
Information Integrity Policies

Peng Li Yun Mao Steve Zdancewic?

University of Pennsylvania

Abstract. Information integrity policies are traditionally enforced by
access control mechanisms that prevent unauthorized users from modify-
ing data. However, access control does not provide end-to-end assurance
of integrity. For that reason, integrity guarantees in the form of nonin-
terference assertions have been proposed. Despite the appeals of such
information-flow based approaches to integrity, that solution is also un-
satisfactory because it leads to a weaker notion of integrity than needed
in practice.

This paper attempts to clarify integrity policies by comparing and con-
trasting access control vs. information flow, integrity vs. confidentiality
policies, and integrity vs. availability policies. The paper also examines
data invariants as a way to strengthen integrity. The result is a better
classification of information-integrity policies.

1 Introduction

Information integrity is a critical issue in computer security, and integrity policies
that seek to prevent accidental or malicious destruction of information have long
been recognized as important. However, the concept of integrity is difficult to
capture and context dependent. Pfleeger’s textbook, Security in Computing, [26]
defines integrity to mean that data is:

– precise
– accurate
– unmodified
– consistent

– modified only in acceptable ways
– modified only by authorized people
– modified only by authorized processes
– meaningful and correct

Traditionally, information integrity has been supported by security models
based on discretionary access control via access control lists or capabilities. These
models mainly provide the authorization component of integrity requirements.
However, such enforcement mechanisms are not adequate to deal with situations
in which important data in the system may be affected by untrusted sources of
information.

For example, the programmer may use a format string provided by the user to
print some information, possibly creating a vulnerability to the well-known buffer
overflow attack. Other examples include using a value received from the network
as an array index, or executing a piece of code downloaded from untrusted Web

? Email: {lipeng, maoy, stevez}@cis.upenn.edu

sites. Prior to using dangerous data, the programmer must carefully verify it
against possible attacks to assure safety.

Because these potential integrity violations stem from how untrustworthy
data propagates through the system, it is tempting to generalize access-control
models of integrity to information-flow models, which have been widely applied
to the problem of protecting confidential information [28]. In fact, it has been
observed that information-flow based integrity can be treated as the formal dual
to confidentiality [2]. Yet it is also known that doing so yields a somewhat un-
satisfactory (and potentially inadequate) definition of security [6, 22].

The goal of this paper is to investigate integrity policies and their relationship
to other existing information security policies. The paper is intended to serve
as map of the technical landscape surrounding integrity policies; it suggests
that integrity be classified into program correctness, noninterference, and data
invariant policies. The main contributions of the paper include:

– A critical comparison between confidentiality and integrity when treated as
formal duals. This comparison is carried out in the context of Myers and
Liskov’s decentralized label model (DLM) [22].

– A comparison of information-flow style integrity policies as enforced by static
program analysis to data invariants (in the style of Clark and Wilson [6]).
This comparison is motivated because treating integrity as purely dual to
confidentiality leads to weak guarantees.

– A comparison of integrity policies to availability policies.
– Some suggestions for possible future research directions.

2 An aside on program correctness

Ideally, integrity, like any other program property, would be described by a spec-
ification and enforced by proving that the implementation satisfies the specifica-
tion. Such an approach captures the “meaningful and correct” data requirement
of Pfleeger’s definition. These specifications are especially difficult to pin down
and can perhaps best be formalized by requiring program correctness, which can
be defined as the following [3]: Let π denote (a specification of) a computational
decision or search problem. For x an input to π, let π(x) denote the output of
π. For a deterministic program f , we say that

– The program f is correct, if and only if ∀x, f(x) = π(x).
– The output f(x) is correct, if and only if f(x) = π(x).

Program verification [15, 4] aims at proving the correctness of programs with
respect to their specifications. Program correctness checkers [3] are programs
that verify the correctness of the program output.

Due to their expense, program verification and correctness checkers have not
been widely applied in practice. This paper instead focuses on formal definitions
of integrity policies based on noninterference and data invariants. These defi-
nitions can cover almost all of the meanings of integrity given by Pfleeger and
have more tractable enforcement strategies.

3 Information flow

3.1 Access control vs. information flow

In computer security, access control has been widely used to manage the permis-
sions of users to access the objects. Capabilities [8, 36] and access control lists [17]
are often used to implement such policies. In discretionary access control (DAC)
[17, 13], the owner of an object controls the access to the object by granting and
revoking access to other users. Stack inspection [35, 11] is a more recently devel-
oped dynamic mechanism for enforcing access control checks to sensitive system
calls from untrusted code. Both DAC and stack inspection are insufficient in the
context of a running system—they do not control how the data is used after
granting access to the user.

Information-flow policies [12, 20, 28] are end-to-end security policies that pro-
vide more precise control of information propagation than access control models.
With access control, a file is accessible to some principal only if the appropriate
read permission is specified in the access control list. However, once the file is
read, the data can be used in any arbitrary way. Information-flow policies aim
to solve this problem by granting file access to only those processes that will
not leak confidential data. The policy enforcement is thus extended to the end
systems, providing more security than access control alone.

Information flow can be defined as a set of noninterference assertions [12,
20]. Intuitively, noninterference requires that high-security information does not
affect the low-security observable behavior of the system. Such policies are es-
pecially useful to protect data confidentiality, where the goal is to ensure that
secret data does not influence public data.

Formally, noninterference for confidentiality can be defined as the following1:

– Suppose there are two security levels of data: secret and public. Let the pro-
gram f take as input (isecret, ipublic) and produce the output (osecret, opublic).

