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Abstract

Applications that manipulate sensitive information should ensureend-to-endsecurity by satisfying two
properties:sound executionand some form ofnoninterference. By the former, we mean the program should
always perform actions in keeping with its current policy, and by the latter we mean that these actions should
never cause high-security information to be visible to a low-security observer. Over the last decade, security-
typed languages have been developed that exhibit these properties, increasingly improving so as to model
important features of real programs. No current security-typed language, however, permits general changes
to security policies in use by running programs. This paper presents a simple information flow type system
for that allows for dynamic security policy updates while ensuring sound execution and a relaxed form of
noninterference we termnoninterference between updates. We see this work as an important step toward using
language-based techniques to ensure end-to-end security for realistic applications.

1 Introduction

Increasingly, personal and business information is being made available via networked infrastructures, so the
need to protect the confidentiality of that information is becoming more urgent. A typical approach to enforcing
data confidentiality is via access control. Unfortunately, access control only governs the release of information,
not its propagation. Once a principal (e.g., a user, process, party, etc.) legally reads some data, he can freely
share it, whether purposefully or inadvertently, despite the possible wishes of its owner. Instead, we would prefer
applications to enforceend-to-endsecurity by governinginformation flow: a principal should not, through error
or malice, be permitted to transmit confidential information to an unauthorized party.

An information flow control system typically aims to enforce two properties:noninterferenceandsound execu-
tion. Given a principal hierarchy that defines the relative security levels of various principals, a program satisfies
noninterference when it ensures that high security data is never visible, whether directly or indirectly, to low se-
curity observers. A program satisfies sound execution if it does not generate errors at run time. A typical way to
satisfy these properties is to use asecurity-typed language[14] wherein the standard types on program variables
include annotations to specify which principals are allowed to read. If a program type checks under a princi-
pal hierarchy, then, it is guaranteed that the program is noninterfering and sound with respect to the hierarchy.
Security-typed languages are appealing because these properties are proven in advance of actual execution.

Typical security-typed languages assume that the principal hierarchy remains fixed during program execution.
For long-running programs, such an assumption is unrealistic, as policies often change over time, e.g., to perform
revocations [6, 2]. On the other hand, simply allowing the principal hierarchy to change at runtime could violate
both the soundness and noninterference properties of running programs.

This paper presents a new security-typed language that allows dynamic updating of information-flow policies,
particularly the delegation relations in the principal hierarchy. Section 2 defines a typical security-typed source
languageλΠ

≤, and then Section 4 definesλΠ
tag as an extension ofλΠ

≤ with tagsand the ability to accommodate
updates to the principal hierarchy. We prove thatλΠ

≤ programs can be compiled toλΠ
tag programs automatically,

that these programs are sound, and that they respect a flavor of noninterference we dubnoninterference between
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p ::= X | p, p ` ::= p : p | `, ` E ::= · | E m | v E | if E m m
Π ::= · | Π, p ≤ p u ::= bool` | u→u
m ::= true` | false` | x | λx :u. m | m m | if m m m | if (p ≤ p) m m

Figure 1: Syntax ofλΠ
≤: principalsp, labels`, permissionΠ, typesu, termsm, and holesE .

updates. To our knowledge, ours is the first system to safely permit general updates to the principal hierarchy,
including revocations, in security-typed languages. Our discussion of the meaning of noninterference in the pres-
ence of revocation, and the definition of the termnoninterference between updates, is also new. We believe our
approach is an important step to making security-typed languages expressive enough to be used in real systems.

2 A Simple Security-Typed Language,λΠ
≤

To make our discussion of policy updates more concrete, we introduce a calculusλΠ
≤, a formalization of the

decentralized label model[10] (DLM) based on the simply-typed lambda calculus. We present a discussion on
policy updates, their challenges, and our solution to making them sound in the following two sections.

Figure 1 presents the syntax ofλΠ
≤. Security policies specify confidentiality policies, defining which principals

are allowed to read which data. Policies are specified in two parts. First, types and simple values are annotated
with labels` that consist of one or more pairs (p1 : p2), wherep1 is the policy owner specifyingp2 as the reader.
Principalsp can be either literalsX or principal sets(p1, . . . , pn). A label with multiple pairs, written (̀1, `2) can
be used to specify more restrictive policies: a potential reader must satisfy all of the label restrictions. The second
part of a DLM security policy is the principal hierarchy, or a permission context,Π is represented as a list of
delegations between principalsp1 ≤ p2.

