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Verifying imperative programs is hard. A key difficulty is that the specification of what an imperative program
does is often intertwined with details about pointers and imperative state. Although there are a number
of powerful separation logics that allow the details of imperative state to be captured and managed, these
details are complicated and reasoning about them requires significant time and expertise. In this paper, we
take a different approach: a memory-safe type system that, as part of type-checking, extracts functional
specifications from imperative programs. This disentangles imperative state, which is handled by the type
system, from functional specifications, which can be verified without reference to pointers. A key difficulty is
that sometimes memory safety depends crucially on the functional specification of a program; e.g., an array
index is only memory-safe if the index is in bounds. To handle this case, our specification extraction inserts
dynamic checks into the specification. Verification then requires the additional proof that none of these checks
fail. However, these checks are in a purely functional language, and so this proof also requires no reasoning
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1 INTRODUCTION

Verifying imperative programs is hard. Although there are frameworks like Iris [Jung et al. 2018,
2015] and the Verified Software Toolchain (VST) [Appel et al. 2014; Beringer and Appel 2019] that
provide powerful separation logics to verify imperative programs, they require a high degree of
time and expertise to effectively use them. In fact, figuring out how best to apply these tools is an
active area of research, where new approaches and techniques are still being developed to make
using these tools more practical [Jung et al. 2020; Krishna et al. 2020].
There is one verification approach, however, that has seen widespread adoption by a large

number of developers: the Rust type system. Rust allows programmers to prove that their imperative
programs are memory safe by writing types that track memory ownership; type-checking then
ensures that data with these types is used only in memory-safe ways. The rate of adoption of Rust
demonstrates that this approach is both intuitive enough for programmers to use and powerful
enough to write, for instance, an operating system [Redox Developers [n.d.]]. The main limitation
of Rust in the context of verification, though, is that it can only prove memory safety; how can we
get more?
In this paper, we show how to extend the idea of a memory-safe type system like Rust’s to

prove functional correctness of imperative programs. The aspirational idea of our approach is
that imperative programs that are well-typed in a memory-safe type system should have equivalent

pure functional interpretations. More precisely, we formalize a relational type system that type-
checks imperative programs, and, in the process, extracts a pure functional specification of a
program’s behavior. Programs over imperative data structures are extracted to the corresponding
pure functions over functional versions of these data structures; e.g., a linked list reversal program
becomes a pure function for reversing functional lists. The resulting specification can then be
used to reason about the correctness of the program. Soundness of the type system implies that
the low-level implementation simulates the high-level extracted specification. This approach of
relating imperative programs to functional specifications is not new, and is in fact a key part of the
DeepSpec [Koh et al. 2019] and Igloo [Sprenger et al. 2020] approaches, which have both been used
effectively to verify complex and non-trivial programs. The main differentiator of our approach
is that the functional specifications are generated automatically by type-checking the imperative
programs, rather than being crafted by hand and manually proved to simulate their imperative
programs. This has the potential to greatly reduce the effort required to verify imperative programs.
A key technical issue in trying to disentangle memory safety from functional specifications is

that there are cases where the memory safety of an imperative program depends crucially on its
functional behaviors. A common example is a program that manipulates arrays but omits bounds
checks for performance reasons. Such a program is memory safe only if we can verify that all
array index computations are in bounds. Array index computations are part of the functional
specification of a program, since, intuitively, arrays represent lists or sequences and indexing into
them extracts the 𝑖th element of such a list. Further, array index computations can involve arbitrary
computation, making array bounds checking undecidable in general and thus difficult to perform
with a type-checker.

To handle this issue, we allow our functional specifications to contain errors, which represent
cases where type-checking fails. Thus, for instance, an array indexing operation in an imperative
program translates to a functional specification that tests whether the computed index is in bounds
and raises an error if it is not. To accommodate this, soundness for our type system is defined using
a notion of bisimulation up to errors in the specification, where execution traces in the imperative
program and its functional specification precisely correspond to each other except that errors in
the specification can correspond to any trace in the imperative program. If we can prove that a
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specification never raises an error, then this reduces to the standard notion of bisimulation, which
in turn ensures that the implementation is also error-free. Additionally, bisimulation implies that
all temporal properties are preserved, so, e.g., if liveness and fairness properties can be proved of
the extracted specification, then equivalent liveness and fairness properties are guaranteed to hold
for the original imperative program.
This approach is implemented as a tool called Heapster, which itself is an extension of SAW,

the Software Analysis Workbench [Chudnov et al. 2018; Dockins et al. 2016]. SAW has existing
support for ingesting low-level input languages like LLVM. Heapster then performs specification
extraction on ingested LLVM to generate functional models expressed in Coq using the type-
checking process described in this paper. Heapster is currently being used to build a formally
verified implementation of the IPSec protocol for a Department of Defense application. The current
paper formalizes a simplified version of Heapster in Coq and proves it correct, in the sense that
the generated specifications do indeed model the imperative programs they are generated from.
While this paper focuses on the theoretical basis of Heapster, we also describe preliminary results
for using the Heapster tool.1

The contributions of this paper are as follows:

• We propose a new technique for automatically extracting functional specifications from
imperative programs, that is structured as a novel relational type system.
• The rules of the type system are proved sound by showing that the specifications they extract
are bisimilar to the input imperative programs, which in turn ensures that all temporal
properties of the program are preserved by specification extraction.
• The type system is built on a novel formulation of rely-guarantee separation logic, where
separateness and related notions are defined in an abstract, general way that is independent
of memories and pointers.
• The approach has been implemented as a tool called Heapster, which has been applied to
real-world code implementing a non-trivial data structure and exposed some bugs in this
code.
• The approach is formalized and proved correct in Coq, using interaction trees [Xia et al. 2020]
to define the semantics of computations.

The rest of the paper is organized as follows. Section 1.1 gives a high-level overview of our
approach. Section 2 gives background on interaction trees and how we use them to describe
program semantics in our approach. Section 3 presents a novel semantics of separation logic
called rely-guarantee permission sets that is used to relate imperative programs and their functional
specifications. Section 4 defines the notion of bisimulation up to errors in the specification and
uses it to define a semantic type system for extracting specifications. Section 5 describes the typing
rules of our system. Section 6 describes the process of using the Heapster tool. Section 7 presents
the results of using Heapster on real-world code. Finally, Sections 8 and 9 give related work and
conclude.

1.1 Specification Extraction via Type-Checking

Our approach to specification extraction starts with a type system for memory safety. As in Rust,
our type system controls pointer aliasing by requiring that mutable pointers cannot alias any other
pointers. That is, every pointer is marked as either shared read, meaning it can be duplicated but
not written to, or exclusive write, meaning it allows reads and writes but is a unique pointer that

1Our paper artifact can be found at https://doi.org/10.5281/zenodo.5519606. The latest versions of the formalization and
tool can be found at http://github.com/GaloisInc/heapster-formalization and https://github.com/GaloisInc/saw-script
respectively.
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does not alias any other pointer value that is currently in scope. This typing discipline on pointers
ensures a strong form of separation, or pointer locality, where writes to any pointer cannot affect
any other pointer values in scope. This restriction, in turn, guarantees powerful properties like
race-freedom.

The key observation of our approach is that programs with this form of pointer locality essentially
behave like pure functional programs over the current values of all of the pointers they manipulate.
That is, an imperative program satisfying this typing discipline that has 𝑁 pointer variables can
be described by a pure functional program with 𝑁 inputs and 𝑁 outputs, representing the input
and output values of these pointers.2 Pointer locality ensures that modifications of one pointer
variable will not affect the values of any of the others, and so these 𝑁 inputs and outputs in
the corresponding functional program can be kept as distinct values. This in turn ensures that
this translation to a functional description can be done compositionally, without requiring any
reasoning about potential pointer aliasing or concurrent mutation of pointer values.
In general, however, imperative programs can manipulate arbitrary data structures with an

unbounded number of pointers, and so translating to a specification over a fixed number 𝑁 of
pointer values is insufficient. To address this, we use a permission type system that describes the
memory shapes and associated pointer access permissions associated with all values in scope.
These permission types can describe arbitrary recursive data structures with an unbounded number
of pointers. Our approach then translates the input and output permission types of a program
fragment to pure functional types by erasing the pointer types, that is, by replacing pointer types
with the unit type. For programs with 𝑁 pointer variables, this translation corresponds to 𝑁 input
and output values, as described above. Well-typed program fragments are then translated in a
compositional manner to functional specifications whose input and output types are given by
translating their input and output permission types.

For example, consider the following C definition of linked lists of buffers for storing 64-bit values:

typedef struct bufs { struct bufs ∗next; int64_t len; int64_t data[]; } bufs;

With this definition, the pointer type bufs∗ represents a list of buffers, where each buffer is repre-
sented as an array of 64-bit values. A pointer of this type is either NULL, representing the empty list,
or a valid pointer to a bufs structure, which contains a recursive (NULL or valid) pointer to the tail
of the list, the length of the buffer, and the buffer contents.
To describe linked list pointers in Heapster, a user could define the Heapster type

Bufs := 𝜇𝑋 .eq(VNum 0) ∨ (∃𝑙𝑒𝑛 :BV 64.ptr((W, 0) ↦→ 𝑋 ) ∗ ptr((W, 8) ↦→ eq(VNum 𝑙𝑒𝑛))

∗ arr((W, 16, 𝑙𝑒𝑛) ↦→ ∃𝑥 :BV 64.eq(VNum 𝑥)))

Heapster types, also called permission types or just permissions, represent knowledge about the
shape of a C value along with permissions about what actions can be performed with the value.
The Bufs type is, at the top level, a recursive type where the variable 𝑋 recursively refers to Bufs
itself in its definition. The body of this recursive type is a disjunctive type, stating that a C value
is either of the left-hand or right-hand type. The left-hand type is an equality type eq(VNum 0),
stating that a value is known to be equal to the C numeric value 0, i.e., a null pointer. The VNum
constructor in our semantic model builds imperative values that are numeric. The right-hand type
is a separating conjunction of two pointer types and an array pointer type inside an existential
permission that quantifies over some 64-bit bitvector value 𝑙𝑒𝑛. This permission type states that
offset 0 points to a value which is itself a pointer satisfying Bufs, offset 8 points to a numeric value
that is currently equal to 𝑙𝑒𝑛, and offsets starting at 16 point to an array of 𝑙𝑒𝑛 64-bit array cells.

2Technically speaking, the values of read-only pointers cannot change, and so do not necessarily need to be returned as
outputs; this is one of many optimizations that can be applied as part of the specification extraction process.
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Each array cell satisfies the permission ∃𝑥 :BV 64.eq(VNum 𝑥), which intuitively states that it is a
numeric value. Because numeric values are so common, we use the abbreviation int64 to refer to
this permission.
More generally, Heapster pointer types have the form ptr((𝑟𝑤, 𝑜) ↦→ 𝑃), where 𝑟𝑤 is either R

(read) orW (write), 𝑜 is a numeric pointer offset, and 𝑃 is a permission type. This permission allows
reading or writing, depending on 𝑟𝑤 , the value at offset 𝑜 of a pointer, and further states that the
current value at that location has permission type 𝑃 , which is called the content permission of the
pointer permission. Additionally, write permissions are exclusive, just like mutable pointer types in
Rust, meaning that the Heapster type system ensures that the pointer value of a pointer with a
write permission never aliases the pointer value of any other pointer permission in scope. Thus
the Heapster type system is a form of separation logic, where the separating conjunction implies
that the write pointer permissions on one side do not alias any pointer permissions on the other.
Array pointer types have the form arr((𝑟𝑤, 𝑜, 𝑙) ↦→ 𝑃), indicating an array that can either be read or
written, depending on 𝑟𝑤 , starting at offset 𝑜 and having length 𝑙 , which gives the number of array
cells (not the number of bytes). The current value of each array cell has permissions 𝑃 . For cell
size 𝑠𝑧, this array pointer type is equivalent to the conjunction of 𝑙 different pointer permissions at
offsets 𝑜 , 𝑜 +𝑠𝑧, 𝑜 +2∗𝑠𝑧, etc. The Heapster tool allows different cell sizes, but the Coq formalization
uses a simplified version where all array cells have the size of one imperative value.

In order to type-check iterative loops that traverse a recursive data structure like a linked list, it
is often necessary to use invariants stating that one variable is reachable from another by following
zero or more pointer fields. For linked lists in particular, this form of reachability is called a list
segment [Reynolds 2002]. In Heapster, we capture this notion with reachability permissions, which
are recursively-defined permissions with a free variable 𝑟 that specifies the value that is reached by
this permission. For example, we define the list reachability permission

BufsR(𝑟 ) := 𝜇𝑋 .eq(𝑟 ) ∨ (∃𝑙𝑒𝑛 :BV 64.ptr((W, 0) ↦→ 𝑋 ) ∗ ptr((W, 8) ↦→ eq(VNum 𝑙𝑒𝑛))

∗ arr((W, 16, 𝑙𝑒𝑛) ↦→ ∃𝑥 :BV 64.eq(VNum 𝑥)))

Permission 𝑥 :BufsR(𝑟 ) intuitively states that 𝑥 either equals 𝑟 or points to a bufs structure whose
next field recursively satisfies BufsR(𝑟 ). The Bufs permission can be recovered from this definition
by using BufsR(VNum 0), which intuitively says that NULL is reachable from the value with this
permission. Reachability permissions satisfy reflexivity, meaning that any variable reaches itself, as
well as transitivity, meaning that if 𝑥 reaches 𝑦 and 𝑦 reaches 𝑧 then 𝑥 reaches 𝑧. These properties
are used as type-checking rules.
The first step of specification extraction in Heapster is type-checking, where the user specifies

input and output permissions types for an imperative function and Heapster then type-checks it
with respect to these permission types. The user can also supply type-checking hints, which are
useful for specifying loop invariants. Heapster operates on LLVM code, as LLVM is low-level enough
that Heapster does not have to handle all the complexities of C semantics but high-level enough to
abstract away the details of individual architectures. The accompanying Coq formalization uses a
more abstract, simplified assembly language. Rather than giving the type-checking rules in detail
here, we illustrate the Heapster type-checking process using examples. We use examples written in
C, to make them more readable than LLVM, but write them in a low-level style that is closer to
LLVM than standard C conventions. This includes using single static assignment (SSA) form and
using explicit allocation and deallocation of local variables, which are explicitly written as pointers.
Figure 1 shows how to type-check the function clearbufs, which zeroes out the first element

of every buffer in a buffer list. The gray boxes in the figure show the inferred Heapster types at
each point in the program. The idea of this function is that buffers are null-terminated, and so
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void clearbufs (bufs ∗lst) {

lst :Bufs

const bufs ∗∗lp = malloc(8);

lst :Bufs, lp :ptr((W, 0) ↦→ true) ∗ block(8)

lst :Bufs, lp : lclptr(true)

