example, suppose the following functionfoo is written by an adversary. It takes two input arguments, performs
some computation and returns auntainted value.

untainted int foo( untainted int a, tainted int b) { return a-a+0xff00; }

Althoughfoo satisfies the noninterference policy, i.e. there is no information flow from thetainted input
b to theuntainted result, the result is not at all trustworthy because the adversary can return any arbitrary
value in this function. Therefore, the data coming from untrusted programs (or software modules) must always be
treated as tainted. Integrity policies based on noninterference definitions can only used in trusted environments,

2



where the programmers are cooperative and goal is to preventaccidental security exploits in trusted code. For the
same reason, the two-dimensionaldecentralized label model[7] for confidentiality falls back to a one-dimensional
model for integrity [3], which makes the integrity labels much less expressive in languages with information-flow
type systems, such as FlowCaml [13, 9, 10] and Jif [6].

2.3 Downgrading

Pure noninterference is too ideal for practical applications. Most of the time, we do need to use information from
untrusted sources in trusted places, as long as the tainted data can are verified to be safe. In the example of taint-
checking mode in Perl, tainted data can be converted to untainted using pattern-matching. Clearly, there can be
information propagation from untainted data to tainted, and noninterference policies are not directly applicable.
This is the dual case for confidentiality, where secret data also needs to be declassified. This paper extends the
framework ofdowngrading policies[4] and presents a symmetrical version of integrity downgrading policies,
sometimes calledendorsement.

2.4 Implicit information flow

Most confidentiality policies do not tolerate implicit information leakage. There are many implicit information
channels such as control flow, timing channels and various side-effects that must be considered when untrusted
code is available. For example, the following code has an implicit information leak fromsecret to x via control
flow. If the code is not trusted andx is a publicly visible, the adversary can easily know the lastbit of secret by
observing the value ofx. Noninterference policies rules out such implicit flows.

if (secret%2=1) then x:=1 else x:=0;

A straightforward solution is to usedowngradingon the branching conditions where implicit flows are allowed.
However, such implicit information propagation is almost always acceptable for data integrity policies, where the
programmers are trusted and the goal is to prevent accidental destruction of trustworthy data. For example, the
taint-checking mode in Perl does not check implicit information flows at all. Since the value of any trustworthy
data can be directly modified by the programmer without violating information-flow policies as we have shown in
thefoo function above, there are few reasons to prevent implicit information flows, which are much more difficult
to exploit to cause damage. Therefore, the security policy for protecting integrity does not have to be as strict as
pure noninterference policies. Implicit information flow should be allowed by default, without the awkwardness
of using explicit downgrading mechanisms.

3 Downgrading Policies for Integrity

To avoid the drawbacks of noninterference-based integritypolicies, we study them in an alternative formal frame-
work. Our recent research [4] uses downgrading policies andprogram equivalences to formalize the security goals
of language-based information-flow security. This framework was originally focused on confidentiality, and this
paper extends the integrity aspect of it. Similar to confidentiality labels, we define a partial ordering on integrity
labels, formalizes the downgrading relation for integrity, and give interpretations to traditional security levels such
asuntaintedandtainted. To highlight the symmetry between confidentiality and integrity, the definitions for two
kinds of policies are given in parallel for the rest of the paper.

Briefly, this framework usesdowngrading policiesto express security levels of data and define the ordering
among these security levels, which generalizes the simple security latticespublic v secret for confidentiality and
untainted v tainted for integrity. A security level is simply a non-empty set of downgrading policies, where

3



each policy describes the computation related to downgrading. We reason about the programs in an end-to-end
fashion. Each program takes input data and produces output data. Confidentiality policies are specified for each
program input; integrity policies are specified for the program output. The security goal is then formalized using
such security policies.

