Unifying Confidentiality and Integrity in Downgrading Poies

Peng Li Steve Zdancewic
Department of Computer and Information Science
University of Pennsylvania
{l'i peng, stevez}@i s. upenn. edu

May 13, 2005

Abstract

Confidentiality and integrity are often treated as dual prtips in formal models of information-flow con-
trol, access control and many other areas in computer $gedddwever, in contrast to confidentiality policies,
integrity policies are less formally studied in the infortima-flow control literature. One important reason is
that traditional noninterference-based information-ftmmtrol approaches give very weak integrity guarantees
for untrusted code. Integrity and confidentiality policae also different with respect to implicit information
channels.

This paper studies integrity downgrading policies in imfation-flow control and compares them with their
confidentiality counterparts. We examine the drawbackstefjrity policies based on noninterference formal-
izations and study the integrity policies in the framewofkiowngrading policies and program equivalences.
We give semantic interpretations for traditional secugtyels for integrity, namelyainted anduntainted, and
explain the interesting relations between confidentiaity integrity in this framework.

Keywords: language-based security, information flow, integrity, dgvading, security policy.

1 Introduction

Language-based information-flow security [11] provided-tstend guarantees on the dependency and the propa-
gation of information in the system, which is usually forimatl amoninterferencg2, 5] properties. Such security
guarantees are ideal for protectiognfidentiality where secret information is not permitted to propagateuts p

lic places. On the other hand, information-flow control césode used to providmtegrity guarantees, where
important data in the system is not allowed to be affected riyusted sources of information. Confidentiality
and integrity can be viewed as duals [1] in many areas of coen@ecurity. In information flow, confidentiality
policies prevent secret data from being leaked out to theradwy, while integrity policies restrict the use of data
coming from the adversary.

There are very practical applications of information-floalipies forintegrity. For example, an unsafe script
on the web server could use strings from untrusted inputotopose a SQL query string and then have the
database management system execute the query, whichiglbfesitow the attacker to execute commands in the
database. The Perl programming language provides busltfiport for dynamic information-flow checking. Data
from user inputs and the network is marked as tainted, wlyiéesn calls require untainted data. Tainted data
can be converted to untainted data through pattern matchimigh effectively forces the programmer to examine
untrusted data and avoid malicious attacks. Code analysis such as cqual [12] perform static information-
flow checking to detect the use of dangerous data. Such tawksiteen used to find bugs in large-scale software
systems.

Despite the practical interests, integrity policies anemfless formally studied in the literature of language-
based information-flow security. Many formal studies areused on confidentiality and merely mention that
confidentiality and integrity are duals. In fact, confidatity and integrity are not symmetric in traditional ap-
proaches based on noninterference. The noninterferenpeny is too emphasized for confidentiality and it is
not appropriate for integrity. For example, noninterfeeidoes not give useful integrity guarantees for untrusted
code, and it is often too strong for practical use becausddsrout all implicit information flows, most of which
are not harmful. Noninterference also does not handle dmadiing. Section 2 identifies these challenges on
integrity policies in information-flow.

To fix the aforementioned weaknesses of noninterferenseebtegrity policies, we need alternative formal-
izations for information flow. Out recent research [4] usewagrading policies and program equivalences to
formalize the goals of language-based information-flonusgc The original motivation is to achieve an end-
to-end security guarantee like noninterference wih@wngrading(or declassification) is available in the system.
While this framework was originally focused on confidentjalit also provides a basis for very expressive in-
tegrity downgrading policies. Moreover, it is possible thigve a better formal security goal for integrity that
avoids the drawbacks of noninterference-based definitidastion 3 extends the framewaork of downgrading poli-
cies with integrity policies. We discuss how to formalize #ecurity goal for integrity present a highly symmetric
view over confidentiality and integrity in this framework.

