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Software developers often structure programs in such a way that different pieces of code constitute
distinct principals. Types help define the protocol by which these principals interact. In particular,
abstract types allow a principal to make strong assumptions about how well-typed clients use
the facilities that it provides. We show how the notions of principals and type abstraction can
be formalized within a language. Different principals can know the implementation of different
abstract types. We use additional syntax to track the flow of values with abstract types during
the evaluation of a program and demonstrate how this framework supports syntactic proofs (in
the style of subject reduction) for type-abstraction properties. Such properties have traditionally
required semantic arguments; using syntax avoids the need to build a model for the language. We
present various typed lambda calculi with principals, including versions that have mutable state
and recursive types.
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1. INTRODUCTION

Programmers often use a notion of principal when designing the structure of a
program. Examples of principals include modules of a large system, a host and
its clients, and separate functions. Dividing code into such agents is useful for
composing programs. Moreover, with the increasing use of extensible systems, such
asWeb browsers, databases, and operating systems, this notion of principal becomes
critical for reasoning about untrusted clients that interact with host-provided code.
In this paper, we incorporate the idea of principal into various typed lambda

calculi. Doing so allows us to formulate security policies and check that the type
system enforces them. An example of a useful policy is, “clients can gain access to
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(* File handle implemented as int *)

abstype fh

open : string → fh
read : fh → char

Fig. 1. Abstract interface for file handles.

a file handle only through the open procedure.”
Consider a host-provided interface for an abstract type of file handles, fh, that

includes operations to create and use them (Figure 1). The principals in this sce-
nario are the host implementation of the interface and its clients. Each principal’s
“view of the world” corresponds to its knowledge regarding fh. In particular, the
host knows that fh = int, whereas clients do not.
The conventional wisdom is that the use of abstract data types in a type-safe

language prevents clients from directly accessing host data. Instead, a client may
manipulate such data only via a host-provided interface. To formalize this wisdom,
it is necessary to prove theorems that say, “client code cannot violate type abstrac-
tions provided by the host.” For instance, a client should not be able to treat an
object of type fh as an integer, even though the host implements it that way.
How do we prove such properties? One way of phrasing the result is to say

that the client behaves parametrically with respect to the type fh. Using this
observation, we can encode the agent program in a language like Girard’s System
F [Girard et al. 1989], the polymorphic lambda calculus [Reynolds 1974]. The type
fh is held abstract by encoding the client as a polymorphic function:

Λfh.λhost : {open : string → fh, read : fh → char}.client code

We can then appeal to Reynolds’ parametricity results [Reynolds 1983] to conclude
that the client respects the host’s interface.
Unfortunately, these representation-independence results are proven using seman-

tic arguments based on a model of the language (see the work of Mitchell [1991], for
example). We are unaware of any similar results for languages including multiple
features of modern languages, such as references, recursive types, objects, threads,
and control operators.
Our calculus circumvents this problem by syntactically distinguishing agents with

different type information. By “coloring” host code and client code differently, we
can track how these colors intermingle during evaluation. By using different seman-
tics for each principal, we force the client to respect the abstract types provided
by the host. This separation of principals provides hooks that enable us to prove
some type-abstraction properties syntactically.
To see why these new mechanisms are useful, consider the evaluation of the client

code when linked against a host implementation. Figure 2 shows the standard en-
coding of linking as application. In one step of the standard operational semantics,
the host type is substituted throughout the client code. It is impossible to talk
about the type fh remaining abstract within the client because fh is replaced by
int. After a second step, host code is substituted throughout client code, and all
distinctions between principals are lost.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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τ = {open : string → fh, read : fh → char}

(Λfh.λhost : τ.client code) int host code

�−→ (λhost : {int/fh}τ.{int/fh}client code) host code

�−→ {host code/host}{int/fh}client code

Fig. 2. Standard encoding for “linking” client and host code.

In the next section, we describe a two-agent setting sufficient for proving inter-
esting properties about the file-handle example. It introduces the general approach
of distinguishing principals1 during evaluation. Section 3 introduces a multiagent
calculus that provides for multiple agents, multiple abstract types, and an arbi-
trary assignment of what types are known to what agents. We prove several safety
and abstraction theorems for this calculus; the safety properties for the two-agent
calculus follow as corollaries. The next two sections sketch extensions to our sys-
tem that we believe are more difficult in a less syntactic framework. Section 4
adds references and state; the presentation emphasizes the subtle ways that naive
treatments of state can break type abstraction. Section 5 adds recursive types and
polymorphism; here we emphasize that these features can be treated as orthogo-
nal to principals or that these features can be encoded using principals. Section 6
surveys related work; this work includes approaches to proving type abstraction,
approaches to using syntactic proof techniques, and approaches to putting a notion
of principal in a programming language.
This work extends our previously published paper [Zdancewic et al. 1999] by

providing a more complete presentation of the two-agent and multiagent calculi
and extensions that incorporate state, recursive types, and polymorphism.

2. THE TWO-AGENT CALCULUS

2.1 Syntax

This section describes a variant of the simply typed lambda calculus with two
principals, a client and a host. The language maintains a syntactic distinction
between host and client code throughout evaluation. The host exports one abstract
type, t, implemented as concrete type τh.
Figure 3 gives the syntax for the two-agent calculus. Types, τ , include a base

type, b, the host’s abstract type, t, and function types. The terms of the language
are client terms, C, client values, Ĉ, host terms, H , and host values, Ĥ . The
metavariable xc ranges over client variables, which are disjoint from host variables,
ranged over by xh.
The metavariables bc and bh range over values of base type. We assume that

the host and client use the same underlying representation for values of base type.
These values are thus the fundamental medium of information exchange between
agents. For example, the client value 3c corresponds to the host value 3h. It would
be possible to relax this assumption; conversion between host and client values
would then require computation (for instance to change the byte-order of integer

1Throughout this paper, we use the words “principal,” “agent,” and “color” interchangeably.
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τ ::= t | b | τ → τ ′

C ::= xc | bc | λxc :τ. C | C C′ | pxHqyτ
h

Ĉ ::= bc | λxc :τ. C | pxĤqyth

H ::= xh | bh | λxh :τ. H | H H′ | pxCqyτ
c

Ĥ ::= bh | λxh :τ. H

e ::= C | H
ê ::= Ĉ | Ĥ

Fig. 3. Two-agent syntax.

values). One of the advantages of distinguishing principals is that places where
such marshalling and unmarshalling is needed are made explicit in the program.
It is helpful to think of terms generated by C and H as having different colors

(indicated by the subscripts c and h respectively) that indicate to which principal
each belongs. As observed in the introduction, client and host terms mix during
evaluation. To keep track of this intermingling, agent terms contain embedded host
terms of the form ��H��τ

h. Intuitively, the brackets delimit a piece of h-colored code,
where H is exported to the agent at type τ . Dually, host terms may contain
embedded clients.
The type annotations on the embeddings keep track of values of type t during

execution. In particular, a host term of type τh may be embedded in a client term.
If the annotation is t, then the client has no information about the form of the
term inside the embedding. Thus, an embedding with annotation t and containing
a host value is a client value.
A good intuition for the semantics is to imagine two copies of the simply typed

lambda calculus augmented with a new type t. In the client copy, t is abstract,
whereas in the host copy, t is τh. Because the host has more knowledge, there is an
asymmetry in the language. In the semantics, this asymmetry manifests itself in
rules in which the host refines t to τh. It also means the notion of value depends on
the principal and the type information: an embedding with annotation t is a client
value. An embedding is never a host value because the annotation is never a type
that is abstract to the host.

2.2 Notation

Before describing the semantics, we define some convenient notions. Let e range
over both client and host terms, and let ê range over both client and host values.
The color of e is c if e is a C term; otherwise, e’s color is h. Note that both terms
in a syntactically well-formed application are the same color. Because the host and
client terms share some semantic rules, we use polychromatic rules to range over
both kinds of terms. The intention is that all terms mentioned in a polychromatic
rule have the same color; the rule is short-hand for two analogous rules, one for
each color.
We write {e′/x}e for the capture-avoiding substitution of e′ for x in e. Terms

are equal up to alpha conversion, where substituted variables are of the same color.
We also define substitution on types, written {τ ′/t}τ . Intuitively, we use the sub-
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Polychromatic Steps [P1 ] e e′ �−→ e′′ e′ if e �−→ e′′

[P2 ] ê e′ �−→ ê e′′ if e′ �−→ e′′

[P3 ] (λx :τ. e) ê �−→ {ê/x}e
Client Steps [C1 ] pxHqyτ

h �−→ pxH′qyτ
h if H �−→ H′

[C2 ] pxbhqy
b
h �−→ bc

[C3 ] pxλxh :τ. Hqyτ ′→τ ′′
h �−→ λxc :τ ′. px{pxxcqyτ

c /xh}Hqyτ ′′
h

Host Steps [H1 ] pxCqyτ
c �−→ pxC′qyτ

c if C �−→ C′

[H2 ] pxbcqybc �−→ bh

[H3 ] pxλxc :τ. Cqyτ ′→τ ′′
c �−→ λxh :{τh/t}τ ′. px{pxxhqy

τ
h/xc}Cqyτ ′′

c

[H4 ] pxpxĤqythqy
τh
c �−→ Ĥ

Fig. 4. Two-agent dynamic semantics.

stitution {τh/t}τ to produce the host’s view of τ .
We say a client term is host-free if it contains no embeddings (and similarly for

client-free host terms).

2.3 Dynamic Semantics

Figure 4 describes a small-step operational semantics for the two-agent calculus.
The polychromatic rules are the same as for the simply typed call-by-value lambda
calculus. The other rules handle embeddings.
Rules [C1 ] and [H1 ] allow evaluation to proceed within embeddings. Inside

embeddings, the rules for the other color apply. These “context switches” ensure
that terms evaluate with the appropriate rules for their color. If an embedded
value is exported to the outer principal at type b, the outer agent can strip away
the embedding and use that value (see rules [C2 ] and [H2 ]). It is at this point that
conversion between data representations would take place.
Rules [C3 ] and [H3 ] maintain the distinction between client and host code. For

example, suppose the client contains a host function that is being exported at type
τ ′ → τ ′′. In this case, the client does know that the embedding contains a function,
so the client can apply it to an argument of a suitable type. If instead the function
had been exported at type t, the client would not have been able to apply it. The
subtlety is that the host type of the function may be more specific than the client
type, such as when τ ′ = t.
Thus, [C3 ] converts an embedded host function to a client function with an

argument of type τ ′. The body of the client version of the function is an embedding
of the host code, except that, as the argument now comes from the client, every
occurrence of the original argument variable, xh, is replaced by an embedding of the
client’s argument variable, ��xc��τ

c . This embedding is exported to the host at type τ ,
the type the host originally expected for the function argument. The rule for hosts,
[H3 ], is symmetric, except that, because the host may use t as τh, occurrences of t
in the host function’s type annotation are replaced by τh.
The final rule, [H4 ], allows the host to “open up” a client value that is an

embedded host value. This rule allows the host to recover a value that has been
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(λopenc :string→ fh. openc “myfile”c) pxλsh :string. ho shqy
string→fh
h

(1) (λopenc :string→ fh. openc “myfile”c) (λsc :string. pxho pxscqy
string
c qyfhh )

(2) (λsc :string. pxho pxscqy
string
c qyfhh ) “myfile”c

(3) pxho px“myfile”cqy
string
c qyfhh

(4) pxho “myfile”hqy
fh
h

...

(n) px3hqy
fh
h

Fig. 5. Client calling open.

embedded abstractly in the client. The restricted form of this rule ensures that
the term inside the embedding is a value and is itself an embedding. (Specifically,
if the annotation is not t, then the term is not a value.) Therefore, no other rule
applies. This restriction keeps our system deterministic, a property that we find
convenient, but that is probably not necessary.
The crucial point is that any attempt by the client to treat a value of type t as a

function leads to a stuck configuration (no rule applies). More generally, we ensure
that any configuration in which an abstract value appears in an “active position”
is stuck. This fact, along with the stuck configurations of the simply typed lambda
calculus, allows us to prove the safety properties of Section 2.6.

2.4 Examples

We now give two examples of program evaluation in the two-agent calculus. Re-
turning to our example of file handles, let t = fh and τh = int.
Figure 5 shows the client obtaining a file handle through a host interface. For

simplicity, only the host’s open function is provided to the client. The host imple-
mentation, ho, takes in a string and produces an integer representing a file handle.
This code is embedded inside the client at the more abstract type string → fh.
Step (1) uses [C3 ] to convert the embedded host function to a client function.

Note that the new variable, sc, is embedded in the host as a client term. Step (2)
is a standard β-reduction. Together, these two reduction steps correspond to the
linking of host and client code, but, unlike the example in Figure 2, there is no
type information about fh given to the client code. Step (3) is another β-reduction,
passing in the client string “myfile.” Step (4) uses [H2 ] to extract the string from
the embedding. At this point, the host function ho is applied to a host value.
Repeated use of [C1 ] allows the host function to proceed. We assume that ho
returns 3 when applied to “myfile.” This result, embedded within the client code
at type fh, is a client value.
The second example (Figure 6) illustrates the client calling the host’s read func-

tion, passing in the file handle ��3h��fh
h . We assume the host code for read is already

embedded in the client and exported at the type fh → char. The body of the host
function is hr, a host term taking an integer representing a file handle and returning
a character read from that file.
In step (1), the client extracts the host function via rule [C3 ]. The type of the

argument handlec is abstract in the client, so the type annotation is changed to
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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pxλhandleh : int. hr handlehqy
fh→char
h px3hqy

fh
h

(1) (λhandlec : fh. pxhr pxhandlecqyint
c qychar

h ) px3hqy
fh
h

(2) pxhr pxpx3hqy
fh
h qyint

c qychar
h

(3) pxhr 3hqy
char
h

...

(n) px′A′hqy
char
h

(n+ 1) ′A′c

Fig. 6. Client calling read.

Polychromatic Rules

[var ] Γ � x : Γ(x) [const ] Γ � b : b [app]

Γ � e : τ ′ → τ Γ � e′ : τ ′
Γ � e e′ : τ

Client Rules

[Cfn]

Γ[xc : τ ′] � C : τ

Γ � λxc :τ ′. C : τ ′ → τ [HinC ]

Γ � H : {τh/t}τ
Γ � pxHqyτ

h : τ

Host Rules

[Hfn]

Γ[xh : τ ′] � H : τ

Γ � λxh :τ ′. H : τ ′ → τ t �∈ τ ′
[CinH ]

Γ � C : τ

Γ � pxCqyτ
c : {τh/t}τ

Fig. 7. Two-agent static semantics.

fh. The second step is a β-reduction. At this point, evaluation continues via [H4 ],
which in step (3) allows the embedded host code to extract the integer 3, held
abstract by the client, as a host value. The application (hr 3h) proceeds as usual
until the host computes the character read from the file. At last, because this
embedded character is exported to the client at type char, rule [C2 ] produces the
value ′A′c.