3.1 Downgrading policies and security labels

type τ ::= int | τ →τ
constant c ::= 0, 1, 2, ...
operator ⊕ ::= +,−,%,=, ...
downgrading policy m ::= λx :τ.m | m m | x | c | ⊕ | if m m m
confidentiality label cl ::= {m1, . . . ,mk} | secretτ | publicτ

integrity label il ::= {m1, . . . ,mk} | taintedτ | untaintedτ

Figure 1: Downgrading Policies and Security Labels

The syntax of downgrading policies and security labels is shown in Figure 1. Each downgrading policy is a
term in the simply-typedλ-calculus, extended with operators and constants. The policy language is intended to
be a fragment of the full language for which equivalence is decidable, so that the primitive operators will match
those in the full language. Each downgrading policy represents some computation associated with downgrading
as following:

• Confidentiality policies: each policy is a function that specifies how the data can be released to the public
in the future. When this function is applied to the annotateddata, the result is considered as public. For
example, if a secret variablex is annotated with the confidentiality policyλx.x%2, it means the last bit of
x can be released to public.

• Integrity policies: each policy is a term that specifies how the data has been computed in the past. For
example, the integrity policy “2” means the data must be equal to2 and works like a singleton type. The
policy can be a function, too. For example, the policyλx.x%10 for an integer means that the integer must
have been computed byx%10, wherex is potentially untrusted and we do not know whatx is. Another
useful policy isλx.λy.match(x, y), wherematch is a predefined pattern matching function and the policy
means the data is the result of pattern matching. The weakestpolicy is the identity function,λx.x, which
simply gives no information about the how the data has been computed in the past.

Policies are typed in the simply-typedλ-calculus using the judgmentΓ ` m : τ . We use standardβ-η equiv-
alencesΓ ` m1 ≡ m2 : τ for policy terms. Policy terms can be composed as functions using the following
definitions.

Definition 3.1.1 (Policy composition) If Γ ` m1 : τ1 → τ3 andΓ ` m2 : τ2 → τ1, the composition ofm1 andm2

is defined asm1 ◦Γ m2

4
= λx :τ2.m1 (m2 x)

Definition 3.1.2 (Multi composition) If Γ ` m1 : τ → τ ′ andΓ ` m2 : τ1 → . . .→ τk → τ , the multi-composition

of m1 andm2 is defined asm1 �Γ m2

4
= λx1 :τ1. . . . λxk :τk.m1(m2 x1 . . . xk)

Given the definition of downgrading policies, we can define a security label as a non-empty set of downgrading
policies. We slightly abuse the notation to usecl to range over confidentiality labels andil to range over integrity
labels. Labels are well-formed with respect to the type of data it annotates.

4



Definition 3.1.3 (Label wellformedness)
` cl / τ ⇐⇒ ∀m ∈ cl,∃τ1,` m : (τ →τ1)

` il / τ ⇐⇒ ∀m ∈ il,∃τ1, . . . ,∃τk,` m : (τ1 → . . .→τk →τ)

The meanings of two kinds of labels are symmetric:

• Confidentiality labels: each policy in the label can be used to declassify the data in the future. For example,
if the valuep is annotated with the confidentiality label{(λp.λx.p=x), (λp.p%2)}, it means thatp can be
declassified by comparing it with some other value, or by extracting its last bit.

• Integrity labels: each policy describes a possible computation that generated the value as the result in the
past. For example, if the valuep is annotated with the integrity label{(λx.match(x, c1)), c2}, it means the
value is either the result of pattern-matching against patternc1 or a predefined constantc2.

3.2 Label Ordering

Each label is syntactically represented as a set of downgrading policies, but the semantics of the label includes far
more policies than explicitly specified. We define the interpretation of security labels as the following.

Definition 3.2.1 (Label interpretation)

Sτ (cl)
4
= {n′ | n ∈ cl, ` n′ ≡ m ◦Γ n : τ2}

Sτ (il)
4
= {n′ | n ∈ il, ` n : (τ1 → . . .→τk →τ),

` n′ ≡ (λx1 :τ ′
1
. . . . λxi :τ

′
i .n m1 . . . mj) : (τ ′

1
→ . . .→τ ′

i →τ) }

To understand the above definitions, suppose the security label has the policyn:

• For confidentiality: any functionm composed withn is also a valid downgrading policy implied byn. The
intuition is that if(n x) is public, then(m (n x)) is also public, no matter whatm is.

• For integrity: if we can composen with some other terms and get a larger termn′, in whichn represent the
final step of computation, thenn′ is also implied in this label, because any data computed byn′ can also be
treated as if it is computed byn using some input data.