∗lp = lst;

lst :Bufs, lp : lclptr(eq(lst))

while (true) {

lst :BufsR(𝑧), 𝑧 :Bufs, lp : lclptr(eq(𝑧))†

const bufs ∗l = ∗lp;

lst :BufsR(𝑙), l :Bufs, lp : lclptr(eq(l))

. . . , l :eq(VNum 0) OR . . . , l :∃𝑙𝑒𝑛 : . . . .

if ( l == NULL) {

lst :BufsR(𝑙), 𝑙 :eq(VNum 0), lp : lclptr(eq(l))

free(lp);

lst :BufsR(𝑙), 𝑙 :eq(VNum 0)

return;

lst :Bufs

} else {

. . . , 𝑙𝑒𝑛 :BV 64 ∗ 𝑙 : . . . ∗ arr((W, 16, 𝑙𝑒𝑛) ↦→ int64)

. . . ∗ 𝑙 : . . . ∗ ptr((W, 16) ↦→ int64)

∗ arr((W, 24, 𝑙𝑒𝑛 − 1) ↦→ int64)

l→ data[0] = 0;

. . . ∗ 𝑙 : . . . ∗ ptr((W, 16) ↦→ eq(VNum 0))

∗ arr((W, 24, 𝑙𝑒𝑛 − 1) ↦→ int64)

. . . , 𝑙𝑒𝑛 :BV 64 ∗ 𝑙 : . . . ∗ arr((W, 16, 𝑙𝑒𝑛) ↦→ int64)

const bufs ∗nxt = l→ next;

. . . , l :ptr((W, 0) ↦→ eq(nxt)) ∗ . . . , nxt :Bufs

∗lp = nxt;

lst :BufsR(l), l :ptr((W, 0) ↦→ eq(nxt)) ∗ . . . ,

nxt :Bufs, lp : lclptr(eq(nxt))

lst :BufsR(nxt), nxt :Bufs, lp : lclptr(eq(nxt))

}}}

Fig. 1. Type-Checking the clearbufs Function Against the
User-Supplied Type lst :Bufs ⊸ lst :Bufs (The gray types
are inferred by the tool, except the † loop invariant)

this operation clears every buffer, marking
it as empty. The function is type-checked
against the user-supplied type lst :Bufs ⊸
lst : Bufs, stating that the input value
lst satisfies the Bufs permission on input
and that it retains this permission on out-
put. The input list lst is first assumed to
have type Bufs. The first line allocates a
local variable lp. Mutable local variables
in C are compiled to pointers to stack-
allocated objects, so this approach of al-
locating lp as a pointer to a linked list
pointer is similar to how a mutable local
variable of type bufs∗ is compiled.3 Alloca-
tion is performed by calling malloc with
the size of 8 bytes, which is the size of
a 64-bit pointer.4 The result is a pointer
value for lp that points to some uninitial-
ized value. The fact that it is uninitialized is
represented using the vacuous true permis-
sion. The newly-allocated value lp also sat-
isfies the permission block(8), which says
that lp points to the beginning of an allo-
cated block whose size is 8 bytes. This in-
formation is needed for deallocation by the
free function later. For the sake of brevity,
we introduce the abbreviation lclptr(𝑃) =
ptr((W, 0) ↦→ 𝑃) ∗ block(8) for a local vari-
able pointer whose current value satisfies
𝑃 . The input value lst is then assigned to
(the contents of) the local variable lp. This
replaces permission ptr((W, 0) ↦→ true) on
lp with ptr((W, 0) ↦→ eq(lst)). That is,
the resulting permission after this assign-
ment is lp : lclptr(eq(lst)).
After this, the function enters the while

loop, which has invariant lst :BufsR(𝑧), 𝑧 :
Bufs, lp : lclptr(eq(𝑧)). Loop invariants
with reachability permissions currently
must be input by the user, as they are not
inferred by the tool. This invariant states
that the current value of lp is some value 𝑧
that satisfies Bufs and that is reachable by

3In order to simplify the presentation, we model stack allocation here with malloc and free; the Heapster tool models it
more precisely, but we omit these details here.
4In fact malloc requires a permission to allocate, discussed in Section 5.5, which intuitively represents permission to
modify the free list structure maintained by the allocator. This permission is implicitly added everywhere by the Heapster
tool, so the user need not reason about it explicitly and we omit it from Figure 1.
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a list segment starting at lst. On entry to the loop, 𝑧 is equal to lst. The reachability permission
𝑧 : BufsR(lst) part of the loop invariant is proved by the reflexivity rule for BufsR, while the
remainder of the loop invariant is already available in the current permission typing context.
In the while loop, the value of 𝑧 is first read out to the variable l. In order to type-check the

following null test, the recursive Bufs permission must be unfolded to a disjunctive permission,
which must then be eliminated. Disjunctive elimination means that the remaining code is type-
checked twice, once with the left-hand and once with the right-hand disjunct. Thus, Figure 1
displays the two disjunctive possibilities for the permission on l. In the left-hand case of the
disjunctive elimination, we have that l equals NULL, so the null test succeeds and type-checking
proceeds into the if branch of the conditional statement. In this case, lp is deallocated by passing it
to free. Type-checking free requires both a block(𝑁 ) permission, so that we know howmany bytes
are going to be freed, along with exclusive write permissions to those 𝑁 bytes. These permissions
are then consumed by the call. We are then left with a reachability permission stating that lst
reaches l. After the return, this reachability permission is combined with the fact that l equals
NULL to get out the required Bufs permission on l for output.

In the right-hand case, l is a non-null pointer to a bufs struct. This means the null test fails, and
type-checking proceeds into the else branch. The first statement of this branch zeroes out the
first element of the data array. In order to type-check this assignment, an existential elimination
step is first performed on the Bufs permission on l. This binds a bitvector variable 𝑙𝑒𝑛 and leaves
pointer permissions on l for the next and len fields along with the array pointer permission
arr((W, 16, 𝑙𝑒𝑛) ↦→ int64) for data. The resulting permission is displayed in Figure 1 immediately
after the else. The array permission is then split into a single pointer permission for offset 16,
which is the 0th cell of the data array, along with an array pointer permission for the remaining
cells of data. The pointer permission can then be used to type-check the assignment to l→ data[0].

In general, however, splitting array permissions in this way is not memory safe, because nothing
in our current typing context ensures that the index where the splitting occurs is inside the array
bounds. Specifically, in this case, the length of the array could be zero. The standard approach
to proving memory safety in separation logic is to encode the required predicates on numerical
values into the preconditions of the function. In this case, the precondition would require that all
arrays in the input buffer list have non-zero length. Although the required precondition seems
straightforward in this case, the preconditions for a program can become arbitrarily complex,
making it difficult to automate the generation and discharging of these preconditions. The user
must then become involved, and must learn to use a combined logic of both separation and also
properties on numeric values. Instead, the Heapster approach allows array bounds checks to be
deferred until after separation type-checking, by encoding the bounds checks into the extracted
functional specification. That is, the extracted functional specification for this array splitting step
contains the specification łif index in bounds then . . . else errorž. This allows the verification of
numeric properties to be decoupled from proving separation properties, which in turn leads to a
much simpler logic of separation that can be automated as a type system. Although the unary
version of the Heapster type system, which ignores the generated specifications, does not guarantee
memory safety by itself, it does satisfy a slightly more subtle property: it guarantees memory safety
up to errors in the generated specification. That is, if we type-check a program and also verify that
its specification is error free, we guarantee memory safety. We have found, however, that even the
type-checking step can help in detecting memory safety bugs, as discussed in Section 7.
After l→ data[0] is assigned 0, the corresponding pointer permission has contents permission

eq(VNum 0). This is generalized to int64 with an existential introduction step. The resulting
pointer permission is then re-combined with the array pointer permission for the rest of the data

array to get back the full array pointer permission for data. Unlike the splitting step, recombining
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array permissions is always memory safe. The nxt variable is then assigned the value of l→ next,
giving the Bufs permission to nxt and replacing the corresponding pointer permission on l with
ptr((W, 0) ↦→ eq(nxt)). This is a form of borrowing, where the data structure referred to by l

contains a field whose permissions are currently being held by another variable in scope, in this case
nxt. This borrowing is needed in order to perform the next iteration of the while loop on this value.
The lp variable is then updated to equal nxt. After this, we have that lst reaches l, which in turn
reaches nxt in one step. Transitivity of BufsR then yields that lst reaches nxt, after consuming the
permissions on l. This intuitively łgives backž the permissions on l to the reachability permission
on lst, which were borrowed in the previous iteration. The invariant needed to jump back to the
head of the while loop is then re-established, and the control flow jumps back to the head of the
loop.
Heapster permission types not only describe the memory shape and associated permissions

associated with an imperative value, but are also translated to a purely functional type whose
elements are used to represent C values with that type. This translation is performed in a syntax-
directed, compositional way. Recursive permissions are translated to recursive types, disjunctive
permissions are translated to sum types, and separating conjunctions are converted to product types.
Existential permissions are converted to dependent pairs, i.e., sigma types. Equality permissions
are converted to the unit type Unit, because, intuitively, the identity of a C value with equality type
is already known, so the functional specification need not keep any information about it. Pointer
permissions ptr((𝑟𝑤, 𝑜) ↦→ 𝑃) are erased, meaning they are translated to the result of translating
the contents type 𝑃 . Array pointer permissions arr((𝑟𝑤, 𝑜, 𝑙) ↦→ 𝑃) are translated to sized vectors
Vect 𝑇 𝑙 , where 𝑇 is the translation of 𝑃 . Using these rules, Bufs is translated to the recursive type

BufsTrans := 𝜇𝑋 .Unit + (Σ𝑙𝑒𝑛 :BV 64. 𝑋 × Unit × Vect (Σ𝑥 :BV 64.Unit) 𝑙𝑒𝑛)

Note that this type is isomorphic to the type of lists of vectors of 64-bit bitvectors of some length
𝑙𝑒𝑛. Similarly, the list reachability permission BufsR(𝑟 ) is also translated to the BufsTrans type,
since it differs only in the target of the equality permission it uses in the left-hand disjunct.
The core idea of Heapster specification extraction is that each typing rule used to type-check

an imperative program can be translated to a purely functional program fragment, whose input
and output types are the result of translating the input and output Heapster permissions of the
typing rule. The introduction and elimination rules for each permission construct are translated to
the introduction and elimination combinators for the corresponding functional type: the fold and
unfold type-checking rules on recursive permissions are translated to functions for folding and
unfolding recursive types; uses of disjunctive introduction become the constructors of the sum type,
while disjunctive elimination becomes sum elimination, i.e., a pattern-match; and the existential
introduction and elimination rules are translated to construction and projection of dependent
pairs. Because pointer permissions are erased by the translation, the translation of the pointer
introduction and elimination rules, along with those of the load, store, malloc, and free typing
rules, are straightforward. Control structures are then translated to the same control structures in
the extracted specification.
We defer detailed discussion of this translation to later sections, and instead describe it at a

high level by continuing our clearbufs example from above. The specification extracted from this
example is given in Figure 2, as a monadic function clearbufs_spec on the translation BufsTrans of
the input and output permission l :Bufs. The while loop is translated to the iteration operation

iter : (𝐼 → CompM (𝐼 + 𝑅)) → 𝐼 → CompM 𝑅

that takes a monadic function 𝑓 from inputs of type 𝐼 to outputs that are either return values
of type 𝑅 or input values of type 𝐼 for a successive call to 𝑓 , along with an initial input value
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clearbufs_spec : BufsTrans→ CompM BufsTrans
clearbufs_spec = 𝜆𝑙𝑠𝑡 . iter (𝜆𝑥 : BufsTrans × BufsTrans × Unit. case unfold (𝑥 .2) of

inl unit⇒ return (inr (append 𝑥 .1 (fold (inl unit))))
inr {𝑙𝑒𝑛, (𝑛𝑥𝑡, unit, 𝑑)} ⇒
trySplit 𝑑 0 (𝜆ℎ𝑑. 𝜆𝑡𝑙 .
return (inl (append 𝑥 .1 [⟨{0, unit}⟩ ++ 𝑡𝑙], 𝑛𝑥𝑡, unit))))

( [], 𝑙𝑠𝑡, unit)

Fig. 2. Specification Extraction for the clearbufs Function

of type 𝐼 , and iteratively calls 𝑓 on the successive inputs until it returns an output of type 𝑅, if
ever. The input type used for iter is the product type BufsTrans × BufsTrans × Unit corresponding
to the translation of the invariant permission lst : BufsR(𝑧), 𝑧 : Bufs, lp : lclptr(eq(𝑧)) used to
type-check the while loop in clearbufs. The initial value passed to iter results from translating the
portion of clearbufs before the while loop begins. This yields the triple ( [], 𝑙, unit) of the empty
list, 𝑙 , and the unit object: the first element is the translation of the reflexivity rule used to prove
lst :BufsR(lst), the second corresponds to the input Bufs permission on lst cast to apply to the
existentially-quantified variable 𝑧, and the third is the trivial unit object. Note that the translation
of malloc is trivial, because it returns pointer permissions whose content permissions are all the
trivial true permission, the translation of which is just the unit type.