2.5 Static Semantics

Figure 7 describes the static semantics for the two-agent calculus. The typing
context, Γ, maps variables (of either color) to types. The polychromatic rules are
standard, as is the introduction rule for client functions. For host functions, the
only difference is that t is not allowed to appear in the annotation for the argument
to a function. Because the host knows that t = τh, this restriction does not limit
expressiveness. The convenient effect of this side condition and rule [CinH ] is that
types of host terms never contain t. The presence of t in host-function types would
complicate other rules, such as [var ] and [app], because we would often need to
refine a type τ to {τh/t}τ in order for types to be preserved under evaluation.
The interesting typing rules are those for embeddings. Rule [HinC ] says that

an embedded host term, H , exported to the client at type τ (which may contain
occurrences of t) has type τ if the host is able to show that the “actual” type of H
is {τh/t}τ . In other words, the host may hide type information from the client by
replacing some occurrences of τh with t in the exported type. The rule for clients
embedded inside of host terms, [CinH ], is dual in that the host refines the types

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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erase(xi) = x
erase(b) = b

erase(λx :τ. e) = λx :{τh/t}τ . erase(e)
erase(e e′) = erase(e) erase(e′)
erase(pxeqyτ

i ) = erase(e)

Fig. 8. Two-agent erase translation.

provided by the client.

2.6 Safety Properties

In this section, we explore properties of the two-agent calculus including soundness
and some type-abstraction theorems. We defer the proofs because they are corol-
laries to the corresponding theorems in Sections 3.7 and 3.8. These properties are
not intended to be as general as possible. Rather, they convey the flavor of some
statements that are provable using syntactic arguments.
The following lemmas establish type soundness:

Lemma 2.1 (Canonical Forms). Assuming ∅ � ê : τ ,
— if τ = b, then ê = b for some b.
— if τ = τ ′ → τ ′′, then ê = λx :τ ′. e′ for some x and e′.
— if τ = t, then ê = ��Ĥ��t

h for some Ĥ of type τh.

Lemma 2.2 (Preservation). If ∅ � e : τ and e �−→ e′ then ∅ � e′ : τ .
Lemma 2.3 (Progress). If ∅ � e : τ , then either e is a value or there exists an

e′ such that e �−→ e′.

Definition 2.4. A term e is stuck if it is not a value and there is no e′ such that
e �−→ e′.

Theorem 2.5 (Type Soundness). If ∅ � e : τ , then there is no stuck e′ such
that e �−→∗ e′.

Given a term, if we ignore the colors, erase the embeddings, and replace t with
τh, then we have a well-typed term of the simply typed lambda calculus. Formally,
Figure 8 defines the erasure of a two-agent term. (All rules are polychromatic.)
The following lemma states that erasure commutes with evaluation.

Lemma 2.6 (Erasure). Let e be any two-agent term such that ∅ � e : τ . Then
e �−→∗ ê if and only if erase(e) �−→∗ erase(ê).

The interesting fact is that the erasure of rule [C3 ] is basically λx : τ. e �−→
λx′ : τ. {x′/x}e; the substitution of τh for t in the erasure process ensures that the
types of the bound variables on either side of the transition are the same. Because
λx : τ. e is alpha equivalent to λx′ : τ. {x′/x}e, the transition [C3 ] corresponds to
the identity transition (zero steps) in the erased language.
With soundness and erasure established, we reexamine the abstraction properties

of the introduction. Because the host is always capable of providing information to
the client, we are particularly interested in evaluations where we assume the host
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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does not do so. Recall that we say host-free to describe a client term that has no
host terms embedded in it.
One desirable property of the file handle interface is that the client never breaks

the type abstraction for file handles. For example, if C is host-free, ∅ � handle : fh,
and ∅ � λfc : fh. C : τ , then (λfc : fh. C) handle never evaluates to a term in which
handle is treated as an integer. This property is a corollary of type soundness
because within the client code the type fh is not equal to int (and hence, for
example, the expression fc + 3 is not well-typed).
A stronger property is that the client is oblivious to the particular choice of

integer that the host uses to represent a given file handle. More formally:

Theorem 2.7 (Independence of Evaluation). If ��Ĥ��fh
h and ��Ĥ ′��fh

h are
well-typed, C is host-free, and ∅ � λfc : fh. C : fh → b, then (λfc : fh. C) ��Ĥ��fh

h �−→∗

bc if and only if (λfc : fh. C) ��Ĥ ′��fh
h �−→∗ bc.

The proof strengthens the claim to a step-by-step evaluation correspondence
when using Ĥ and Ĥ ′:

Lemma 2.8 (Value Abstraction). Let Ĥ and Ĥ ′ be host values of type τh. If
C is host-free, [xc : fh] � C : τ , and {��Ĥ��fh

h /xc}C is not a value, then there exists
a host-free term C′ such that:

— [xc : fh] � C′ : τ

— {��Ĥ��fh
h /xc}C �−→ {��Ĥ��fh

h /xc}C′

— {��Ĥ ′��fh
h /xc}C �−→ {��Ĥ ′��fh

h /xc}C′

The embeddings also enable us to track expressions of the abstract type during
evaluation, thus allowing us to formalize a third property: The client must have
called open to obtain a file handle.

Theorem 2.9 (File Handles Come from open). Suppose C is host-free, ho
is client-free, and λopenc :string → fh. C is well-typed. If (λopenc :string → fh. C)

applied to ��λsh :string. ho sh��string→fh
h steps to some term C′ containing ��Ĥ��fh

h

as a subterm, then Ĥ was derived from a sequence of the form (ho Ĥ ′) �−→∗ Ĥ.

The proof shows that (after one step) every host embedding has as its embedded
term either an application of ho or an intermediate result of such an application.

3. THE MULTIAGENT CALCULUS

So far, we have described a simple two-agent setting in which the host has strictly
more information than the client. We can model many interesting cases in this
fashion, but there are times when both principals wish to hide information or in
which there are more than two agents involved. For example, we need a multiagent
setting to prove safety properties about nested abstract data types.
Another natural generalization is to allow an agent to export multiple abstract

types. Once that facility exists, agents should be able to share type information.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(agents) i, j ∈ {1, . . . , n}

(lists) � ::= i | i�

(types) τ ::= t | b | τ → τ ′

(i-terms) ei ::= xi | bi | λxi :τ. ei | ei e′i | fix fi(xi:τ).ei | pxejqyτ
�

(i-primvals) v̂i ::= bi | λxi :τ. ei

(i-values) vi ::= v̂i | pxv̂jqyt
� (t �∈ Dom(δi))

Fig. 9. Multiagent syntax.

3.1 Syntax

Figure 9 shows the syntax for the multiagent language. The types include a base
type, b, function types, and type variables ranged over by t. In what follows, we
also use u and s to range over type variables.
Rather than just two colors of terms, we now assume that there are n agents,

where n is fixed. We use the metavariables i, j, and k to range over the set of
agents {1, . . . , n}.
Every nonembedding term has exactly one color, as indicated by the subscript.

Embeddings also have a color that is determined by context—the grammar allows
ei and ej to produce syntactically identical embedding terms. We explicitly state
the color of the term when it is ambiguous or particularly relevant to the discussion.
Functions and applications are always constructed from subterms of the same color.
The terms for agent i include variables, xi, constants, bi, nonrecursive functions,

λxi : τ. ei, recursive functions, fix fi(xi:τ).ei, function applications, ei e
′
i, and em-

beddings, ��ej��τ
� . We include both recursive and nonrecursive functions to simplify

the dynamic semantics (see rule [4 ] in Figure 10).
An embedding containing a j-term is labeled with a list of agents, �, for reasons

explained in Section 3.3. We write simply j for the singleton list containing the
agent j, and we use juxtaposition to denote appending two lists (��′ is the concate-
nation of lists � and �′). The static semantics requires that the list for an embedded
j-term begins with j, so in fact � = j�′ for the term ��ej��τ

� ; but we write just � when
the j is unimportant. We use rev(�) to mean the list-reversal of �.

3.2 Type Information

The goal is a language in which each agent has limited knowledge of type informa-
tion. Thus, we must somehow represent what an agent “knows” and ensure that
agents sharing information do so consistently. For example, agent i might know
that fh = int. Agent j may or may not have this piece of information, but if j does
know the realization of fh, that knowledge must be compatible with what i knows.
(It should not be the case that j thinks fh = string.)
To capture this information, we assume each agent i has a finite partial map

from type variables to types called δi. To maintain consistency of knowledge among
agents, we require that all agents that know the implementation of an abstract type
t know the same implementation. We further restrict the δi maps so that for each
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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type variable, t, there is a unique, most concrete interpretation of t. For example,
we do not allow δi(t) = t→ t, or the more subtle δi(t) = s → s, δj(s) = t, because
these examples do not admit a well-defined notion of most-concrete type for t.
The need for consistency among agents motivates the first part of the following

definition; the need for most concrete interpretations of a type motivates the second
part.

Definition 3.1. A set {δ1, . . . , δn} of finite partial maps from type variables to
types is compatible if:

—For every i, j ∈ {1, . . . , n} if t ∈ Dom(δi) ∩ Dom(δj), then δi(t) = δj(t).
—The collection of type variables can be totally ordered such that for every agent,
i, and type variable, t, all variables in δi(t) precede t.

Each δi extends naturally to a total function, ∆i from types to types:

∆i(b) = b

∆i(t) =
{
t t �∈ Dom(δi)
δi(t) t ∈ Dom(δi)

∆i(τ → τ ′) = ∆i(τ) → ∆i(τ ′)

Applying ∆i to a type τ either yields τ (if i has no information about the type
variables appearing in τ) or a more concrete version of τ . For example, ∆h(fh →
fh) = int → int. We say that ∆i(τ) refines τ , and we write �i for the reflexive,
transitive closure of ∆i viewed as a relation on types. Thus, fh → fh �h int→ int.
The second condition in the definition of compatibility, and the fact that each

agent has a finite amount of type information, guarantees that the process of an
agent refining a type halts. That is, the sequence τ �i ∆i(τ) �i ∆i(∆i(τ)) �i . . .
reaches a fixpoint, which we write ∆̄i(τ). This fixpoint is the most concrete view
of τ that agent i is able to determine from its knowledge.
Even if all of the agents pool their information about type variables, the notion of

a most concrete view of τ is still valid. We write Φ for the union of the compatible ∆i

maps. It contains the composite knowledge of every agent in the system. Let � be
the reflexive, transitive closure of the relation Φ. As above, the process of refining
τ using Φ also terminates: τ � Φ(τ) � Φ(Φ(τ)) � . . . reaches a fixpoint. The
notation Φ̄(τ) indicates this fixpoint, which is the most concrete type compatible
with τ .
In practice, the compatibility constraints guarantee two things. First, no set of

agents can conspire to show that incompatible types are equal (and thus effectively
cast an integer to a function, for example). Second, there is a well-defined notion
of most concrete type for each agent. The first criterion is clearly necessary for
soundness of the system. The second criterion greatly simplifies the static seman-
tics. There may be other notions of compatibility that relax one or both of these
conditions while still admitting a sound type system and a well behaved semantics.

3.3 Embeddings

The set of i-terms that are values depends on i’s available type information. In
addition to the usual notion of values, given by i-primvals, a j-primval embedded
in agent i is a value if i cannot determine any more type information about the
value. That is, ��v̂j��t

� is an i-value if t �∈ Dom(δi).
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Because an embedding is not an i-primval, a nested embedding (for example,
����λxj : τ. xj��t

j��s
i ) is never an i-value. We could have made such terms values, but

the result would significantly complicate the dynamic semantics: if our example
nested embedding were passed to an agent that was able to refine s to an arrow type,
then we would need to cross two embedding boundaries to find the function that
the agent expects. Instead, our dynamic semantics collapses the two embeddings
into one, in this case ��λxj : τ. xj��s

ji. As a result, values never cross more than one
embedding at a time, but the embeddings are now annotated with a list of agents.
Why is this somewhat complicated mechanism necessary? There must be some

way of relating the type of a term inside an embedding to the type annotation on
the embedding; otherwise, an agent could export an integer as a function. The
list of agents allows us to maintain exactly the information needed to establish
the connection between the type of the term inside an embedding and the type
annotating the embedding. If we forget any agents, inconsistencies may arise. For
example, consider three agents, i, j, and k, such that δi(t) = int, δj(s) = t, and
δk = ∅. Then collapsing the k-term ����3i��t

i��s
j to either ��3i��s

i or ��3j��s
j violates the

type-abstraction properties because neither i nor j knows that s abstracts an int.
If we use sets of agents instead of (ordered) lists, the reasonable rules become too
permissive because we lose the information that agent i must have exported the
integer at type t before j could export it at type s. As we explain in Section 3.6, the
type system admits the nested-embedding term and the collapsed version, ��3i��s

ij ,
but not the others.
In summary, the lists of agents on embeddings let us remember a particular

order of principals, which is necessary for type checking, without treating nested
embeddings as values.