2 Challenges of Integrity

2.1 Policy expressiveness

The formal definition of noninterference gives an intuitemed absolute meaning of confidentiality, but its rela-
tionship with integrity is less straightforward. In generategrity has many meanings in computer security. For
example, Pfleeger’s security textbook [8] describes iitiegolicies that require that: data is modified only by
authorized principals, data is modified in permitted waysads consistent, valid, meaningful and correct, etc.
The actual meaning of integrity depends on the specific ganidoninterference only provides a particular kind
of integrity guarantee, that is, trusted data is not afttig the propagation of untrusted data. Apparently, there
are many information integrity policies that noninterfeze cannot express. Most useful integrity policies involve
accurate description of the actual computation. Integriicies should not only specify who modified the data,
but also specify how the data is manipulated.

2.2 Untrusted code

For untrusted code, noninterference gives a strong andiqaty useful guarantee for data confidentiality. This
makes information-flow control a killer application for eff executing untrusted programs while giving them
accesses to secret information.

However, traditional noninterference gives almost nogritg guarantee for untrusted code. The reason is that,
when the code is not trusted, the adversary can manipulageett data in arbitrary ways in the program. For
example, suppose the following functibmo is written by an adversary. It takes two input argumentsfopers
some computation and returnsiat ai nt ed value.

untainted int foo(untainted int a, tainted int b) { return a-a+0xff00; }

Althoughf oo satisfies the noninterference policy, i.e. there is no mition flow from thet ai nt ed input
b to theunt ai nt ed result, the result is not at all trustworthy because the i@dwg can return any arbitrary
value in this function. Therefore, the data coming from ustied programs (or software modules) must always be
treated as tainted. Integrity policies based on nonintemiee definitions can only used in trusted environments,

where the programmers are cooperative and goal is to praeeittental security exploits in trusted code. For the
same reason, the two-dimensiodakentralized label modgr] for confidentiality falls back to a one-dimensional
model for integrity [3], which makes the integrity labels ohless expressive in languages with information-flow
type systems, such as FlowCaml [13, 9, 10] and Jif [6].

2.3 Downgrading

Pure noninterference is too ideal for practical applicatidVost of the time, we do need to use information from
untrusted sources in trusted places, as long as the taiataccdn are verified to be safe. In the example of taint-
checking mode in Perl, tainted data can be converted toniathiising pattern-matching. Clearly, there can be
information propagation from untainted data to tainted] aoninterference policies are not directly applicable.
This is the dual case for confidentiality, where secret deta meeds to be declassified. This paper extends the
framework ofdowngrading policied4] and presents a symmetrical version of integrity dowdar@g policies,
sometimes calleéndorsement

2.4 Implicit information flow

Most confidentiality policies do not tolerate implicit infoation leakage. There are many implicit information
channels such as control flow, timing channels and varialss-aifects that must be considered when untrusted
code is available. For example, the following code has arigihmpformation leak fromsecr et to x via control
flow. If the code is not trusted andis a publicly visible, the adversary can easily know the lgisbf secr et by
observing the value of. Noninterference policies rules out such implicit flows.

if (secret%®?=1) then x:=1 el se x:=0;

A straightforward solution is to usgowngradingon the branching conditions where implicit flows are allowed
However, such implicit information propagation is almastays acceptable for data integrity policies, where the
programmers are trusted and the goal is to prevent acclddggtruction of trustworthy data. For example, the
taint-checking mode in Perl does not check implicit infotima flows at all. Since the value of any trustworthy
data can be directly modified by the programmer without \ietainformation-flow policies as we have shown in
thef oo function above, there are few reasons to prevent implidrmation flows, which are much more difficult
to exploit to cause damage. Therefore, the security pobecyfotecting integrity does not have to be as strict as
pure noninterference policies. Implicit information flolwasild be allowed by default, without the awkwardness
of using explicit downgrading mechanisms.