Termsm and typesu are largely standard. We write evaluation asΠ ` m1 −→ m2, which states thatm1 evaluates
in a single step to becomem2 under runtime principal hierarchyΠ. The principal hierarchy can be accessed
dynamically using the run-time test of principal delegationif (p1 ≤ p2) e1 e2 [17]:

Π ` p1 ≤ p2

Π ` if (p1 ≤ p2) m1 m2 −→ m1

Π 6` p1 ≤ p2

Π ` if (p1 ≤ p2) m1 m2 −→ m2

The typing judgment has the formΠ;Γ ` m : t, whereΓ tracks the types of bound variables as usual, and
permission contextΠ statically tracks knowledge of the principal hierarchy. Most rules are standard [17], as
shown in Figure 2. The judgmentlab(u) = ` returns the label of the type:

lab(bool`) = `
lab(u2) = `

lab(u1→u2) = `

There are two additional typing rules. The first one type-checks the run-time test of principal delegation. If the
principal delegation test succeeds, the first branch can statically assume thatΠ ` p1 ≤ p2 holds inside by adding1

p1 ≤ p2 to the permission contextΠ.

Π, p1 ≤ p2; Γ ` m1 : u Π;Γ ` m2 : u
Π;Γ ` if (p1 ≤ p2) m1 m2 : u

Π;Γ ` m : u1 Π ` u1 � u2

Π;Γ ` m : u2

1The second branchcannotassumeΠ ` p1 ≤ p2; hence, there is no addition of constraints to the context for the second branch in
the typing rule. Adding negative constraints (p1 6≤ p2) to the context is unnecessary, because subtyping can be decided with positive
constraints.
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Π;Γ, x :u ` x : u
Π;Γ ` m1 : bool` Π;Γ ` m2 : u Π;Γ ` m3 : u lab(u) = `

Π;Γ ` if m1 m2 m3 : u

Π;Γ ` true` : bool`

Π;Γ, x :u1 ` m : u2

Π;Γ ` λx :u1. m : u1→u2

Π;Γ ` false` : bool`

Π;Γ ` m1 : u1→u2 Π;Γ ` m2 : u1

Π;Γ ` m1 m2 : u2

Figure 2: Typing rules ofλΠ
≤: Π;Γ ` m : t (under hierarchyΠ and contextΓ, the termm has typet).

The second one is the subsumption rule that allows the flexibility of implicitly appealing to principal delegations
in the permission context during typing. There exist straightforward and efficient algorithms [7, 17] for context
subtypingΠ1 ≤ Π2 (meaningΠ1 is more permissive thanΠ2), label subtypingΠ ` `1 v `2 (meaning̀ 1 is less
restrictive thaǹ 2 underΠ), principal subtypingΠ ` p1 ≤ p2 (meaning principalp1 is delegating top2 underΠ),
and type subtypingΠ ` u1 � u2 (meaningu1 is a subtype ofu2 underΠ); we leave their formal specification to
our companion technical report.

We have proved the desired properties of sound execution and noninterference forλΠ
≤ by a sound translation to

a target language, which is to be described in Section 4.

3 The Meaning of Policy Updates

Now we consider the means and the meaning of security policy updates inλΠ
≤ (and similar languages). An

information-flow security policy can change in two ways. First, the label on a particular piece of data might be
altered, thereby making access to it more restricted or less restricted. The former case is permitted automatically
by the subsumption rule: it is always safe to treat a piece of data more restrictively. The latter case is potentially
dangerous, as the relabeling might expose sensitive information, so it is typically allowed only by an explicit
declassifyoperation. A second way of changing the information-flow policy is to alter the principal hierarchy,
which in turn alters the relative ordering between labels. Here again there are two kinds of changes: one can
add a (directed) edge between two principals (e.g., the delegationp1 ≤ p2), which corresponds to increasing
the privileges of an observer. This kind of policy change is like a global form of declassification. One can also
remove edges, corresponding to revocation, strengthening the security policy and decreasing the set of permissible
information flows.