The body of the iterated function used with iter unfolds and then pattern-matches on the second
projection of the input, corresponding to the recursive permission unfolding step followed by the
disjunctive elimination step on the value l read from ∗lp. The left-hand case of this pattern-match
corresponds to the null test succeeding. This case returns an inr tagged value, indicating a final
return value of the iter, which corresponds to the return statement. The value returned is the list
append of 𝑥 .1 and the term fold (inl unit), which corresponds to the BufsR transitivity rule applied
to lst :BufsR(l), whose translation is 𝑥 .1, and the permission l :eq(VNum 0), coerced to a Bufs
permission via disjunctive introduction followed by recursive permission folding.
The right-hand case of the pattern-match corresponds to the null test failing, in which case l

points to a struct that is represented by a dependent pair of a length 𝑙𝑒𝑛 and a triple of: a BufsTrans
value 𝑛𝑥𝑡 for the next field; a unit object for the equality permission on the len field; and a vector
𝑑𝑎𝑡𝑎 for the data field. The typing rule that splits the array permission is translated to the function

trySplit : Vect 𝐴 𝑙𝑒𝑛 → ∀𝑖 : BV 64.(Vect 𝐴 𝑖 → Vect 𝐴 (𝑙𝑒𝑛 − 𝑖) → CompM 𝑅) → CompM 𝑅

that takes in a vector 𝑣 of length 𝑙 and an index 𝑖 and tries to split the vector at index 𝑖 . If 𝑖 ≤ 𝑙𝑒𝑛,
the split succeeds, and the head and tail are passed to the supplied function. Otherwise, an error is
thrown. In the case of clearbufs_spec, the 𝑑 vector is split at offset 0. If the split succeeds, the tail
of 𝑑 , passed as the local variable 𝑡𝑙 , is appended, using notation ++ , to ⟨{0, unit}⟩, which is notation
for the one-element vector of the dependent pair of 0 and the unit value. This is the translation
of the array recombining rule. The resulting vector is then put into a one-element list, which is
appended to the BufsTrans list in 𝑥 .1. This step corresponds to the BufsR transitivity rule at the
end of the while loop that combines the reachability permission from lst to l with that from l to
nxt. Finally, this list is combined with 𝑛𝑥𝑡 and the unit value to make a triple, corresponding to the
proof of the loop invariant at the bottom of the while loop. This triple is returned as the next input
to iter using the inl constructor.
As this example shows, the Heapster approach can extract pure functional specifications from

nontrivial imperative programs. The remainder of the paper puts this process on a sound formal
foundation by proving a bisimulation between the specifications and the imperative programs from
which they are extracted.
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2 INTERACTION TREES FOR PROGRAM SEMANTICS

To represent the semantics of both our imperative programs and their functional specifications,
we use a dependently-typed lambda-calculus with sums, products, dependent pairs, and strictly
positive inductive types. Interaction trees [Xia et al. 2020] are also added to this language, as
described below. We use a very shallow denotational semantics of this language, mapping, e.g.,
lambda-abstractions to meta-theoretic functions, products to meta-theoretic pairs, etc. Because this
semantics is so shallow, and the terms of our language are very close to the terms in the meta-theory
defining their semantics, we sometimes blur the distinction between object and meta-language
when it is convenient. In fact, in the accompanying Coq development, we simply use a sub-language
of Coq, the meta-theory, as our object language.

Among other things, this denotational semantics justifies the use of set-theoretic notation below.
More specifically, when it does not cause confusion, we often use a type 𝑇 as the set of ground
values of type 𝑇 , writing 𝑒 ∈ 𝑇 to say that 𝑒 is a ground expression of type 𝑇 and use 𝑃 ⊆ 𝑇 to
indicate that 𝑃 is a predicate over these ground values.

To represent computations in this language, we use a monad based on interaction trees [Xia et al.
2020], a coinductive framework for defining potentially infinite computations using a form of free
monads [Swierstra 2008]. Given a function 𝐸 on types and a type 𝑅, the set itree 𝐸 𝑅 of interaction
trees with events from 𝐸 and return type 𝑅 is defined as the greatest fixed-point of the constructors

return : 𝑅 → itree 𝐸 𝑅 𝜏 : itree 𝐸 𝑅 → itree 𝐸 𝑅

vis : ∀𝑋 .𝐸 𝑋 → (𝑋 → itree 𝐸 𝑅) → itree 𝐸 𝑅

Each interaction tree, or itree, is a computation that either returns a value of type 𝑅 or takes a
łcomputation stepž followed by a continuation that gives the rest of the computation. A step can
either be an internal step, denoted with the 𝜏 constructor, or an external step, also called a visible
step, denoted with the vis constructor. Internal steps have no effect, while external steps mean
that some event of type 𝐸 𝑋 occurs. Events can interact with the environment as well as expect a
response. The type argument 𝑋 denotes the type of this response, which can then be consumed
by the remaining computation. This is denoted by putting the remaining computation inside a
function that takes in an 𝑋 . Because itrees are coinductive, they can contain potentially infinitely
many steps. For example, the infinite itree spin = 𝜏 (𝜏 (. . .)) denotes the computation that runs
forever and does nothing. We use 𝑡 , possibly with subscripts, to denote itrees.
Itrees form a monad, with return as a unit and a bind operation >>=, which is written infix, as

𝑡 >>= 𝑓 . This intuitively represents the sequencing of any events in 𝑡 followed by those in 𝑓 , where
𝑓 consumes the return value(s) of 𝑡 . We use notation 𝑥 ← 𝑡1; 𝑡2 for 𝑡1 >>= 𝜆𝑥 . 𝑡2. Itrees also admit
an iteration operation

iter : (𝐼 → itree 𝐸 (𝐼 + 𝑅)) → 𝐼 → itree 𝐸 𝑅

which takes a function 𝑓 from inputs of type 𝐼 to computations that return either a return value of
type 𝑅 or another input of type 𝐼 to be iteratively passed to 𝑓 again. Each call to 𝑓 inserts an internal
𝜏 step. Thus, for instance, the infinite loop spin can be written as iter (𝜆𝑥 . return (inl 𝑥)) unit,
which takes the unit value unit as input, passes it to the lambda-abstraction, get the unit value
returned by the lambda-abstraction, passes it to the lambda-abstraction again, etc.
In this paper, we use events for state, binary choice, and exceptions. We omit the details of

defining the corresponding event type, and simply use CompM 𝑆 𝑅 for the type of itrees containing
these events, where 𝑆 is the state type. This yields operations

modify : (𝑆 → 𝑆) → CompM 𝑆 𝑆 throw : CompM 𝑆 𝑅

or : CompM 𝑆 𝑅 → CompM 𝑆 𝑅 → CompM 𝑆 𝑅
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Intuitively, modify 𝑓 applies 𝑓 to the current value of the state, returning its value before 𝑓 was
applied. This allows the state to be both read and written in a single operation. The operation or 𝑡1 𝑡2
non-deterministically chooses either 𝑡1 or 𝑡2. Finally, throw denotes the erroneous computation.
To give a semantics to these computations, we define the steps-to relation (𝑠1, 𝑡1) → (𝑠2, 𝑡2) on

pairs of a state of type 𝑆 and an itree of type CompM 𝑆 𝑅 by the following three cases:

(𝑠, 𝜏 𝑡) → (𝑠, 𝑡)

(𝑠,modify 𝑓 >>= 𝑔) → (𝑓 𝑠, 𝑔 𝑠)

(𝑠, or 𝑡1 𝑡2) → (𝑠, 𝑡𝑖 )

The functional specifications that are extracted from imperative programs are modeled as
computations over the unit type as the state type, that is, as computations of type CompM Unit 𝑅
for some 𝑅. For imperative programs, the state type is the typeMem of memories in a simplified,
64-bit version of the CompCert memory model [Leroy and Blazy 2008]. In this memory model,
a memory is a finite map from natural numbers to blocks of allocated memory, where a block is
a finite sequence of imperative values. Imperative values are elements of the inductive type Val
defined with constructors VNum : BV 64 → Val and VPtr : Nat → BV 64 → Val, where VNum
builds numeric 64-bit values and VPtr builds a pointer from a block number plus an offset into that
block. For the sake of simplicity, the accompanying Coq formalization uses natural numbers in
place of bitvectors in Val.
Translating imperative programs into an itree semantics has been covered in other work [Xia

et al. 2020], so we only give a high-level description here. This translation takes as input a control
flow graph (CFG) representation of the program in single static assignment (SSA) form. It starts
by defining input types 𝐼1, . . . , 𝐼𝑁 for each of the 𝑁 basic blocks of the program, where 𝐼𝑖 is the
product Val× . . .×Val of values, with one value for each input register of block 𝑖 . Each block is then
translated to a monadic function blockF𝑖 : 𝐼𝑖 → CompM Mem ((𝐼1 + . . . + 𝐼𝑁 ) + Val) that either
returns a final result of type Val to be returned from the overall function, or an input of type 𝐼 𝑗 ,
indicating a jump or conditional branch to block 𝑗 . This is done by translating each instruction
to a monadic function. Because the program is in SSA form, each instruction uses a fresh output
register, and there is no need to model mutation of registers. Arithmetic and comparison operations
on numeric values are modeled using the function getNum : Val → CompM Mem (BV 64) to
coerce imperative values to numeric values, if possible, and otherwise throw an error. Pointer reads,
pointer writes, allocation, and deallocation are performed by monadic operations that query and
update the state, also using throw for undefined or erroneous computations. Again, we omit the
details, only mentioning here that these operations have the following types:

load : Val→ CompM Mem Val malloc : Val→ CompM Mem Val
store : Val→ Val→ CompM Mem Unit free : Val→ CompM Mem Unit

The individual blockF𝑖 functions that are generated from this translation are then combined using
sum elimination (i.e., pattern-matching expressions) into a function 𝑓 of type (𝐼1 + . . . + 𝐼𝑁 ) →
CompM Mem (𝐼1 + . . . + 𝐼𝑁 ) + Val. Assuming that block 1 is the initial entry of the function, the
translation uses 𝑓 to build the monadic function

𝜆𝑥 . iter 𝑓 (inl 𝑥) : 𝐼1 → CompM Mem Val

for the overall semantics of the function.
For the sake of presentation and simplicity, we focus on iteration rather than general recursion.

Although itrees do admit a fixed-point operation for defining recursion, this operation changes the
event type 𝐸 to include additional recursive call events, which adds an extra layer of complexity to
the definition of typing. We do not anticipate that this will introduce any fundamental difficulties
beyond this added layer of complexity. Note that the Heapster tool does handle recursion.
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3 RELY-GUARANTEE PERMISSIONS

In this section we will formalize the concepts that underlie the types that we will use to extract
functional specifications from imperative programs. These types are built from a novel concept
called rely-guarantee permissions, which define a form of separation logic of what state updates a
permission allows (the łguaranteež) and what state updates it can tolerate happening in parallel (the
łrelyž). Our approach is very general, in that it abstracts out the details of memories and pointers.
Instead, rely-guarantee permissions can be defined for any arbitrary state type; separateness and
separating conjunction are also defined in a general, semantic way. This makes it different from
past approaches that incorporate rely-guarantee into separation logic [Dodds et al. 2009; Feng
2009], as these approaches define permissions and separateness in terms of memory locations.
Our logic also makes the separating conjunction operation total, where the conjunction of two
permissions is a form of inconsistent permission; this avoids needing to prove separateness side
conditions when using the logic.

Definition 3.1 (Rely-guarantee permission). Given state type 𝑆 , we define a (rely-guarantee) per-
mission over 𝑆 as a tuple 𝜋 = (𝑅,𝐺, 𝑃) where

(1) 𝑅 and 𝐺 are preorders on 𝑆

(2) 𝑃 is a predicate on 𝑆

(3) 𝑃 respects 𝑅, i.e. if 𝑥 𝑅𝑦 and 𝑃 (𝑥) then 𝑃 (𝑦)

The rely preorder 𝑅 specifies the state changes that other processes or actions independent of this
permission are allowed to perform while this permission is being held. The guarantee preorder 𝐺
specifies what state changes this permission allows the holder to perform. Finally, 𝑃 is a precondition
that describes the assumptions this permission makes about the state. The fact that the precondition
respects the rely means that no other code is allowed to violate the precondition while its owner
expects it to hold, though, as we shall point out below, a permission is allowed to violate its own
preconditon. We write perm𝑆 for the set of permissions over 𝑆 . We use the notations 𝑅𝜋 , 𝐺𝜋 , and
𝑃𝜋 to denote the respective components of a permission 𝜋 .
Pointer permissions are defined as follows. Given 𝑠 ∈ Mem, 𝑝 ∈ Val, and 𝑣 ∈ Unit + Val, let

read 𝑠 𝑝 : Unit + Val be the operation that returns the Val at the address referenced by 𝑝 , if 𝑝 is a
valid pointer, or inl unit otherwise, and let write 𝑠 𝑝 𝑣 : Unit +Mem be the operation that returns
the new memory resulting from setting the value pointed to by 𝑝 to 𝑣 , or returns inl unit if 𝑝 is not
a valid pointer in 𝑠 . Note that write can deallocate 𝑝 by writing inl unit. We then define the pointer
read and write permissions on values 𝑝, 𝑣 ∈ Val as follows:

ptrpR (𝑝, 𝑣) = ({ (𝑠1, 𝑠2) | read 𝑠1 𝑝 = read 𝑠2 𝑝 }, (=), { 𝑠 | read 𝑠 𝑝 = inr 𝑣 })
ptrpW (𝑝, 𝑣) = ({ (𝑠1, 𝑠2) | read 𝑠1 𝑝 = read 𝑠2 𝑝 }, { (𝑠1, 𝑠2) | ∃𝑣 ′.write 𝑠1 𝑝 𝑣 ′ = inr 𝑠2 },

{ 𝑠 | read 𝑠 𝑝 = inr 𝑣 })

These are the read and write equivalents of the 𝑝 ↦→ 𝑣 proposition of standard separation logic
stating that 𝑝 is a pointer that currently points to value 𝑣 . The rely of each permission allows
anything in the state to be modified other than the value pointed to by 𝑝 , while the precondition
requires 𝑝 to be a valid pointer which currently points to value 𝑣 . The guarantee for ptrpR does not
allow any updates to be performed, while the guarantee for ptrpW allows the value pointed to by 𝑝
to change. Note that this guarantee allows ptrpW to violate its own precondition, by writing a new
value 𝑣 ′ to 𝑝; in this case, the typing rules presented in Section 5 update it to a new permission
ptrpW (𝑝, 𝑣

′). Also note that write permissions allow a pointer to become deallocated, and thus are
more like exclusive permissions in other systems.