– Define noninterference as a property of the program: f is noninterfering iff

∀a, a′ : f(a, b) = (c, d) ⇒ f(a′, b) = (c′, d)

That is, nothing about isecret can be learned by only observing opublic.

Recent studies have shown that language-based techniques are a promising ap-
proach to enforcing noninterference. In particular, static program analysis [7, 33,
14, 21, 27] has demonstrated advantages of little run-time overhead, the capabil-
ity of managing implicit information flows, and provable guarantees.

3.2 Decentralized label model

As a concrete point of comparison between information-flow definitions of con-
fidentiality and integrity policies, we use Myers and Liskov’s decentralized label
1 This simple definition of noninterference is suitable for our discussion—many other

more refined variants of noninterference exist in the literature. See the survey by
Sabelfeld and Myers [28] for a summary.

model (DLM) [22]. The DLM addresses weaknesses of previous information-flow
control models in a distributed setting containing untrusted code or users. It
allows users to precisely control information flows, and it also accommodates
mutual distrust and selective declassification.

Principals and Labels To address privacy2 for mutually distrusted users
and groups, the DLM uses principals as a central concept. Principals are the
authority entities such that information is owned, read and written by them. For
example, each user or group account in a Windows/Unix machine is a principal.3

Labels are the confidentiality requirements that the principals state about
their data. A label consists of several policies, each of which is enforced by the
decentralized label model. A policy is written as {o : r1, r2, · · · , rn}, where o
represents the owner principal who owns the policy; r1, · · · , rn are the readers,
meaning that the owner o gives r1, · · · , rn permissions to read the data.

A composite label consists of zero, one or several policies, e.g. {o1 : r1, r2; o2 :
r1, r3}. This label says the data is owned by both o1 and o2. Owner o1 permits
r1 and r2 to read it, and owner o2 permits r1 and r3 to read it. To satisfy both
requirements, the only effective reader is r1.

Labels represent different security levels. It is easy to see that label L1 =
{o1 :} represents a stricter policy than label L2 = {o1 : r1} because o1 does
allow r1 to access the data in L2, but does not in L1. Such a label relationship
is written as L2 v L1, and is read as L1 is more restrictive than L2. It is shown
by Myers and Liskov that all the labels form a distributive lattice, and have a
partial order relation in the lattice [22].

When a program tries to compute a result from two values labeled with L1

and L2, the result should have the least restrictive label L that enforces all the
privacy concerns specified by L1 and L2. Namely, L1 v L,L2 v L and ∀L′ such
that L1 v L′ and L2 v L′ we have L v L′. This least restrictive label is the least
upper bound or join of L1 and L2, written as L1 t L2. The greatest lower bound
or meet of L1 and L2, written as L1 u L2 is defined to be the largest label less
than both L1 and L2.

Declassification During computation, the labels on program results become
increasingly restrictive, making the data unreadable. Consequently, the owners
of the data sometimes need to relax their policies so that other parties can read
it. This kind of label relaxation is called declassification [39, 38].

To make declassification reasonable, the decentralized label model permits it
only when the current process is authorized to act on behalf of the principals
whose policies are weakened. Because a principal can weaken only his own pol-
icy, the other owners in the label are safe—their policies are still enforced. No
centralized declassification process is needed, making the DLM well suited to
distributed, heterogeneously trusted systems.

2 In this paper, the terms privacy and confidentiality are considered synonyms.
3 For the purposes of this paper, we ignore the DLM actsfor relationship, which allows

one principal to delegate rights to another.

4 Integrity and noninterference

We have seen noninterference policies for protecting data confidentiality. Such
policies constrain: (1) Who can read the secret data. (2) Where the secret data
will flow to (in the future).

Dually, integrity policies constrain: (1) Who can write to the data. (2) Where
the data is derived from (in the past, the history of the data).

The analog of “public” is “untainted” and the analog of “private” is “tainted”.
This style of integrity policy can be defined formally using the same definition
of noninterference used for confidentiality:

– Suppose there are two security levels of data: tainted and untainted. Let
the program f take the input (itainted, iuntainted) and produce the output
(otainted, ountainted).

– Define noninterference as a property of the program: f is noninterfering iff

∀a, a′ : f(a, b) = (c, d) ⇒ f(a′, b) = (c′, d)

That is, the value of itainted does not affect the value of ountainted.

Integrity policies based on noninterference are useful when we want to control the
source of important data. For example, in an encryption algorithm, we may want
to generate randomized numbers from trusted sources and to make sure that the
adversary cannot affect the value of these numbers. Information-flow control and
program analysis can be used to enforce such policies based on noninterference.

Biba [2] first observed that integrity and confidentiality are duals in this way.
Consequently, both can be enforced by controlling information flows.

A related concept for integrity policies is the notion of separation of duties
(see for example Clark and Wilson’s paper [6]). The idea of separation of duties
is to increase data integrity by requiring that multiple principals collaborate to
produce the data—forging a data item is thus more difficult. Such separation
is only useful if the two parties are noninterfering in some sense. Shockley [31]
and Lee [19] showed how the enforcement parts of the Clark-Wilson paper could
be implemented using Bell and LaPadula [1] noninterference mechanisms. They
used the Bell and LaPadula model with “partially trusted subjects” to represent
the trusted program components.