For example, suppose we have an integrity labelil1
4
= {λx.match(x, c1)}, then the following policies are

also inS(il1): (λa.λb.match(a + b, c1)), (match(c2, c1)), etc. Intuitively speaking, if we only know that
the data is the result of pattern-matching against the pattern c1, then there are possibilities that the value
matched withc1 could bea + b, c2, or any other values.

Based on the semantics of labels, we can easily define the ordering on security labels, using the set inclusion
relation on label interpretations. We use the notationl1 v l2 to sayl2 is a higher security level thanl1. The
definitions for confidentiality and integrity labels are completely symmetric.

Definition 3.2.2 (Label ordering)
cl1 v cl2 / τ ⇐⇒ Sτ (cl1) ⊇ Sτ (cl2), il1 v il2 / τ ⇐⇒ Sτ (il1) ⊆ Sτ (il2).

• Confidentiality: high security levels correspond to secretlevels, low security levels corresponds to public
levels. The intuition is that, each policy in the label corresponds to a path where secret data can be released
to public places. The fewer paths there are, the more secure the data is.

5



• Integrity: high security levels correspond to tainted or untrusted levels and low security levels corresponds
to trusted levels, because we would like to allow information flow from low levels to high levels but not
in the other direction. The intuition is that, each policy corresponds to a possible computation that have
generated the data. The more possibilities there are, the less trustworthy the data is.

We claim that the ordering of security labels generalizes the two-point latticespublic v secret anduntainted v
tainted. In fact, all these traditional security levels can be interpreted in the framework of downgrading policies:

Definition 3.2.3 (Interpretation of special labels)

secretτ
4
= {λx :τ.0} publicτ

4
= {λx :τ.x} taintedτ

4
= {λx :τ.x} untaintedτ

4
= {m | ` m :τ}

• Confidentiality: we can prove that all the confidentiality labels of a given type form a lattice, wheresecretτ
is the top andpublicτ is the bottom.

• Integrity: we can prove thattaintedτ is the highest label of all the integrity labels. However, there is no
single lowest label in the integrity ordering. Instead, there are many different lowest labels. For example,
supposeτ = int, then{c0}, {c1} and so on are all lowest labels. For a set of labels, their join(least upper
bound) always exists, but they may not have a lower bound.

The interpretation ofuntaintedτ is the set of policies representing computations that do notuse potentially
untrusted inputs. We choose this interpretation for two reasons. First, it reflects the meaning of “untainted”,
i.e. the corresponding computation did not use tainted data. Second, its semantics is backward compatible
with untainted in the traditional two-point security lattice, because when twountainted data meets together
during computation (i.e. when computingc1 + c2), the result can also be labeled asuntainted, which is
the way things work in the two-point lattice. Thus, the ordering on integrity labels can be understood as a
refined version of the two-point latticeuntainted v tainted.

Apparently,untaintedτ does not provide a very strong security guarantee: data withthis label can have any
value. This coincides with the facts we mentioned in Section2.2: if the code is not trusted, thenuntainted

data can be anything. However, we now have security levels that provide more precise security guarantees:
data with label{(λx.match(x, c1))} are guaranteed to match the patternc1; data with label{c1, c2} is either
c1 or c2, etc. Interestingly, the label{(λx.match(x, c1))} is not lower thanuntainted, but it provides a much
more precise security guarantee thanuntainted does.

Overall, we can see that the label orderings for confidentiality and integrity are highly symmetric. The security
levelspublic andtainted are both represented using the identity function and they both refer to data under control
of the attacker. The security levelssecret anduntainted are also symmetric in some sense:secret are represented
using constant functions, whileuntainted is represented using a set of terms that can be statically evaluated to
normal forms.