3 Downgrading Policies for Integrity

To avoid the drawbacks of noninterference-based integdtigies, we study them in an alternative formal frame-
work. Our recent research [4] uses downgrading policieggaogram equivalences to formalize the security goals
of language-based information-flow security. This framewwwas originally focused on confidentiality, and this
paper extends the integrity aspect of it. Similar to confiigdity labels, we define a partial ordering on integrity
labels, formalizes the downgrading relation for integrétgd give interpretations to traditional security levelsts
asuntaintedandtainted To highlight the symmetry between confidentiality and gniiy, the definitions for two
kinds of policies are given in parallel for the rest of the @ap

Briefly, this framework usedowngrading policiedo express security levels of data and define the ordering
among these security levels, which generalizes the singaoleriy latticespublic T secret for confidentiality and
untainted C tainted for integrity. A security level is simply a non-empty set afvehgrading policies, where

each policy describes the computation related to downggaciVe reason about the programs in an end-to-end
fashion. Each program takes input data and produces ousjpait @onfidentiality policies are specified for each
program input; integrity policies are specified for the peog output. The security goal is then formalized using
such security policies.

3.1 Downgrading policies and security labels

type Tu= int|T—7T

constant cu= 0,1,2,..

operator ®u= +,—,%,=,..

downgrading policy m ::= Az:t.m|mm|z|c| & |ifmmm
confidentiality label ¢l ::= {my,...,my} | secret; | public,
integrity label il := {mq,...,my} | tainted; | untainted,

Figure 1: Downgrading Policies and Security Labels

The syntax of downgrading policies and security labels @wshin Figure 1. Each downgrading policy is a
term in the simply-typed\-calculus, extended with operators and constants. Theyplainguage is intended to
be a fragment of the full language for which equivalence dible, so that the primitive operators will match
those in the full language. Each downgrading policy represssome computation associated with downgrading
as following:

¢ Confidentiality policies: each policy is a function that sifies how the data can be released to the public
in the future. When this function is applied to the annotalath, the result is considered as public. For
example, if a secret variableis annotated with the confidentiality policyr. x%2, it means the last bit of
x can be released to public.

¢ Integrity policies: each policy is a term that specifies htw tlata has been computed in the past. For
example, the integrity policy2” means the data must be equal2@nd works like a singleton type. The
policy can be a function, too. For example, the poliey. %10 for an integer means that the integer must
have been computed by%10, wherez is potentially untrusted and we do not know whats. Another
useful policy isAz. \y.match(z, y), wherematch is a predefined pattern matching function and the policy
means the data is the result of pattern matching. The wepkésy is the identity function\z. z, which
simply gives no information about the how the data has beerpoted in the past.

Policies are typed in the simply-typedcalculus using the judgmeit - m : 7. We use standard-n equiv-
alencesl’ - my = msy : 7 for policy terms. Policy terms can be composed as functiaisguthe following
definitions.

Definition 3.1.1 (Policy composition) If I' - mq : 71 — 73 and T’ - mo : 9 — 71, the composition ofny andmsy
is defined asni or mo = Az :T9.mq (Mg x)
Definition 3.1.2 (Multi composition) If I' - m; : 7 — 7" andT' - my: 7 — ... — 7, — 7, the multi-composition

. . A
of my andms is defined asn; Gr me = Azq:71. ... Az . my (Mo o1 ... xg)

Given the definition of downgrading policies, we can definecusity label as a non-empty set of downgrading
policies. We slightly abuse the notation to us¢o range over confidentiality labels afidto range over integrity
labels. Labels are well-formed with respect to the type ¢ deannotates.

Definition 3.1.3 (Label wellformedness)
Felar| <= VYmec,3n,Fm:(t—mn)
Filar| <= Vme€il,Ir,..., I, bm:(nn—... 5717 —7)

The meanings of two kinds of labels are symmetric:

e Confidentiality labels: each policy in the label can be usedeclassify the data in the future. For example,
if the valuep is annotated with the confidentiality labgl\p. A\z. p=x), (Ap.p%2)}, it means thap can be
declassified by comparing it with some other value, or byasting its last bit.

e Integrity labels: each policy describes a possible comjumutahat generated the value as the result in the
past. For example, if the valyeis annotated with the integrity lab@{Az. match(z, ¢1)), c2 }, it means the
value is either the result of pattern-matching againsepatt, or a predefined constan.

3.2 Label Ordering

Each label is syntactically represented as a set of dowirgygublicies, but the semantics of the label includes far
more policies than explicitly specified. We define the intetation of security labels as the following.