In this paper, we address the second style of policy update in which the principal hierarchy can change. To
determine how and when the hierarchy should be permitted to change, we must consider the impact of policy
updates on a program’s security properties: sound execution and noninterference.

3.1 Models of updating

It is easy to see that naively allowing arbitrary policy updates could make evaluationunsound: the program could
act in a way not consistent with its current policy. As an example, consider this simple program (extending the
syntax presented earlier withlet and integers):

let x : intp2: = (if (p1 ≤ p2) 1p1: 3p2:) in if (p2 ≤ p3) x 2p3:
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If we evaluate this program underΠ = p1 ≤ p2, after one step theif branch succeeds yielding

let x : intp2: = 1p1: in if (p2 ≤ p3) x 2p3: (Ex 1)

Now say we wish to change the principal hierarchy to beΠ′ = p2 ≤ p3. If we allow this update to occur, then the
program’s next evaluation step will be unsound. It will allow the data1p1: to flow to variablex, whose labelp2: is
not equal or higher underΠ′. Clearly, this update should not be permitted.

Noninterference is more subtle because it is a global property: it ratifies all information flows that might occur
during a program’sentireevaluation relative to a single, fixed principal hierarchy. When the hierarchy can change,
this definition no longer makes sense. One alternative isnoninterference between updates, meaning that when
a policy update occurs, the history of how some data received a certain label is forgotten, and the question of
noninterference is reconsidered for the current program at the current policy. As motivation for this definition,
imagine some data (a file, say) labeled asp1 : underΠ′′ = p1 ≤ p2, p1 ≤ p3, meaning principalsp2 andp3 are
allowed to read it. If principalp3 is fired andp4 is hired, we might like to change the principal hierarchy to be
p1 ≤ p2, p1 ≤ p4; i.e. to revoke the assertionp1 ≤ p3 and add the assertionp1 ≤ p4. From the point of view of the
file labeledp1 : and the original hierarchyΠ′′, the changed hierarchy both rejects flows previously allowed (p3 can
no longer read the file) and permits flows not previously admitted (p4 can read the file, but could not before). Thus,
at least some portion of the file’s information flow history must be forgotten to permit this intuitively reasonable
policy change.

On the other hand, noninterference between updates can permit unintuitive, perhaps unintended flows. For
example, say the program (Ex 1) takes an additional step underΠ yielding

if (p2 ≤ p3) 1p1: 2p3:

Under the initial principal hierarchyΠ, the program would terminate with result2p3:. However, if we were to
change the hierarchy toΠ′′′ = p1 ≤ p2, p2 ≤ p3, then theif branch would be taken, and we would terminate
with result1p1:. The evaluation is sound and noninterfering underΠ′′′ from the point of the change to termination.
However, from the point of view of the entire program evaluation, the observed flow would have been disallowed
underΠ, and thus violates noninterference when considered relative toΠ. Moreover, a program that satisfies non-
interference between updates says nothing about the security ramifications of updates themselves. For example,
one risk is that if an attacker can observe when a policy update occurs and what it consists of, he may be able to
deduce the values of private data in the program.

An ideal security property would both permit policy updates to selectively “forget the past” and also reason
about some flows across updates. It is an open question as to what information flow systems should enforce even
when policy updates are disallowed—noninterference, though commonly supported, is too restrictive in practice.
As a first step, for this paper, we ensure that program execution is sound and respects noninterference between
updates, recognizing and expecting that a better property is needed. We plan to investigate stronger, adequately
expressive security properties in future work.

3.2 Overview of approach

At first glance, defining principal hierarchy updates forλΠ
≤ that ensure soundness and noninterference between

updates may seem straightforward. In particular, we can show noninterference between updates by proving the
standard notion of noninterference: the type system is parameterized by a fixed principal hierarchy that is enforced
as usual, since it implies that as long as the policy does not change, the program is noninterfering.