The only asymmetry is that there are multiple lowest integrity labels, while there is only one highest confiden-
tiality label. In fact, each lowest integrity label{c} has its counterpart{λx. c} in the confidentiality lattice. It is
just that all confidentiality labels{λx.m} such thatx is free inm are structurally equivalent because their label
interpretation are the same as the interpretation of a constant function. Intuitively speaking, different constant
policies provide different integrity guarantees, but all constant policies have the same effect for confidentiality.
This fact, together with the thoughts in Section 2.1, show a important difference between confidentiality and in-
tegrity in information flow. Confidentiality policies are destructive and do not care about the actual computation of
secret data. If the secret data is destroyed and becomes garbage, it does not violate any confidentiality policies and
the system is still secure. In contrast, integrity policiesare highly related to the correctness and precision actual
computation performed on the data.

6



3.3 Label Downgrading

The security label of data changes as the data is involved in some computation. We use the concept oflabel
downgradingto describe the transition of security labels. To formalizethis concept, suppose the datax1 has type
τ1, and it is annotated by labelscl1 andil1. We use the concept of anaction to model the computation onx1: an
actionm on x1 is a function applied tox1. For example, suppose the computation onx1 is hash(x1), then the
action is simply thehash function. If the computation isx1 + y, then the action is(λx.x + y). Now, given the
actionm, suppose the result(m x1) has typeτ2, we can formally define the labelcl2 andil2 on the result:

Definition 3.3.1 (Label Downgrading)

(cl1 / τ1)
m
 (cl2 / τ2) ⇐⇒ ` cl1 / τ1, ` cl2 / τ2, ∀m2 ∈ cl2,∃m1 ∈ Sτ1(cl1), ` m2 �Γ m ≡ m1 : τ

(il1 / τ1)
m
 (il2 / τ2) ⇐⇒ ` il1 / τ1, ` il2 / τ2, ∀m2 ∈ il2,∃m1 ∈ Sτ1(il1), ` m2 ≡ m �Γ m1 : τ

The judgment(cl1 / τ1)
m
 (cl2 / τ2) can be read as “the confidentiality labelcl1 at typeτ1 is transformed to

a labelcl2 at typeτ2 under the actionm”. The definition is completely symmetric for confidentiality labels and
integrity labels. Let us understand these rules by looking at some examples. For simplicity and readability, we
omit the typing information in the following examples.

• Confidentiality labels: suppose we have the following labels and actions that are related using the label
downgrading definition.

cl1
4
= {λx.λy.hash(x)%4 = y} m1

4
= λx.hash(x) (cl1 / int)

m1

 (cl2 / int)

cl2
4
= {λx.λy.x%4 = y} m2

4
= λx.x%4 (cl2 / int)

m2

 (cl3 / int)

cl3
4
= {λx.λy.x = y} m3

4
= λx.λy.x = y (cl3 / int)

m3

 (publicint / int)

Supposex2

4
= hash(x1), x3

4
= x2%4 andx4

4
= (x3 = p). If x1 has labelcl1, thenx2 has labelcl2,

x3 has labelcl3, x4 has labelpublicint. Intuitively speaking, the downgrading policies in a confidentiality
label describe paths in which data can be downgraded in the future, which may involve several steps of
computation. In the downgrading relation, the actionm matches the prefix of such a pathm1, and the
remaining pathm2 is preserved in the resulting label.

• Integrity labels: suppose we have the following labels, actions and downgrading relations:

il1
4
= taintedint m1

4
= λx.match(x, c1) (il1 / int)

m1

 (il2 / int)

il2
4
= {λx.match(x, c1)} m2

4
= λx.x + c2 (il2 / int)

m2

 (il3 / int)

il3
4
= {λx.match(x, c1) + c2}

Supposex2

4
= match(x1, c1) andx3

4
= x2 + c2. If x1 has labeltaintedint, thenx2 has labelil2 andx3 has

label il3. Intuitively speaking, the downgrading policies in an integrity label approximate the computation
in the past, from which the data could have been computed. In the downgrading relation, the actionm is
appended to the history of computationm1, and the resultm2 is in the resulting label.

3.4 Security Goals

The main question is: how to tell that a program is safe with respect to some security policies? We formalize
the security goal in a language based on the simply-typed lambda calculus, which is basically an extension of
our policy language. We define the security goals as end-to-end properties on the input-output relationship of the
program.