Definition 3.2.1 (Label interpretation)
Sy(el) é{n’]ned, Fn'=morn: Ty}

S,l) 2 {n' |ncil, Fn:(r—...—7h—7),
Fn' = Az Azgmlonmyooomy) s (T — L =Tl —T) }

To understand the above definitions, suppose the secusiy ltas the policy::

e For confidentiality: any functiom» composed with: is also a valid downgrading policy implied by The
intuition is that if (n x) is public, then(m (n x)) is also public, no matter whai is.

e For integrity: if we can compose with some other terms and get a larger teriin whichn represent the
final step of computation, thetl is also implied in this label, because any data computed lzyan also be
treated as if it is computed by using some input data.

For example, suppose we have an integrity Iaheé {Az.match(z, ¢1)}, then the following policies are
also inS(ily): (Aa.Ab.match(a + b,¢1)), (match(ce, 1)), etc. Intuitively speaking, if we only know that
the data is the result of pattern-matching against the npatte then there are possibilities that the value
matched withe; could bea + b, ¢, Or any other values.

Based on the semantics of labels, we can easily define thermdmn security labels, using the set inclusion
relation on label interpretations. We use the notafioric [, to sayls is a higher security level thahh. The
definitions for confidentiality and integrity labels are quetely symmetric.

Definition 3.2.2 (Label ordering)

= S (ch) 2 5(ch), s §.(ily) C 5, (ils).

¢ Confidentiality: high security levels correspond to setseels, low security levels corresponds to public
levels. The intuition is that, each policy in the label cepends to a path where secret data can be released
to public places. The fewer paths there are, the more seeidata is.

¢ Integrity: high security levels correspond to tainted otrusted levels and low security levels corresponds
to trusted levels, because we would like to allow infornratflow from low levels to high levels but not
in the other direction. The intuition is that, each policyresponds to a possible computation that have
generated the data. The more possibilities there are, shdrlestworthy the data is.

We claim that the ordering of security labels generalizeswo-point latticepublic C secret anduntainted C
tainted. In fact, all these traditional security levels can be ipteted in the framework of downgrading policies:

Definition 3.2.3 (Interpretation of special labels)
secret, 2 {\x:7.0} public, 2 {\x:7.2} tainted;, 2 {A\z:7.2} untainted, 2 {m| Fm:7}

e Confidentiality: we can prove that all the confidentialitpdds of a given type form a lattice, whesecret -
is the top andublic_ is the bottom.

¢ Integrity: we can prove thahinted, is the highest label of all the integrity labels. Howevegrthis no
single lowest label in the integrity ordering. Instead réhare many different lowest labels. For example,
supposer = int, then{cy}, {c1} and so on are all lowest labels. For a set of labels, their(jemst upper
bound) always exists, but they may not have a lower bound.

The interpretation ofintainted.- is the set of policies representing computations that dausetpotentially
untrusted inputs. We choose this interpretation for twgeea. First, it reflects the meaning of “untainted”,
i.e. the corresponding computation did not use tainted. da¢aond, its semantics is backward compatible
with untainted in the traditional two-point security lattice, because wh&o untainted data meets together
during computation (i.e. when computing + c2), the result can also be labeled @astainted, which is
the way things work in the two-point lattice. Thus, the omdgron integrity labels can be understood as a
refined version of the two-point lattiamtainted C tainted.

Apparently,untainted, does not provide a very strong security guarantee: datatikighabel can have any
value. This coincides with the facts we mentioned in Sec@@n if the code is not trusted, the@mtainted
data can be anything. However, we now have security levatgfovide more precise security guarantees:
data with label (Az.match(x, ¢;))} are guaranteed to match the patterndata with label ¢, ¢, } is either

1 Or cg, etc. Interestingly, the labg(A\x.match(z, ¢1))} is not lower tharuntainted, but it provides a much
more precise security guarantee thamainted does.

Overall, we can see that the label orderings for confidetytiahd integrity are highly symmetric. The security
levelspublic andtainted are both represented using the identity function and théy tefer to data under control
of the attacker. The security levedscret anduntainted are also symmetric in some sensecret are represented
using constant functions, whilentainted is represented using a set of terms that can be staticallyated to
normal forms.

