
Computer Security is Not a Science
(but it should be)

Michael Greenwald Carl A. Gunter Björn Knutsson
Andre Scedrov Jonathan M. Smith Steve Zdancewic

University of Pennsylvania

1 Introduction

Security research is sometimes referred to as the
“Humanities of Computer Science” because, too fre-
quently, “secure” systems are built using equal mea-
sures of folklore and black arts. Despite the humor-
ous intention, there is a kernel of truth in this jest—
computer security, at least “security in the large”, is
not currently a science.

This claim may seem unfair, given the progress
made in security over the past decades. However, our
present tools and methodologies are at most adequate
for understanding systems security on a small scale.
Cryptography, for example, is perhaps the most thor-
oughly studied and most rigorously modeled aspect
of security. Despite its tremendous importance, cryp-
tography alone is not sufficient for building secure
systems. Indeed, the vast majority of all security
flaws arise because of faulty software (e.g., the ubiq-
uitous buffer overflow problem). Such security holes
cannot be avoided by cryptographic techniques, and
despite widely known and accepted solutions to these
kinds of software flaws, buggy code persists.

Why is security not a science? Some would ar-
gue that, by nature, security is fundamentally unsci-
entific: security is hopelessly intertwined with social
and economic forces beyond the purview of science.
Yet, economists and psychologists have developed
testable, scientific theories.

What sets science apart from other disciplines is
that it produces hypotheses that can be experimen-
tally verified (or falsified). But, despite the large
amounts of security-relevant data collected by orga-
nizations like CERT and despite our decades of expe-
rience building systems, computer security research

has produced little in the way of predictive models or
experimentally verifiable hypotheses.

How can we establish security in the large on a
more scientific footing? Over the last millenium,
one way that disciplines have evolved into “sciences”
is through a period of quantification. For example,
Galileo, among others, transformed physics from an
Aristotelian philosophy to a Baconian science by
describing distance, speed, and time quantitatively,
rather than explaining why objects fell, rolled, or
flew.

Our belief is that the current pre-scientific state of
security research is fundamentally due to a lack of
reasonable metrics. Furthermore, although there ex-
ist a few experimental methods for assessing secu-
rity (i.e., tiger-teaming [5]), these methods are not
yet particularly meaningful in the context of sci-
ence, where quantitative evaluation—for compari-
son, modeling, and measurement of achievement—is
central.

The main questions we are interested in addressing
are:

Question 1: How could one measure security
quantitatively?

Question 2: What experiments ought one perform
to assess security?

Question 3: How can we improve our models us-
ing these metrics?

We believe that we can eventually achieve a
workfactor-like formulation to address the first ques-
tion. Such a formulation will likely be a composite of
a variety of measurements, with imprecise but mean-
ingful weights. As in physics, an approximation that
can gradually be refined with experience is very use-

1



ful, because it allows hypotheses to be tested, even
without six sigmas of precision.

In this short note, we examine the problem of turn-
ing security into a science and suggest some possible
future directions for research. We do so by consider-
ing these questions in the context of examples drawn
from network security.

2 Denial of service attacks

One area that requires new research is the quantifi-
cation of Denial of Service (DoS) threats. Tradi-
tional formal models such as Dolev-Yao [3] provide
an excellent basis for finding logical/algebraic flaws
in protocols. Work on cryptographic security guar-
antees, in which threats in protocols are reduced to
cryptographic questions, is able to find an additional
collection of risks. However, more work is needed to
extract explicit information about workload, where
constant factors are often critical.

For example, a protocol that relies on public key
signatures may be vulnerable to an attack when a
similar protocol relying on Message Authentication
Codes (MACs) is not. On a stock PC, a signature
may take 10ms, whereas a MAC may take 1�s. If
an attacker can generate a load of 1000 such opera-
tions per second, the victim will not be able to keep
up with the necessary public key signatures, but will
require only .1% of its effort to deal with the MACs.
On the other hand, if a DoS threat applies to public
key verifications (rather than signatures) and these
require about 80�s, while a MAC for the same pro-
tocol requires taking the hash of a 1500byte packet
at a cost of about 15�s, then key management ad-
vantages of public keys may outweigh the compar-
atively small factor of extra cost entailed by using
them rather than MACs.

It is not unusual for a conservative analysis of DoS
to be carried out as follows. Assuming that an adver-
sary is able to use all of the inbound channel of a vic-
tim, the victim is able to devote a sufficiently modest
portion of its processing and memory to recognizing
the packets of the attacker. The example above illus-
trates this reasoning when a victim is getting about
1000 service requests per second.