Proving soundness would seem equally simple: to update the principal hierarchyΠ toΠ′ while running program
m requires that we simply type checkm underΠ′: if type checking succeeds then we permit the update. While this
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approach is sound (by definition), it is overly restrictive. Consider our example program again. Say the program
evaluates underΠ and becomes as in Ex 1. Then say we wish to change the hierarchy to beΠ′. This program will
not type check since the expression1p1: cannot be given typeintp2: underΠ′. But conceptually it should be legal,
becausex (which we have substituted for here with1p1:) should be treated as having typeintp2:, as defined in the
original program. This fact is not revealed, however, in the run-time representation of the current state. That is, an
important fact of the past (changing the type of1p1: to intp2:) has been forgotten.

We can solve this problem by moving away from the view ofsubtyping as subsetto the view ofsubtyping as
coercionfor evaluation. Rather than viewing data1p1: as having typeintp2: underΠ, we say that we cancoerce
1p1: to a value that has typeintp2:; that is, we can coerce it to1p2:. To do this, we extendλΠ

≤ with permission tags
that act as coercion functions. In particular, the expression[` v `′]1` will evaluate to1`′ . With this change, our
original program becomes

let x : intp2: = if (p1 ≤ p2) ([p1: v p2:]1p1:) 3p2: in if (p2 ≤ p3) ([p2: v p3:]x) 2p3:

That is, the uses of subsumption are made explicit as tags. Then the program will evaluate underΠ to become

if (p2 ≤ p3) ([p2: v p3:]1p2:) 2p3:

Now we can see that changing toΠ′ will be legal, as1 has a label that can be properly typed in the new policy. At
the same time, we still prevent illegal updates to the policy. In the more general case that1p1: were some expression
mp1:, it would be unsound for the policy to change untilm is a base value. Thus, whilem is being evaluated (i.e.,
in the context of theif expression), it is guarded with the tag[p2: v p3:]. An update that violated this constraint
would not be allowed (as desired).

In addition to providing a more flexible coercion semantics, it turns out that permission tags can also lead to
a more efficient implementation. In particular, rather than having to type check the entire program body at each
proposed change in policy, we only need to look at the tags, which succinctly capture how the current policy is
being used. Section 4 presents a dynamic traversal that discovers these tags at update points without having to
consider function bodies. We conjecture that with only a little more work, we can adjust the evaluation semantics
to keep track of the current “tag context”. This would allow us to replace the traversal with a simple check.

3.3 Example

To show how these issues might arise in practice, we conclude this section with an example. Figure 3 shows a class
for accessing the records of a company database, written in a Java-like syntax. This class defines two run-time
principalsmgr, which is a division manager, anddiv, which represents a division of company employees.2 Lines
5 through 8 define some utility functions getting query inputs from the system user, processing them, creating
summaries, and displaying information to the user. The policies on these methods establish that queries and the
resulting processed data are owned by themgr principal and readable by all principals in the groupdiv, but that the
results of auditing a query are only readable bymgr. These policies are explicit in the program: for example, the
label on line 5 indicates that the result ofget_query is owned by the principalmgr and readable by (principals in)
the groupdiv; similarly theaudit method takes data readable bydiv and returns data only readablemgr (owners
are implicitly considered to be readers in our model).

The methodaccess_records is parameterized by a principalemp (employee), which is the current user of
the database system. Line 15 dynamically checks thatemp is a member of the divisiondiv, whose data is stored
encapsulated in this database object. This line results in a runtime check of the principal hierarchy and succeeds
only if div ≤ emp is true at the time when the check is made. Assuming that check succeeds, employee queries
are received, processed, and displayed to the user until the user quits. In this scenario, the program also audits the

2Run-time principals represent principals as run-time entities, and could readily be added to our system [17].
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01. class Database {
02. principal div; /* division group */
03. principal mgr; /* manager for the division */
04.
05. Query{mgr:div} get_query() {...}
06. Data{mgr:div} process_query(Query{mgr:div} q) {...}
07. Data{mgr:} audit(Data{mgr:div} d) {...}
08. void display(principal p, Data{mgr:p} {...}
09.
10. void access_records(principal emp) {
11. Query{mgr:div} query;
12. Data{mgr:emp} result;
13. Data{mgr:} summary;
14.
15. if (div < emp) { /* employee is a member of the division */
16. while (true) {
17. query = get_query();
18. if (query == Quit) break;
19. result = process_query(query);
20. summary = audit(result);
21. display(emp, result);
22.
23. if (mgr < emp) { /* employee is a manager */
24. display(emp, summary);
25. }
26. ... /* log audit information */
27. }
28. } else { abort(); }
29. }
30. }