The only asymmetry is that there are multiple lowest intggebels, while there is only one highest confiden-
tiality label. In fact, each lowest integrity labét} has its counterpad\z. c} in the confidentiality lattice. It is
just that all confidentiality label§\z. m} such that: is free inm are structurally equivalent because their label
interpretation are the same as the interpretation of a aon#tinction. Intuitively speaking, different constant
policies provide different integrity guarantees, but ahstant policies have the same effect for confidentiality.
This fact, together with the thoughts in Section 2.1, shompadrtant difference between confidentiality and in-
tegrity in information flow. Confidentiality policies are steuctive and do not care about the actual computation of
secret data. If the secret data is destroyed and becomexmgaribdoes not violate any confidentiality policies and
the system is still secure. In contrast, integrity policaes highly related to the correctness and precision actual
computation performed on the data.

3.3 Label Downgrading

The security label of data changes as the data is involvedrimescomputation. We use the conceptlaifel
downgradingto describe the transition of security labels. To formattze concept, suppose the datahas type
71, and it is annotated by labet$, andil;. We use the concept of attionto model the computation ar;: an
actionm on z; is a function applied ta:;;. For example, suppose the computationazgns hash(x;), then the
action is simply thehash function. If the computation ig; + y, then the action i$\z.x + y). Now, given the
actionm, suppose the resultrn z1) has typers, we can formally define the label, andils on the result:

Definition 3.3.1 (Label Downgrading)

(Cll <1T1) 55 (ClQ<]T2) < tcliam, Fcy<m, Ymsy €cly,dm € Sﬁ(cll), FmeoGOrm=mq:7

(ill <1T1) N (ilQQTg) <~ kilyam, Fila<m, VYmsg €ily,dmy € Sﬁ(ill), Fmo=moGrmy: 7

The judgmentcl; < 1) N (cla <« 2) can be read as “the confidentiality laké] at typer; is transformed to
a labelcls at typers under the actionn”. The definition is completely symmetric for confidentigliabels and
integrity labels. Let us understand these rules by lookingpane examples. For simplicity and readability, we
omit the typing information in the following examples.

¢ Confidentiality labels: suppose we have the following labehd actions that are related using the label
downgrading definition.
cly 2 {\x. \y.hash(z)%4 =y} my 2 Az.hash(z) (cly <int) %3 (cly <int)
cly 2 {Az. \y.2%4 = y} ma 2 . x%4 (cly aint) “3 (clg aint)
cls 2 {Az. A\y.x =y} ms 2 Mo hy.x =y (cz<int) %3 (public, <int)
Supposers 2 hash(z1), 73 2 z2%4 andzy 2 (z3 = p). If 1 has labelcl;, thena has labelcls,
x3 has labekls, x4 has labebpublic;,,. Intuitively speaking, the downgrading policies in a coafitality
label describe paths in which data can be downgraded in theefuwhich may involve several steps of

computation. In the downgrading relation, the actianmatches the prefix of such a patty, and the
remaining pathns is preserved in the resulting label.

¢ Integrity labels: suppose we have the following labelsioastand downgrading relations:

iy = tainted;nt my = Az.match(z,c1) (ily <int) i (il <int)
ilo 2 {Az.match(z,c1)} mo 2 N+) (ily «int) 3 (il3 <int)

il3 2 {Az.match(z,c1) + 2}

Supposers = match(z1, ;) andxzs = T9 + co. If 21 has labekainted;,:, thenx, has labelil; andxs has
labelils. Intuitively speaking, the downgrading policies in an grity label approximate the computation
in the past, from which the data could have been computedhdmowngrading relation, the action is
appended to the history of computation, and the resultn, is in the resulting label.

3.4 Security Goals

The main question is: how to tell that a program is safe wilpeet to some security policies? We formalize
the security goal in a language based on the simply-typedhdancalculus, which is basically an extension of
our policy language. We define the security goals as enadopeoperties on the input-output relationship of the
program.