More recent work by Foley gives a framework [9] for describing label-based
policies that supports separation of duties. Foley [10] has also shown how to
define integrity in terms of a refinement-based notion of dependability, which is
closely related to standard definitions of noninterference.

5 Extending the DLM for integrity

This section discusses an integrity variant of the DLM and compares it to other
integrity label models.

5.1 Integrity label models

Before introducing the full decentralized label model for integrity, we first give
several simpler integrity label models for comparison and to help readers have a
gradual introduction to the label models.

1. Binary Model In this model, there are only two possible labels: {tainted}
and {untainted}. The meanings of these two labels are clear, and the order
relation is {untainted} v {tainted}. Although the binary model is very sim-
ple, it has been used to detect format string exploits [30].

2. Writer Model In this model, labels are sets of principals: {p1, p2, · · · , pn}.
This label means that every principal pi in the label may have modified the
data, and principals not in the set have not affected the data. Therefore, the
partial order relation can be defined as: L1 v L2 if and only if L1 ⊆ L2.
For example, L1={Alice} and L2={Alice, Bob}, we have L1 v L2 because
data with label L2 could be tainted by Bob, who is not a writer in L1.

3. Trust Model Here, labels are again sets of principals: {p1, p2, · · · , pn}, but
the meaning differs from the writer model. The interpretation is that a princi-
pal trusts the data with the label if and only if it is in the label set. Therefore,
the partial order relation can be defined as: L1 v L2 if and only if L2 ⊆ L1.
The trust model is used in secure program partitioning [40, 41] to ensure
data quality and to meet the robust declassification [39] requirement.

4. Distrust Model The distrust model is very similar to the trust model. In
the distrust model, a label, being a set of principals, means that principals
in the set do not trust the data. Consequently, the partial order relation is
the opposite to the trust model: L1 v L2 if and only if L1 ⊆ L2

Some of these models can be reduced to others. For example, to represent
the binary model in the in the trust model, the label {} can represent {tainted},
and {root} can represent {untainted}. Because root should be trusted by every
principal, everyone trusts that the data is untainted. It is not hard to see that
trust model and distrust model can be reduced to each other.

5.2 The DLM for integrity

Label Definition Myers and Liskov [22] show how the DLM extends to
support integrity in addition to confidentiality. Like a privacy label, an in-
tegrity label also consists of several policies. Each policy label is written as {o :
w1, w2, · · · , wn}. Here o represents the owner principal, meaning that he owns
the data; w1, · · · , wn are the writers, meaning that the owner o believe that only
w1, · · · , wn could have modified the data. The owners and writers are principals
drawn from the same set as in privacy labels.

A composite label consists of zero or more policies, e.g., {o1 : w1, w2; o2 : w1}.
This label says that the data is owned by both o1 and o2. Owner o1 believes that
w1 and w2 have written to it, and owner o2 believes that w1 have written to it.
To satisfy both integrity constraints, the only effective writer is w1.

We intentionally choose this integrity label definition to use the same rep-
resentation syntax as that of privacy labels to make the duality between them
explicit. To avoid confusion, unless the readers can easily tell from the context,
we use the convention that L denotes representations, LP denotes privacy labels
and LI denotes integrity labels. We define L as the set of all possible label repre-
sentations. For convenience, we also define a functionR(L) to convert an integrity
label or a privacy label to its representation, namely, ∀L ∈ L, R(LP) = R(LI).
Integrity Label Ordering Integrity labels have a partial order relation that
expresses their relative security. For privacy labels, L1 v L2 if and only if L2 is
as restrictive as L1 or more restrictive than L1. For integrity labels, we define
L1 v L2 if and only if L2 is as tainted as L1 or more tainted than L1. For
example, L1 = {o : w1, w2} is dirtier than L2 = {o : w1} because w2 may have
tainted the data in L1, but not in L2. Therefore, L2 v L1. If we treat L1 and L2

as privacy labels, and w1, w2 as reader principals, then L1 v L2. To summarize:
∀L1, L2 ∈ L, LP

1 v LP
2 iff LI

2 v LI
1 [22].

By this order definition, integrity labels also form a distributive lattice that
is exactly the dual of the privacy lattice. That is, if we turn integrity lattice up
side down, the two lattices will perfectly match. This property can help us to
derive the integrity relabeling rules and computation rules.
Label Computation To keep track of the integrity information-flow property
in the program, it is necessary to define the least upper bound operation t
and greatest lower bound operation u in terms of integrity labels. Because of
the dual relation of integrity labels and privacy labels, R(LI

1 t LI
2) = R(LP

1 u
LP

2) and R(LI
1uLI

2) = R(LP
1 tLP

2). For composite label L = {P1;P2; · · · ;Pn},
where L1 = {P1}, L2 = {P2}, · · · , Ln = {Pn}, we have LP = LP

1 t LP
2 t · · · t

LP
n , and LI = LI

1 u LI
2 u · · · u LI

n

Representation Power of the DLM The DLM for integrity is able to
represent all the other models we have given. For example, {root: Alice, Bob}
in the DLM represents {Alice, Bob} in the writer model. {Alice: ; Bob:} in the
DLM represents {Alice, Bob} in the trust model. Because the distrust model is
representable by the trust model, it is also representable by the DLM.
Endorsement An analog to declassification also exists for integrity labels.
We call this integrity security relaxation endorsement. The motivation is that
along with the information flow in the program, more and more data may be
tainted, and the final results may be useless. It is desirable to cast tainted data to
untainted data, perhaps after performing some check on that data. For example,
the program may read data from the Internet, a very tainted data source. Enforc-
ing pure noninterference would prevent such data from affecting any untainted
data in the program, which is usually too restrictive in practice. Endorsement
is intended for such situations. If the program can verify that the data from the
network is safe and not tainted, e.g. the digital signature is correct, the program
may endorse the data and allow it to flow to untainted places.