Arbitrary predicates 𝑃 ⊆ 𝑆 can be lifted to the predicate permission pred(𝑃) = (𝑅,=, 𝑃), where 𝑅
is the relation { (𝑠1, 𝑠2) | 𝑃 (𝑠1) iff 𝑃 (𝑠2) }. Predicate permissions can tolerate any updates in the
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state that preserve 𝑃 or its negation, but do not themselves permit any, and require 𝑃 to hold. As
an example, the block(𝑁 ) permission type used in Section 1.1 can be defined using the predicate
permission pred(blockp(𝑝, 𝑁 )), where blockp is defined as

blockp(𝑝, 𝑁 ) = { 𝑠 | ∃𝑛.𝑝 = VPtr 𝑛 0 ∧ blocksize(𝑠, 𝑛) = 𝑁 }

and where blocksize(𝑠, 𝑛) gives the size of logical block number 𝑛 in state 𝑠 .

Definition 3.2 (Permission ordering). Given permissions 𝜋1 = (𝑅1,𝐺1, 𝑃1) and 𝜋2 = (𝑅2,𝐺2, 𝑃2),
we define the permission ordering 𝜋1 ≤ 𝜋2 to hold if 𝑅1 ⊇ 𝑅2, 𝐺1 ⊆ 𝐺2, and 𝑃1 ⊇ 𝑃2.

Intuitively, a łbiggerž permission allows more state updates than a smaller one, meaning its
guarantee is bigger. It also has stronger restrictions on state updates that it tolerates, as well as a
stronger precondition, captured by having a smaller rely and precondition. Note, for example, that
ptrpW (𝑥, 𝑣) ≥ ptrpR (𝑥, 𝑣).

Definition 3.3 (Separate permissions). Given permissions 𝜋1 = (𝑅1,𝐺1, 𝑃1) and 𝜋2 = (𝑅2,𝐺2, 𝑃2),
we say they are separate, written 𝜋1 ⊥𝜋2, iff 𝐺1 ⊆ 𝑅2 and 𝐺2 ⊆ 𝑅1.

Two permissions are separate if the updates of one are tolerated by the other. For example, we
have that ptrpR (𝑥, 𝑣) is separate from itself, while ptrpW (𝑥, 𝑣) is not separate from itself or from
ptrpR (𝑥, 𝑣). Only permissions that are separate can coexist with each other, to ensure that program
fragments do not step on each other’s toes. For instance, each pointer can either have one write
permission or multiple read permissions at any time, but not both.
We then use separateness to define separating conjunction:

Definition 3.4 (Separating conjunction). Given permissions 𝜋1 = (𝑅1,𝐺1, 𝑃1) and 𝜋2 = (𝑅2,𝐺2, 𝑃2),
we define the separating conjunction 𝜋1 ∗ 𝜋2 of 𝜋1 and 𝜋2 by:

𝜋1 ∗ 𝜋2 = (𝑅1 ∩ 𝑅2, (𝐺1 ∪𝐺2)
∗, 𝑃)

where 𝑃 = 𝑃1 ∩ 𝑃2 if 𝜋1 ⊥𝜋2 and ∅ otherwise, and (−)∗ denotes reflexive-transitive closure.

Informally, 𝜋1 ∗ 𝜋2 permits the use of both 𝜋1 and 𝜋2. The rely only tolerates updates allowed
by both 𝜋1 and 𝜋2, while the guarantee allows any number of updates to be performed using
either 𝜋1 or 𝜋2. The precondition requires the preconditions of both 𝜋1 and 𝜋2 to hold, while also
requiring them to be separate. If they are not separate, then 𝜋1 ∗ 𝜋2 has a false precondition, i.e.,
it is inconsistent. This makes ∗ a total function on permissions, so we do not require tedious
separateness side conditions to be proved when using our logic, and this also allows us to more
easily lift separating conjunction to permission sets, defined below.
A key issue with permissions as we have defined them so far is how to represent disjunction.

Even though permissions do form a complete lattice, if we try to define, for example, the notion ł𝑥
is either a valid write pointer or it is NULLž as the meet of a ptrpW permission and a predicate stating
that 𝑥 equals NULL, the guarantee is the intersection of the guarantees of the two permissions,
meaning that the resulting permission does not permit updating the value pointed to by 𝑥 in any
case. Instead, we represent disjunctions as sets of permissions, which intuitively represent the set
of disjunctive possibilities. To simplify some of the technical details, these sets are required to be
upwards closed.

Definition 3.5 (Permission sets). A permission set over 𝑆 is an upwards-closed set of permissions,
that is, a subset Π ⊆ perm𝑆 such that 𝜋1 ∈ Π and 𝜋1 ≤ 𝜋2 implies 𝜋2 ∈ Π. We write Perms𝑆 for
the permission sets over 𝑆 . The permission set ordering Π1 ≤ Π2 holds iff Π1 ⊇ Π2. We say that Π1

entails Π2, written Π1 |= Π2, iff Π2 ≤ Π1.
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The entailment Π1 |= Π2 says that Π1 is łbiggerž than Π2, which intuitively means that holding
permissions Π1 entitles one to perform any action permitted by permissions Π2. Note that this is
dual to the usual ordering on propositions, where the łsmallerž proposition entails the bigger one.
The permission sets form a complete lattice, where we write True and False for the least and

greatest elements, respectively. Note that False is intuitively the inconsistent or contradictory
permission set that entails all others, because it allows everything, as it is the greatest permission,
while True is the vacuously true permission set that is entailed by all others, as it allows nothing.
Again, note that this is dual from the standard order on propositions. We also define the meet ⊓
that takes the greatest lower bound, i.e., the union, of a set 𝑃 of permission sets. This intuitively
forms the disjunction of all elements of 𝑃 .

Finally, we lift the definition of ∗ to permission sets:

Definition 3.6 (Separating conjunction for permission sets). For permission sets Π1 and Π2, we
define the separating conjunction

Π1 ∗ Π2 = { 𝜋 | ∃𝜋1 ∈ Π1, ∃𝜋2 ∈ Π2, 𝜋1 ∗ 𝜋2 ≤ 𝜋 }

We can then prove the usual rules for separating conjunction (with respect to permission
entailment) using these definitions: associativity, commutativity, monotonicity, and the fact that
True is an identity for ∗. In the rest of the paper, we will use these rules implicitly whenmanipulating
permission sets.

4 BISIMULATION AND PERMISSION TYPING

We now define the typing relation that relates imperative programs to their functional specifications.
The core concept is stuttering bisimulation up to errors on the right, which relate pairs of computations
and states, parameterized by input and output permissions. At a high level, this relation says the
states satisfy the precondition of the input permission, and that the computations both respect the
guarantee of the input permission and both behave similarly at their respective states. Furthermore,
the output permission acts as a postcondition, giving the permissions that the program has once the
computations have finished executing. The permissions are over pairs of states, which intuitively
represents the notion that ≈ is operating over both computations at the same time. Throughout
this section and the next, we assume state types 𝑆𝑖 for the imperative implementation and 𝑆𝑠 for its
specification.
The following captures how permissions are allowed to change during execution:

Definition 4.1. Permission 𝜋2 preserves separability of 𝜋1, written 𝜋1 ⇝ 𝜋2, iff 𝜋1 ⊥𝜋 implies
𝜋2 ⊥𝜋 for all 𝜋 .

The following lemma about⇝ show that it is quite similar to ≤, except that⇝ does not impose
any ordering on the preconditions of permissions.

Lemma 4.2. 𝜋1 ⇝ 𝜋2 iff 𝑅𝜋1 ⊆ 𝑅𝜋2 and 𝐺𝜋2 ⊆ 𝐺𝜋1 .

The use of⇝ encapsulates the idea that the preconditions, which capture what is currently true
of the state, can change as the program executes. With this definition, we can define this notion of
stuttering bisimulation formally:

Definition 4.3 (Stuttering bisimulation up to errors on the right). Let 𝑠𝑖 ∈ 𝑆𝑖 , 𝑠𝑠 ∈ 𝑆𝑠 , 𝑡𝑖 ∈
CompM 𝑆𝑖 𝑅𝑖 , and 𝑡𝑠 ∈ CompM 𝑆𝑠 𝑅𝑠 . Given a permission 𝜋 ∈ perm𝑆𝑖×𝑆𝑠

(the łinput permis-
sionž) and a function 𝐹 : (𝑅𝑖 × 𝑅𝑠 ) → Perms𝑆𝑖×𝑆𝑠 (the łoutput permission setž, describing the
permissions held once the computations terminate), we define stuttering bisimulation up to errors

on the right as the biggest relation ≈𝜋,𝐹 such that:
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(1) (return 𝑟1, 𝑠𝑖 ) ≈𝜋,𝐹 (return 𝑟2, 𝑠𝑠 ) for all 𝑟1 ∈ 𝑅𝑖 and 𝑟2 ∈ 𝑅𝑠 where 𝜋 ∈ 𝐹 (𝑟1, 𝑟2)
(2) (𝑡𝑖 , 𝑠𝑖 ) ≈𝜋,𝐹 (throw, 𝑠𝑠 )
(3) (𝑡𝑖 , 𝑠𝑖 ) ≈𝜋,𝐹 (𝑡𝑠 , 𝑠𝑠 ) where for any 𝑡 ′𝑖 , 𝑠

′
𝑖 such that (𝑡𝑖 , 𝑠𝑖 ) → (𝑡 ′𝑖 , 𝑠

′
𝑖 ), (𝑠𝑖 , 𝑠𝑠 )𝐺𝜋 (𝑠

′
𝑖 , 𝑠𝑠 ), and there

is some permission 𝜋 ′ where 𝜋 ⇝ 𝜋 ′ and (𝑡 ′𝑖 , 𝑠
′
𝑖 ) ≈𝜋 ′,𝐹 (𝑡𝑠 , 𝑠𝑠 ).

(4) (𝑡𝑖 , 𝑠𝑖 ) ≈𝜋,𝐹 (𝑡𝑠 , 𝑠𝑠 ) where for any 𝑡 ′𝑠 , 𝑠
′
𝑠 such that (𝑡𝑠 , 𝑠𝑠 ) → (𝑡 ′𝑠 , 𝑠

′
𝑠 ), (𝑠𝑖 , 𝑠𝑠 )𝐺𝜋 (𝑠𝑖 , 𝑠

′
𝑠 ), and there

is some permission 𝜋 ′ where 𝜋 ⇝ 𝜋 ′ and (𝑡𝑖 , 𝑠𝑖 ) ≈𝜋 ′,𝐹 (𝑡 ′𝑠 , 𝑠
′
𝑠 ).

(5) if 𝑡𝑖 and 𝑡𝑠 start with the same type of event, then (𝑡𝑖 , 𝑠𝑖 ) ≈𝜋,𝐹 (𝑡𝑠 , 𝑠𝑠 ) when
• for any 𝑡 ′𝑖 , 𝑠

′
𝑖 such that (𝑡𝑖 , 𝑠𝑖 ) → (𝑡 ′𝑖 , 𝑠

′
𝑖 ), there exists 𝑡

′
𝑠 , 𝑠
′
𝑠 such that (𝑡𝑠 , 𝑠𝑠 ) → (𝑡 ′𝑠 , 𝑠

′
𝑠 ), where

(𝑠𝑖 , 𝑠𝑠 )𝐺𝜋 (𝑠
′
𝑖 , 𝑠
′
𝑠 ), and there is some permission 𝜋 ′ where 𝜋 ⇝ 𝜋 ′ and (𝑡 ′𝑖 , 𝑠

′
𝑖 ) ≈𝜋 ′,𝐹 (𝑡

′
𝑠 , 𝑠
′
𝑠 ).

• for any 𝑡 ′𝑠 , 𝑠
′
𝑠 such that (𝑡𝑠 , 𝑠𝑠 ) → (𝑡 ′𝑠 , 𝑠

′
𝑠 ), there exists 𝑡

′
𝑖 , 𝑠
′
𝑖 such that (𝑡𝑖 , 𝑠𝑖 ) → (𝑡 ′𝑖 , 𝑠

′
𝑖 ), where

(𝑠𝑖 , 𝑠𝑠 )𝐺𝜋 (𝑠
′
𝑖 , 𝑠
′
𝑠 ), and there is some permission 𝜋 ′ where 𝜋 ⇝ 𝜋 ′ and (𝑡 ′𝑖 , 𝑠

′
𝑖 ) ≈𝜋 ′,𝐹 (𝑡

′
𝑠 , 𝑠
′
𝑠 ).

Furthermore, cases 3 and 4 cannot be applied in an infinite chain, to ensure diverging computations
are not related to every program.5

Case 1 states that returns are related when the input permission is in the output permission
set for the values that are returned, while case 2 states that an error on the right is related to any
computation on the left. Cases 3 and 4 allow one of side of the bisimulation to take a step, as long
as this step is allowed by the input permission and the resulting computation and state is still
related to the other side by a new permission. The condition preventing infinite chains of these
two cases ensures that an infinite path on one side always corresponds to an infinite path on the
other; otherwise, for instance, an infinite loop on one side would be related to any program on
the other. In our Coq formalization, this condition is enforced by a nested inductive-coinductive
definition. Finally, case 5 allows both sides to take a step in lock-step with the same conditions on
permissions as the previous cases for the left and right sides.
Using this definition, if we prove the specification has no errors, then neither does the imple-

mentation:

Theorem 4.4 (Error-Freedom). If (𝑡𝑖 , 𝑠𝑖 ) ≈𝜋,𝐹 (𝑡𝑠 , 𝑠𝑠 ) and (𝑡𝑠 , 𝑠𝑠 ) ̸→
∗ throw then (𝑡𝑖 , 𝑠𝑖 ) ̸→

∗

throw.

It is well-known that stuttering bisimulation preserves all temporal properties that do not use
the next-time operator [Browne et al. 1988; de Nicola and Vaandrager 1990]. This ensures that
our specifications satisfy, e.g., the same safety, liveness, and fairness properties as our imperative
programs, assuming the specifications do not have errors. One complication is that the input
permission 𝜋 and its precondition can change during execution of our programs and so cannot be
used to reason about any but the initial states. However, if we pick a permission 𝜋 ′ that is separate
from 𝜋 , its precondition is guaranteed to be invariant during execution, and so can be used to
relate the intermediate states of the imperative program and its specification. Intuitively, 𝜋 ′ is
a permission that is being held by some hypothetical observer that is trying to prove temporal
properties. Separateness from 𝜋 means that updates that can be performed by the computations
are tolerated by this observer in building proofs.