Rather than using operational semantics, we use staticgrogquivalences in the definition: if the program is
safe, it must be equivalent to some special forms. The elguiga relation= is the standard@ — n equivalence,
extended with some trivial rules for conditional expressicuch ag; = if 1 e; e5. The full definition of the
equivalence relation is similar to those in our earlier widrik

Definition 3.4.1 (Relaxed Noninterference)Suppose the program uses secret input variables, . . ., where
each input variabler; has a confidentiality label(c;) specified by the end user. For a program outpuait type
T

e ¢ satisfies the confidentiality policy, if e = f (m1 04,) ... (my 04,), WhereVi.o; ¢ FV(f) andVj.m; €
Y(0a;)-

if €1 (ml €11 €12)
if 62(7’)12 €921 €92)
e ¢ satisfies the integrity policyl, ife = | wherevj.m; € il.
if en(my, en1 en2 ...
(mo €01 €02)

The confidentiality condition requires that the program loamewritten to a special form where secret variables
are leaked to public places by using only the permitted fanst(downgrading policies). Confidentiality policies
are specified on thimput of the program. The integrity condition requires that thegpam can be rewritten to a
special form where the result is computed using one of thetiimms (downgrading policies) in the integrity label.
Integrity policies are specified on tioaitputof the program.

To understand the integrity guarantee better, considdiotlmsving two possibilities:

1. There is only one policyr in il. In this case, all the branches have the sameo we have the following

equivalence:
if €1 (m €11 €12) if 61(611) if 61(612)
if €2 (’I’)’L €21 €22) if 62(621) if 62(622)
if en(m eny ens ...) if en(ent) if en(en2)
(meo1 ep2 -.) (eo1) (eo2)

This provides a very straightforward security guarantebe @ttacker can only affect the result égwn-
grading i.e. let untrusted data go through the downgrading poticy

2. There are multiple policies i. The body of each branch is still protected by a downgradoigyin i/, but
the attacker also has the ability to choose the exact branbh taken, thus affecting the result via implicit
control flow. Such implicit flows cannot be easily justified dgwngrading because the conditions...e,
are arbitrary programs not related to the downgrading pol@ur definition simply permits such implicit
flows because we defined the integrity label as a sgtogkiblecomputations. No matter which branch
is taken, the final step of computation is always capturechbyiritegrity label. This definition meets our
requirement in Section 2.4. In contrast to the integrityditon, the confidentiality condition of Definition
3.4.1 does not tolerate any implicit information flow.

Definition 3.3.1 shows the symmetry between confidentialitg integrity conditions in a simple way: it de-
scribes how secret data are leaked to public places (fordmmtfality) and how untrusted program generates
trusted result (for integrity). However, it only specifylpies on one side of the program and assumes that the
program output ipublic and that the program inputs atrg&nted. Definition 3.3.1 can be further generalized to
achieve more fine-grained end-to-end security conditions.

Definition 3.4.2 (Relaxed Noninterference (refined))Suppose the program uses input variakteso,, . . ., where
each input variabler; has a confidentiality label.(c;) and integrity label®;(o;) specified by the end user. For
a program output at typer:

e c satisfies the confidentiality poliey, if Vn € cl, (ne) = f (m1 04,) - .. (M4, 04,,), WhereVi.o; ¢ FV(f)
andVj.m; € ¥¢(0q;)-

e ¢ satisfies the integrity policyl, if Vn; € ¥;(01), ... Vni € (o), for all f;, that make the following
substitutions well-typed,
if 61(m1 €11 €12)
if 62(M2 €91 €22)
[(n1 f1 frz) /o] o (0 frr fra) /ok] e =
if en(mp en1 en2 ...)

(mo €01 €02)
whereVi.o; ¢ FV (fy,) andVj.m; € il.

In Definition 3.4.2, security policies are uniformly speeifion both ends the program, 3; specify policies
on the program inputs and, i/ specify policies on the program output. The confidentiatiydition allows the
program output to have security levels other tpablic. Compared to the integrity condition in Definition 3.4.1
where the program is simply untrusted, Definition 3.4.2vedlas to give trusted data to an untrusted program
yet still having guarantees on the program output. The ritjegondition looks more verbose because we have
to use a lot of variables and term substitutions. Howeverctinfidentiality condition and integrity condition are
inherently symmetric except that the integrity conditidiovas implicit flows (via theif expressions).