In the extended DLM, the endorsement operation is a set of relabeling rules
to change the integrity labels. Because we can express mutual distrust integrity
constraints, it is important that the endorsement can only weaken the integrity

constraints of the current authority. In particular, if the policy of a principal
does not exist in the label, he has the right to add to it.

The endorsement rule for integrity labels can be formalized as follows: If
L2 u {a :} v L1 and a is a current authority then L1 can be endorsed to L2.

Examples We have described how to modify the DLM to support integrity
constraints. Now we present several examples in Jif [23], which is a variant of
Java language that implements the DLM, to help readers understand how the
model works. To distinguish integrity labels from privacy labels, we put “!” in
front of labels to represent integrity labels.

Example 1 Example 2

1: boolean !{Alice: Bob} x=true; 1: public int !{Alice:} foo(int !{} in)

2: boolean !{Alice:} y = false; 2: where authority(Alice)

3: x = y; 3: {

4: y = x; //this is wrong! 4: int result = (in>0) ? in:0;

5: if (x) { 5: return(endorse(result, !{Alice:}));

6: y = true; //wrong, too! 6: }

7: }

In Example 1, variables x and y are given two different labels. By our in-
tegrity label definition, !{Alice: } v !{Alice: Bob}. Therefore, x is consid-
ered tainted data while y is untainted. Thus, assigning y to x is legal (line 3) but
assigning x to y is illegal (line 4). Line 6 illustrate the implicit information flow
case. Although y is not directly modified by any tainted data, y’s value depends
on the condition value of the control statement in line 5. In fact, if y is false
before line 5, then line 5 and 6 is equivalent to y=x. The compiler rejects such
programs by adding another constraint that y must be dirtier than the current
program-counter (pc) label, and in line 5 the pc label is augmented to x’s label
so that the compiler can detect the fault.

In Example 2, the function foo takes an argument, tests whether the value is
larger than 0, and returns a non-negative result. The interesting part is that the
input data could be written by anyone. The program will be rejected without
endorsement. With the endorsement statement, the return value of the function
is fully trusted by Alice. Note that the endorsement requires Alice to be a current
authority. If the current authority is Bob or someone else, the endorsement will
not be granted.

6 Comparison of label models

The DLM can be symmetrically defined for both confidentiality labels and in-
tegrity labels, but they are not completely symmetric in applications. The prob-
lem lies in the motivation to use the DLM: to enforce security policies in presence
of mutual distrust. Figure 1 is a comparison of the label models for both confi-
dentiality and integrity; the details are explained in the following subsections.

Confidentiality Labels Integrity Labels

Trusted Code Untrusted Code Trusted Code

RM DLM RM DLM WM TM/DM DLM

Mode 1
√ √ √ √

× × ×
Mode 2

√ √ √ √ √ √ √

Mode 3(a) ×
√

× ×
Mode 3(b)

× √ × √ × √ √

RM = Reader Model TM/DM = Trust/Distrust Model
WM = Writer Model DLM = Decentralized Label Model

Fig. 1. Comparison of confidentiality and integrity label models under various failure
modes (see Sections 6.1 and 6.3).

6.1 Revisiting confidentiality

To better understand the motivation of using the DLM to protect confidentiality,
we compare the DLM with the reader model. The reader model is the dual
of the writer model: each label is simply a list of principals allowed to access
the information. We consider both trusted (self-written) code, and untrusted
(downloaded) code, assuming all the code is typechecked before execution.

We compare the two models in the following failure modes (see the summary
for confidentiality labels in the left half of Figure 1):

1. Wrong Computation: This is the case where the code performs some wrong
computation. For the trusted, self-written code, it may be a bug in the
program. For the untrusted code, it may be some malicious statements trying
to leak secret information. As long as the code is annotated and typechecked,
both the DLM and the reader model are safe, because the typechecking
guaranteed that no information will be leaked. In fact, performing the wrong
computation on the secret data only make it safer. The secret data only
becomes more useless after the wrong computation.

2. Violating Flow Constraints: This is the case where the flow of information
violates the annotated constraints. Both models are safe in this aspect, be-
cause the typechecker will detect such problems.

3. Wrong Declassification: This is the case where the code declassifies some
secret information that should not be leaked. The reader model is not safe
in this case, because there is no relationship between the authority of the
code and the principals in the label. If we allow declassification here, there
is no way to restrict the declassification in the code that we do not trust.
For example, anyone can declassify root’s password to the public.
The DLM works better here, because the authority of the code is associated
with the owners in the policies, and each principal may only weaken his/her
own policy. There are two cases:
(a) Wrong Declassification with sufficient authority: If a principal has the

authority to weaken a policy, such a wrong declassification is not safe.
For example, if root wants to declassify his own password to the public,
this is a serious mistake and the typechecker will not detect it.

(b) Wrong Declassification without sufficient authority: If a principal does
not have the authority to weaken a policy, it is safe because such a
mistake can be detected by the typechecker. For example, if an applet
wants to declassify root’s password, such a program will be rejected
because the applet does not have root’s authority.