7



Rather than using operational semantics, we use static program equivalences in the definition: if the program is
safe, it must be equivalent to some special forms. The equivalence relation≡ is the standardβ − η equivalence,
extended with some trivial rules for conditional expressions such ase1 ≡ if 1 e1 e2. The full definition of the
equivalence relation is similar to those in our earlier work[4].

Definition 3.4.1 (Relaxed Noninterference)Suppose the program uses secret input variablesσ1, σ2, . . ., where
each input variableσi has a confidentiality labelΣ(σi) specified by the end user. For a program outpute at type
τ :

• e satisfies the confidentiality policyΣ, if e ≡ f (m1 σa1
) . . . (mn σan

), where∀i.σi /∈ FV (f) and∀j.mj ∈
Σ(σaj

).

• e satisfies the integrity policyil, if e ≡













if e1(m1 e11 e12 ...)
if e2(m2 e21 e22 ...)
....
if en(mn en1 en2 ...)

(m0 e01 e02 ...)













where∀j.mj ∈ il.

The confidentiality condition requires that the program canbe rewritten to a special form where secret variables
are leaked to public places by using only the permitted functions (downgrading policies). Confidentiality policies
are specified on theinput of the program. The integrity condition requires that the program can be rewritten to a
special form where the result is computed using one of the functions (downgrading policies) in the integrity label.
Integrity policies are specified on theoutputof the program.

To understand the integrity guarantee better, consider thefollowing two possibilities:

1. There is only one policym in il. In this case, all the branches have the samem, so we have the following
equivalence:













if e1(m e11 e12 ...)
if e2(m e21 e22 ...)
....
if en(m en1 en2 ...)

(m e01 e02 ...)













≡ m













if e1(e11)
if e2(e21)
....
if en(en1)

(e01)

























if e1(e12)
if e2(e22)
....
if en(en2)

(e02)













...

This provides a very straightforward security guarantee. The attacker can only affect the result bydown-
grading, i.e. let untrusted data go through the downgrading policym.

2. There are multiple policies inil. The body of each branch is still protected by a downgrading policy in il, but
the attacker also has the ability to choose the exact branch to be taken, thus affecting the result via implicit
control flow. Such implicit flows cannot be easily justified bydowngrading, because the conditionse1...en

are arbitrary programs not related to the downgrading policy. Our definition simply permits such implicit
flows because we defined the integrity label as a set ofpossiblecomputations. No matter which branch
is taken, the final step of computation is always captured by the integrity label. This definition meets our
requirement in Section 2.4. In contrast to the integrity condition, the confidentiality condition of Definition
3.4.1 does not tolerate any implicit information flow.

Definition 3.3.1 shows the symmetry between confidentialityand integrity conditions in a simple way: it de-
scribes how secret data are leaked to public places (for confidentiality) and how untrusted program generates
trusted result (for integrity). However, it only specify policies on one side of the program and assumes that the
program output ispublic and that the program inputs aretainted. Definition 3.3.1 can be further generalized to
achieve more fine-grained end-to-end security conditions.

8



Definition 3.4.2 (Relaxed Noninterference (refined))Suppose the program uses input variablesσ1, σ2, . . ., where
each input variableσi has a confidentiality labelΣc(σi) and integrity labelΣi(σi) specified by the end user. For
a program outpute at typeτ :

• e satisfies the confidentiality policycl, if ∀n ∈ cl, (n e) ≡ f (m1 σa1
) . . . (mn σan

), where∀i.σi /∈ FV (f)
and∀j.mj ∈ Σc(σaj

).

• e satisfies the integrity policyil, if ∀n1 ∈ Σi(σ1), ... ∀nk ∈ Σi(σk), for all fxy that make the following
substitutions well-typed,

[(n1 f11 f12 ...)/σ1] ... [(nk fk1 fk2 ...)/σk] e ≡













if e1(m1 e11 e12 ...)
if e2(m2 e21 e22 ...)
....
if en(mn en1 en2 ...)

(m0 e01 e02 ...)













where∀i.σi /∈ FV (fxy) and∀j.mj ∈ il.