3.4 Dynamic Semantics

Figure 10 shows the operational semantics for agent i in the multiagent language.
That is, several of the rules depend on the color of the term being reduced, and the
rules use i to denote this color.
Rules [1 ], [2 ], [4 ], and [5 ] establish a typical call-by-value semantics.2 Rule [3 ]

allows evaluation inside embeddings. Rule [6 ] lets agent i pull a constant out of an
embedding, provided that the constant is exported at type b. This rule corresponds
to rules [C2 ] and [H2 ] of the two-agent scenario.
As in the two-agent case, in which the host had more type information than the

client, an agent can use its knowledge to refine the type of an embedded term. Pre-
viously, the substitution {τh/t} in rule [H3 ] served this purpose. Now, ∆i captures
the type-refinement information available to agent i. Correspondingly, rule [7 ] al-
lows i to refine the type of an embedded value. The side condition on this rule (in
conjunction with the conditions on [8 ] and [9 ]) ensures that evaluation is determin-
istic. This determinism of the type-refinement rules is not critical to the system,
but it makes many of the proofs easier because there is only one applicable rule
for each evaluation step. The choice of when the operational semantics refines type
information interacts with where we must apply the ∆i maps in the static seman-
tics; we chose to maintain the invariants that the static semantics always derives

2We believe the language can easily be adapted to a call-by-name setting.
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[1 ]

ei �−→ e′′i
ei e

′
i �−→ e′′i e′i [2 ]

e′i �−→ e′′i
vi e

′
i �−→ vi e′′i [3 ]

ej �−→ e′j
pxejqy

τ
� �−→ pxe′jqy

τ
�

[4 ] fix fi(xi:τ).ei �−→ λxi :τ. {fix fi(xi:τ).ei/fi}ei

[5 ] (λxi :τ. ei) vi �−→ {vi/xi}ei

[6 ] pxbjqy
b
� �−→ bi

[7 ] pxv̂jqyτ
� �−→ pxv̂jqy

∆̄i(τ)
� (τ �= ∆̄i(τ))

[8 ] pxpxv̂jqyu
� qy

τ
k�′ �−→ pxv̂jqyτ

�k�′ (u �∈ Dom(δk), τ = ∆̄i(τ))

[9 ] pxλxj :τ. ejqy
τ ′→τ ′′
j� �−→ λxi :τ

′. px{pxxiqy
τ
irev(�)

/xj}ejqyτ ′′
j� (xi fresh, τ ′ → τ ′′ = ∆̄i(τ

′ → τ ′′))

Fig. 10. Multiagent dynamic semantics: e �−→ e′ where color(e) = i.

the most concrete type for any term, and that types explicitly mentioned in the
lambda-abstraction syntax are most concrete. It would be possible to reformulate
the calculus so that these conditions are relaxed (by allowing a nondeterministic
type-refinement rule in the static semantics), but doing so would require additional
proof-normalization arguments.
Rule [8 ] is the multiagent generalization of rule [H4 ]. Both rules allow progress

when we have nested embeddings, and the inner embedding cannot be reduced be-
cause the inner agent considers it a value. In the two-agent case, this situation can
occur only when the outer agent is the host. Because we are not concerned with
tracking what values the host manipulates, rule [H4 ] strips away both embeddings.
However, in the more symmetric multiagent setting, naively stripping away em-
beddings loses information about which agents could have contributed information
about the type of a term.
Rule [8 ] says that if there are nested embeddings, ����v̂j��u

� ��τ
k�′ , and the inner

embedding, ��v̂j��u
� , is a k-value (that is, u �∈ Dom(δk)), then the two embeddings

can be collapsed into one, ��v̂j��τ
�k�′ . Because we append the two lists, we lose no

information about which agents have participated in the evaluation of the term.
The most interesting rule is [9 ], which is really what tracks the principals. The

embedded function is lifted to the outside. Its argument now belongs to the outer
agent, i, instead of the inside agent, j. As such, it must be given the type that
i thinks the argument should have. The body of the function is still a j-term
embedded in an i-term, so any occurrence of the new formal argument xi must be
embedded as an i-term inside a j-term. The corresponding type annotation must
be the type that j expects the argument to have. Hence the function body is still
abstract to i, and, when the function is applied, the actual argument will be held
abstract from j. The only remaining issue is the agent list on the formal-argument
embeddings. Because the “inside type” and “outside type” have reversed roles, the
list must be in reverse order. Intuitively, the agents that successively provided the
function-argument type to i must undo their work in the body of the function. The
side condition ensuring that the embedding’s type is most concrete with respect to
the outer agent preserves the determinism of the semantics and ensures that the
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Assume δh(fh) = int and fh �∈ Dom(δc)

(λyh : int→ int. yh 3h) pxλxc : fh. xcqyfh→fh
c

[7 ] (λyh : int→ int. yh 3h) pxλxc : fh. xcqyint→int
c

[9 ] (λyh : int→ int. yh 3h) (λx′h : int. pxpxx′hqy
fh
h qyint

c )

[5 ] (λx′h : int. pxpxx′hqy
fh
h qyint

c ) 3h

[5 ] pxpx3hqy
fh
h qyint

c

[8 ] px3hqy
int
hc

[6 ] 3h

Fig. 11. Multiagent evaluation example.

explicit type for xi is most concrete.

3.5 Example

As an example, we encode our two-agent calculus by letting δh map fh to int and
letting δc be undefined everywhere. An evaluation that uses all of the novel rules
appears in Figure 11. The host program invokes a client function defined in terms of
the abstract type fh. (For simplicity, it is just the identity function.) The evaluation
takes place in a host context, enabling the host to apply the function to the value 3
even though the client function expects an argument of type fh. Within the body of
the client code, however, the host value 3 is wrapped in an embedding and must be
treated abstractly. Even so, the host code is able to recover the value 3 returned by
the client. The numbers in the figure are the reduction rules used to take the step.
Note that under this simple system, rules [7 ] and [9 ] encode what was previously
“hard-wired” into rule [H3 ]. Similarly, rules [8 ] and [6 ] do the work of [H4 ].

3.6 Static Semantics

Figure 12 shows the multiagent static semantics. Note that the rules depend on the
color of the term and the value of the maps δ1, . . . , δn. The rules use i to denote the
color of the term. The values of the maps do not change, so we leave them implicit.
Therefore, the judgment Γ � ei : τ should be read as, “Under maps δ1, . . . , δn in
context Γ, agent i can show that ei has type τ .”
All of the rules except [embed ] are essentially standard. The rules [abs ] and

[fix ] have additional conditions that force an agent to use the most concrete type
available for functions internal to the agent; they are analogous to the side condition
on [Hfn] in the two-agent case. Similarly, the use of ∆̄i in the conclusion of [embed ]
guarantees that an embedded term is viewed by agent i at the most concrete type
possible. Formally, the convenient invariant we are maintaining is that Γ � ei : τ
implies ∆i(τ) = τ .
The issue of consistency among agents arises during type checking. For instance,

we do not want a principal to export an int as a function. Likewise, we do not want
an agent, or collection of agents, to violate the type abstractions represented by the
δi maps. Thus, we need to relate the type of the expression inside the embedding
to the type annotation on the embedding.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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[const ] Γ � bi : b [var ] Γ � xi : Γ(xi) [app]

Γ � ei : τ ′ → τ Γ � e′i : τ ′

Γ � ei e′i : τ

[abs]

Γ[xi : τ ′] � e′i : τ ∆i(τ ′) = τ ′

Γ � λxi :τ ′. e′i : τ ′ → τ (xi �∈ Dom(Γ))

[fix ]

Γ[fi : τ ′ → τ ][xi : τ ′] � e′i : τ ∆i(τ ′ → τ) = τ ′ → τ
Γ � fix fi(xi:τ ′).e′i : τ ′ → τ (fi, xi �∈ Dom(Γ), fi �= xi)

[embed ]

Γ � ej : τ ′ � τ ′ .j�i τ

Γ � pxejqy
τ
j� : ∆̄i(τ)

Fig. 12. Multiagent static semantics: Γ � ei : τ .

[eq]

∆̄i(τ) = ∆̄i(τ
′)

� τ .i τ
′ [trans]

� τ .� τ
′′ � τ ′′ .�′ τ

′

� τ .��′ τ
′

Fig. 13. Type relations: � τ .� τ
′.

We establish an agent-list indexed family of relations on types, τ �� τ
′. Judg-

ments of the form � τ �� τ
′, showing when two types may be related by the list �,

are given in Figure 13.3 These rules say that τ0 �i1i2...im τm if there exist types
τ1, . . . , τm−1 such that agent ik is able to show that τk−1 = τk for k ∈ {1, . . . ,m}.
Informally, the agents are able to chain together their knowledge of type information
to show that τ0 = τm.
The [embed ] rule uses the �j�i relation to ensure that the type inside the embed-

ding matches up with the annotation on the embedding. The agent i is appended
to the list because, as the outermost agent, i is implicitly involved in evaluation of
the term.

3.7 Safety Properties

This section illustrates some of the standard safety theorems of typed programming
languages and then presents an embedding-erasure transformation that commutes
with evaluation.
The following standard lemmas help establish type soundness. The proofs are

straightforward.

Lemma 3.2 (Canonical Forms). Assuming ∅ � vi : τ ,

— if τ = b, then vi = bi for some b.
— if τ = τ ′ → τ ′′, then vi = λxi :τ ′. e′i for some xi and e′i.
— if τ = t, then t �∈ Dom(δi) and vi = ��v̂j��t

j� for some v̂j and �.

3We give a nondeterministic rule for [trans] because we are not concerned with an algorithmic
presentation of type checking. This formulation lets us slightly simplify the proofs of the Type-
Relations Properties, but is not essential to their correctness.
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Lemma 3.3 (Substitution). Suppose Γ[xj : τ ′] � ei : τ and Γ � ej : τ ′. Then
Γ � {ej/xj}ei : τ .

We also need several properties about the � relations.

Lemma 3.4 (Type-Relation Properties).

Idempotence: � τ ��ii�′ τ
′ if and only if � τ ��i�′ τ

′.

Reversal: If � τ �� τ
′, then � τ ′ �rev(�) τ .

Arrow: If � τ1 → τ2 �� τ
3 → τ4, then � τ1 �� τ

3 and � τ2 �� τ
4.

Proofs of the first two properties are simple arguments by induction on the deriva-
tion of the type relation. Our proof of the last property requires a tedious normal-
ization argument showing that if � τ1 → τ2 �� τ

3 → τ4, then there is a derivation
that relates only types whose top-level constructors are arrows. We give a brief
sketch of the argument: the proof is by induction on the length of the list �. The
base case, when � is of length one, follows from the compatibility of the δi relations.
The inductive case is straightforward if the types in the chain are all arrows, so
we suppose that in a chain of types showing � τ1 → τ2 �� τ

3 → τ4 the first type
variable encountered is t. Then the type before t must be some τ5 → τ6. After
some number of type variables in the chain, we must again have some arrow type.
From the consistency conditions on the δi maps, this next arrow type must be
τ5 → τ6. Hence we did not need the occurrence of t in the chain, and can simply
replace it with τ5 → τ6. In other words, any occurrences of type variables provide
no additional information, so we can remove them, reducing the problem to a chain
consisting only of arrow types.
We now have the results we need to prove the two main lemmas.

Lemma 3.5 (Preservation). If ∅ � ei : τ and ei �−→ e′i, then ∅ � e′i : τ .
Proof. By induction on the derivation that ei �−→ e′i. We proceed by cases on

the last step of the derivation. Cases [1 ], [2 ], and [3 ] follow from induction. Cases
[4 ] and [5 ] follow immediately from the Substitution Lemma. Case [6 ] is trivial to
prove. We consider the remaining cases individually:

[7 ] We have a typing derivation as follows:

∅ � v̂j : τ ′′ � τ ′′ �j�i τ
′

∅ � ��v̂j��τ ′
j� : ∆̄i(τ ′)

Because ∆̄i(τ ′) equals ∆̄i(∆̄i(τ ′)), by [eq] we have that � τ ′ �i ∆̄i(τ ′). Thus
by [trans] we have that � τ ′′ �j�ii ∆̄i(τ ′), and we can remove the second i by
Idempotence. We can now derive:

∅ � v̂j : τ ′′ � τ ′′ �j�i ∆̄i(τ ′)

∅ � ��v̂j��∆̄i(τ
′)

j� : ∆̄i(τ ′)

The conclusion is the desired result.
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[8 ] We have a typing derivation as follows:

∅ � v̂j : τ ′′ � τ ′′ �j�k u

∅ � ��v̂j��u
j� : ∆̄k(u) � ∆̄k(u) �k�′i τ

′

∅ � ����v̂j��u
j���τ ′

k�′ : ∆̄i(τ ′)

The fact that the inner embedding is labeled with a list starting with j follows
from the Canonical Forms Lemma. Furthermore, u �∈ ∆k, so ∆̄k(u) = u. Thus
by [trans] and the premises, we have � τ ′′ �j�kk�′i τ

′. So Idempotence proves that
� τ ′′ �j�k�′i τ

′. We can now derive:

∅ � v̂j : τ ′′ � τ ′′ �j�k�′i τ
′

∅ � ��v̂j��τ ′
j�k�′ : ∆̄i(τ ′)

The conclusion is the desired result.
[9 ] We have a typing derivation as follows:

[xj : τ0] � ej : τ3 ∆j(τ0) = τ0

∅ � λxj :τ0. ej : τ0 → τ3 � τ0 → τ3 �j�i τ
1 → τ2

∅ � ��λxj :τ0. ej��τ1→τ2

j� : ∆̄i(τ1 → τ2)

Furthermore, the concreteness side condition on rule [9 ] implies that ∆i(τ1 →
τ2) = τ1 → τ2. So by the definition of ∆i, we know that ∆i(τ1) = τ1 and
∆i(τ2) = τ2. From the Arrow Lemma and the right-hand premise of the bottom
step, we conclude that � τ0 �j�i τ

1 and � τ3 �j�i τ
2. The reverse of j�i is irev(�)j,

so by the Reversal Lemma, � τ1 �irev(�)j τ
0. Thus we can derive:

[xi : τ1] � xi : τ1 � τ1 �irev(�)j τ
0

[xi : τ1] � ��xi��τ0

irev(�) : ∆̄j(τ0)

Because the original derivation provides ∆j(τ0) = τ0, we conclude [xi : τ1] �
��xi��τ0

irev(�) : τ0. It also provides [xj : τ0] � ej : τ3. Because xi is fresh, we
may weaken this claim to [xi : τ1][xj : τ0] � ej : τ3. Hence by Substitution,
[xi : τ1] � {��xi��τ0

irev(�)/xj}ej : τ3. So we can derive:

[xi : τ1] � {��xi��τ0

irev(�)/xj}ej : τ3 � τ3 �j�i τ
2

[xi : τ1] � ��{��xi��τ0

irev(�)/xj}ej��τ2

j� : ∆̄i(τ2) ∆i(τ1) = τ1

∅ � λxi :τ1. ��{��xi��τ0

irev(�)/xj}ej��τ2

j� : τ1 → ∆̄i(τ2)

Because ∆̄i(τ2) = τ2, the conclusion is the desired result.

Lemma 3.6 (Progress). If e is well-typed, then either e is a value or there
exists an e′ such that e �−→ e′.