This comparison gives a clear view of the motivation to use the DLM. In
the reader model, it is not safe to allow declassification when the code is not
trusted. In the DLM, declassification is safe as long as each principal does not
compromise his own confidentiality.

6.2 Code must be trusted to assure integrity

We know that the decentralized label model and information-flow control can be
used to assure data confidentiality, even when part of the code is not trusted. As
long as the program is typechecked, it is guaranteed that no secret information
can be leaked.

However, when untrusted code exists, the information-flow control approach
is not immediately sufficient to assure integrity. Consider the following examples:

Example 1 Example 2

1: int !{untainted} add(1: class Evil {

2: int !{untainted} a, 2: int !{untainted} fileHandle;

3: int !{untainted} b) 3: void setFileHandle(int !{untainted} fh){

4: { 4: fileHandle = fh - fh; // Evil here

5: return a+b; 5: }

6: } 6: int !{untainted} getFileHandle() {

7: return fileHandle;

8: }}

In the first example, the method add does not violate any information-flow
control constraints. It takes two untainted arguments and calculate the sum of
them, so that the result can also be annotated as untainted. But if the code
is downloaded from untrusted sources, the integrity of the result still cannot be
guaranteed, because it is easy to compromise data integrity without violating
information-flow constraints. For example, the a+b can be modified to a-b, or
even a-a, so that the result can always be garbage. More generally, we can infer
that, if the code is not trusted, then we have no integrity guarantee on any
information returned from it, because the adversary can manipulate the data in
many ways without violating information-flow control constraints. In the second
example. The Evil class was written by the adversary. It was supposed to store
the value of a file handle and later return it. Apparently, we want to assure the
integrity of that file handle, but the direct information-flow control approach
cannot provide such a guarantee. The Evil class can be typechecked, but the
value returned from the getFileHandle() method is completely garbage.

Therefore, the information-flow control approach must be augmented to as-
sure the integrity of information returned from untrusted code. If such untrusted

code exists, it may taint any data flowing out of it. One solution is to annotate
these data as tainted by the authority of the code, which is equivalent to treating
the untrusted code as tainted input channels.

6.3 Comparison of integrity label models

Now we compare the three integrity label models described earlier in this paper:
the writer model, the trust/distrust model, and the decentralized label model. We
exclude the untrusted code cases from our comparison, because none of these
models can guarantee the integrity of data coming from untrusted code. We
assume that all the code is written by a trusted person.

We compare the two models in the following failure modes (see the summary
for integrity labels in the right half of Figure 1):

1. Wrong Computation: This is the case where the code performs some wrong
computation. Clearly, such a mistake will break the integrity of the results,
and it is not safe for any model.

2. Violating Flow Constraints: Just as for confidentiality, all models are safe.
3. Wrong Endorsement: This is the case where the code endorses some data

that is actually tainted.
The writer model is not safe in this case, because there is no relationship
between the authority of the code and the principals in the label. If the pro-
grammer misuses a endorsement, the typechecker cannot find this mistake.
In both the trust/distrust model and the DLM, the authority of the code is
associated with the principals in the policies, and each principal may only
weaken his/her own policy. There are two cases:

(a) Wrong Endorsement with sufficient authority: If a principal has the au-
thority to weaken a policy, such a wrong endorsement is still not safe.
For example, if root wants to endorse an arbitrary integer and use it as
the index to access an array, the typechecker will not detect it.

(b) Wrong Endorsement without required authority: If a principal does not
have the authority to weaken a policy, both the DLM and the trust/distrust
models are safe. Such mistakes can be detected by typechecking.

This comparison shows that the writer model is not as powerful as the DLM,
because the authority of the code is not associated with the principals in the
label. However, the comparison does not show any difference between the trust
model and the DLM. In fact, it seems that the trust model is sufficient to use in
practical applications.

We have shown that although the DLM can be defined, manipulated and
implemented in symmetric ways for integrity as well as for confidentiality, it
does not provide more benefits than simpler models as the trust model or distrust
model. The motivation and the power of DLM is significantly weakened by the
assumption that the code is trusted.

7 Integrity and data invariants

This section considers data invariants as a means of strengthening information-
flow based definitions of integrity.

7.1 Limitations of noninterference

Noninterference is not strong enough to represent the integrity policies needed
in practice. In our case study of the integrity extension to the Jif language,
we simply ruled out the information-flow analysis for untrusted code. We have
seen such examples: An untrusted applet may have a method f that takes an
untainted argument a and returns an untainted value f(a). This method can
be noninterfering, i.e. the output f(a) only depends on a, the untainted input
value. But in fact, even if f is noninterfering, f(a) can be anything. It can be
a+ a or any arbitrary constant. This will lead to serious problems that hurt the
integrity of the system. What will happen if we use f(a) as the index to access
an array or use it as the format string for printf()?

The problem is that noninterference can be used only to control how the
data flows in the system, but it cannot be used to control how the data is
manipulated. For confidentiality, this suffices, because destroying the data only
make the secrets safer, just like shredding a piece of paper with secrets on it only
makes it harder to reveal these secrets. For integrity, we must consider both the
data flow and its contents.

Consider the Unix file system as an example. Besides noninterference policies,
which state that only authorized users can write to the file, we also want to make
sure that the file system is manipulated in correct ways. The data structure of
the file system should be kept consistent, i.e. the user cannot create cross-linked
files or directories, the date and time of each directory item are valid (not June
32nd). Such requirements are far beyond the scope of noninterference policies,
yet they are usually considered as integrity requirements.