In more detail, consider the following fragment of CTL [Clarke and Emerson 1981; Clarke et al.
1999], where St(𝑃) denotes a state predicate for predicate 𝑃 ⊆ 𝑆 over values in state type 𝑆 :

𝜙 ::= St(𝑃) 𝜙1 ∧ 𝜙2 𝜙1 ∨ 𝜙2 𝜙1 ⇒ 𝜙2 EF 𝜙 EG 𝜙 AF 𝜙 AG 𝜙

The satisfaction relation 𝑡, 𝑠 |= 𝜙 between 𝑡 of type CompM 𝑆 𝑅, 𝑠 of type 𝑆 , and CTL formula 𝜙
over 𝑆 is defined in the standard way, where, e.g., 𝑡, 𝑠 |= St(𝑃) iff 𝑃 (𝑠) holds, 𝑡, 𝑠 |= EF 𝜙 holds iff
there exists some 𝑡 ′ and 𝑠 ′ with (𝑡, 𝑠) →∗ (𝑡 ′, 𝑠 ′) such that 𝑡 ′, 𝑠 ′ |= 𝜙 , etc.

5In the Coq development, this is implemented using a mixed inductive-coinductive definition.
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Definition 4.5 (𝜋-similarity). Let 𝜋 ∈ perm𝑆𝑖×𝑆𝑠
, 𝑃𝑖 ⊆ 𝑆𝑖 , and 𝑃𝑠 ⊆ 𝑆𝑠 . 𝑃𝑖 and 𝑃𝑠 are 𝜋-similar iff,

for all 𝑠𝑖 ∈ 𝑆𝑖 and 𝑠𝑠 ∈ 𝑆𝑠 such that 𝑃𝜋 (𝑠𝑖 , 𝑠𝑠 ), we have 𝑃𝑖 (𝑠𝑖 ) ⇐⇒ 𝑃𝑠 (𝑠𝑠 ). CTL formulas 𝜙1 and 𝜙2

are 𝜋-similar iff 𝜙2 can be obtained from 𝜙1 by replacing every subformula St(𝑃𝑖 ) with some St(𝑃𝑠 )
for 𝑃𝑖 𝜋-similar to 𝑃𝑠 .

Theorem 4.6 (Soundness). If (𝑡𝑖 , 𝑠𝑖 ) ≈𝜋1,𝐹 (𝑡𝑠 , 𝑠𝑠 ), (𝑡𝑠 , 𝑠𝑠 ) ̸→
∗ throw, 𝜙1 and 𝜙2 are 𝜋2-similar,

and 𝑃𝜋1∗𝜋2
(𝑠𝑖 , 𝑠𝑠 ), then 𝑡𝑖 , 𝑠𝑖 |= 𝜙1 ⇐⇒ 𝑡𝑠 , 𝑠𝑠 |= 𝜙2. Note that 𝑃𝜋1∗𝜋2

(𝑠𝑖 , 𝑠𝑠 ) implies 𝜋1 ⊥𝜋2.

The typing relation generalizes over valid input states of both programs:

Definition 4.7 (Typing). Let Π ∈ Perms𝑆𝑖×𝑆𝑠 , 𝐹 : (𝑅𝑖 × 𝑅𝑠 ) → Perms𝑆𝑖×𝑆𝑠 , 𝑡𝑖 ∈ CompM 𝑆𝑖 𝑅𝑖 , and
𝑡𝑠 ∈ CompM 𝑆𝑠 𝑅𝑠 . We say imperative program 𝑡𝑖 is well-typed with input permissions Π, output
permissions 𝐹 , and functional specification 𝑡𝑠 , written Π ⊢ 𝑡𝑖 { 𝑡𝑠 : 𝐹 , iff ∀𝜋 ∈ Π,∀𝑠𝑖 , 𝑠𝑠 such that
𝑃𝜋 (𝑠𝑖 , 𝑠𝑠 ), (𝑡𝑖 , 𝑠𝑖 ) ≈𝜋,𝐹 (𝑡𝑠 , 𝑠𝑠 ).

5 TYPING RULES FOR SPEC EXTRACTION

We now use the above definitions to define typing rules for extracting functional specifications
from imperative programs. Since we present the type system semantically, several things differ
from a standard syntactic presentation. Rather than quantifying over all valid substitutions of free
variables, we mix this step into the presentation by using universal quantification to represent free
variables. Type soundness is proven semantically [Milner 1978], where theorem 4.4 in conjunction
with the definition of typing acts as our adequacy theorem, and each of the semantic typing rules
in this section is proven as a lemma.

Definition 5.1 (Permission types). An (𝐴𝑖 , 𝐴𝑠 )-permission type is a function from an implementa-
tion value of type 𝐴𝑖 and a specification value of type 𝐴𝑠 to a permission set in Perms𝑆𝑖×𝑆𝑠 .

We write PType(𝐴𝑖 , 𝐴𝑠 ) for the set of (𝐴𝑖 , 𝐴𝑠 )-permission types. We also write 𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 for the
application 𝑇 (𝑥𝑖 , 𝑥𝑠 ) of 𝑇 to 𝑥𝑖 ∈ 𝐴𝑖 and 𝑥𝑠 ∈ 𝐴𝑠 . Intuitively, 𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 represents the permission
to represent imperative value 𝑥𝑖 with specification value 𝑥𝑠 . If, for example, 𝑥𝑠 always represents 𝑥𝑖
in all states, then 𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 is the vacuously true permission set True, while if it never does this
returns the inconsistent permission set False. The permission 𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 can also come with the
ability to modify some portion of the state; e.g., as we shall see in Section 5.4, pointer permissions
allow the value that is pointed in the implementation state to to be modified.
The remainder of this section gives the Heapster typing rules, which include rules both for

permission set entailment Π1 |= Π2 and for typing. The two relations are linked by the following
rule, which (when read backwards) allows the input permission type to be weakened and the output
permission type to be strengthened:

Π1 |= Π2 Π2 ⊢ 𝑡𝑖 { 𝑡𝑠 : 𝑇2 ∀𝑥𝑖 , 𝑥𝑠 , 𝑥𝑖 : 𝑇2 ⊲ 𝑥𝑠 |= 𝑥𝑖 : 𝑇1 ⊲ 𝑥𝑠
Π1 ⊢ 𝑡𝑖 { 𝑡𝑠 : 𝑇1

Weak

5.1 Permission Type Connectives

In this section, we introduce some basic connectives for permission types. These are given in
Figure 3, assuming 𝑇 ∈ PType(𝐴𝑖 , 𝐴𝑠 ), 𝑈 ∈ PType(𝐵𝑖 , 𝐵𝑠 ), and 𝑉 ∈ PType(𝐴𝑖 , 𝐵𝑠 ) are permission
types, noting that 𝑇 and 𝑉 have the same imperative type, and that 𝐹 : 𝐴 → PType(𝐴𝑖 , 𝐴𝑠 ) is a
function and Π a permission set. The first of these is the product permission type𝑇 ⊗𝑈 , that relates
imperative value 𝑥𝑖 to specification value 𝑥𝑠 by relating their first projections with 𝑇 and their
second projections with 𝑈 . The second is the sum permission type 𝑇 ⊕ 𝑈 , that relates left-hand
imperative values inl 𝑥𝑖 to left-hand specification values inl 𝑥𝑠 using 𝑇 and relates right-hand
imperative values inr 𝑥𝑖 to right-hand specification values inr 𝑥𝑠 using 𝑈 . The third permission
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type is the separating conjunction permission type 𝑇 ★𝑉 , that relates imperative value 𝑥𝑖 to a pair
of specification values by relating 𝑥𝑖 to the first one with 𝑇 and to the second one with 𝑉 . The
permission sets resulting from these two relations are conjoined together. The fourth permission
type is the permission set conjunction type 𝑇 ⊘ Π, that relates imperative values to specification
values using 𝑇 but also conjoins permission set Π to the resulting permission set.

𝑥𝑖 : (𝑇 ⊗ 𝑈 ) ⊲ 𝑥𝑠 = (𝑥𝑖 .1 :𝑇 ⊲ 𝑥𝑠 .1) ∗ (𝑥𝑖 .2 :𝑈 ⊲ 𝑥𝑠 .2)

inl 𝑥𝑖 : (𝑇 ⊕ 𝑈 ) ⊲ inl 𝑥𝑠 = 𝑥𝑖 :𝑇 ⊲ 𝑥𝑠
inr 𝑥𝑖 : (𝑇 ⊕ 𝑈 ) ⊲ inr 𝑥𝑠 = 𝑥𝑖 :𝑈 ⊲ 𝑥𝑠

𝑥𝑖 : (𝑇 ★𝑉 ) ⊲ 𝑥𝑠 = (𝑥𝑖 :𝑇 ⊲ 𝑥𝑠 .1) ∗ (𝑥𝑖 :𝑈 ⊲ 𝑥𝑠 .2)

𝑥𝑖 : (𝑇 ⊘ Π) ⊲ 𝑥𝑠 = 𝑥𝑖 :𝑇 ⊲ 𝑥𝑠 ∗ Π

𝑥𝑖 :True ⊲ unit = True
𝑥𝑖 : (𝑇 ∨𝑉 ) ⊲ inl 𝑥𝑠 = 𝑥𝑖 :𝑇 ⊲ 𝑥𝑠
𝑥𝑖 : (𝑇 ∨𝑉 ) ⊲ inr 𝑥𝑠 = 𝑥𝑖 :𝑈 ⊲ 𝑥𝑠

𝑥𝑖 : (∃𝑧 :𝐴.𝐹 𝑧) ⊲ {𝑧, 𝑥𝑠 } = 𝑥𝑖 :𝐹 𝑧 ⊲ 𝑥𝑠

Fig. 3. Connectives for Permission Types

The next permission type is the vacu-
ous True permission type, that relates
any imperative value to the unit ob-
ject and returns the True permission set.
Note that using True for both the permis-
sion set and permission type is a slight
abuse of notation, but it is always clear
from context which is intended. The fol-
lowing permission type is the disjunc-
tive permission type 𝑇 ∨𝑉 , that either
relates an imperative value 𝑥𝑖 to a left-
hand specification value inl 𝑥𝑠 by relat-
ing 𝑥𝑖 to 𝑥𝑠 using 𝑇 or relates 𝑥𝑖 to a

right-hand specification value inr 𝑥𝑠 by relating 𝑥𝑖 to 𝑥𝑠 using𝑉 . Finally, ∃𝑧 :𝐴.𝐹 𝑧 is the existential
permission type, that relates an imperative value 𝑥𝑖 to a dependent pair {𝑧, 𝑥𝑠 } by relating 𝑥𝑖 to
the second projection 𝑥𝑠 of the specification value using the permission type 𝐹 𝑧 resulting from
applying the body of the existential to the first projection 𝑧 of the specification value.

The rules for these connectives are given in Figure 4. The ProdI and ProdE rules introduce and
eliminate product types 𝑇 ⊗ 𝑈 by introducing and eliminating products on both sides. The SumI1
and SumI2 rules introduce sum types 𝑇 ⊕ 𝑈 by applying the same sum constructor on both sides,
while the SumE rule performs sum elimination on both sides using case expressions. Note that the
elimination rule is a typing rule and not an entailment rule, because it must insert case expressions
around the entire imperative program and specification. The StarI and StarE rules introduce and
eliminate separating conjunction types 𝑇 ★𝑈 by folding and unfolding the definition of that type,
while PermsI and PermsE introduce and eliminate the permission set conjunction type 𝑇 ⊘ Π by
folding and unfolding that definition. The central use of the latter type 𝑇 ⊘ Π is in the Frame rule,
which conjoins the same permission set Π2 onto the input and output permissions of any typing
derivation. Following is the TrueI rule, which vacuously introduces the True type by relating any 𝑥𝑖
to unit. Next are the disjunctive introduction rules OrI1 and OrI2 that introduce a disjunctive type
𝑇 ∨𝑈 from type 𝑇 or 𝑈 , respectively, by applying the appropriate constructor to the specification
value, along with the disjunctive elimination rule OrE, that eliminates a disjunctive type 𝑇 ∨𝑈 by
inserting a sum elimination into the specification value. Similarly to the SumE rule, OrE is a typing
and not an entailment rule. Finally, rules ExI and ExE introduce and eliminate the existential type
∃𝑧 :𝐴.𝐹 𝑧 by constructing and eliminating, respectively, a dependent pair in the specification.

5.2 Equality Permissions

The equality permission type eq(𝑦) is defined as follows:

𝑥𝑖 : eq(𝑦) ⊲ unit =

{

True if 𝑥𝑖 = 𝑦

False otherwise

When 𝑥𝑖 = 𝑦, permission type eq(𝑦) is the same as permission type True, and is otherwise incon-
sistent, i.e., 𝑥𝑖 is not related to anything. Figure 5 contains rules EqRefl, EqSym, EqTrans, and
EqCtx for reflexivity, symmetry, transitivity, and contextual closure of equality permissions. It
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𝑥𝑖 : 𝑇1 ⊲ 𝑥𝑠 ∗ 𝑦𝑖 : 𝑇2 ⊲ 𝑦𝑠 |= (𝑥𝑖 , 𝑦𝑖 ) : 𝑇1 ⊗𝑇2 ⊲ (𝑥𝑠 , 𝑦𝑠 )
ProdI

𝑥𝑖 : 𝑇1 ⊗𝑇2 ⊲ 𝑥𝑠 |= 𝑥𝑖 .1 : 𝑇1 ⊲ 𝑥𝑠 .1 ∗ 𝑥𝑖 .2 : 𝑇2 ⊲ 𝑥𝑠 .2
ProdE

𝑥𝑖 : 𝑇1 ⊲ 𝑥𝑠 |= inl 𝑥𝑖 : 𝑇1 ⊕𝑇2 ⊲ inl 𝑥𝑠
SumI1

𝑥𝑖 : 𝑇2 ⊲ 𝑥𝑠 |= inr 𝑥𝑖 : 𝑇1 ⊕𝑇2 ⊲ inr 𝑥𝑠
SumI2

∀𝑦𝑖 , 𝑦𝑠 ,Π ∗ 𝑦𝑖 : 𝑇1 ⊲ 𝑦𝑠 ⊢ 𝑡𝑖1 { 𝑡𝑠1 : 𝑈 ∀𝑧𝑖 , 𝑧𝑠 ,Π ∗ 𝑧𝑖 : 𝑇2 ⊲ 𝑧𝑠 ⊢ 𝑡𝑖2 { 𝑡𝑠2 : 𝑈