Proof Sketch. The proof is a straightforward inductive argument on the struc-
ture of e. The interesting case is when e = ei = ��vj��τ

� . If ∆i(τ) �= τ , then rule [7 ]
applies. Else, if vj is an embedding, then rule [8 ] applies. Otherwise, we proceed
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erase(xi) = x
erase(bi) = b

erase(λxi :τ. ei) = λx : Φ̄(τ). erase(ei)
erase(fix fi(xi:τ).ei) = fix f(x:Φ̄(τ)).erase(ei)

erase(ei e′i) = erase(ei) erase(e′i)
erase(pxejqyτ

� ) = erase(ej)

where Φ =
S

i ∆i

Fig. 14. Multiagent erase translation.

by cases on the form of τ . If τ = b, rule [6 ] applies. If τ = τ ′ → τ ′′, rule [9 ] applies.
Else ei is a value.

Given the previous two lemmas, we conclude type safety:

Theorem 3.7 (Type Safety). If ∅ � e : τ , then there is no stuck e′ such that
e �−→∗ e′.

The cost of including embeddings is the addition of several dynamic rules. Worse
yet, with recursion and multiple agents, the lists annotating embeddings might
grow arbitrarily large. The erasure property stated below essentially shows that
these syntactic tricks are only a proof technique.
For erasure to a typed language, it is necessary to combine the type information

of all the agents. The multiagent definition of erase is given in Figure 14, where
we recall that Φ is the map obtained by taking the union of the compatible ∆i

maps. Φ̄(τ) is the most concrete type for τ that can be found using all n agents’
knowledge.
The target language has one agent and no embeddings.

Lemma 3.8 (Erasure). If ei is well-typed then either both ei and erase(ei)
diverge or ei �−→∗ vi and erase(ei) �−→∗ erase(vi).

Proof Sketch. By induction on the number of steps in the source deriva-
tion. For one step, show that if ei �−→ e′i, then either erase(ei) = erase(e′i) or
erase(ei) �−→ erase(e′i). That is, the erased version takes either zero steps (if the
source step uses one of rules [6 ] through [9 ]) or one step (if the source step uses
rule [4 ] or [5 ]). For divergence, show the contrapositive—any term erasing to a
nondiverging term is nondiverging. The essence of the argument is that the source
derivation can take only a finite number of steps before using rules [4 ] or [5 ].

3.8 Type-Abstraction Properties

In this section, we use subject-reduction arguments to prove type-abstraction prop-
erties that generalize those of the two-agent case.

Definition 3.9. Let Agents(ei) be the set of colors appearing in ei. (The set
necessarily includes i as well as any agents appearing in lists annotating embedding
subterms of ei.)

Definition 3.10. A set of agents, S, is oblivious to type t if for all i ∈ S, t �∈
Dom(δi).
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Theorem 3.11 (Independence of Evaluation). Let ei be a term such that
Agents(ei) are oblivious to t and ∅ � λxi :t. ei : t→ b. Let v̂j and v̂′j be closed,
well-typed terms with type ∆̄j(t). Then (λxi :t. ei) ��v̂j��t

j �−→∗ bi if and only if
(λxi :t. ei) ��v̂′j��t

j �−→∗ bi.

First note that v̂j and v̂′j are primitive values. Hence ��v̂j��t
j and ��v̂′j��t

j are values.
Also, we know j �∈ Agents(ei): because v̂j is a constant or a function and ��v̂j��t

j

is well-typed, [embed ] ensures that t ∈ Dom(δj). Agents(ei) are oblivious to t, so
j �∈ Agents(ei).
The proof of the theorem strengthens the claim to a step-by-step evaluation

correspondence when using v̂j and v̂′j . We give the intuition before presenting
the formal lemma: we maintain that the intermediate terms in the two evaluation
sequences are always exactly the same except that every occurrence of v̂j in one is
replaced with v̂′j in the other. To ensure this correspondence, we show that every
occurrence of v̂j is safely within an embedding with a type that agents other than
j can relate to t. These agents are oblivious to t, so the embedding’s type must be
at least as abstract as t. We also maintain that there are no j-terms other than the
ones we are abstracting and that j appears nowhere in an embedding list except
as the first element. These conditions suffice to argue that j never helps the other
agents break the type abstraction.
More specifically, properties (1) and (2) of ϕ (defined in the lemma) suffice to

show that Agents(ei) \ {j} cannot distinguish values of type t without the help of
agent j; properties (3), (4), and (5) suffice to show that j does not provide such
help.

Lemma 3.12 (Value Abstraction). Let v̂j and v̂′j have type ∆̄j(t). Let ϕ(ei)
mean:

(1 ) [xj : ∆̄j(t)] � ei : τ for some τ .
(2 ) Agents(ei) \ {j} are oblivious to t.
(3 ) The only j-term in ei is xj. (It may appear zero, one, or more times.)
(4 ) If ��xj��τ

j� is a k-term in ei, then � t ��k τ .
(5 ) j never appears in an embedding list within ei except as the first element.

Then if ϕ(ei) and {v̂j/xj}ei �−→ e1i , then there exists an e2i such that:

(a) ϕ(e2i )
(b) {v̂j/xj}e2i =α e1i
(c) {v̂′j/xj}ei �−→ {v̂′j/xj}e2i

Proof Sketch. By induction on the derivation of {v̂j/xj}ei �−→ e1i , proceeding
by cases on the last rule used in the derivation.
Rules [1 ], [2 ], and [3 ] essentially follow from induction and the definition of

substitution. Note that for [3 ], the embedded term is not a j-term because the
only j-term, v̂j , is a value.
Rules [4 ] and [5 ] follow from the definition of substitution and the fact that the

variable for which we substitute a term must be distinct from xj because the term
and xj are different colors. Furthermore, v̂j is closed, so the substitution has no
effect on it.
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Rule [6 ] is trivial except that we must prove the term inside the embedding is
not v̂j (otherwise e1i = v̂i, so property (c) will not hold). Assume for contradiction
the term inside is v̂j . Then by property (3), before the substitution this term was
xj . Then by properties (4) and (5), a j-free list of agents, �, can show � t �� b. A
simple proof by induction on the rules for �� shows that this conclusion contradicts
property (2).
Rules [7 ] and [8 ] are straightforward to verify. Note that in [8 ] the outer agent

list cannot contain j because of properties (3) and (5).
Rule [9 ] requires an analogous argument to the one we used in [6 ] to show that

the term inside the embedding cannot be xj . Hence the agent list on the embedding
does not contain j, so property (5) is preserved even though the agent list is reversed.
The substitution in the body of the function is unproblematic because v̂j is closed
and therefore unaffected.

This lemma suffices to prove Independence of Evaluation because, given the as-
sumptions of the theorem, ϕ((λxi : t. ei) ��xj��t

j). By induction on the length of the
evaluation, property (b) holds for bi, where bi is the result of the evaluation with v̂j .
This implies that the same bi must be the result of the evaluation with v̂′j because
the two results are alpha equivalent.
The generalization of Theorem 2.9 is the following theorem. It effectively says

that a client containing a value of abstract type fh must have obtained that value
via a host-provided function.

Theorem 3.13 (Host-Provided Values). Suppose prog is a closed and well-
typed term of the form (λopeni : b → fh. client)��λxh : b. ho��b→fh

h . Further sup-
pose Agents(client) are oblivious to fh, h knows fh, ho is embedding-free, and
prog �−→∗ ei. Then any subterm of ei that is a closed value of type fh has the form
��v̂h��fh

h�, and there exists an eh such that {eh/xh}ho �−→∗ v̂h and erase(eh) = b for
some base value b.

Note that it is not necessarily the case that {bh/xh}ho �−→∗ v̂h because ∆̄h(fh)
could be a function type and because the dynamic semantics does not evaluate
under functions. Also note that we make no restrictions on the agents in client
and their type abstractions except that none of them know the implementation of
fh. For example, one agent could export fh more abstractly to another agent.
The proof consists of an intricate subject-reduction argument, so we first present

the general idea. Intuitively, the only h terms are ho and the result of applying ho to
an argument. Because only h knows fh, all values of type fh come from applying ho.
The main complication is tracking all the functions that are essentially λxh : b. ho
except that they differ in color and embeddings: The first step of prog uses [9 ] to
convert ��λxh : b. ho��b→fh

h to λxi : b. ��{��xi��b
i /xh}ho��fh

h , so we must consider the
latter term a legitimate producer of file handles. Agent i could pass this term to
another agent using [9 ] again, and that result must also be legitimate.
Due to these complications, we carefully state a property that evaluation of a

well-typed term preserves: Figure 15 presents two relations, ϕ(e) and ψ(e), where
as usual, we mean the least relations closed under the appropriate inference rules.
In the rules, we assume the color of e does not know fh; we use colors j and k to
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[A] ϕ(b) [B ] ϕ(x)

[C ]

ϕ(e) ϕ(e′)
ϕ(e e′) [D ]

ϕ(e)

ϕ(λx :τ. e) [E ]

ϕ(e)

ϕ(fix f(x:τ).e) [F ]

ϕ(e) h �∈ �
ϕ(pxeqyτ

� )

[G]

{eh/xh}ho �−→∗ e′h erase(eh) = b ∅ � eh : b � fh .�′ τ h �∈ ��′
ϕ(pxe′hqy

τ
h�)

[H ]

ψ(e)

ϕ(e) [I ] ψ(λxj :b. px{pxxjqy
b
j /xh}hoqyfhh )

[J ]

ψ(λyk :τ1. pxeqyτ2

� ) � τ3 .jrev(�′) τ
1 h �∈ �′

ψ(λxj :τ3. pxpx{pxxjqy
τ1

jrev(�′)/yk}eqyτ2

� qyτ4

k�′)

[K ] ψ(pxλxh :b. hoqyb→fh
h )

Fig. 15. Host-Provided Values preservation property.

range over any such color. We implicitly assume the context of the Host-Provided
Values Theorem, so λxh :b. ho is closed, well-typed, and embedding-free.
Rules [A] through [F ] are just structural rules; we use them to “find the important

terms,” namely the functions that are essentially λxh : b. ho and the results of
applying such functions. No other h-terms are allowed.
Rule [G] accepts terms that are the (intermediate) results of applying such func-

tions. Because such functions differ from ho in terms of embeddings, [G] does not
require that e = ��e′h��τ

hl where there exists a vh such that {vh/xh}ho �−→∗ e′h.
Rather, vh may be a nonvalue eh so long as its erasure is a value.
Rule [H ] accepts the terms that are essentially λxh :b. ho by using the auxiliary

relation ψ. Rule [I ] accepts the function we have after one step of prog. For each
time that the function is passed to another agent via rule [9 ], we use the rule [J ]
to conclude that the resulting function is still acceptable. We include rule [K ] so
that ϕ(prog) holds. It is easy to show that ψ(e) implies e is closed and well-typed.
It is straightforward to prove that if ϕ(e) is preserved under evaluation then the

Host-Provided Values Theorem is true: first verify that ϕ(prog). Therefore, ϕ(ei)
for any ei such that prog �−→∗ ei. A simple induction on the derivation of ϕ(ei),
appealing to the canonical forms of values as necessary, suffices to prove that for
any subterm v that is a closed value of type fh, it must be that ϕ(v). Rule [G]
is necessary to derive ϕ(v), and the antecedents of this rule are strong enough to
prove the theorem. (A separate inductive argument shows that if ψ(e), then no
subterm of e is a closed value of type fh.)

We now proceed with the rigorous proof that ϕ is preserved. As usual, the
subject-reduction argument relies on a substitution lemma that we prove before
presenting the main lemma.

Lemma 3.14 (Host-Provided Substitution). If ϕ(e), ϕ(e′) and color(e′) =
color(x), then ϕ({e′/x}e).

Proof. The proof is by induction on the derivation of ϕ(e), proceeding by cases
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on the last rule in the derivation. Cases [A] and [B ] are trivial. Cases [C ], [D ],
[E ], [F ] follow from straightforward inductive arguments. Case [G] follows because
{eh/xh}ho is closed and evaluation preserves this property. Case [H ] follows because
ψ(e) implies that e is closed (as shown by induction on the derivation of ψ(e)).

Lemma 3.15 (Host-Provided Preservation). If ϕ(e), ∅ � e : τ , and e �−→
e′, then ϕ(e′).

Proof. The proof is by induction on the derivation of e �−→ e′, proceeding by
cases on the last rule in the derivation.

[1 ] Follows from the induction hypothesis and [C ].
[2 ] Follows from the induction hypothesis and [C ].
[3 ] The derivation of ϕ(e) ends with [F ] or [G]. (Note that [H ] is impossible

because ψ(e) holds only for values or embeddings of values, which do not fit the
conditions of [3 ].) If [F ], then the result follows from the induction hypothesis
and [F ]. If [G], then we know e = ��e′h��τ

h� and {eh/xh}ho �−→n e′h for some n and
appropriate eh. Therefore, we know that {eh/xh}ho �−→n+1 e′′h and e′ = ��e′′h��τ

h�.
So we can use [G] to derive ϕ(e′).
[4 ] Follows from the induction hypothesis, [E ], Host-Provided Substitution, and

[D ].
[5 ] Then e = (λxj : τ ′. e′′) vj , vj has type τ ′, and the derivation ends with [C ].

Therefore, ϕ(vj) and ϕ(λxj : τ ′. e′′); the derivation of the latter ends in [D ] or
[H ]. If [D ], then the result follows from the induction hypothesis, [D ], and Host-
Provided Substitution. If [H ], then ψ(λxj : τ ′. e′′), the derivation ending in [I ] or
[J ]. Therefore, e′′ has the form ��e′′′��τ ′′

� . It suffices to show that ϕ({vj/xj}��e′′′��τ ′′
� ).

To prove this fact, we prove that ψ(λxj : τ ′. ��e′′′��τ ′′
� ), ϕ(vj), and vj has type τ ′

implies two stronger facts:

—erase(vj) = b for some b
—For any ej of type τ ′, if there is a b such that ϕ(ej) and erase(ej) = b, then
ϕ({ej/xj}��e′′′��τ ′′

� ).

It is clear that this strengthened claim suffices. We prove it by induction on the
derivation of ψ(λx :τ ′. ��e′′′��τ ′′

� ), proceeding by cases on the last rule used.
For case [I ], τ ′ = b, so the first fact follows from the Canonical Forms Lemma and

the well-typedness of e. For the second fact, {ej/xj}��e′′′��τ ′′
� = ��{��ej��b

j /xh}ho��fh
h .

So [G] applies by letting eh = ��ej��b
j and e′h = {eh/xh}ho.

For case [J ], we have λxj : τ ′. ��e′′′��τ ′′
� = λxj : τ3. ����{��xj��τ1

jrev(�′)/yk}e1��τ2

� ��τ4

j�′ .