7.2 Integrity as invariants

For a better understanding of integrity policies beyond noninterference, we need
to study the concept of integrity of the contents of data. In practice, there are
many examples: array access (indexes not exceeding the boundaries), message
authenticity (digital signature or MAC is valid), and file systems (the data struc-
tures are consistent).

Depending on the context of the application, the integrity of data may have
very different meanings. Nevertheless, they all require some property of the data,
which is either “good”, i.e. it satisfies the constraint or meets the specification, or
“bad”, i.e. the data is invalid or inconsistent. To be enforceable, such properties
must be computable, so that given a specific value, we can decide whether it is
good or bad. Generally, for a piece of data a, we can define the quality of a as a
computable predicate ϕ on it:

ϕ(a) ≡ a has good quality

An integrity policy on the value of data can be defined as: an invariant ϕ on the
quality of data under program execution. We use the function f to represent a
fragment of program such as a method or an instruction. For an integrity policy
with invariant ϕ, we can define the quality of the program as a predicate ψϕ on
f , by checking whether it always maintains the invariant:

ψϕ(f) ⇐⇒ ∀a, ϕ(a) → ϕ(f(a))

We would expect that such integrity policies be enforced by checking ψϕ(f).
For example, if the quality of data ϕ is easy to compute, a simple approach to
enforcing the invariant policies would be to rewrite the program f in the form

g(a) =
{
f(a) when ϕ(f(a))
b when ¬ϕ(f(a)) ∧ ϕ(b)

where b is a value with good quality that satisfies ϕ. Suppose the invariant is a
range [1..10] on variable x, then, after the execution of f , x may be 11, which
is out of the range. In such a case, g could either return a default value 1 that
falls within the range, or raise an exception, indicating the failure. This is ex-
actly the approach people have used in software-based fault isolation [34], where
mandatory runtime monitors and assertions are inserted into the programs. In
particular, if ϕ(a) holds and we choose b = a, the function g has the atomic
effect of a transaction—the data a will either persist unchanged or become f(a)
if and only if f(a) has good quality.

If we treat the data during program execution as traces, a security policy
based on the invariant ϕ is a safety property [29], specifying that bad things
never happen during any execution. Therefore, various enforcement mechanisms
for safety properties can be used to assure integrity, such as execution monitor-
ing with security automata [29], software-based fault isolation [34], and proof
carrying code [24].

7.3 Enforcing the invariants

Clark and Wilson’s model [6] used an access-control style enforcement mecha-
nism for preserving data invariants. The model introduced the concepts of CDI
(Constrained Data Item), referring to data with good quality, and TP (Transfor-
mation Procedure), referring to programs preserving the invariants on CDI. The
invariants are enforced with two kinds of rules: certification rules, which state
that all the TPs are certified so that they always preserve the invariants on the
CDIs, and enforcement rules, saying the CDI can only be accessed via the TP
and the accesses are controlled according to a certified relation (User, TP, CDI).

The certification of TP is exactly the problem of checking whether a pro-
gram preserves a data invariant. In Clark and Wilson’s model, the certification
is usually a manual operation performed by the security officer or the system
custodian. For large systems, solely relying on the manual proofs would be ineffi-
cient and error-prone. Moreover, the emerging application of mobile code brings
more challenges on the integrity model: it is impractical to manually check the

safety of a downloaded applet before executing it. Therefore, we need automated
mechanisms to enforce the data invariants for programs.

There are two kinds of enforcement mechanisms—static and dynamic mech-
anisms. One tradeoff between them is that they have different information to
work with—dynamic mechanisms have access to the run-time state, but static
mechanisms typically have access to the full program text. Another tradeoff is
that dynamic mechanisms potentially introduce more runtime overhead. The
typical dynamic runtime mechanisms include software-based fault isolations [34,
32] and reference monitors [29, 18].

Static mechanisms, such as type systems and program analyses are also a
promising way to specify integrity invariants. The difficulty is in verifying rich
integrity invariants—properties involving arithmetic, for instance, quickly be-
come intractable.

An important research direction is to apply these technologies to integrity in-
variants, potentially by combining static and dynamic approaches: type systems
that ensure dynamic checks have been inserted into the system appropriately.

8 Availability vs. integrity

Recently, the Denial-of-Service (DoS) attack, emerging as one of the most seri-
ous security problems, has brought availability issues to the security community.
Because the idea behind DoS attack is to make the computing resources unavail-
able to break down the system, not confidentiality, integrity or anonymity, but
availability policies are violated. However, there are some similarities between
integrity and availability policies.

The well-known availability definition is: Availability = MTTF
MTTF+MTTR.

MTTF stands for Mean Time to Failure and MTTR stands for Mean Time
To Repair. One problem of this definition is that it tries to measure the failure
of the whole system. In a large, distributed system, even when some hardware
or software fails, parts of the system are still functioning. Thus, we need a finer
grained definition. We propose that the system may have multiple inputs and
outputs, each of which has a different availability concern. This requirement is
almost inevitable for the large-scaled distributed system. Now, it is natural to
make the analogy of the noninterference notion from integrity to availability.
That is, just as we need that untainted data is not affected by tainted data for
integrity, we need that highly available data (dependable data) does not depend
on the low-available data (undependable data) during the computation.

The formal definition of noninterference for availability is as follows:

– Suppose there are two security levels of data: undependable and dependable.
Let the program f take the input (iundependable, idependable), and produce the
output (oundependable, odependable).