Π ∗ 𝑥𝑖 : 𝑇1 ⊕𝑇2 ⊲ 𝑥𝑠 ⊢ case 𝑥𝑖 of (𝜆𝑦𝑖 . 𝑡𝑖1) (𝜆𝑧𝑖 . 𝑡𝑖2) { case 𝑥𝑠 of (𝜆𝑦𝑠 . 𝑡𝑠1) (𝜆𝑧𝑠 . 𝑡𝑠2) : 𝑈
SumE

𝑥𝑖 :𝑇 ⊲ 𝑥𝑠 ∗ 𝑥𝑖 :𝑈 ⊲ 𝑦𝑠 |= 𝑥𝑖 :𝑇 ★𝑈 ⊲ (𝑥𝑠 , 𝑦𝑠 )
StarI

𝑥𝑖 :𝑇 ★𝑈 ⊲ 𝑥𝑠 |= 𝑥𝑖 :𝑇 ⊲ 𝑥𝑠 .1 ∗ 𝑥𝑖 :𝑈 ⊲ 𝑥𝑠 .2
StarE

(𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 ) ∗ Π |= 𝑥𝑖 : 𝑇 ⊘ Π ⊲ 𝑥𝑠
PermsI

𝑥𝑖 : 𝑇 ⊘ Π ⊲ 𝑥𝑠 |= (𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 ) ∗ Π
PermsE

Π1 ⊢ 𝑡𝑖 { 𝑡𝑠 : 𝑇

Π1 ∗ Π2 ⊢ 𝑡𝑖 { 𝑡𝑠 : 𝑇 ⊘ Π2
Frame

Π |= Π ∗ 𝑥𝑖 : True ⊲ unit
TrueI

𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 |= 𝑥𝑖 : 𝑇 ∨𝑈 ⊲ inl 𝑥𝑠
OrI1

𝑥𝑖 : 𝑈 ⊲ 𝑥𝑠 |= 𝑥𝑖 : 𝑇 ∨𝑈 ⊲ inr 𝑥𝑠
OrI2

∀𝑧1,Π ∗ 𝑥𝑖 : 𝑇1 ⊲ 𝑧1 ⊢ 𝑡𝑖 { 𝑡𝑠1 : 𝑈 ∀𝑧1,Π ∗ 𝑥𝑖 : 𝑇2 ⊲ 𝑧2 ⊢ 𝑡𝑖 { 𝑡𝑠2 : 𝑈

Π ∗ 𝑥𝑖 : 𝑇1 ∨𝑇2 ⊲ 𝑥𝑠 ⊢ 𝑡𝑖 { case 𝑥𝑠 of (𝜆𝑧1 . 𝑡𝑠1) (𝜆𝑧2 . 𝑡𝑠2) : 𝑈
OrE

𝑥𝑖 : 𝐹 𝑦𝑠 ⊲ 𝑥𝑠 |= 𝑥𝑖 : ∃𝑧 :𝐴.𝐹 𝑧 ⊲ {𝑦𝑠 , 𝑥𝑠 }
ExI

𝑥𝑖 : ∃𝑧 :𝐴.𝐹 𝑧 ⊲ 𝑥𝑠 |= 𝑥𝑖 : 𝐹 𝑥𝑠 .1 ⊲ 𝑥𝑠 .2
ExE

Fig. 4. Typing Rules for Permission Connectives

Π |= Π ∗ 𝑥𝑖 : eq(𝑥𝑖 ) ⊲ unit
EqRefl

𝑥𝑖 : eq(𝑦𝑖 ) ⊲ unit ∗ 𝑦𝑖 : eq(𝑧𝑖 ) ⊲ unit |= 𝑥𝑖 : eq(𝑧𝑖 ) ⊲ unit
EqTrans

𝑥𝑖 :eq(𝑦𝑖 ) ⊲ unit |= 𝑦𝑖 :eq(𝑥𝑖 ) ⊲ unit
EqSym

𝑥𝑖 : eq(𝑦) ⊲ unit |= 𝑥𝑖 : eq(𝑦) ⊲ unit ∗ 𝑥𝑖 : eq(𝑦) ⊲ unit
EqDup

𝑥𝑖 : eq(𝑦) ⊲ unit |= 𝑓 𝑥𝑖 : eq(𝑓 𝑦) ⊲ unit
EqCtx

𝑥𝑖 : eq(𝑦𝑖 ) ⊲ unit ∗ 𝑦𝑖 : 𝑇 ⊲ 𝑦𝑠 |= 𝑥𝑖 : 𝑇 ⊲ 𝑦𝑠
Cast

Fig. 5. Typing Rules Involving Equality

also contains rule EqDup, which allow equality permissions to be duplicated. Finally, it contains
the Cast rule, that allows a permission type for imperative value 𝑦𝑖 to be transferred to 𝑥𝑖 when
we know 𝑥𝑖 equals 𝑦𝑖 through an eq(𝑦𝑖 ) permission type on 𝑥𝑖 .

5.3 Instructions

Figure 6 shows how to type-check the combinators used to model most of the assembly-language
instructions in the program. We defer the operations related to pointers and memory to Section 5.4.
The rule in Figure 6, Ret, extracts a specification that returns 𝑥𝑠 from one that returns 𝑥𝑖 when
these are related by the input permission. Next is the Bind rule, which extracts a specification for
𝑡𝑖 >>= 𝑓𝑖 by extracting specifications for 𝑡𝑖 and 𝑓𝑖 , using the output permission type of the former
as the input permission type for the latter, and binds the results together. To type the getNum
operation, which is used to model numeric operations like arithmetic and comparison instructions,
the GetNum rule requires that its argument be a numeric Val. This is specified with an equality
permission saying that the argument equals VNum 𝑦𝑖 for some 𝑦𝑖 . The output permission then
says that the return value equals 𝑦𝑖 . The specification of getNum returns the trivial unit value, as
equality permissions have no computational content in specifications.

Following are the If and Iter rules, that extract conditionals and iter loops from conditionals and
iter loops. For the former, the rule requires the condition 𝑥𝑖 in the imperative program to satisfy
an equality permission relating it to some Boolean value 𝑦𝑠 , which is used as the condition in the
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𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 ⊢ return 𝑥𝑖 { return 𝑥𝑠 : 𝑇
Ret

Π ⊢ 𝑡𝑖 { 𝑡𝑠 : 𝑇 ∀𝑥𝑖 , 𝑥𝑠 , 𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 ⊢ 𝑓𝑖 𝑥𝑖 { 𝑓𝑠 𝑥𝑠 : 𝑈

Π ⊢ 𝑡𝑖 >>= 𝑓𝑖 { 𝑡𝑠 >>= 𝑓𝑠 : 𝑈
Bind

𝑥𝑖 : eq(VNum 𝑦𝑖 ) ⊲ unit
⊢ getNum 𝑥𝑖 { return unit : eq(𝑦𝑖 )

GetNum ∀𝑦𝑖 , 𝑦𝑠 , 𝑦𝑖 : 𝑇 ⊲ 𝑦𝑠 ⊢ 𝑓𝑖 𝑦𝑖 { 𝑓𝑠 𝑦𝑠 : 𝑇 ⊕𝑈

𝑥𝑖 : 𝑇 ⊲ 𝑥𝑠 ⊢ iter 𝑓𝑖 𝑥𝑖 { iter 𝑓𝑠 𝑥𝑠 : 𝑈
Iter

Π ⊢ 𝑡𝑖1 { 𝑡𝑠1 : 𝑈 Π ⊢ 𝑡𝑖2 { 𝑡𝑠2 : 𝑈

Π ∗ 𝑥𝑖 : eq(𝑦𝑠 ) ⊲ unit ⊢ if 𝑥𝑖 then 𝑡𝑖1 else 𝑡𝑖2 { if 𝑦𝑠 then 𝑡𝑠1 else 𝑡𝑠2 : 𝑈
If

𝑃 ⊢ 𝑡𝑖 { throw : 𝑈
Err

Fig. 6. Typing Rules for Instructions

specification. The łthenž and łelsež branches for the specification are then obtained by extracting
specifications from those of the imperative program. For the latter rule, the function argument 𝑓𝑖 of
iter must extract to a function 𝑓𝑠 in the specification, with input permission type 𝑇 relating their
inputs and output permission type 𝑇 ⊕ 𝑈 relating their outputs. The second arguments of iter in
the implementation and specification must then be related via 𝑇 . Finally, the Err rule can extract
an error specification from any imperative program if we cannot type-check it some other way.

5.4 Pointer Permissions

Pointer permissions are a key part of how Heapster erases pointers from imperative programs to
turn them into purely functional specifications. At a high level, they represent pointers with the
same specification value as the imperative value being pointed to. Thus, the pointers themselves
become transparent in terms of how they are represented.
In more detail, let valAdd : Val→ BV 64→ Val be the operation that adds a numeric offset to

either the numeric value or pointer offset of an imperative value. Further, let 𝑟𝑤 be a read-write
modality, which is one of the two objects R andW, and let 𝑜 ∈ BV 64 and 𝑇 ∈ PType(Val, 𝐴𝑠 ) for
some type 𝐴𝑠 . We then define the pointer permission type ptr((𝑟𝑤, 𝑜) ↦→ 𝑇 ) as follows, recalling
the definitions of the individual pointer permissions ptrpR and ptrpW from Section 3:

𝑥𝑖 : (ptr((𝑟𝑤, 𝑜) ↦→ 𝑇 )) ⊲ 𝑥𝑠 = { 𝜋 | ∃𝑣 .𝜋 ≥ ptrp𝑟𝑤 (valAdd 𝑥𝑖 𝑜, 𝑣) ∗ 𝑣 : 𝑇 ⊲ 𝑥𝑠 }

We call 𝑇 the content type of the pointer permission type ptr((𝑟𝑤, 𝑜) ↦→ 𝑇 ).
The rules for pointer permissions and the instructions related to pointers are shown in figure 7.

The PtrI and PtrE rules are similar to the rules ExI and ExE for existential types, where PtrI
introduces a pointer permissionwith content type𝑇 from one of the form ptr((𝑟𝑤, 𝑜) ↦→ eq(𝑦𝑖 )) and
PtrE eliminates a pointer permission to get out aVal𝑦𝑖 and a permission type ptr((𝑟𝑤, 𝑜) ↦→ eq(𝑦𝑖 )).
Not only does ptr((𝑟𝑤, 𝑜) ↦→ eq(𝑦𝑖 )) state that 𝑥𝑖 currently points to 𝑦𝑖 , it also represents a form
of permission borrowing, similar in spirit to the borrowing of the Rust type system. It says that
𝑦𝑖 holds the permissions that were originally part of those held by 𝑥𝑖 , and can be given back by
the PtrI rule. The ReadDup rule allows a read pointer permission to be duplicated, though its
contents must be an equality permission so that it can be duplicated as well. Rule PtrOff changes
a pointer permission on 𝑥𝑖 to a pointer permission on the addition valAdd 𝑥𝑖 𝑜2 of an offset to 𝑥𝑖
by subtracting the offset 𝑜2 from that of the pointer permission. The Load rule requires 𝑥𝑖 to point
to a known value 𝑦𝑖 , which can be achieved by first applying PtrE to a (read or write) pointer
permission. The permission for the returned value is then eq(𝑦𝑖 ). The Store rule requires a write
pointer permission, whose content permission is changed to an equality to the value that is written.
Because pointers are transparent objects that do not appear in specifications, the specifications
returned by both the Load and Store rules just return the unit value; their main effect is on the
pointer permissions in their inputs and outputs. The IsNull1 and IsNull2 rules then type the
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𝑥𝑖 : ptr( (𝑟𝑤,𝑜) ↦→ eq(𝑦𝑖 )) ⊲ unit ∗ 𝑦𝑖 : 𝑇 ⊲ 𝑦𝑠 |= 𝑥𝑖 : ptr( (𝑟𝑤,𝑜) ↦→ 𝑇 ) ⊲ 𝑦𝑠
PtrI

∀𝑦𝑖 ,Π ∗ 𝑥𝑖 : ptr( (𝑟𝑤,𝑜) ↦→ eq(𝑦𝑖 )) ⊲ unit ∗ 𝑦𝑖 : 𝑇 ⊲ 𝑥𝑠 ⊢ 𝑡𝑖 { 𝑡𝑠 : 𝑈

Π ∗ 𝑥𝑖 : ptr( (𝑟𝑤,𝑜) ↦→ 𝑇 ) ⊲ 𝑥𝑠 ⊢ 𝑡𝑖 { 𝑡𝑠 : 𝑈
PtrE

𝑥𝑖 : ptr( (𝑅,𝑜) ↦→ eq(𝑦𝑖 )) ⊲ unit |=
𝑥𝑖 : ptr( (𝑅,𝑜) ↦→ eq(𝑦𝑖 )) ⊲ unit∗
𝑥𝑖 : ptr( (𝑅,𝑜) ↦→ eq(𝑦𝑖 )) ⊲ unit

ReadDup

𝑥𝑖 : ptr( (𝑟𝑤,𝑜1) ↦→ 𝑇 ) ⊲ 𝑥𝑠 |= valAdd 𝑥𝑖 𝑜2 : ptr( (𝑟𝑤,𝑜1 − 𝑜2) ↦→ 𝑇 ) ⊲ 𝑥𝑠
PtrOff

𝑥𝑖 : ptr( (𝑟𝑤, 0) ↦→ eq(𝑦𝑖 )) ⊲ unit ⊢ load 𝑥𝑖 { return unit : eq(𝑦𝑖 ) ⊘ 𝑥𝑖 : ptr( (𝑟𝑤, 0) ↦→ eq(𝑦𝑖 )) ⊲ unit
Load

𝑥𝑖 : ptr( (𝑊, 0) ↦→ 𝑇 )) ⊲ 𝑥𝑠 ⊢ store 𝑥𝑖 𝑦𝑖 { return unit : True ⊘ 𝑥𝑖 : ptr( (𝑊, 0) ↦→ eq(𝑦𝑖 )) ⊲ unit
Store

𝑥𝑖 : ptr( (𝑟𝑤,𝑜) ↦→ 𝑇 ) ⊲ 𝑥𝑠 ⊢ isNull 𝑥𝑖 { return unit : eq(false) ⊘ 𝑥𝑖 : ptr( (𝑟𝑤,𝑜) ↦→ 𝑇 ) ⊲ 𝑥𝑠
IsNull1

𝑥𝑖 : eq(0) ⊲ 𝑥𝑠 ⊢ isNull 𝑥𝑖 { return unit : eq(true)
IsNull2

Fig. 7. Typing Rules for Pointer Permissions

isNull operator in two cases, one where the argument is a pointer, in which case the output type
says it returns true, and one where the argument equals 0, where output type says it returns false.