Furthermore, we have from the derivation that ψ(λyk :τ1. ��e1��τ2

� ) and � τ3 �jrev(�′)
τ1. From the induction hypothesis, we conclude that if some vk has type τ1 and
ϕ(vk), then erase(vk) = b for some b. Because � τ3 �jrev(�′) τ

1, we can use the
Canonical Forms Lemma to conclude that if vj has type τ3, then erase(vj) = b,
which is our first obligation. From the induction hypothesis, we know that for any
ek of type τ1 such that ϕ(ek) and erase(ek) = b, we know ϕ({ek/yk}��e1��τ2

� ). So for
arbitrary ej such that ϕ(ej) and erase(ej) = b, we let ek = ��ej��τ1

jrev(�′) to conclude
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that ϕ({��ej��τ1

jrev(�′)/yk}��e1��τ2

� ). Therefore, from the definition of substitution, we

have ϕ(��{ej/xj}{��xj��τ1

jrev(�′)/yk}e1��τ2

� ). Finally, because h �∈ �′, we can use rule [F ]

and the definition of substitution to derive ϕ({ej/xj}����{��xj��τ1

jrev(�′)/yk}e1��τ2

� ��τ4

j�′ ,
which is our second obligation.

[6 ] Immediate because ϕ(b).

[7 ] Then the derivation of ϕ(e) ends with [F ] or [G]. (Note that [H ] is impossible
because that derivation would have to end with [K ], but no nonhost agent can refine
b → fh.) For either [F ] or [G], inspection of the antecedents reveals that the same
rule applies after the step.

[8 ] Then each of the last two steps of the derivation of ϕ(e) are [F ] or [G]. (Note
that [H ] is impossible because [K ] is not a nested embedding and b → fh is not a
type variable.) If both are [F ], then the induction hypothesis and one use of [F ] let
us conclude ϕ(e′). If the last step is [F ] and the second-to-last step is [G], then the
induction hypothesis and one use of [G] let us conclude ϕ(e′). Note that the well-
typedness of e suffices to satisfy the requirement that the type on the annotation
be more abstract than fh. The remaining cases have [G] as the last step; we show
by contradiction this situation is impossible. Suppose the derivation of ϕ(e) ends
in [G]. Then the e′h in the consequent of the rule is an h-value of the form ��v̂j��u

�

and u �∈ δh. But ho is embedding-free and ∅ � eh : b, so it is easy to show that
{eh/xh}ho cannot evaluate to a value that is an embedding.

[9 ] Then the derivation of ϕ(e) ends in [H ] or [F ]. (Note that [G] is impossible
because Agents(client) are oblivious to fh, so τ must be at least as abstract as
fh.) If the derivation ends in [H ], we know e = ��λxh : b. ho��b→fh

h and therefore
e′ = λxi : b. ��{��xi��b

i /xh}ho��fh
h , so [I ] lets us conclude ϕ(e′). If the derivation

ends with [F ], we know the second-to-last step is [D ] or [H ]. If [D ], then the
result follows from Host-Provided Substitution, [F ], and [D ]. If [H ], then we know
ψ(λy :τ1. ��e′′��τ2

�′ ) where e = ��λy :τ1. ��e′′��τ2

�′ ��τ3→τ4

� . (Either [I ] or [J ] could be the
last rule used to derive this result; e has this form in both cases.) Therefore, we
can use [J ] and [H ] to derive ϕ(e′). Note that the well-typedness of e and the fact
that h �∈ � suffice to satisfy the antecedents of [J ].

It is worth considering how we could generalize this proof and proof technique.
Generalizing the means by which clients obtain file handles is straightforward. The
function ho is just an example of a constructor; it is an expression that is exported
at a type in which fh appears in a positive position. By tracking these constructors,
we can show that all abstract values originate from them. More generally, using
syntax and subject reduction to track the flow of values requires that we can always
“find” the interesting terms, which is the purpose of rules [A] through [F ]. Rule [G]
describes the property of interest (in this case that the term came from an invocation
of the host implementation of open). The auxiliary predicate ψ describes how the
host term can appear after being exported to any number of agents—embeddings
can pile up, but only in a uniform way which does not change the underlying code,
only the interface at which the code is available.
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4. REFERENCES AND STATE

In this section, we augment the program states of the preceding development with
a mutable store and appropriate expressions for manipulating the store. The goal
is to extend our type-abstraction results to a stateful setting without being unduly
restrictive.
The next section is a brief overview of our formalization of state, ignoring is-

sues regarding agents and type abstraction. The point is simply to establish basic
notation for the discussion that follows. Our work follows closely the standard
treatment of references in a subject-reduction setting, e.g., see the work of Wright
and Felleisen [1994] or Harper [1994]. We then give an informal description of the
issues that make the store a particularly interesting addition to our framework.
Then we formally augment our calculus with state and discuss the reasons for par-
ticular design decisions. Finally, we augment the proofs of type soundness and
safety properties appropriately.

4.1 Notation

Ignoring types and agents, a store, M , is a partial map from labels to values. The
collection of labels is an infinite set; we use l to range over its members. A program
state is a pair of a store and a closed expression, and the dynamic semantics operates
on program states. Three new expression forms allow a program to manipulate the
store. Reference creation, ref v, evaluates to a fresh label, l, and extends the store
to map l to v. Dereference, !l evaluates to M(l) where M is the current store.
Update, l := v, evaluates to v and changes the current store to map l to v.
So that we may give appropriate types to labels, we add a unary type constructor

ref. Under storeM , the values of type ref τ are those l such that M(l) has type τ .
The static semantics ensures that well-formed program states refer only to labels
defined in the store. This restriction applies to the store itself, not just to the closed
expression. Hence, stores and expressions are well-formed relative what labels are
in the store and what types these labels have. Store types, ranged over by Ψ,
formalize these assumptions as a partial map from labels to types.
Figure 16 summarizes the preceding considerations by presenting the syntax and

semantics for a lambda calculus with state. Note that the rule for store well-
formedness permits the store to contain cycles.

4.2 Problems with State

Although the semantics associated with our stateful calculus is well understood,
discussing type abstraction between principals in such a setting is considerably
more complicated. Here we present examples of the difficulties.
The first difficulty is that the expressions that a program may use in its eval-

uation are not syntactically captured by the subterms of an expression. That is,
we previously described some client expression, C, as host-free, but now we must
account for C obtaining host code from the store. For example, in the expression
(!l ��v��t

h), whether or not the evaluation is independent of the value of v depends
on the value of M(l) where M is the current store. An obvious solution is to define
“host-free” over the entire program state (M,C), but this solution is unnecessarily
restrictive. Instead, our safety theorems use a notion of expressions reachable from
C in (M,C).
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Syntax

τ ::= b | τ → τ ′ | ref τ
e ::= v | x | e e′ | fix f(x:τ).e | ref e | e := e′ | !e
v ::= b | l | λx :τ. e

Dynamic Semantics

(M, e1) �−→ (M ′, e′1)

(M, e1 e2) �−→ (M ′, e′1 e2)

(M,e2) �−→ (M ′, e′2)

(M, v1 e2) �−→ (M ′, v1 e′2)

(M, e1) �−→ (M ′, e′1)

(M,e1 := e2) �−→ (M ′, e′1 := e2)

(M,e2) �−→ (M ′, e′2)

(M, v1 := e2) �−→ (M ′, v1 := e′2)

(M, e) �−→ (M ′, e′)
(M, !e) �−→ (M ′, !e′)

(M, e) �−→ (M ′, e′)
(M, ref e) �−→ (M ′, ref e′)

(M, (λx :τ. e) v) �−→ (M, {v/x}e) (M, !l) �−→ (M,M(l))

(M, ref v) �−→ (M [l �→ v], l) l fresh (M, l := v) �−→ (M [l �→ v], v)

(M,fix f(x:τ).e) �−→ (M,λx :τ. {fix f(x:τ).e/f}e)

Static Semantics

�M : Ψ Ψ; ∅ � e : τ
� (M, e) : τ

Dom(M) = Dom(Ψ) ∀l ∈ Dom(M). Ψ; ∅ �M(l) : Ψ(l)

�M : Ψ

Ψ; Γ � x : Γ(x) Ψ; Γ � b : b Ψ;Γ � l : ref Ψ(l)

Ψ; Γ � e : τ ′ → τ Ψ; Γ � e′ : τ ′
Ψ;Γ � e e′ : τ

Ψ; Γ[x : τ ′] � e : τ
Ψ;Γ � λx :τ ′. e : τ ′ → τ x �∈ Dom(Γ)

Ψ; Γ[f : τ ′ → τ ][x : τ ′] � e : τ
Ψ;Γ � fix f(x:τ ′).e : τ ′ → τ f, x �∈ Dom(Γ), f �= x Ψ; Γ � e : ref τ

Ψ; Γ �! e : τ

Ψ;Γ � e : ref τ Ψ;Γ � e′ : τ
Ψ;Γ � e := e′ : τ

Ψ;Γ � e : τ
Ψ;Γ � ref e : ref τ

Fig. 16. Lambda calculus with state.

The second difficulty is that the store provides a new medium for interagent
communication. For example, the client could assign to a shared reference that the
host then dereferences. Suppose that l is a shared reference and that the program
evaluates the client program state (M, l := ��v��t

h). If we interpret this program
to mean that M(l) is now ��v��t

h, then, from the host’s perspective, the store now
contains a client term. If we mean M(l) is now ����v��t

h��τh
c , then the store now

contains a nonvalue. The dual case is also a potential problem: if the host assigns
v of type τh to l and then the client dereferences l, the result must be a client
expression that preserves the type abstraction.
In general, when a reference is assigned, we do not know which agents will deref-

erence the value. Despite this lack of knowledge, the semantics must create the
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correct embeddings to allow a syntactic account of type abstraction. Fortunately,
because all expressions are colored, we do know which agent last assigned to a
reference.
The third difficulty is that the host should not provide the client the same refer-

ence as a ref t and a ref τh. Using a let notation as syntactic sugar for function
application, an expression that violates this requirement could have the form

let rh = ref v
let client = ��λxc :ref t. λyc :ref τh. e��ref τh→ref τh→τ

c

client rh rh

To see the problem, consider what the values of !xc and !yc should be in the
body of the client function, e, after the application client rh rh. An answer that
preserves the types of the expressions is !xc = ��v��t

h and !yc = ��v��τh

h respectively,
but this answer requires that the dynamic semantics depends on the types of xc

and yc. This dependence is undesirable in the substitution-based semantics we use.
This approach is even less sensible if we consider a code fragment within e such as:

let = yc := (v′ : τh)
!xc

Because the agent knows τh, it can construct a value v′ of this type and assign
it to the shared reference. The ensuing dereference cannot preserve the type of !xc

unless it is something like ��v′��t
h, but v

′ is not a host-provided term.
Even if we could somehow resolve the subject-reduction issues exemplified above,

the resulting system can still break type abstraction. The example we give below is
well-known in the context of the ML programming language; the same device works
in that setting [Pierce and Sangiorgi 1999]. If the client term e can determine that
values of types ref t and ref τh are the same value, then it can correctly conclude
that t = τh. The following client fragment makes such a determination using
aliasing information. We assume only that the client can distinguish two values of
type τh, call them v1 and v2.

let = yc := v1
let abs1 =!xc

let = yc := v2
let = xc := abs1
if !yc == v1
then“aha, t = τh”

Given these problems, the challenge is to prohibit an agent from viewing the
contents of the same reference at two different levels of abstraction. In so doing,
we should not otherwise restrict the language’s expressiveness.

4.3 The Revised Calculus

Before presenting the formal calculus, we summarize how we solve the problems
just outlined.
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The definition of host-free is straightforward: an expression e′ is reachable from
(M, e) if e′ is a subterm of e or l is a subterm of e and e′ is reachable from
(M,M(l)).4 (M, e) is host-free if all terms reachable from (M, e) are client terms.
To correctly handle interagent communication through the store, we make the se-

mantics of the dereference operator depend on the color of the expression currently
stored in the reference. For example, ifM(l) = vc, then (M, !lh) �−→ (M, ��vc��τ

c ) be-
cause lh and vc are different colors. (To know what type τ to put on the embedding,
we annotate labels with types—see below.) Conversely, (M, !lc) �−→ (M, vc). This
technique requires only that every expression (even an embedding) has one color
and that we can determine this color at run time. Intuitively, a value is embedded
precisely when it is received by a different agent.
Alternatively, we could have made all dereference operations return embeddings.

Allowing i-embeddings in i code is perfectly reasonable—in fact, our multiagent
calculus does not prevent it. We choose not to take this approach because we
prefer to introduce embeddings precisely when interagent communication occurs.
Although our theorems do not rely on the fact that intraagent evaluation does
not introduce embeddings, we find this fact aesthetically pleasing. (If crossing an
embedding boundary requires computation to change data representation, avoiding
these redundant embeddings reduces computational overhead.)
Finally, we prevent an agent from exporting a reference at different levels of

abstraction. To enforce this restriction syntactically, we associate a type expression
with each label, lτi , and reference creation expression, refτ e. Such expressions
have type ref τ and must be exported at precisely ref τ , or at a fully abstract
type, such as t. So the host must decide when creating a reference at what level
of abstraction it will expose the contents of the reference. To prevent exposing a
reference at a different level of abstraction, the rules for relating the type on an
embedding annotation to the type of the embedded value do not substitute for any
types under the ref constructor.
Of course, the host could allow the client to access a reference of type ref t by

also providing functions get = ��λxh : ref t. !xh��ref t→τh

h and set = ��λxh : τh. λyh :
ref t. yh := xh��t→ref t→t

h . It might appear, then, that the client could use get and
set to encode the aliasing example above that breaks type abstraction. However,
because we assume that the client does not know the function bodies associated with
get and set, the client cannot ever conclude for sure that two references of different
types are aliases. After all, get could perform other computation that happened
to evaluate to the contents of the supposedly aliased value. In other words, the
correctness of the aliasing device relies on the atomic, completely specified behavior
of the assignment and dereference operators.
Having given some intuition for our design decisions, we now present the aug-

mented calculus. We extend the multiagent calculus because the symmetry of this
calculus actually simplifies much of the presentation, but we explain the system in
terms of the familiar host and client example.
First, recall that δi is a finite partial map from type variables to types; it encodes

what type variables agent i knows. (So in the two-agent case, δh maps t to τh and

4Because we are generally concerned with stores of finite size, we interpret this definition induc-
tively; otherwise, a coinductive interpretation is warranted.
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[!1 ] (M, refτ vi) �−→ (M [lτ �→ vi], lτi )
lτ fresh

[!2 ] (M, lτi := vi) �−→ (M [lτ �→ vi], vi)

[!3 ]

color(M(lτ )) = i

(M, !lτi ) �−→ (M,M(lτ )) [!4 ]

color(M(lτ )) = j �= i
(M, !lτi ) �−→ (M, pxM(lτ )qyτ

j )

[!5 ]

(M, ej) �−→ (M, e′j)

(M, pxejqyτ
� ) �−→ (M, pxe′jqy

τ
� ) [!6 ] (M, pxlτj qy

ref τ
� ) �−→ (M, lτi )

Fig. 17. Dynamic semantics with state (partial): (M, e) �−→ (M ′, e′) where color(e) = i.