Figure 3: Information-flow in a database system with principal delegations.

employee queries, perhaps to generate some statistics useful for making management decisions. The results of the
audit process are readable only by managers (i.e. those principalsp for which mgr≤ p). For convenience, if the
user of the systemis a manager, the results of the audit are displayed immediately—the dynamic check on line
23 ensures that only managers receive this sensitive data. Presumably the program would also log the auditing
information for later inspection by a manager; in this case, the current user is not able to see that data.

The code makes an important assumption: though it checks div≤ emp only once, it assumes that this relation-
ship holds for the entire execution of thewhile loop. A problem arises if this relationship is revoked while the
loop executes, say if the employee is fired or just moved to a different division. In this case, an employee who no
longer belonged to a particular division would still have access to its files. Even worse, if the employee were made
a manager (i.e., introducing mgr≤ emp into the principal hierarchy) in a new division, he would suddenly have
privileges not allowed under either policy—he could read files belonging to his original division. These scenarios
reveal how policy changes can violate both sound execution and our intuitive notion of noninterference.

Introducing permission tags solves these problems. In particular, to store the returned value ofprocess_query
into result, the label of the returned value must be coerced frommgr:div to mgr:emp. This will be witnessed
by a coercion[mgr:divv mgr:emp] onprocess_query(query), which in turn will prevent the revocation of the
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t ::= bool` | t→t
v ::= true` | false` | λ[Π]x :u. e E ::= · | E e | v E | if E e e | [` v `]E
e ::= true` | false` | x | λ[Π]x :t. e | e e | if e e e | if (p ≤ p) e e | [` v `]e

Figure 4: Syntax ofλΠ
tag : typest, valuesv, termse, holesE .

edge div≤ emp from the principal hierarchy.3

4 A language with dynamic policy and tagging,λΠ
tag

This section formally describes an extension toλΠ
≤, calledλΠ

tag , that permits dynamic updates to the principal
hierarchy. As just described, we use permission tags of the form[`1 v `2] to prevent illegal updates of the
principal hierarchy during execution. We prove thatλΠ

tag enjoys the security properties of sound execution and
noninterference described earlier, even as policies change at run-time. Permission tag annotations need not burden
the programmer; they can be automatically inserted by the compiler. At the end of this section, we present an
automatic translation from the source calculus presented earlier to the target calculus here, based on the standard
formulation ofsubtyping as coercions, and prove it sound.

The syntax ofλΠ
tag is presented in Figure 4, and closely matches the source calculus,λΠ

≤ in Section 2, except the
addition of permission tags. The typing rules are the same, with one exception: the subsumption rule for subtyping
is now eliminated, effectively replaced by the new typing rule for tags:

Π ` `1 v `2 Π;Γ ` e : bool`1

Π;Γ ` [`1 v `2]e : bool`2

We maintain the invariant that the current principal hierarchyΠ always respects the permission tag[`1 v `2]
around the terme, as shown in the judgmentΠ ` `1 v `2. Another invariant, which is enforced during the
translation in Section 4.2, is that only boolean values are tagged. This permits the following evaluation rules:

Π ` [`1 v `2]true`1 −→ true`2 Π ` [`1 v `2]false`1 −→ false`2

Functions are not directly tagged: they contain future computations in the body that, unlike booleans, cannot
be coerced to work under different security policies. Our strategy is to extend function terms with the permission
context,λ[Π′]x : t. e, such that the contextΠ′ of the function body can besummarizedto guard against illegal
updates. The typing rules for functions and applications are:

Π ≤ Π′ Π′; Γ, x :t1 ` e : t2

Π;Γ ` λ[Π′]x :t1. e : t1→t2

Π;Γ ` e1 : u1→u2 Π;Γ ` e2 : u1

Π;Γ ` e1 e2 : u2

Given these tags, we can soundly and efficiently check if a policy update is legal during execution. We introduce
dynamic tag checkingΠ ` e, as shown in Figure 5, for ensuring that principal hierarchyΠ is valid with respect
to the running programe. Any hierarchy is valid against boolean values. Section 4.1 proves that that the dynamic
tag checking soundly approximates the static type checking with respect to the validity of policy updates.