– Define noninterference as a property of the program: f is noninterfering iff

∀a, a′ : f(a, b) = (c, d) ⇒ f(a′, b) = (c′, d)

That is, the value of iundependable will not affect the value of odependable.

Given this formal definition, we also need to formalize the model of the mul-
tiple inputs/outputs system, and precisely answer what we mean by availability
for an output. First, we simplify the system as a real-time function f : f takes a
vector 〈i1, i2, . . . , in〉 as input, and outputs another vector 〈o1, o2, . . . , om〉. As-
sume that for all 〈i1, i2, . . . , in〉 ∈ In, RunningTime(f(〈i1, . . . , in〉)) ≤ t0. That
is, the running time of f , no matter what its inputs are, is bounded by time t0.
All the data the system depends on should be specified by the input parameters
or have universal availability. If the input channel for ij is available, the data
can be read by the system in time tj , which should be negligible compared to
t0, i.e. tj = o(t0).

Secondly, in this model, we define the availability as a property on each
output element of the system. The availability for an output is the a vector of
probabilities, each element of which is the probability for the system to get the
corresponding output element successfully in time O(t0). By this definition, in
a system one can have different levels of availability for different output ele-
ments. Recent research shows that such multi-level tunable availability is useful
in system design [37].

The noninterference of this model is useful at least in following two scenarios:

1. There is a well-known trade-off that making data highly available sacri-
fices performance. For example, in storage systems, making more replicas
increases availability, but maintaining consistency degrades the performance.
Therefore, noninterference is useful to guarantee that all critical data is de-
pendable while other data may not be, permitting improved performance.

2. One possible way to fight against DoS attack is to allocate some privileged
users separate, highly available resources from ordinary users [5]. When some
DoS attack happens, the behavior of privileged users is not affected.

There are limitations to this noninterference definition of availability.

1. The system model above is significantly simplified from reality. System run-
ning time is typically not bounded and varies according to many factors,
such as logic inside the program, input, network conditions, etc. It is unpre-
dictable in general. Strong noninterference, which takes timing channels into
account, may have application to availability research, i.e., the undependable
data cannot interfere with the timing effects of dependable data.

2. The computing infrastructure, including OS, CPUs, chips, storage devices,
power supplies, is heavily influential in availability issues. For confidentiality
and integrity, it is natural to put the infrastructure into the trust computing
base. For availability, however, how dependable the infrastructure is becomes
much more important [25, 16]. One interesting question is how to practically
specify the availability of underlying infrastructure.

3. A probabilistic model of availability brings difficulties to both the program
analyzer and end-users who specify policies. For program analyzer, it is
harder to calculate least upper bounds of security levels because they may
or may not correspond to independent events. For end users, it is harder to
specify availability of resources in terms of percentages than it is to specify
who can see/modify the data in confidentiality/integrity.

Therefore, enforcing noninterference for availability is sometimes necessary
for some applications, but definitely not sufficient.

These observations suggest a number of possible future research directions:

– Specifying availability concerns inside programs to enable static program
analysis, perhaps using type systems to provide the specifications. We call for
concrete specification models to address this problem. In particular, how to
specify the underlying hardware availability is an important open question.

– Developing a better metric model for availability than the model defined
above. We need to incorporate timing effects, the probability that the service
is available, the corresponding distribution, and correlated events.

– Exploring ways to better enforce timing sensitive strong noninterference.

9 Conclusion

We examined similarities and differences between access-control and information-
flow based definitions of confidentiality, integrity, and availability policies, focus-
ing mainly on integrity.

Confidentiality, integrity, and availability can be defined as noninterference
policies in information-flow control with varying degrees of success. The decen-
tralized label model exhibits the duality between confidentiality and integrity.
However, treating integrity as the formal dual of confidentiality leads to a weak
notion of security, because integrity demands additional assurance on the quality
of the data. This paper suggests invariants on quality of the data under program
execution as a way to strengthen noninterference based integrity policies.

These observations lead us to propose a definition of integrity as program
correctness, noninterference, and data invariant conditions, which yields the fol-
lowing categorization:

– Program correctness: program output is precise, accurate, meaningful and
correct with respect to a specification.

– Noninterference: data is modified only by authorized people or processes
either directly, or indirectly by means of information flow.

– Data invariants: data is precise or accurate, consistent, unmodified, or mod-
ified only in acceptable ways under program execution.

References

1. D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition and
Multics interpretation. Technical Report ESD-TR-75-306, MITRE Corp. MTR-
2997, Bedford, MA, 1975. Available as NTIS AD-A023 588.

2. K. J. Biba. Integrity considerations for secure computer systems. Technical Report
ESD-TR-76-372, USAF Electronic Systems Division, Bedford, MA, April 1977.

3. M. Blum and S. Kannan. Designing programs that check their work. Journal of
the ACM, 42(1):269–291, 1995.

4. R.S. Boyer and J.S. Moore. The Correctness Problem in Computer Science. Aca-
demic Press, London, 1981.

5. Jos Brustoloni. Protecting electronic commerce from distributed denial-of-service
attacks. In Proceedings of the eleventh international conference on World Wide
Web, pages 553–561. ACM Press, 2002.

6. David Clark and David R. Wilson. A comparison of commercial and military
computer security policies. In Proc. IEEE Symposium on Security and Privacy,
pages 184–194, 1987.

7. Dorothy E. Denning and Peter J. Denning. Certification of Programs for Secure
Information Flow. Comm. of the ACM, 20(7):504–513, July 1977.