δc is the empty map.) We extend δi to a function ∆i on types that does not operate
under the ref constructor:

∆i(b) = b

∆i(t) =
{
t t �∈ Dom(δi)
δi(t) t ∈ Dom(δi)

∆i(τ → τ ′) = ∆i(τ) → ∆i(τ ′)
∆i(ref τ) = ref τ

Hence a value of type ref τ is exported either abstractly or as ref τ , but not at
ref τ ′ for τ ′ �= τ .
In the two-agent case, we previously wrote ∆h as {τh/t}τ and ∆c as the identity

function. Using syntax that suggests substitution is now misleading because sub-
stitution does not occur under ref. As before, ∆̄i(τ) =

⊔
n≥0∆

n
i (τ), which in the

one-abstract-type case is just ∆i.
The dynamic semantics is a straightforward combination of the multiagent se-

mantics presented in Figure 10 and the stateful semantics presented in Figure 16.
Specifically, the system is defined by

—Rules [4 ]–[9 ] in Figure 10, suitably extended so that they operate on program
states and do not modify the store.

—The top six rules in Figure 16, which allow evaluation to proceed in subexpres-
sions of applications and state operations.

—Rules for evaluating the state operations and allowing evaluation within an em-
bedding, as shown in Figure 17.

Rules [!3 ] and [!4 ] enforce our decision to introduce embeddings when the heap
facilitates interagent communication. Rule [!6 ] allows an agent to extract a label
from an embedding when the agent has sufficient type information to know that
the embedding contains a label. Note that the type on the label is τ , and the type
on the embedding is ref τ ; this equality is consistent with our definition of ∆i.
The interesting additions to the static semantics appear in Figure 18. To ob-

tain the full semantics, include the rules presented in Figures 12 and 13 with the
modification that all typing judgments include the store type Ψ in the context.
Store contents are typechecked according to their color. Hence a reference may

hold a value of any color. In the two-agent setting, this policy means that if lt

contains a host value, then that value must have type τh under the host’s static
semantics; but if the reference contains an agent value, then the value must have
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[heap1 ]

�M : Ψ Ψ; ∅ � ei : τ

� (M, e) : τ

[heap2 ]

Dom(M) = Dom(Ψ)
∀lτ ∈ Dom(M). (Ψ; ∅ �M(lτ ) : τ ′ ∆̄i(τ) = τ ′ color(M(lτ )) = i)

�M : Ψ

[label ]

lτ ∈ Dom(Ψ)

Ψ; Γ � lτi : ref τ [ref ]

Ψ; Γ � ei : τ ′ ∆̄i(τ) = τ ′

Ψ;Γ � refτ ei : ref τ

[assign]

Ψ; Γ � ei : ref τ Ψ;Γ � e′i : τ ′ ∆̄i(τ) = τ ′

Ψ;Γ � ei := e′i : τ ′ [deref ]

Ψ; Γ � ei : ref τ

Ψ;Γ �!ei : ∆̄i(τ)

Fig. 18. Static semantics with state (partial).

type t under the agent’s static semantics. Note this treatment requires that we can
determine the color of M(lτ ).
We maintain the convenient invariant that Ψ; Γ � vi : τ implies τ = ∆i(τ).

Because references have the type with which they are annotated, this invariant
means the type of the dereference operation must explicitly be ∆̄i(τ) where the
reference has type ref τ . The rules for reference creation and assignment require
the subexpression that evaluates to the reference’s eventual contents to have type
∆̄i(τ). In other words, i must know that τ is a legitimate abstraction of τ ′, which
by our invariant is most concrete.5 For example, in our two-agent system, consider
reft v where v has type τh. This expression is well-formed if it is a host term, but
not if it is an agent term.
The rule for relating the type on an embedding to the type of the embedded

expression prevents a ref τ from being exported at any reference type other than
ref τ even if ref τ is a constituent of another type. This important fact follows
from the definition of the �� relation, which is defined in terms of the ∆i maps. In
the two-agent case, the right antecedent of rule [embed ] is simply ∆h(τ) = τ ′ for
host terms and τ = τ ′ for agent terms.

4.4 Safety Properties

The type soundness and erasure results that we established for the calculi without
state extend naturally to the stateful calculus. Therefore, we only present the
aspects of the theorems and proofs that pertain to the additional rules.
The Canonical Forms Lemma now describes the form of vi based on τ , assuming

that Ψ; ∅ � vi : τ . The addition is that if τ = ref τ ′, then vi has the form lτ
′

i .
For the sake of type soundness, the Substitution Lemma still need describe only

substitution over expressions, as opposed to program states. This simplicity is
because the dynamic semantics substitutes through only expressions. As we will see,
however, the Independence of Evaluation Lemma needs definitions for substitution
through program states and well-formedness of open stores (that is, stores that may
contain values with free variables).

5An equivalent antecedent is � τ .i τ
′; it is equivalent because τ ′ = ∆i(τ

′).
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The Preservation Lemma now expresses that evaluation extends the store con-
sistently. Together with a Store Weakening Lemma, stating that store extensions
cannot change the type of an expression, the induction hypothesis is strong enough.

Lemma 4.1 (Store Weakening). If Ψ′ is an extension of Ψ and Ψ;Γ � e : τ ,
then Ψ′; Γ � e : τ .

Lemma 4.2 (Preservation). If � M : Ψ, Ψ; ∅ � e : τ , and (M, e) �−→ (M ′, e′),
then there exists a Ψ′ such that Ψ′ extends Ψ, �M ′ : Ψ′, and Ψ′; ∅ � e′ : τ .

Note that this strengthening of Preservation is precisely what is needed to extend
the lambda calculus with state; principals add no complications. As for the proof,
the careful use of ∆̄i in the static semantics makes it routine. Recall that the proof
is by induction on the derivation that (M, e) �−→ (M ′, e′). We show only the cases
for the rules in Figure 17. The other cases are either simple restatements of the
analogous cases from the proof without state or trivial inductive arguments using
the Store Weakening Lemma.

Proof.

[!1 ] By assumption, there must be a derivation of the form

Ψ; ∅ � vi : τ ′ ∆̄i(τ) = τ ′

Ψ; ∅ � refτ vi : ref τ .

Letting M ′ = M [lτ �→ vi] and Ψ′ = Ψ[lτ �→ τ ], we have Ψ′ extends Ψ. Because
we know � M : Ψ, to prove � M ′ : Ψ′, it suffices to prove Ψ′; ∅ � vi : τ ′ and
∆̄i(τ) = τ ′. These facts follow from the antecedents of the static derivation and
the Store Weakening Lemma. Our final obligation, Ψ′; ∅ � lτi : ref τ , follows from
the definition of Ψ′ and the static semantics.
[!2 ] By assumption, there must be a derivation of the form

Ψ; ∅ � lτi : ref τ Ψ; ∅ � vi : τ ′ ∆̄i(τ) = τ ′

Ψ; ∅ � lτi := vi : τ .

Letting M ′ = M [lτ �→ vi] and Ψ′ = Ψ we have that M ′ and Ψ′ are extensions
of M and Ψ respectively. We have from the hypothesis of the derivation that
Ψ; ∅ � vi : τ ′, so we have to show only that � M ′ : Ψ. Because we already know
� M : Ψ, this conclusion follows from Ψ; ∅ � vi : τ ′ and ∆̄i(τ) = τ ′.
[!3 ] and [!4 ] By assumption, there must be a derivation of the form

Ψ; ∅ � lτi : ref τ
Ψ; ∅ �!lτi : ∆̄i(τ).

Letting M ′ = M and Ψ′ = Ψ, we need to show only that Ψ; ∅ � vi : ∆̄i(τ).
There are two cases: color(M(lτ)) = i or not. First assume color(M(lτ)) = i.
Then vi = M(lτ ). It follows from the hypotheses needed to prove � M : Ψ that
Ψ; ∅ � vi : τ ′ and ∆̄i(τ) = τ ′ from which the conclusion is immediate. Now assume
M(lτ ) is a different color. Then vi = ��M(lτ)��τ

j . By the argument given for the
other case, we know Ψ; ∅ � M(lτ) : τ ′ and ∆̄j(τ) = τ ′. Hence by [eq ] we conclude
τ ′ �j τ . Hence [embed ] applies, and its conclusion is the desired result.
[!5 ] By induction.
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[!6 ] By assumption, there must be a derivation of the form

lτ ∈ Dom(Ψ)
Ψ; ∅ � lτj : ref τ � ref τ ��i ref τ

Ψ; ∅ � ��lτj ��ref τ
� : ∆̄i(ref τ) .

Because ∆̄i(ref τ) = ref τ and from hypothesis we have lτ ∈ Dom(Ψ), we can
derive Ψ; ∅ � lτi : ref τ using [label ]. Letting M ′ =M and Ψ′ = Ψ, we are done.

The statement of the Progress Lemma remains unchanged other than to use
program states instead of expressions. The additions to the proof are entirely
straightforward. In the case of (M, ��v̂j��τ

� ), there is one additional case because τ
could have the form ref τ ′. In this case, Canonical Forms guarantees that v̂j has
the form lτ

′
j , so we can take a step using [!6 ].

Defining erasure from this stateful language with embeddings to the calculus in
Figure 16 such that erasure commutes with evaluation is straightforward, so we omit
the details. Note that the target of this transformation does not include explicit
types on labels; these explicit types have no real dynamic effect.
Extending the Value Abstraction Lemma (to which the Independence of Evalu-

ation Theorem is a corollary) to our stateful calculus is straightforward except for
some technical distractions. First, we must use the notion of reachable expressions,
which includes expressions in the store, instead of the simpler notion of subterms.
Second, the Value Abstraction Lemma uses substitution (such as {v̂j/xj}ei) to es-
tablish a correspondence between two evaluations. To use this technique, we extend
the definition of substitution to work on stores in a pointwise fashion. Otherwise
the Lemma would not apply if an agent stored ��v̂j��τ

j� in the store and, hence,
would not be strong enough to prove the Independence of Evaluation Theorem.
Substituting through a store requires that we define a well-formed open store with
respect to a context Γ, so that Γ � M : Ψ makes sense. The correct definition is
the obvious generalization: Γ � M : Ψ if for all lτ ∈ Dom(M), Ψ; Γ � M(lτ) : τ ′

and ∆̄i(τ) = τ ′, where M(lτ ) is a possibly-open i-value.
Extending the Host-Provided Values Theorem to our stateful calculus is also

straightforward. Essentially, the preservation property needs to be inductively de-
fined to include all terms that are reachable from the current program state without
considering the trusted ho term. That is, ho can maintain private state without
invalidating the theorem.

5. POLYMORPHISM AND RECURSIVE TYPES

In this section, we explore the extension of the multiagent language of Section 3 to
include recursive types and polymorphism. Both of these mechanisms define type
variables: the type µα.τ(α) establishes the equation α = τ(α). Instantiation of a
polymorphic value, e :∀α.τ , at type τ ′ establishes a context in which α = τ ′ and e
has type τ (that is, {τ ′/α}τ).
Because the δi maps of the multiagent calculus already provide a way of express-

ing equalities of the form α = τ , we may try to encode recursive or polymorphic
types using them. The current multiagent language is not sufficient to encode either
of them. The following sections discuss the consequences of adding the necessary
mechanisms.
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(types) τ ::= . . . | α | µα.τ
(i-terms) ei ::= . . . | rollµα.τ ei | unroll ei

(i-primvals) v̂i ::= . . . | rollµα.τ vi

[µ1 ]

ei �−→ e′i
rollµα.τ ei �−→ rollµα.τ e′i [µ2 ]

ei �−→ e′i
unroll ei �−→ unroll e′i

[µ3 ] unroll rollµα.τ vi �−→ vi

[µ4 ] pxrollµα.τ v̂jqy
µα.τ ′
j� �−→ rollµα.τ ′ pxv̂jqy

{µα.τ ′/α}τ ′
j� (µα.τ ′ = ∆̄i(µα.τ ′))

[roll ]

Γ � ei : {µα.τ/α}τ
Γ � rollµα.τ ei : µα.τ [unroll ]

Γ � ei : µα.τ

Γ � unroll ei : {µα.τ/α}τ

Fig. 19. Recursive types as an orthogonal extension.

5.1 Recursive Types

There are two general approaches for adding recursive types to the multiagent
language. The first way is straightforward, and it interacts well with the previous
results about the language. The idea is to treat µ-bound type variables as separate
entities from the type variables that are used for abstraction (they could be drawn
from the same syntactic class, but separating them makes for cleaner presentation).
Figure 19 contains the necessary additions to the language.
The new types include recursive type variables, ranged over by α, and the re-

cursive types themselves, µα.τ . Terms roll and unroll mediate the isomorphism
between µα.τ and {µα.τ/α}τ . If vi is an i-value, then rollµα.τ vi is an i-primval.
The typing judgments for the new forms are standard.6 The operational rules [µ1 ],
[µ2 ], and [µ3 ] are also standard—they allow progress under a roll or unroll and
establish that composing unroll with roll is the identity.
The new rule, [µ4 ], propagates the embedding on a roll expression that is ex-

ported at a concrete type. It is similar to rule [9 ] used for embedded functions
in that the outer agent may have different information about the nature of the
recursive type. For instance, the outer agent may know that the value is of type
µα.1+ t×α, the type of t-lists, whereas the inner agent, for whom δj(t) = int views
the value as an int-list.7 The side condition on [µ4 ] ensures that the dynamic se-
mantics are deterministic—rule [7 ] applies to a disjoint collection of terms.
The only remaining change needed to establish the soundness of this system is

to extend the definition of ∆i in terms of δi.

∆i(µα.τ) = µα.∆i(τ)
∆i(α) = α

6As in the case for λ-abstractions, types annotating roll terms are required to be the most concrete
possible, but we do not need to apply ∆i because the concreteness of the type in the antecedent
implies the concreteness of the type on the roll.
7We did not formally add product and sum types to our framework, but doing so is straightforward.