3.5 Extensions

Similar to the idea ofglobal downgrading policies in our previous framework [4], we cattead the policy
language with secret variables. Although this signifigastianges the confidentiality lattice (for example, the
policy public is no longer the bottom of the lattice), the ordering of imtigdabels is largely unchanged. In fact,
doing so will only make the integrity policies more expressiThe integrity label§oy } and{c; } are very much
alike — they are both singleton types; they are all lowestl&in the integrity ordering.

4 Conclusion

This paper studies the challenges on integrity policieaumgliage-based information-flow security and provides
a symmetrical view of confidentiality and integrity in thefnework ofdowngrading policies Although it is

a common belief that confidentiality and integrity are du#liere are many aspects where integrity policies are
fundamentally different from confidentiality policies.tégrity policies should precisely describe the compuietio
on data in addition to the sources of data. The traditionaimerference-based approach provides no integrity
guarantees for untrusted code, and is often too strong wéaing with implicit information flow.

This paper extended the framework ddwngrading policiedy presenting an more expressive model of in-
tegrity policies, where each label describe a set of paséibictions that could have computed the data in the past.
The presentations of confidentiality policies and intggplicies are mostly symmetrical. Traditional security
levels for information-flow integrity such asinted anduntainted can be elegantly interpreted in this framework.

The asymmetry between confidentiality and integrity is smamthe ordering of security labels and also in
the formalization of security goals. The interpretatior @ne ordering of integrity labels show the reason that
untainted provides a weak security guarantee and suggests the userefprexise integrity labels instead of
untainted. The definition of the security goal for integrity permitfdrmation leak through control flow yet
provides formal, intuitive and practically useful secyigiuarantees.

References

[1] K. J. Biba. Integrity considerations for secure compatgstems. Technical Report ESD-TR-76-372, USAF
Electronic Systems Division, Bedford, MA, April 1977.

[2] J. A. Goguen and J. Meseguer. Security policies and ggauodels. InProc. IEEE Symposium on Security
and Privacy pages 11-20. IEEE Computer Society Press, April 1982.

[3] Peng Li, Yun Mao, and Steve Zdancewic. Information imitggpolicies. InProceedings of the Workshop on
Formal Aspects in Security & Trust (FASBeptember 2003.

[4] Peng Liand Steve Zdancewic. Downgrading policies atakesl noninterference. IAroc. 32nd ACM Symp.
on Principles of Programming Languages (POPhages 158-170, January 2005.

[5] John McLean. Security models and information flow.Aroc. IEEE Symposium on Security and Privacy
pages 180-187. IEEE Computer Society Press, 1990.

[6] Andrew C. Myers. JFlow: Practical mostly-static infaation flow control. InProc. 26th ACM Symp. on
Principles of Programming Languages (PORphages 228-241, San Antonio, TX, January 1999.

[7] Andrew C. Myers and Barbara Liskov. Protecting privacjng the decentralized label modé&lCM Trans-
actions on Software Engineering and Methodold@f#):410-442, 2000.

[8] Charles P. PfleegeSecurity in Computingpages 5-6. Prentice-Hall, 1997. Second Edition.

[9] Francois Pottier and Sylvain Conchon. Information flmference for free. IrProc. 5th ACM SIGPLAN
International Conference on Functional Programming (IQFpages 46-57, September 2000.

[10] Francois Pottier and Vincent Simonet. InformationMlimference for ML. InProc. 29th ACM Symp. on
Principles of Programming Languages (PORPprtland, Oregon, January 2002.

[11] Andrei Sabelfeld and Andrew C. Myers. Language-baséaoriation-flow security.lEEE Journal on Se-
lected Areas in Communicatianl(1):5-19, January 2003.

[12] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, andd@agner. Detecting format string vulnerabilities
with type qualifiers. IrProceedings of the 10th USENIX Security Symposifial.

[13] Vincent Simonet. Flow Caml in a nutshell. In Graham lantteditor,Proceedings of the first APPSEM-II
workshop pages 152-165, Nottingham, United Kingdom, March 2003.

10