8. J. B. Dennis and E. C. VanHorn. Programming semantics for multiprogrammed
computations. Comm. of the ACM, 9(3):143–155, March 1966.

9. Simon N. Foley. The specification and implementation of ‘commercial’ security re-
quirements including dynamic segregation of duties. In Proceedings of the 4th
ACM Conference on Computer and Communications Security, pages 125–134.
ACM Press, 1997.

10. Simon N. Foley. A nonfunctional approach to system integrity. IEEE Journal on
Selected Areas in Communications, 21(1):36–43, January 2003.

11. Cedric Fournet and Andrew Gordon. Stack inspection: Theory and variants. In
Proc. 29th ACM Symp. on Principles of Programming Languages (POPL), pages
307–318, 2002.

12. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.
IEEE Symposium on Security and Privacy, pages 11–20. IEEE Computer Society
Press, April 1982.

13. M. A. Harrison, W. L Ruzzo, and J. D. Ullman. Protection in operating systems.
Comm. of the ACM, 19(8):461–471, August 1976.

14. Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy
and integrity. In Proc. 25th ACM Symp. on Principles of Programming Languages
(POPL), pages 365–377, San Diego, California, January 1998.

15. C. A. R. Hoare. An axiomatic basis for computer programming. Comm. of the
ACM, 12(10):576–580, October 1969.

16. James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file
system. ACM Transactions on Computer Systems, 10(1):3–25, February 1992.

17. Butler W. Lampson. Protection. In Proc. Fifth Princeton Symposium on Infor-
mation Sciences and Systems, pages 437–443, Princeton University, March 1971.
Reprinted in Operating Systems Review, 8(1), January 1974, pp. 18–24.

18. I. Lee, H. Ben-Abdallah, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan.
Monitoring and checking framework for run-time correctness assurance. In Pro-
ceedings of the Korea-U.S. Technical Conference on Strategic Technologies, 1998.

19. Theodore M. P. Lee. Using mandatory integrity to enforce “commercial” security.
In IEEE Symposium on Security and Privacy, pages 140–146. IEEE Computer
Society Press, 1988.

20. John McLean. Security models and information flow. In Proc. IEEE Symposium
on Security and Privacy, pages 180–187. IEEE Computer Society Press, 1990.

21. Andrew C. Myers. JFlow: Practical mostly-static information flow control. In
Proc. 26th ACM Symp. on Principles of Programming Languages (POPL), pages
228–241, San Antonio, TX, January 1999.

22. Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentral-
ized label model. ACM Transactions on Software Engineering and Methodology,
9(4):410–442, 2000.

23. Andrew C. Myers, Nathaniel Nystrom, Lantian Zheng, and Steve Zdancewic. Jif:
Java information flow. Software release. Located at http://www.cs.cornell.edu/jif,
July 2001.

24. George C. Necula. Proof-carrying code. In Proc. 24th ACM Symp. on Principles
of Programming Languages (POPL), pages 106–119, January 1997.

25. David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD
International Conf. on Management of Data, pages 109–116. ACM Press, 1988.

26. Charles P. Pfleeger. Security in Computing, pages 5–6. Prentice-Hall, 1997. Second
Edition.

27. François Pottier and Sylvain Conchon. Information flow inference for free. In
Proc. 5th ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 46–57, September 2000.

28. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

29. Fred B. Schneider. Enforceable security policies. ACM Transactions on Informa-
tion and System Security, 2001. Also available as TR 99-1759, Computer Science
Department, Cornell University, Ithaca, New York.

30. Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting for-
mat string vulnerabilities with type qualifiers. In Proceedings of the 10th USENIX
Security Symposium, 2001.

31. W. Shockley. Implementing the clark/wilson integrity policy using current tech-
nology. In Proceedings of NIST-NCSC National Computer Security Conference,
pages 29–37, 1998.

32. Chris Small. MiSFIT: A tool for constructing safe extensible c++ systems. In
Proceedings of the Third Usenix Conference on Object-Oriented Technologies, June
1997.

33. Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):167–187, 1996.

34. R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based fault
isolation. In Proc. 14th ACM Symp. on Operating System Principles (SOSP), pages
203–216. ACM Press, December 1993.

35. Dan S. Wallach, Andrew W. Appel, and Edward W. Felten. The security architec-
ture formerly known as stack inspection: A security mechanism for language-based
systems. ACM Transactions on Software Engineering and Methodology, 9(4), Oc-
tober 2000.

36. W. A. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
HYDRA: The kernel of a multiprocessor system. Comm. of the ACM, 17(6):337–
345, June 1974.

37. Haifeng Yu and Amin Vahdat. The costs and limits of availability for replicated
services. In Proc. 18th ACM Symp. on Operating System Principles (SOSP), Banff,
Canada, October 2001.

38. Steve Zdancewic. A type system for robust declassification. In Proceedings of the
Nineteenth Conference on the Mathematical Foundations of Programming Seman-
tics. Electronic Notes in Theoretical Computer Science, March 2003.

39. Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proc. of
14th IEEE Computer Security Foundations Workshop, pages 15–23, Cape Breton,
Canada, June 2001.

40. Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Se-
cure program partitioning. Transactions on Computer Systems, 20(3):283–328,
2002.

41. Lantian Zheng, Stephen Chong, Steve Zdancewic, and Andrew C. Myers. Build-
ing secure distributed systems using replication and partitioning. In IEEE 2003
Symposium on Security and Privacy. ieee, 2003.