For example, pxinleftτ0+τ1ejqy
τ2+τ3

� �−→ inleftτ2+τ3pxejqy
τ2

� when τ2 and τ3 are most concrete.
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Because the µ-bound type variables are syntactically distinct from the abstraction
type variables, it makes no sense for α to be in the domain of δi. To avoid problems
with capture, we prohibit free occurrences of α in the range of δi.
Having made these additions to the language, it is straightforward to establish

type soundness. To establish Preservation for the case of [µ4 ], we need a type-
relations lemma that is analogous to the Arrow Lemma used in the case of [9 ]:

Lemma 5.1 (µ Type Relations). If � µα.τ �� µα.τ
′, then � {µα.τ/α}τ ��

{µα.τ ′/α}τ ′

The most interesting case of the proof of preservation is when the last rule of the
dynamic derivation is [µ4 ]:

Proof. By assumption, we have a derivation of the form

∅ � ej : {µα.τ/α}τ
∅ � rollµα.τ ej : µα.τ � µα.τ �j�i µα.τ

′

∅ � ��rollµα.τ ej��µα.τ ′
j� : ∆̄i(µα.τ ′) .

Using the right antecedent and Lemma 5.1, we conclude that � {µα.τ/α}τ �j�i

{µα.τ ′/α}τ ′. So using the top antecedent, we can derive

∅ � ej : {µα.τ/α}τ � {µα.τ/α}τ �j�i {µα.τ ′/α}τ ′

∅ � ��ej��{µα.τ ′/α}τ ′

j� : ∆̄i({µα.τ ′/α}τ ′) .

By assumption, we have the side condition ∆̄i(µα.τ ′) = µα.τ ′. From this condition,
it is easy to show that ∆̄i({µα.τ ′/α}τ ′) = {∆̄i(µα.τ ′)/α}∆̄i(τ ′) = {µα.τ ′/α}τ ′. So
we can derive

∅ � ��ej��{µα.τ ′/α}τ ′

j� : {µα.τ ′/α}τ ′

∅ � rollµα.τ ′ ��ej��{µα.τ ′/α}τ ′

j� : µα.τ ′.

The Progress Lemma is routine; it uses an extension of the Canonical Forms Lemma
that asserts that i-values of type µα.τ have the form rollµα.τ vi.
This way of dealing with recursive types has the advantage of simplicity: because

the presence of recursive types is orthogonal to the kind of type abstraction allowed
by embeddings, all of the proofs of safety properties in Section 3 require minimal
changes to account for the new constructs.
Another approach to incorporating recursive types into this system requires us

to change the notion of compatibility of the ∆i maps to account for cycles. Given
a recursive type µα.τ , observe that the rolled values behave essentially abstractly.
There is only one destructor for the term rollµα.τ vi, namely, unroll. This obser-
vation suggests that we can encode recursive types like so: Let r and u be fresh
type variables. Create a special agent, r, whose sole function is to provide the roll
and unroll operations for a recursive type. From the type perspective, r knows
that r = {u/α}τ , i.e., δr(r) = {u/α}τ , and δr is otherwise undefined. For any client
agent, i, who wishes to use values of type µα.τ , let δi(u) = r. The terms encoding
rollµα.τ x and unroll x are
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rollµα.τ ≡ ��λxr :{u/α}τ. xr��{u/α}τ→r
r

unroll ≡ ��λxr :{u/α}τ. xr��r→{u/α}τ
r

The type variable r acts like the type µα.τ . As expected, the agent r provides
identity functions that outwardly appear to clients as having the types appropriate
to roll and unroll: {r/α}τ → r and r → {r/α}τ , respectively.
Although this approach is initially appealing, it requires substantial changes to

the language. The essential difficulty is that there may not be a most concrete form
for a given type variable, due to the possibly cyclic nature of the type information.
Two reasonable alternatives are (1) move to an operational semantics in which

types are refined nondeterministically, or (2) require that each agent’s type infor-
mation be acyclic, even if there are cycles globally. Neither of these options is
satisfactory. The first makes reasoning about the behavior of programs unduly
complicated. The second choice means that giving more type information to an
agent can destroy a system’s compatibility. Both suffer from the problem that
erasure (to a typed language) is harder to establish.
There may be merit in further considering this approach, particularly if the agents

are module-level constructs and if the concern is mutually recursive data types that
cross module boundaries. For a core language, however, the simplicity of the first
approach and its compatibility with our previous proofs make it more valuable.

5.2 Polymorphism

The primary difference between polymorphism and the type abstraction already
present in the multiagent calculus is one of scope: the abstract types present in the
multiagent calculus are global and static, whereas a polymorphic instantiation is
local to part of the program. That is, the application (Λα. e) τ introduces the type
equality α = τ within the scope of the expression e. A second difference between
type abstraction and polymorphism is that, in the latter, the same type variable
may be instantiated at different types, for example,

λx :∀α.α → α. (. . . (x [int]) . . . (x [bool]) . . .).

It appears that α = int holds for part of the term whereas α = bool holds for a
different part of the term.
This second difference is superficial, however. Because the α in x’s type is bound

in ∀α.α → α, we are free to rename it for each occurrence of x in the body. We
can think of the term (x [int]) as establishing the equation α = int whereas in the
second term we choose the type of x to be (the equivalent type) ∀β.β → β, and
thus (x [bool]) defines β = bool. In this way, each type application can establish
the concrete form of a distinct type variable.
The true distinction, then, between our type-abstraction mechanism and poly-

morphism is local scoping. As with our first approach to recursive types, we could
include both features separately. Instead, we investigate how to extend our frame-
work to unify type abstraction and polymorphism via a single mechanism. Bridging
the gap between the two features amounts to allowing the definitions of the δi maps
to change during evaluation. We use the notation {∆} to mean a set of type maps
{∆1, . . . ,∆n}; it captures the type knowledge each agent has at a particular point
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(types) τ ::= . . . | ∀α.τ
(i-terms) ei ::= . . . | Λα. ei | ei [τ ]

(i-primvals) v̂i ::= . . . | Λα. ei

Dom{∆} =
[
i

Dom(δi)

[∀1 ] 〈{∆}, (Λα. ei) [τ ]〉 �−→ 〈{∆} �i {α = τ}, {τ/α}iei〉

[∀2 ] 〈{∆}, pxΛα. ejqy∀α.τ
� 〉 �−→ 〈{∆},Λα. pxejqyτ

� 〉

[∀intro]

Θ, α; {∆}; Γ � ei : τ

Θ; {∆}; Γ � Λα. ei : ∀α.τ (α �∈ Θ ∪ Dom{∆})

[∀elim]

Θ; {∆}; Γ � ei : ∀α.τ ∆i(τ ′) = τ ′

Θ; {∆}; Γ � ei [τ ′] : {τ ′/α}τ (α �∈ Dom{∆})

Fig. 20. Polymorphism.

in the program evaluation. We can then integrate traditional polymorphic terms
by extending our notion of evaluation from ei �−→ e′i to 〈{∆}, ei〉 �−→ 〈{∆′}, e′i〉.
This approach is similar to the allocation-based, explicit type-passing semantics for
polymorphism found in the dissertation of Morrisett [1995].
Figure 20 contains the necessary adjustments to the language. Note that we

have only one form of type variable. In keeping with convention with respect to
polymorphism, we allow α and β to range over type variables in addition to t, s,
and u. Types are extended with the form ∀α.τ . We add terms of the form Λα. ei,
in which α is abstract in ei.
Instantiation of a type variable is represented by ei [τ ]. Operationally (see rule

[∀1 ]), this application corresponds to extending δi to include α = τ . We use the
notation ∆i � {α = τ} to mean the mapping from types to types obtained from
δi[α �→ τ ]. The notation {∆} �i {α = τ} represents

{∆1, . . . ,∆i−1,∆i � {α = τ},∆i+1, . . . ,∆n}.
This extension is valid only if it preserves the compatibility of the ∆ maps. Let-
ting Dom{∆} mean

⋃
i Dom(δi), it is easy to show that if {∆} is compatible and

α �∈ Dom{∆}, then {∆} �i {α = τ} is compatible. As a notational convenience,
whenever we use {∆} �i {α = τ}, we implicitly assume that α �∈ Dom{∆}.
We need to specify the behavior of ∆i on types of the form ∀α.τ . Assuming

α �∈ Dom(δi), which is always possible via alpha-conversion of ∀α.τ , we have
∆i(∀α.τ) = ∀α.∆i(τ).

The original multiagent calculus maintains the invariant that any types appearing
as part of the syntax of an i-term are most concrete from agent i’s perspective. This
invariant is enforced in the typing rules; for example, the [abs ] rule requires that
∆i(τ ′) = τ ′. Unfortunately, this invariant is harder to maintain now that an agent
may “learn” information about a type variable at runtime. To do so, we introduce
a special substitution operator, {τ/α}i, to perform the substitution of τ for α only
in terms colored i, including i-subterms of any j-colored subexpressions. We can
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extend the operator to contexts in a pointwise manner because variables in the
context have a color.
We can now understand the operational behavior of the new constructs. Poly-

morphic expressions are values. Rule [∀1 ] performs type instantiation. Agent i’s
type map is extended with the new binding for α, and we substitute τ for α in
the i-colored terms of the body. Most importantly, no other agents knows α. That
way, if the body of the polymorphic expression is a different color, then we will be
able to use our techniques to argue that (under sufficient conditions) it evaluates
independently of certain values it is passed. Rule [∀2 ] describes the transition step
for an embedded polymorphic value being exported as such. In this case, the type
maps do not change; the outer embedding is simply moved inside the Λ.
The static semantics are derived from the regular polymorphic lambda calculus

with a few twists to account for our different style of tracking type information.
First, because {∆} changes during the course of evaluation, we must parameterize
our typing judgments by the current definition of {∆}. We also need to track
the lexical scoping of Λ-bound type variables. We do so by adding a set, Θ, of
type variables currently in scope. The new form of typing judgments is therefore
Θ; {∆}; Γ � ei : τ .
With these additions, the static rules of the original multiagent calculus carry

over to the new setting, with the understanding that occurrences of ∆i in those
judgments now refer to the ∆i found in the {∆} parameter to the rule. (Θ is unused
by the new version of the old rules.) The typing rules for the new constructs are
[∀intro] and [∀elim ]. The former lets us conclude that a polymorphic term has type
∀α.τ if, when we add α to the variables in scope, the body has type τ . The side
condition ensures that α is distinct from all other variables in scope and distinct
from those variables that are defined in any δ map. (We can always satisfy this
condition by suitable alpha conversion.) Note that this condition means ∆i(α) = α
for any agent i, and hence τ may mention α.
The rule [∀elim ] shows how to type polymorphic instantiation. Because agent

i is performing the instantiation, we require that the instantiation type is most
concrete from the perspective of agent i. The last antecedent requires that such an
update preserves compatibility.
One might expect that the static scoping of type variables regulated by Θ and

the dynamic information encapsulated in {∆} are closely related. The following
lemma, which we need to prove preservation, establishes the relation.

Lemma 5.2. Suppose Θ, α; {∆}; Γ � ej : τ ′ and α �∈ Dom{∆}. Let {∆′} =
{∆} �i {α = τ}. Then

(i) If i = j then Θ; {∆′}; {τ/α}iΓ � {τ/α}iej : {τ/α}τ ′
(ii) If i �= j then Θ; {∆′}; {τ/α}iΓ � {τ/α}iej : τ ′.

Proof Sketch. By simultaneous induction of parts (i) and (ii) on the derivation
that Θ, α; {∆}; Γ � ej : τ ′.

As usual, when we add a new type constructor to the language, we need a Type
Relations Lemma to relate subcomponents of related types. In this case, we have
the following:
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Lemma 5.3 (∀ Type Relations). If {∆} � ∀α.τ �� ∀α.τ ′, then {∆} � τ ��

τ ′.

We alter the statement of preservation to account for the difference in program
configurations. As usual for an allocation-style semantics, we must show that the
program does not lose type information during the course of evaluation. Thus, we
make the following definition:

Definition 5.4. Let {∆} ≤ {∆′} mean {∆′} = {∆} �i {α = τ} for some agent
i, type τ , and type variable α such that α �∈ Dom{∆}. Let ≤∗ be the reflexive,
transitive closure of ≤. We say that {∆′} refines {∆} whenever {∆} ≤∗ {∆′}.

Lemma 5.5 (Preservation). If ∅; {∆}; ∅ � ei : τ and 〈{∆}, ei〉 �−→ 〈{∆′}, e′i〉,
then {∆′}; ∅ � e′i : τ . Furthermore, {∆′} is compatible and refines {∆}.

Proof. The cases for terms not involving the new constructs are similar to those
cases presented earlier, so we omit them. The new cases are:

[∀1 ] By assumption, there is a derivation of the form

α; {∆}; ∅ � ei : τ ′′

∅; {∆}; ∅ � Λα. ei : ∀α.τ ′′ ∆i(τ) = τ

∅; {∆}; ∅ � (Λα. ei) [τ ] : {τ/α}τ ′′ (α �∈ Dom{∆}).

Let {∆′} = {∆}�i{α = τ} and ∆′
i = ∆i�i{α = τ}. We can apply Lemma 5.2 to the

antecedent to obtain ∅; {∆′}; ∅ � {τ/α}iei : {τ/α}τ ′′. Clearly {∆′} is compatible
and refines {∆} .
[∀2 ] By assumption, there is a derivation of the form

α; {∆}; ∅ � ej : τ1

∅; {∆}; ∅ � Λα. ej : ∀α.τ1 {∆} � ∀α.τ1 �j�i ∀α.τ
∅; {∆}; ∅ � ��Λα. ej��∀α.τ

j� : ∆̄i(∀α.τ) .

The side conditions ensure that α �∈ Dom{∆}, so we are able to conclude that
∆̄i(∀α.τ) = ∀α.∆̄i(τ). We need to construct a derivation for

α; {∆}; ∅ � ej : τ1 {∆} � τ1 �j�i τ

α; {∆}; ∅ � ��ej��τ
j� : ∆̄i(τ)

∅; {∆}; ∅ � Λα. ��ej��τ
j� : ∀α.∆̄i(τ) .

We have the first antecedent from the original typing derivation. The Type Re-
lations Lemma (5.3) says that {∆} � ∀α.τ1 �j�i ∀α.τ implies {∆} � τ1 �j�i τ .
The side condition on [∀intro] has already been observed above. Because {∆} is
compatible and refines itself, we are done.