At last, we formalize an update to the principal hierarchy of an evaluating program by defining a top-level
evaluation relation. Under hierarchyΠ, a program can either take a small evaluation step, or change to use the

3In a formal operational semantics, loops are implemented by expanding each iteration of the loop into to a fresh version of the original.
Each fresh version would contain this tag, preventing any update that would violate it for the duration of the loop’s execution.
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Π ≤ Π′

Π ` λ[Π′]x :t. e
Π ` e1 Π ` e2

Π ` e1 e2

Π, p1 ≤ p2 ` e1 Π ` e2

Π ` if (p1 ≤ p2) e1 e2

Π ` `1 v `2 Π ` e

Π ` [`1 v `2]e

Π ` true` Π ` false`

Π ` e1 Π ` e2 Π ` e3

Π ` if e1 e2 e3

Figure 5: Tag checkingΠ ` e (determines whether principal hierarchyΠ is legal for the running programe).

pending hierarchyΠ′. The latter step is only permitted if the new hierarchy is legal with respect to the current
program, that is, if dynamic tag checkingΠ ` e succeeds:

Π ` e −→ e′

(Π; e)|Π′ −→ (Π; e′)
Π′ ` e

(Π; e)|Π′ −→ (Π′; e)

Note that dynamic tag checking is meant to approximate an implementation. That is, while our formulation
requires a traversal over the active part of the program (i.e., the part without functional terms), this traversal
could be avoided by statically gathering the set of tagsS, S′ that appear in the bodye1, e2, respectively, of each
if (p1 ≤ p2) e1 e2 expression, and then annotating theif with a tag constraint(p1 ≤ p2 ⇒ S) ∪ S′ (similar to
conditional types [1]). These tag constraints can be maintained to form atag contextat run-time, so that dynamic
tag checking merely considers the current tag context, rather than the active part of the program.

4.1 Security theorems

To show that the execution of a program written in our calculus is sound, we prove that any well-typed, closed
term runs without any error. To show that the information flow satisfies end-to-end security, we prove that any
well-typed low-security term is noninterfering by the high-security data. Thesetype safetyand thenoninterference
properties are formally stated as follows.

Here⇓ is the top-level evaluation for the whole program, ignoring the number of policy updates, while−→∗ is
the transitive-closure of the non-updating evaluations. Therefore, type safety is guaranteed during the evaluation
of the whole program, but noninterference is guaranteed between updates (as discussed in Section 3.1).

Theorem 1 (Security of dynamic policy updating)

1. Type safety during execution: IfΠ; · ` e : t, then(Π, e) ⇓ (Π′, v).

2. Noninterference between updates: If (1)Π; x : bool`1 ` e : bool`2 , and (2)Π; · ` v1 : bool`1 , and (3)
Π; · ` v2 : bool`1 , and (4)Π ` `1 6� `2, thenΠ ` e{v1/x} −→∗ v iff Π ` e{v2/x} −→∗ v.

The proof fortype-safetyuses the standard technique of combining the progress and the preservation of a well-
typed term. Some important lemmas for showing the soundness of tagging and tag checking are below. The first
lemma states a well-typedvaluecan also be well-typed under the empty principal hierarchyΠ = ·, which is critical
in the substitution lemma. The second states that the evaluation ruleΠ ` if (p1 ≤ p2) m1 m2 −→ m1 in Section 2
is type-preserving. The last lemma below shows that dynamic checkingΠ ` e is a sound approximation of static
type checkingΠ;Γ ` e : t.
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r Π;Γ, x :u1 ` m : u2