5.5 Array Permissions

Array pointer permissions are defined as repeated pointer permissions, one for each valid offset
into the array. Let 𝑟𝑤 be a read-write modality, let 𝑜, 𝑙 ∈ BV 64, and let 𝑇 ∈ PType(Val, 𝐴𝑠 ). The
array pointer permission type arr((𝑟𝑤, 𝑜, 𝑙) ↦→ 𝑇 ) is the (Val,Vect 𝐴𝑠 𝑙)-permission type such that

𝑥𝑖 : arr((𝑟𝑤, 𝑜, 𝑙) ↦→ 𝑇 ) ⊲ 𝑥𝑠 = *
0≤𝑖<𝑙

𝑥𝑖 : ptr((𝑟𝑤, 𝑜 + 8 ∗ 𝑖) ↦→ 𝑇 ) ⊲ 𝑥𝑠 [𝑖]

That is, arr((𝑟𝑤, 𝑜, 𝑙) ↦→ 𝑇 ) is defined as the permissions for 𝑙 pointers to the 8-byte words starting
at offset 𝑜 . The specification value 𝑥𝑠 is a vector of 𝑙 values, where the 𝑖th element acts as the speci-
fication value for the 𝑖th pointer permission. The Heapster tool in fact extends array permissions
and their rules in a number of ways, such as to support arrays of different cell sizes, but these
extensions are beyond the scope of this paper.
Also relevant to array permissions are malloc and free, which in general (de)allocate arrays of

arbitrary size. The allocation permission set alloc is defined as the upwards closure of the set of all
permissions alloc(𝑛), defined as

alloc(𝑛) = ({ (𝑠1, 𝑠2) | ∀𝑚 ≥ 𝑛.blkeq(𝑠1, 𝑠2,𝑚) }, { (𝑠1, 𝑠2) | ∀𝑚 < 𝑛.blkeq(𝑠1, 𝑠2,𝑚) }
{ 𝑠 | numblocks(𝑠) = 𝑛 })

where blkeq(𝑠1, 𝑠2,𝑚) requires the𝑚th memory block to have the same size and values in both 𝑠1
and 𝑠2 and where numblocks(𝑠) is the number of memory blocks that have been allocated so far.
This permission says that 𝑛 blocks have been allocated so far, and gives exclusive permission to
all blocks that have not yet been allocated. The block permission type block(𝑁 ) is defined as the
(Val,Unit)-permission type such that

𝑥𝑖 : (block(𝑁 )) ⊲ unit = pred(blockp(𝑝, 𝑁 ))

where blockp(𝑝, 𝑁 ) is defined in Section 3 as the predicate stating that 𝑝 points to the beginning of
a block of size 𝑁 .
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∀𝑥𝑠1 .𝑥𝑠2 .Π ∗ 𝑥𝑖 :arr( (𝑟𝑤,𝑜, 𝑙′) ↦→ 𝑇 ) ⊲ 𝑥𝑠1 ∗ 𝑥𝑖 :arr( (𝑟𝑤,𝑜 + 𝑙′, 𝑙 − 𝑙′) ↦→ 𝑇 ) ⊲ 𝑥𝑠2 ⊢ 𝑡𝑖 { 𝑓𝑠 (𝑥𝑠1, 𝑥𝑠2) :𝑈

Π ∗ 𝑥𝑖 : arr( (𝑟𝑤,𝑜, 𝑙) ↦→ 𝑇 ) ⊲ 𝑥𝑠 ⊢ 𝑡𝑖 { trySplit 𝑥𝑠 𝑙′ 𝑓𝑠 : 𝑈
ArrSplit

𝑥𝑖 :arr( (𝑟𝑤,𝑜,𝑙′) ↦→𝑇 ) ⊲ 𝑥𝑠1 ∗ 𝑥𝑖 :arr( (𝑟𝑤,𝑜 + 𝑙′,𝑙) ↦→𝑇 ) ⊲ 𝑥𝑠2 |= 𝑥𝑖 :arr( (𝑟𝑤,𝑜,𝑙 + 𝑙′) ↦→𝑇 ) ⊲ 𝑥𝑠1++𝑥𝑠2
ArrCombine

𝑥𝑖 : arr( (𝑟𝑤,𝑜, 1) ↦→ 𝑇 ) ⊲ 𝑥𝑠 |= 𝑥𝑖 : ptr( (𝑟𝑤,𝑜) ↦→ 𝑇 ) ⊲ 𝑥𝑠 [0]
ArrPtr

𝑥𝑖 : ptr( (𝑟𝑤,𝑜) ↦→ 𝑇 ) ⊲ 𝑥𝑠 |= 𝑥𝑖 : arr( (𝑟𝑤,𝑜, 1) ↦→ 𝑇 ) ⊲ ⟨𝑥𝑠 ⟩
PtrArr

𝑥𝑖 :eq(VNum(8×𝑙)) ⊲ 𝑥𝑠 ∗alloc ⊢ malloc 𝑥𝑖 { return ⟨unit, . . . ⟩ : arr( (W,0,𝑙) ↦→True) ★ block(8×𝑙) ⊘alloc
Malloc

𝑥𝑖 : arr( (W, 0, 𝑙) ↦→ True) ★ block(8 ∗ 𝑙) ⊲ 𝑥𝑠 ⊢ free 𝑥𝑖 { return unit : True
Free

Fig. 8. Typing Rules for Array Permissions

The typing rules for arrays are shown in Figure 8. The first rule, ArrSplit, splits an array
permission arr((𝑟𝑤, 𝑜, 𝑙) ↦→ 𝑇 ) in two at offset 𝑙 ′, leaving an array permission of length 𝑙 ′ and one
of length 𝑙 − 𝑙 ′ starting at offset 𝑜 + 𝑙 ′. The specification uses the function

trySplit : Vect 𝐴 𝑙 → Π𝑙 ′ :BV 64. (Vect 𝐴 𝑙 ′→ Vect 𝐴 (𝑙 − 𝑙 ′) → CompM 𝑆 𝑅) → CompM 𝑆 𝑅

where trySplit 𝑣 𝑙 ′ 𝑓 tries to split a vector 𝑣 of length 𝑙 into one of length 𝑙 ′ and one of length
𝑙 − 𝑙 ′, passing the results to 𝑓 on success and throwing an error on failure. Note that, other than the
Err rule, this is the only rule that introduces errors into the specification. The ArrCombine rule
performs the converse, combining two consecutive array permissions into one. Its specification
appends the two corresponding specification vectors with the vector append operation ++ . The
ArrPtr rule converts an array permission with length 1 into the equivalent pointer permission,
using a specification that extracts the single element of the corresponding vector. The PtrArr does
the opposite, building an array permission of length 1 from a pointer permission. To type-check an
array indexing operation at index 𝑖 , ArrSplit can be applied twice to split an array permission
into the portions of the array before 𝑖 , after 𝑖 , and containing only 𝑖 . ArrPtr can then be applied to
convert this latter portion into a pointer permission to be used with load or store.

5.6 Recursive and Reachability Permissions

Recursive permission types allow Heapster to represent recursive data structures like the bufs

structure from Section 1.1. Reachability permissions are a specific form of recursive permission that
intuitively states that an implementation value 𝑦𝑖 is reachable via 0 or more pointer steps from the
value 𝑥𝑖 holding that permission, that satisfy reflexivity and transitivity rules. The corresponding
specification is a list of the specifications of all of the steps along the path from 𝑥𝑖 to 𝑦𝑖 .
Let 𝐺 be a type-level function with fixed-point 𝑋 , equipped with functions fold : 𝐺 𝑋 → 𝑋

and unfold : 𝑋 → 𝐺 𝑋 that form an isomorphism, and let 𝐹 : PType(𝐴,𝑋 ) → PType(𝐴,𝐺 𝑋 )

be a function on permission types that is monotonic with respect to the permission ordering
≤. Further, define function 𝐹 ′ : PType(𝐴,𝑋 ) → PType(𝐴,𝑋 ) such that 𝑥𝑖 : (𝐹 ′ 𝑇 ) ⊲ 𝑥𝑠 equals
the permission set 𝑥𝑖 : (𝐹 𝑇 ) ⊲ unfold 𝑥𝑠 . We then define the least fixed-point permission 𝜇𝐹 as
the least fixed-point of 𝐹 ′ with respect to ≤. We sometimes write 𝜇𝑋 .𝑇 with 𝑋 free in 𝑇 for the
least fixed-point permission 𝜇 (𝜆𝑋 .𝑇 ). A reachability permission is a (Val, List 𝐴𝑠 )-permission type
(𝜇𝑋 .eq(𝑦) ∨ (𝑇 ★ ptr((𝑟𝑤, 𝑜) ↦→ 𝑋 ))) for 𝑇 ∈ PType(Val, 𝐴𝑠 ) that does not contain 𝑦 or 𝑋 free.
Figure 9 shows the typing rules related to recursive permissions. The Foldmaps from permission

type 𝐹 (𝜇𝐹 ) by applying the fold function in the specification, while the Unfold does the reverse by
applying unfold. The ReflR rule proves reflexivity of reachability permissions, intuitively stating
that 𝑥𝑖 is always reachable from itself. The resulting specification is the empty list, because 𝑥𝑖
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𝑥𝑖 : 𝐹 (𝜇𝐹 ) ⊲ 𝑥𝑠 |= 𝑥𝑖 : 𝜇𝐹 ⊲ fold 𝑥𝑠
Fold

𝑥𝑖 : 𝜇𝐹 ⊲ 𝑥𝑠 |= 𝑥𝑖 : 𝐹 (𝜇𝐹 ) ⊲ unfold 𝑥𝑠
Unfold

True |= 𝑥𝑖 : (𝜇𝑋 .eq(𝑥𝑖 ) ∨𝑇 ★ ptr( (𝑟𝑤,𝑜) ↦→ 𝑋 )) ⊲ []
ReflR

𝑥𝑖 : (𝜇𝑋 .eq(𝑦𝑖 ) ∨𝑇 ★ ptr( (𝑟𝑤,𝑜) ↦→ 𝑋 )) ⊲ 𝑥𝑠 ∗ 𝑦𝑖 : (𝜇𝑋 .eq(𝑧𝑖 ) ∨𝑇 ★ ptr( (𝑟𝑤,𝑜) ↦→ 𝑋 )) ⊲ 𝑦𝑠
|= 𝑥𝑖 : (𝜇𝑋 .eq(𝑧𝑖 ) ∨𝑇 ★ ptr( (𝑟𝑤,𝑜) ↦→ 𝑋 )) ⊲ append 𝑥𝑠 𝑦𝑠

TransR

Fig. 9. Typing Rules for Recursive and Reachability Permissions

reaches itself in 0 steps. The TransR rule proves transitivity, stating that if 𝑥𝑖 reaches 𝑦𝑖 and 𝑦𝑖
reaches 𝑧𝑖 then 𝑥𝑖 reaches 𝑧𝑖 . The specification appends the two lists.

6 THE HEAPSTER TOOL

The Heapster tool implements the type-checking and specification extraction process described in
the previous sections. This section describes usage of the tool from a user’s perspective.
The user starts with their imperative code as usual, written in any language that compiles to

LLVM bitcode. Heapster can be used to verify each function in the input program. The user must
write Heapster typesÐgiving the permissions that are held before and after the function callÐfor
each function by hand and pass this to the tool along with the code. Given these annotations, the
Heapster tool uses a straightforward algorithm, not described here for space reasons, to apply the
type-checking rules presented in this paper.
Some functions, such as those using loops, cannot be type-checked automatically, and require

the user to provide type-checking hints to Heapster. These hints are intermediate Heapster types
that hold at certain points in the function, acting as loop invariants.
Specifically, most iterative loops over recursive data structures require hints from the user to

manually generalize the permission describing the data structure to a reachability permission. We
anticipate that it is possible to do this generalization automatically using a widening algorithm, but
we leave this to future work. Recursive loops, which the tool supports even though the formalization
does not, do not require hints, however. This is because the permission types on the function itself,
which are supplied by the user, also serve as the invariant for the recursive loop performed by the
function.

Once type-checking succeeds, Heapster outputs a functional specification in Coq. The user can
then prove arbitrary properties about this functional program, such as functional correctness or
absence of errors. In particular, the absence of errors in the functional program guarantees memory
safety for the imperative program.

For each of examples we present below, we first type-check the code using Heapster types. Since
the Err rule can type-check any imperative program, we take successful type-checking to mean
that the program can be type-checked without use of the Err rule. In some cases, such as when
the error computation only appears in unreachable branches of an if statement, we loosen this
definition and consider that successful as well. Note that this is an informal measure; it is not
necessary to disallow uses of Err, but its use in the type-checking process usually indicates that
something has gone wrong.