Because the {∆} context changes during evaluation, and the definition of when
��v̂j��t

j� is an i-value depends on whether ∆i(t) = t, the notion of value is also
dynamic. We write {∆} � ei : Value when either ei is an i-primval or ei = ��v̂j��t

�

and t �∈ Dom{∆}.
Progress, proved as usual by induction on the structure of ei, then becomes:

Lemma 5.6 (Progress). If ∅; {∆}; ∅ � ei : τ then either {∆} � ei : Value or
there exists an e′i and {∆′} such that 〈{∆}, ei〉 �−→ 〈{∆′}, e′i〉
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τ ::= α | τ → τ | ∀α.τ
e ::= x | λx :τ. e | (e e) | Λα. e | (e [τ ])

Γ � x : Γ(x)

Γ[x :τ ] � e : τ ′
Γ � λx :τ. e : τ → τ ′ (x �∈ Dom(Γ))

Γ � e : τ ′ → τ Γ � e′ : τ ′
Γ � (e e′) : τ

Γ � e : τ
Γ � Λα. e : ∀α.τ (α �∈ FTV (Γ)) Γ � e : ∀α.τ ′

Γ � (e [τ ]) : {τ/α}τ ′

Fig. 21. Polymorphic lambda calculus.

5.3 Translation from the Polymorphic Lambda Calculus

The net effect of our design decisions is that we can faithfully embed the poly-
morphic lambda calculus (shown in Figure 21) into this new language by simply
decorating the term with a single color. In this case, the operational semantics de-
generates to those of the regular polymorphic lambda calculus; in particular, type
application still substitutes a type for a type variable. Using such a naive transla-
tion, our system will provide no more opportunity to use syntactic proofs of type
abstraction than before.
Instead, we show that a smarter translation, which essentially colors the code in

such a way as to make agents with different type information explicit, allows us to
recover some type-abstraction proofs in a syntactic manner.
We formulate the translation as a type-directed transformation C[[Γ � e : τ ]]. The

translation takes two additional parameters: i, an agent indicating the desired color
of the result term, and γ, a map from source variables to target variables (including
color information). We maintain the invariant that, when compiling the judgment
C[[Γ � e : τ ]]iγ, we have Dom(γ) = Dom(Γ). The result of the translation is an
i-term.
The translation is given in Figure 22. Most of the rules are straightforward—they

recursively translate the subterms of the expression and combine the results into
the corresponding construct. The two interesting cases are [Tvar ] and [Ttypeabs ].
The rule for translating the variable x simply looks up x in the map γ. If the

resulting variable has the same color as the desired color of the term, no further
action is needed. Otherwise, the translation produces an embedding of the variable
to yield a term of the appropriate color. Because the type Γ(x) may mention type
variables that are currently in scope, the embedding may be abstract.
The idea for translating a polymorphic term is to “spawn” a new agent with

which to color the body of the type abstraction. By recursively translating the
body to a term of this new color, [Ttypeabs ] explicitly marks the boundaries where
type information changes.
As examples, we have the following translations:

C[[∅ � Λα. λx :α. x : ∀α.α → α]]i∅ = Λα. ��λxj :α. xj��α→α
j

C[[∅ � λx :b. Λα. x : b → ∀α.b]]i∅ = λxi :b. Λα. ����xi��b
i ��b

j
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[Tvar ] C[[Γ � x : Γ(x)]]iγ =

(
γ(x) if color(γ(x)) = i

pxγ(x)qy
Γ(x)
j if color(γ(x)) = j �= i

[Tabs]

C[[Γ[x :τ ] � e : τ ′]]i(γ[x �→ xi]) = ei

C[[Γ � λx :τ. e : τ → τ ′]]iγ = λxi :τ. ei

[Tapp]

C[[Γ � e : τ ′ → τ ]]iγ = ei C[[Γ � e′ : τ ′]]iγ = e′i
C[[Γ � (e e′) : τ ]]iγ = (ei e

′
i)

[Ttypeabs]

C[[Γ � e : τ ]]jγ = ej

C[[Γ � Λα. e : ∀α.τ ]]iγ = Λα. pxejqy
τ
j

(j fresh)

[Ttypeapp]

C[[Γ � e : ∀α.τ ]]iγ = ei

C[[Γ � (e [τ ′]) : {τ ′/α}τ ]]iγ = (ei [τ ′])

Fig. 22. Translation of the polymorphic lambda calculus.

The translation is type-preserving, as formalized in the following lemma, where
γΓ is the pointwise application of γ to the variables in Γ.

Lemma 5.7. Suppose Γ � e : τ in the polymorphic lambda calculus and γ is a
map from source variables to target variables where Dom(γ) = Dom(Γ). Suppose
further that C[[Γ � e : τ ]]iγ = ei. Let {∆} = {∆k | k ∈ Agents(ei), δk = ∅}, and
let Θ = FTV (Γ), the free type variables appearing in Γ. Then Θ; {∆}; γΓ � ei : τ .

Proof Sketch. By induction on the derivation that Γ � e : τ in the source
language. The base case is handled by the definition of γ. It uses the fact that
for any {∆} and nonempty �, {∆} � τ �� τ . The same idea is used to show that
the embedding introduced in the translation of a polymorphic term is well-typed.
To show that a translated type application is well-formed, we need to show that
α �∈ Dom{∆} and that ∆i(τ ′) = τ ′, but these follow from the fact that each δk is
the empty map. The remainder of the cases follow by straightforward induction.

We can erase this extended multiagent calculus (excluding fix) to the polymor-
phic lambda calculus by extending our definition of erasure to include the new
terms. Also, the definition of Φ (the composite type information) depends on the
current {∆}, so we treat {∆}as an input to erase.

erase({∆},Λα. ��ej��τ
j�) = Λα. erase({∆}, ej)

erase({∆}, ei [τ ]) = erase({∆}, ei) [Φ̄(τ)]

Using the same techniques as before, we prove the following lemma:

Lemma 5.8 (Erasure). If ei is well-typed and 〈{∆}, ei〉 �−→∗ 〈{∆′}, e′i〉, then
erase({∆}, ei) �−→∗ erase({∆′}, e′i).
This lemma lets us establish a correspondence between the polymorphic lambda

calculus and its translation into our multiagent setting.

Lemma 5.9 (Translation). If ∅ � e : τ in the polymorphic lambda calculus,
then erase(C[[∅ � e : τ ]]i∅) = e.
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Proof Sketch. By induction on the derivation that e is well-typed. The in-
variant must be strengthened to include open terms.

Putting the previous two lemmas together yields the following theorem, which
establishes the correctness of our translation:

Theorem 5.10 (Correctness of Translation). Suppose ∅ � e : τ is a term
of the polymorphic lambda calculus, e �−→∗ v, and C[[∅ � e : τ ]]i∅ = ei. Further-
more, let {∆} = {∆k | k ∈ Agents(ei), δk = ∅}. Then there exists a vi such that
〈{∆}, ei〉 �−→∗ 〈{∆′}, vi〉 and erase({∆′}, vi) = v.

Finally, if we return to the file-handle example from the introduction, letting
τc = string → fh, we see that

C[[(Λfh. λhost :τc. client code) int host code]]h∅
=

(Λfh. ��λhostc :τc. client codec��τc→τ
c ) int host codeh.

If we assume that host codeh is a value, the Canonical Forms lemma tells us that
it is a function, λxh : string. host. Let τh be string → int, the host’s view of τc.
Let {∆} be {δh = ∅, δc = ∅} and {∆′} be {δh = [fh �→ int], δc = ∅}. Then the first
several steps of the operational semantics are

〈{∆}, (Λfh. ��λhostc :τc. client codec��τc→τ
c ) int host codeh〉

�−→ 〈{∆′}, ��λhostc :τc. client codec��τh→τ
c host codeh〉

�−→ 〈{∆′}, (λhosth :τh. ��{��hosth��τc

h /hostc}client codec��τ
c ) host codeh〉

�−→ 〈{∆′}, ��{��host codeh��τc

h /hostc}client codec��τ
c 〉.

The evaluation from this point on is via rule [3 ]. We can use the invariant ϕ pre-
sented for the Host-Provided Preservation Lemma: if we assume that client code
is host-free, it is easy to establish that ϕ(client code). By rule [H ], we have
ϕ(��host code��τh

h ). Thus, by Host-Provided Substitution we are able to conclude
ϕ({��host codeh��τa

h /hostc}client codec). We conclude that any closed value of type
fh appearing in the client code during evaluation was obtained through the host
interface. (Technically, we should require that the bodies of the client and host do
not themselves contain polymorphic terms, because the proof in Section 3 does not
account for the new extensions to the language. We expect that this requirement
is actually not necessary.)

6. RELATED WORK

There has been much work on representation independence and parametric poly-
morphism, as pioneered by Strachey [1967] and Reynolds [1983], and more recently
by Ma and Reynolds [1992]. Such notions have been incorporated into programming
languages such as SML [Milner et al. 1997] and Haskell [Peyton Jones et al. 1999]
and studied extensively in Girard’s System F [1989]. The connection between type
abstraction and existential types has been studied by Mitchell and Plotkin [1988].
Model-theoretic approaches to studying polymorphism have also enjoyed a rich

history, although incorporating notions of recursion have proven to be difficult: see
MacQueen et al. [1986], the work of Coquand et al. [1987; 1989], and Abadi and
Plotkin [1990]. Pitts [1996] has studied relational properties on recursively defined
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domains and investigated parametricity in extensions of the polymorphic lambda
calculus that include fixpoint recursion [Pitts 2000].
Wright and Felleisen [1994] popularized the use of syntactic techniques for proving

type safety. We can view our work as extending theirs to prove stronger properties
by adding innocuous syntax to a language. Given the right syntactic additions,
the resulting proofs follow precisely the subject-reduction form that Wright and
Felleisen advocate.
Abadi et al. [1993] have taken a syntactic approach to parametricity by formaliz-

ing the logical relations arguments used in such proofs. More recently, Crary [1999]
has proposed the use of singleton types as a means of proving parametricity results
without resorting to the construction of models.
None of the above work explicitly involves the notion of principal. Our syntactic

separation of agents is similar to Nielson and Nielson’s two-level lambda calculus
[Nielson and Nielson 1992]. There they are concerned with binding-time analysis,
so the two principals’ code is inherently not mixed during evaluation. A notion
of principal also arises in the study of language-based security, where privileged
agents may not leak information to unprivileged ones. See, for example, Heinze
and Riecke’s work on the SLam calculus [1998], Volpano and Smith’s work on type-
based security [1997], and the language JFlow [Myers 1999].
Pierce and Sangiorgi [1999] prove parametricity results for a polymorphic pi cal-

culus in an operational setting. Rather than add principals to the term language,
they use external substitutions to reason about bisimilarity of polymorphic pro-
cesses in which there are both abstract and concrete views of data values. Sewell
and Vitek [1999] have also used the idea of coloring in a variant of the pi calculus
to prove properties about causal relationships in a security setting.
Perhaps the closest work to ours is Leroy and Rouaix’s investigation into the

safety properties of typed applets [Leroy and Rouaix 1998]. They use a lambda
calculus augmented with state in order to prove theorems similar to our two-agent
theorems. They too distinguish between execution-environment code and applet
code, similar to our use of principals, but they consider only the two-agent case
and take a less syntactic approach.

7. SUMMARY AND CONCLUSIONS

Abstract types are an invaluable tool to software designers. They aid programmers
in reasoning about interfaces between different pieces of code.
Despite this utility, it is very hard to prove that the informal reasoning about

abstract types, such as, “all file handles are obtained from the open system call,” is
correct. One approach is to encode different principals in the well-understood poly-
morphic lambda calculus and appeal to results on parametricity. This approach
is not always feasible, such as when the language includes state, threads, recur-
sive types, or other expressive features. The syntactic proofs of type-abstraction
properties presented in this paper are tedious, but conceptually straightforward. In
contrast, building a model is conceptually difficult but can yield elegant proofs.
We have presented a syntactic approach to proving some type-abstraction prop-

erties. The main idea is “color” the different principals in the language, each of
which has access to different type information. We show how we can track these
principals throughout evaluation. This extra syntactic structure gives us a frame-
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work in which we can prove properties about where certain values came from (the
file-handle example), as well as how abstraction is preserved by evaluation. The
arguments take the form of subject-reduction proofs, which show that a desired
property is invariant with respect to evaluation, so the hope is that they will scale
more easily than model-theoretic techniques. As evidence supporting this hope, we
have shown how to extend these results to include mutable references, recursive
types, and parametric polymorphism.
There are a number of open questions about our approach. Parametric polymor-

phism offers the strong notion of representation independence, which can be used
to reason about the equivalence of abstract data types. As long as two implemen-
tations are equivalent in an appropriate sense, it does not matter which implemen-
tation a program uses—they produce equivalent results. We have avoided building
such logical relations, but it remains to be seen exactly what formal connections
can be drawn between those results and the ones presented here.
We also have not investigated the connections between the multiagent calculus

and process-based calculi or object-oriented calculi where the notion of principal
(that is, threads or objects) arises naturally. Our method of tracking principals
during evaluation should adapt to these domains, but we may also learn more
about the multiagent calculus by viewing each agent as a thread and the embedding
annotations as points at which synchronization occurs during execution. There is
also a similarity between our use (in Section 5.2) of global alpha conversion and
the restriction operator, ν, of the pi calculus to generate a “fresh” type variable at
runtime.
Another addition to our approach would be an integration of traditional subtyp-

ing. That is, we have not considered how we would need to adapt the framework
to permit a primitive subtyping relation between (multiple) base types and its
standard extension to other type constructors. Our multiagent calculus does allow
a principal to reveal partial information about a type. (For example, by letting
t1 = t2 → t3, t2 = int, and t3 = int, an agent can export a function of type
int → int at four different types.) Perhaps there is some connection between this
sort of partial information and the partial information of knowing that τ is some
subtype of τ ′, but it seems our approach is closer to polymorphism than subtyping.
The kinds of properties we have proven in the multiagent language are limited by

the granularity of types. The system does not let us prove that an agent does not
misuse file handles, for instance by duplicating them or confusing two different file
handles obtained from separate calls to open. The reason is that we track embed-
dings at the granularity of their types—the theorems do not distinguish particular
instances of type fh. We could imagine tracking such fine-grained details, but the
necessary invariants for subject-reduction proofs may become more complex.
Finally, the notion of principal could prove useful for results other than abstrac-

tion. For example, we could easily give different operational semantics to different
principals and then reason about interlanguage interoperability. Lifting constants
and values out of embeddings could require wrapper code or data conversions.
Similarly, we could imagine that embeddings represent a form of remote commu-
nication. In this case, putting values in embeddings and taking values out would
require marshalling and unmarshalling.
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