Π;Γ ` λx :u1. m : u1→u2

z
= λ[Π]x :Ju1K. JΠ;Γ, x :u1 ` m : u2K

rΠ;Γ ` m : u1 Π ` u1 � u2

Π;Γ ` m : u2

z
= JΠ ` u1 � u2K JΠ;Γ ` m : u1K

JΠ ` bool`1 � bool`2K = λ[Π]x :bool`1 . [`1 v `2] x (freshx)

rΠ ` u3 � u1 Π ` u2 � u4

Π ` u1→u2 � u3→u4

z
= λ[Π]x1 :Ju1K→Ju2K. λ[Π]x2 :Ju3K. (freshx1, x2)

JΠ ` u2 � u4K (x1 (JΠ ` u3 � u1K x2))

Figure 6: Translating principal delegations to permission taggings.

Lemma 2 (Soundness of dynamic tag checking)

1. If Π;Γ ` v : t, then·; Γ ` v : t.

2. If Π, p1 ≤ p2; Γ ` e : t andΠ ` p1 ≤ p2, thenΠ;Γ ` e : t.

3. If Π; · ` e : t, thenΠ ` e. Moreover, ifΠ; · ` e : t andΠ′ ` e, thenΠ′; · ` e : t.

The proof fornoninterferenceuses a logical relation for modeling the observable equivalence of a well-typed
term with respect to an external observer, and shows that the substitutions preserve the equivalence [17]. Space
precludes a formal development of the proofs here. Our companion technical report contains the complete rules
of our calculus and the full proofs of both the type-safety and the noninterference properties. In addition, the
type-safety property of the target language as well as the soundness of the translation in the next subsection are
formally specified and mechanically verified4 in Twelf (a logical framework).

4.2 Translation from λΠ
≤ to λΠ

tag

Figure 6 shows the translation rules from the typing derivation of aλΠ
≤ termm to a typing derivation of aλΠ

tag term
e. The main work is in the translation of the subsumption rule which takes the subtyping derivation of the source
types and produces a well-typedcoercion functionin the target language. Breazu-Tannen et al. propose [3] such
coercion semantics for the subtyping between types in the simply-typed lambda calculus. Our translation slightly
extends the semantics for types with labels and permission tags. Our translation is sound as follows:

Theorem 3 (Soundness of permission tagging)

1. Typing: IfJΠ;Γ ` m : uK = e, thenΠ; JΓK ` e : JuK.

2. Subtyping: IfJΠ ` u1 � u2K = e, thenΠ;Γ ` e : Ju1K→Ju2K.

We conjecture that the translation can be madecoherent[3], meaning that target terms translated from different
typing and subtyping derivations of thesamesource term have the same evaluation behavior. In particular, the

4We do not use the higher-order abstract syntax for encoding variable bindings. We have not performed thetotality checkwhich ensures
that all proof cases have been completed — this property is verified externally by hand.
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tag checkingΠ ` e performs the same checks whether we tag the function or the argument of an application,
hencecoherentin allowing the same set of legal policy updates. To achieve such coherent translation,algorithmic
subtypingmust be used, instead ofdeclarative subtypingas presented in this paper. The conversions and theories
between these variants of subtyping are standard [12].

4.3 Discussion

As mentioned in Section 3.1, the fact that a program is noninterfering between updates says nothing of possible
information flows across updates. Indeed, in the system described in this section, if an attackerp3 can observe
when updates occur, and what they consist of, it is possible for the timing of an update to communicate a secret
value. Consider the following program:

let x = (if bp1: (λx :bool. truep1:) (λ[p2 ≤ p1]x :bool. [p2 :v p1 :]truep2:)) in
let y = (if (p2 ≤ p1) truep3: falsep3:) in
let z = . . . use x . . . in y

Suppose that the program begins evaluating with principal hierarchyΠ = p2 ≤ p1 and that an updateΠ′ = ∅
becomes available just afterx has been computed (call this programp). In the case thatb wastruep1: thenp
would be

let x = λx :bool. truep1: in
let y = (if (p2 ≤ p1) truep3: falsep3:) in
let z = . . . use x . . . in y

Thus, the policy update succeeds andfalsep3: is returned. On the other hand, ifb wasfalsep1:, thenp is

let x = λ[p2 ≤ p1]x :bool. [p2 :v p1 :]truep2: in
let y = (if (p2 ≤ p1) truep3: falsep3:) in
let z = . . . use x . . . in y