We use an approach based on Dijkstra monads [Maillard et al. 2019; Silver and Zdancewic 2021] to
prove two results about each extracted specification. First, that error is unreachable by proving that
the specification refines a returning (and therefore non-error) computation, and second, that the
specification refines a hand-written, higher-level specification of the program. We have developed
an automated tactic for performing these refinement proofs, and have had some success in using
it. The main limitation in using this tactic is performance: its implementation is based on Coq
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void xor_swap(uint64_t ∗x, uint64_t ∗y) {

∗x = ∗x ^ ∗y;

∗y = ∗x ^ ∗y;

∗x = ∗x ^ ∗y;

}

int64_t is_elem (int64_t x, list64_t ∗l) {

if ( l == NULL)

return 0;

else if ( l→ data == x)

return 1;

else

return is_elem (x, l→ next);

}

Fig. 10. C Examples to be Type-checked with Heapster

typeclasses, which can become slow for large terms. We are currently reimplementing this tactic to
overcome these performance limitations by using computational reflection [Boutin 1997; Malecha
et al. 2014].
As a first example consider the swap function xor_swap implemented using an exclusive or

operation in Figure 10. We type-check this function using the following Heapster command, which
says that the arguments are pointers to 64-bit bitvectors both before and after the function call
(The "-o" is used to separate the input and output permissions of the function):

heapster_typecheck_fun env "xor_swap" "(x:bv 64, y:bv 64).

arg0: ptr((W,0) |-> eq(llvmword(x))), arg1: ptr((W,0) |-> eq(llvmword(y))) -o

arg0: ptr((W,0) |-> exists z:bv 64.eq(llvmword(z))),

arg1: ptr((W,0) |-> exists z:bv 64.eq(llvmword(z))), ret:true";

Heapster extracts the following functional specification when it finishes type-checking:

fixM

( fun _ : bitvector 64→ bitvector 64→ {_ : bitvector 64 & unit} ∗ ({ _ : bitvector 64 & unit} ∗ unit) ⇒

fun e0 e1 : bitvector 64⇒

letRecM tt

( returnM (existT (fun _ : bitvector 64⇒ unit)

( SAWCorePrelude.bvXor 64 (SAWCorePrelude.bvXor 64 e0 e1)

( SAWCorePrelude.bvXor 64 (SAWCorePrelude.bvXor 64 e0 e1) e1)) tt,

( existT (fun _ : bitvector 64⇒ unit)

( SAWCorePrelude.bvXor 64 (SAWCorePrelude.bvXor 64 e0 e1) e1) tt, tt)))

Note that unlike the idealized specification shown in figure 2, this specification is far more
verbose, and uses different operations such as fixM for general recursion instead of iter. Future
work includes updating the Heapster tool to use less general operations such as iter when general
recursion is not required, as well as expanding the formalization to include recursion instead of
just iteration.
Finally, we use the automated Coq tactic to prove that this specification refines the error-free

program and that it refines the following hand-written specification:

Definition xor_swap_spec x1 x2 :

CompM ({ _ : bitvector 64 & unit} ∗ ({ _ : bitvector 64 & unit} ∗ unit)) :=

returnM (existT _ x2 tt, (( existT _ x1 tt), tt)).

The proof of the second refinement requires some facts about exclusive or which had to be proved
manually.
For a second, more complex example, consider the following function which searches a linked

list for a value: We type-check the function using the following Heapster command:

heapster_typecheck_fun env "is_elem" "(x:bv 64).
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arg0:eq(llvmword(x)), arg1:List<(exists y:(bv 64).eq(llvmword(y))),always,R> -o

arg0:true, arg1:true, ret:exists z:(bv 64).eq(llvmword(z))";

This Heapster type says that the arguments are a 64-bit bitvector and a linked list of 64-bit bitvectors,
and that the return value is also a 64-bit bitvector. Note that here we drop the output types for the
arguments because the input types are non-exclusive and can be copied as needed by the caller to
preserve them on output.
The list permission type used earlier must first be defined by the user using the following

command:

heapster_define_recursive_perm env "List"

"X:perm(llvmptr 64), l:lifetime, rw:rwmodality" "llvmptr 64"

["eq(llvmword(0))","[l]ptr((rw,0) |-> X) * [l]ptr((rw,8) |-> List<X,l,rw>)"]

"List_def" "foldList" "unfoldList";

This command defines a list as a recursive permission type which is either NULL or is a pointer
permission to offset 0 with some content type, and another pointer permission to offset 8 which
has the same recursive list type as its content type. The type is parameterized by the content type,
a lifetime (which is currently unused), and a read-write modality. The last line of the command
connects the Heapster type to a definition of lists in Coq.
The extracted specification is:

fixM ( fun is_elem : bitvector 64→ List {_ : bitvector 64 & unit}→ {_ : bitvector 64 & unit}⇒

( fun ( e0 : bitvector 64) ( p0 : List { _ : bitvector 64 & unit}) ⇒

letRecM tt

either unit ({ _ : bitvector 64 & unit} ∗ ( List_def {_ : bitvector 64 & unit} ∗ unit))

( CompM {_ : bitvector 64 & unit})

( fun _ : unit⇒ returnM (existT (fun _ : bitvector 64⇒ unit) (intToBv 64 0) tt))

( fun x_right0 : { _ : bitvector 64 & unit} ∗ ( List_def {_ : bitvector 64 & unit} ∗ unit) ⇒

if not ( bvEq 1 ( if bvEq 64 ( projT1 (fst x_right0)) e0 then intToBv 1 (−1) else intToBv 1 0)

( intToBv 1 0))

then returnM (existT (fun _ : bitvector 64⇒ unit) (intToBv 64 1) tt)

else is_elem e0 (fst ( snd x_right0)) >>=

( fun call_ret_val : { _ : bitvector 64 & unit}⇒

returnM (existT (fun _ : bitvector 64⇒ unit) (projT1 call_ret_val) tt)))

( unfoldList {_ : bitvector 64 & unit} p0)))

The automated tactic successfully proves that this specification refines the error-free specification
and that it refines the following hand-written specification:

Definition is_elem_fun (x:bitvector 64) :

list { _: bitvector 64 & unit}→ CompM {_:bitvector 64 & unit} :=

list_rect (fun _ ⇒ CompM {_:bitvector 64 & unit})

( returnM (existT _ ( intToBv 64 0) tt))

( fun y l' rec⇒

if bvEq 64 ( projT1 y) x then returnM (existT _ ( intToBv 64 1) tt) else rec).

Users can prove arbitrary properties of the extracted specifications beyond these two approaches.
For instance, we have also verified the correctness property that the specification returns 1 when
the specified bitvector is in the list and 0 when it is not. However, this proof requires some amount
of manual effort on top of the automation to prove some of the subgoals.

As shown in these examples, the amount of input the user has to provide to obtain the functional
specification is relatively small. The Heapster types are straightforward and just include type
information, not behavioral information, and providing loop invariants is par for the course.
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Compared to other systems, such as VST [Appel et al. 2014; Beringer and Appel 2019] and Iris [Jung
et al. 2018, 2015], where one can do general verification of programs, our approach greatly simplifies
writing specifications for imperative code. In those systems, the specifications must be written by
hand whereas in Heapster, they are automatically extracted using the typing information. Note that
the specifications generated by Heapster seem to have comparable size and complexity to those
used in systems like VST and Iris, though it is hard to form a direct "apples-to-apples" comparison
thanks to differences in the logics and other formalisms.

7 RESULTS

We are using the Heapster tool to verify an implementation of the Encapsulating Security Payload
(ESP) protocol of IPSec. In this section, we report on our experience verifying the functions for
manipulating a data structure that is central to this implementation. The data structure is called an
mbox, short for łmemory boxž. It is a version of the mbuf structure [Jeker 2008] used by the OpenBSD
network stack, and represents a network packet as a linked list of chunks, or łboxesž. These linked
lists are also called mbox chains. This representation allows additional headers and footers to be
added to packets without copying.
The mbox data structure is defined as follows:

struct mbox { size_t start; size_t len; struct mbox ∗next; uint8_t data[128]; };

Each mbox structure represents a chunk of memory. It contains a fixed-size array data of 128 bytes,
along with fields start and len that indicate what portion of the data array makes up the current
chunk. Thus, for instance, bytes can be removed from the beginning or end of a chunk just by
modifying start or len. The next field points to the next chunk in the current packet.
Figure 11 lists the functions on mbox structures, along with a description of each function, the

number of iterative loops in each function, whether the function has successfully been type-checked
withHeapster to date, and, if so, the number of user-supplied hints needed to type-check the function.
The łTCž column indicates functions that have been type-checked successfully by the criteria
specified in section 6. The łVž column indicates functions whose extracted specifications have been
verified to be error-free and to refine a higher-level hand-written specification, as described in
section 6. As shown in the figure, each function with an iterative loop requires a hint to supply its
loop invariant.

One function that could not be type-checked is mbox_increment, because this function depends on
the endianness of the architecture, which is not yet supported by Heapster. The remaining functions
that cannot yet be type-checked with Heapster are mbox_new, mbox_free, and mbox_all_freed, which
are part of the custom allocator and deallocator for mbox. Just as the standard malloc and free

require special-purpose typing rules, so too do custom allocators and deallocators, at least at the
current level of development of the Heapster tool. To support functions that require their own
custom rules, Heapster allows the user to posit function types and translations as type-checking
axioms. Type-checking axioms are also useful for handling opaque, łblack-boxž operations like
system or library calls whose semantics are not available to the Heapster tool. For these mbox

functions, only the rand and memcpy functions had to be axiomatized. In the future we plan to
generate Coq proof goals for type-checking axioms, to allow users to verify that their axioms
are correct, though this functionality has not yet been implemented. Figure 11 indicates which
functions rely on type-checking axioms.

Figure 11 shows that we have had success verifying four of the mbox functions using our automated
Coq tactic. The main barrier to verifying more of the functions is performance of the tactic, which
we are working to address.
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Function Name Description #Loops #Hints TC V

mbox_new Allocate an mbox 1 N/A
mbox_free Deallocate an mbox 0 N/A
mbox_free_chain Deallocate an mbox chain 1 1 ✓

†
✓

mbox_from_buffer Allocate an mbox chain from a buffer 1 1 ✓
†

mbox_to_buffer Copy the contents of an mbox chain to a buffer 1 1 ✓
†

mbox_len Compute the length in bytes of an mbox chain 1 1 ✓

mbox_concat Concatenate an mbox chain after a single mbox 0 0 ✓ ✓

mbox_concat_chains Concatenate two mbox chains 1 1 ✓

mbox_split_at Split an mbox chain into two chains 0∗ 0 ✓
†

mbox_copy Copy a single mbox 0 0 ✓
†
✓

mbox_copy_chain Copy an mbox chain 0∗ 0 ✓

mbox_detach Detach the first mbox from a chain 0 0 ✓ ✓

mbox_detach_from_end Detach the first 𝑁 bytes of from an mbox chain 0 0 ✓

mbox_increment Increment the first 128 bits of an mbox as a bitvector 0 N/A
mbox_randomize Randomize the contents of an mbox 1 1 ✓

†

mbox_eq Test if the contents of two mbox chains are equal 1 1 ✓

mbox_drop Remove bytes from the start of an mbox 0∗ 0 ✓

mbox_all_freed Test that all mbox structures have been freed 1 N/A
∗ the function is recursive

† the function calls a non-type-checked function

Fig. 11. The Results of Heapster Specification Extraction on mbox Functions

Evenwithout verification of the extracted specifications, though, just the process of type-checking
helped us to uncover a number of bugs related to memory safety. The first of these was a bug in
mbox_split_at, where the splitting was being done incorrectly when the index for splitting landed
exactly on the boundary between two mbox chunks. The second was a bug in mbox_to_buffer where
array size was being checked incorrectly. Finally, there were a number of missing NULL checks.

8 RELATED WORK

Closely related to Heapster is the Electrolysis system [Ullrich 2016], which extracts functional
specifications in the Lean theorem prover from imperative programs written in Rust. Immutable
references are erased to pure functional values, just as in Heapster, while mutable references are
translated to lenses that describe them as a substructure of some local variable in scope. This
approach does have some limitations: it cannot represent the arbitrary dynamic allocation of
malloc, and it is difficult for it to handle more complex patterns like mutable references nested in
larger structures or modified in loops. However, the authors have shown it to be effective enough
to translate 45% of the Rust core library to Lean.
RustHorn [Matsushita et al. 2020] uses the ownership information of Rust types to translate

Rust code to constrained Horn clauses. Heapster supports a more general class of source programs
at the cost of more user input, but uses the same idea of using ownership information to extract
simpler representations of source programs.

As a separation logic, Heapster is closest to Viper [Müller et al. 2016], including its recent Prusti
front-end for Rust [Astrauskas et al. 2019]. Viper is a system for verification of imperative programs
using separation logic. It supports a high degree of automation in this verification, just like Heapster,
and it also allows users to write functional specifications for their imperative programs. A key
difference, however, is that users of Viper have to encode these specifications manually as pre-
and post-conditions of functions, whereas Heapster extracts an entire functional specification
automatically from just the memory-safety types of a function. Viper also uses the implicit dynamic
frames formulation of separation logic [Smans et al. 2012], which contains assertions like ł𝑙 is a
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valid pointerž, similar to our ptr((𝑟𝑤, 𝑜) ↦→ 𝑇 ) permissions, instead of the standard separation logic
assertions 𝑙 ↦→ 𝑥 that location 𝑙 currently points to 𝑥 . The implicit dynamic frames logic is in fact
known to be equivalent to the existential and disjunctive fragment of standard separation logic
[Parkinson and Summers 2011].

There are also a number of other tools for verifying imperative programs in Coq using separation
logic, including Iris [Jung et al. 2018, 2015] and the Verified Software Toolchain [Appel et al. 2014;
Beringer and Appel 2019]. These tools use powerful higher-order concurrent separation logics that
can support reasoning over complex concurrent data structures. For instance, Iris was recently used
to verify a distributed database [Gondelman et al. 2021]. With this power comes a high degree of
complexity, however, and these tools often require a high degree of time and expertise to effectively
use them.
There have been a number of concurrent separation logics that incorporate rely-guarantee

reasoning [Dodds et al. 2009; Feng 2009; Vafeiadis and Parkinson 2007]. There are even type
systems that incorporate rely-guarantee [Gordon et al. 2013]. There are also a number of meta-
theoretic frameworks for defining the semantics of separation logics that can support rely-guarantee
reasoning [Bizjak and Birkedal 2017; Calcagno et al. 2007; Dinsdale-Young et al. 2013]. A key
differentiator of our approach is the focus on a relational semantics of separation logic that captures
the notion that a component of one program is represented by another in a way that comes with
permissions to modify state. A small technical difference is that these approaches are all based on
partial commutative monoids, where p ∗ q is undefined when p and q are not separate, whereas the
separating conjunction T ★ U of two permission types is defined and asserts that the current state is
one in which T and U are separate.

9 CONCLUSION

In this paper, we have presented a type system that can extract functional specifications from
imperative programs. To do this, we have developed a novel, relational semantics of a form of
separation logic called permission types that can represent impure values in imperative programs
with pure values in specifications. The extracted specifications are stuttering bisimilar up to errors
to the original imperative programs, meaning that we can prove temporal properties like safety,
liveness, and fairness of the latter by proving those temporal properties, plus error freedom,
of the former. Even though we have not explored it much here, our framework supports non-
determinism, which suggests it can handle concurrent programs. We plan to explore this as future
work. Additionally, we plan to explore applying the Heapster approach to Rust programs, which
we anticipate will be a sweet spot for Heapster: because the Rust type system already captures
memory safety and permissions, we anticipate that it should require few if any user annotations to
extract functional specifications from Rust programs.
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