In Definition 3.4.2, security policies are uniformly specified on both ends the program:Σc,Σi specify policies
on the program inputs andcl, il specify policies on the program output. The confidentialitycondition allows the
program output to have security levels other thanpublic. Compared to the integrity condition in Definition 3.4.1
where the program is simply untrusted, Definition 3.4.2 allows us to give trusted data to an untrusted program
yet still having guarantees on the program output. The integrity condition looks more verbose because we have
to use a lot of variables and term substitutions. However, the confidentiality condition and integrity condition are
inherently symmetric except that the integrity condition allows implicit flows (via theif expressions).

3.5 Extensions

Similar to the idea ofglobal downgrading policies in our previous framework [4], we can extend the policy
language with secret variables. Although this significantly changes the confidentiality lattice (for example, the
policy public is no longer the bottom of the lattice), the ordering of integrity labels is largely unchanged. In fact,
doing so will only make the integrity policies more expressive. The integrity labels{σ1} and{c1} are very much
alike — they are both singleton types; they are all lowest labels in the integrity ordering.

4 Conclusion

This paper studies the challenges on integrity policies in language-based information-flow security and provides
a symmetrical view of confidentiality and integrity in the framework ofdowngrading policies. Although it is
a common belief that confidentiality and integrity are duals, there are many aspects where integrity policies are
fundamentally different from confidentiality policies. Integrity policies should precisely describe the computations
on data in addition to the sources of data. The traditional noninterference-based approach provides no integrity
guarantees for untrusted code, and is often too strong when dealing with implicit information flow.

This paper extended the framework ofdowngrading policiesby presenting an more expressive model of in-
tegrity policies, where each label describe a set of possible functions that could have computed the data in the past.
The presentations of confidentiality policies and integrity policies are mostly symmetrical. Traditional security
levels for information-flow integrity such astainted anduntainted can be elegantly interpreted in this framework.

The asymmetry between confidentiality and integrity is shown in the ordering of security labels and also in
the formalization of security goals. The interpretation and the ordering of integrity labels show the reason that
untainted provides a weak security guarantee and suggests the use of more precise integrity labels instead of
untainted. The definition of the security goal for integrity permits information leak through control flow yet
provides formal, intuitive and practically useful security guarantees.

9



References

[1] K. J. Biba. Integrity considerations for secure computer systems. Technical Report ESD-TR-76-372, USAF
Electronic Systems Division, Bedford, MA, April 1977.

[2] J. A. Goguen and J. Meseguer. Security policies and security models. InProc. IEEE Symposium on Security
and Privacy, pages 11–20. IEEE Computer Society Press, April 1982.

[3] Peng Li, Yun Mao, and Steve Zdancewic. Information integrity policies. InProceedings of the Workshop on
Formal Aspects in Security & Trust (FAST), September 2003.

[4] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference. InProc. 32nd ACM Symp.
on Principles of Programming Languages (POPL), pages 158–170, January 2005.

[5] John McLean. Security models and information flow. InProc. IEEE Symposium on Security and Privacy,
pages 180–187. IEEE Computer Society Press, 1990.

[6] Andrew C. Myers. JFlow: Practical mostly-static information flow control. InProc. 26th ACM Symp. on
Principles of Programming Languages (POPL), pages 228–241, San Antonio, TX, January 1999.

[7] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.ACM Trans-
actions on Software Engineering and Methodology, 9(4):410–442, 2000.

[8] Charles P. Pfleeger.Security in Computing, pages 5–6. Prentice-Hall, 1997. Second Edition.

[9] François Pottier and Sylvain Conchon. Information flowinference for free. InProc. 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP), pages 46–57, September 2000.

[10] François Pottier and Vincent Simonet. Information flow inference for ML. InProc. 29th ACM Symp. on
Principles of Programming Languages (POPL), Portland, Oregon, January 2002.

[11] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.IEEE Journal on Se-
lected Areas in Communications, 21(1):5–19, January 2003.

[12] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting format string vulnerabilities
with type qualifiers. InProceedings of the 10th USENIX Security Symposium, 2001.

[13] Vincent Simonet. Flow Caml in a nutshell. In Graham Hutton, editor,Proceedings of the first APPSEM-II
workshop, pages 152–165, Nottingham, United Kingdom, March 2003.

10