Thus, the policy update is delayed due to the annotationp2 ≤ p1 on the functionx until z has been evaluated,
meaning thattruep1: is returned. Hence,p3 is able to observebp1

even though this is allowed by neitherΠ or Π′.
This particular example is an artifact of our dynamic tag checking algorithm, since it treats each branch of

the initial if independently, once evaluated. A more static checking system, suggested earlier, would impose
the same constraint on updates whichever function was chosen forx, and eliminate this flow. Nonetheless, the
noninterference between updates property is too weak to illuminate this issue or its proposed fix, so we plan to
consider refinements in future work.

5 Related Work

Security-typed languages for enforcing information flow control are a rich area of research [14]. Security policies
are expressed as labels on terms and a principal hierarchy defining delegation relationships; in most systems this
hierarchy is fixed at compile-time. Jif [10] and recent formal work [17, 19] supportruntime principals, which
make it possible for the hierarchy to grow at runtime, but do not allow revocations. Our calculus is the first to
address generalized, dynamic updates to the principal hierarchy.

Security-type systems are intended to provide anoninterferenceguarantee [13, 4, 5, 9], modulo certain small-
bandwidth information channels permitted for performance reasons (timing and termination channels) and an
explicit “escape hatch” in the form of a robust downgrading mechanism. The introduction of such downgrading
into these languages opened a new chapter in discussions about the meaning of noninterference that is still on-
going [18, 11, 8, 15]. As we have described, our dynamic policy updating is complementary to declassification.
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Declassification, as typically used, relabels a data value from one label to another; policy updates as considered in
this paper permit the relationship between the labels to change over time. Both features are necessary in practice,
and both can potentially be abused—it is possible that work on structured uses of declassification, as provided by
robustness [18, 11] or intransitive-noninterference [8] may apply to policy updates as well. We believe our dis-
cussion of dynamic policy updating here provides a new avenue for understanding the meaning of noninterference
policies for realistic programs.

This work was inspired by a similar system called Proteus that we developed for ensuring type-safety of dynamic
software updates [16]. In Proteus, users can define named typesT. When given that typeT= t (for some type
t), treating a value of typeT as at or vice versa requires an explicit coercion. When a program is dynamically
updated to change the definition ofT to bet′, a dynamic analysis can check for these coercions in any functions
not being updated (updated functions are assumed compatible with the new definition). If such a coercion is found
then the update is only allowed ifΓ ` t′ � t, whereΓ is the updated type environment. This dynamic analysis
is analogous to dynamic tag checkingΠ ` e, which essentially ensures for the newΠ that Π ` `1 v `2 for all
tags[`1 v `2] in e. In Proteus, this dynamic analysis can be replaced with a simpler run-time given certain static
information; we conjecture a similar result forλΠ

tag .
Primarily in the context of public key infrastructures (PKI), the specific case of credentials revocation has been

the subject of considerable study [6, 2]. This work has focused on the exploration of the fundamental tradeoff
between security and cost. To simplify, on-line revocation servers effectively permit only a very small window
of vulnerability for illicit use of compromised credentials, but often incur a high computation cost. Off-line
systems provide a lower computational cost, but do so at the expense of longer latencies for receiving revocation
notification. The issue of introducing policy revocation into a running program in a way that maintains sound
execution has not been explored in the literature.

6 Conclusion

We have presented a new security-typed language that allows dynamic updating of information-flow policies,
in particular the delegation relations in the principal hierarchy. Assumptions needed for sound execution can
be represented within the program aspermission tags, and a run-time tag checking mechanism can be used to
prevent illegal updates to the principal hierarchy. Tags are implemented as run-time coercions that capture dynamic
labeling behavior, which can prevent spurious rejection of legal policy updates. Tags are added to programs via an
automatic translation from a standard source language. We are the first to formalize an information flow language
that is sound yet permits dynamic revocations. Our language also satisfiesnoninterference between updates, which
seems to us be a reasonable security property in the presence of updates. We hope that our work stimulates interest
in making security-typed languages expressive enough to be used in real systems, where policies regularly change.
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