This is a sound way to analyze the problem but it
is in many cases over conservative and leads to the

adoption of excessive measures. In particular, if the
attacker is able to control all of the inbound chan-
nel, then it typically will not matter what the crypto-
graphic load is: the denial of service will be success-
ful. Thus the assumption is only interesting in cases
where the attacker and a legitimate claimant share the
channel. Suppose, for instance, that the attacker can
send 1000 service requests in a second, but the vic-
tim only needs to find one valid request per second.
If the valid claimant sends 1 request per second, then
the victim will need to check about 1000 requests.
But if the claimant sends, say, 10 requests per sec-
ond, then the victim will only need to check an aver-
age of 100 service requests per second. In general, if
such tradeoffs exist, the attacker’s rate cannot accu-
rately measure the DoS threat without a value for the
claimant rate. Thus, models that assume the attacker
controls the whole channel are too conservative in
many cases.

Models of prerequisite workload and payment
have been considered in various contexts. For in-
stance, there are efforts to reduce spam by making
an email sender pay a fee to the receiver; presum-
ably spammers will not be able to afford the result-
ing expenses for enough people to make it profitable
for them to continue their activities. This fee could
be money, but it could also be processor time.

Another approach is to design protocols so that the
claimant must reveal an identity to some degree or
somehow forced to have ‘skin in the game’. For in-
stance, a common strategy is to send back a cookie to
a claimant, thus forcing the claimant to (be able to at
least appear to) use a valid return address. The next
step in research could well be more formal ways to
model and account for these gains. For instance, one
could imagine a simple cost function that can be run
over a protocol message sequence chart to reveal po-
tential DoS risks. In general, DoS experiments and
models have been under-emphasized so far by both
research and development communities.

3 End-system security

While end-system security is not the key to all secu-
rity problems, it is a key to many. The execution of
most observed DoS attacks have hinged on the abil-
ity to co-opt third-party end systems to execute the

2



attack as well as hiding the identity of the attacker.
While DoS attacks are still possible in the pres-

ence of ubiquitous end-system security, they would
be much more limited. Further, many of the type of
attacks we are seeing today would either be easily
traceable, or require large-scale fraud to set up.

One common argument heard for not implement-
ing adequate security on end systems, especially
those of home users and small businesses, is that
“There is nothing important on this machine any-
way.” But, this argument is erroneous: network con-
nectivity and processor time are important to a DoS
attacker, regardless of what other resources the end
system provides. Besides, in other areas of everyday
life, such an attitude would be considered criminal
negligence and could be prosecuted, should the end
system be used in the perpetration of a crime.

But how can this negligence be proved without a
metric of security? And how can vendors provide ad-
equate security, when no objective definition exists?

A simple metric, often used by systems adminis-
trators, is to count the number of vectors for an at-
tack. Due to the way vendors set their machines up—
for ease of use—this number is often both high and
hard to reduce without special knowledge about the
specific product(s) involved.

A quick approximation of the vulnerability would
be the number of services that can be contacted on
a machine from the outside—the number of open
ports. The, equally quick, fix is often to put machines
behind a filtering firewall that only allow traffic to
specific ports from the outside.

This, however, ignores the problems of viruses and
worms that can piggyback on allowed services. Sim-
ple examples would be viruses attached to e.g. Word
documents or emails proclaiming “Try this!” with a
link to a Trojan Horse. While firewalls can be ex-
tended with inspection of all traffic, this at best cre-
ates a hard outer shell, that once penetrated, leave the
machines on the inside soft targets.

4 System Administration

Investigating and introducing security metrics has
benefits other than simply to advance the program
of making cyber-security a science. Consider the
job of system administrators. System administrators

must choose to deploy specific security measures and
choose between software packages. Security mea-
sures provide a certain degree of protection for a cer-
tain level of inconvenience. Software packages pro-
vide a set of features but bring with them certain se-
curity risks. Which to choose? How to balance the
risks to security against the desirable features? The
naive notion that security is a binary property (“A
system is either secure, or it is not”) makes it diffi-
cult to make such decisions in a principled way.

We start from the observation that no system is se-
cure against all attacks and all adversaries. (Even if
we could create technically foolproof systems, they
would still be subject to “social engineering” at-
tacks.) Therefore, we seek to quantify the relative
security of systems and software, to allow system
administrators to make informed tradeoffs between
security and overhead on the one hand, and features
and convenience on the other hand. How much secu-
rity (and at what price) does a given piece of software
provide?

We aim to find quantitative models that would
make such decisions easier. Consider, for example,
statistically-based models that quantitatively capture
some rules of thumb relating salient properties of
software packages. “Popular” programs are attrac-
tive to system administrators because of familiarity.
The more popular a program is, the more users are
likely to be already familiar with the interface. On
the other hand, the more popular a program is, the
more likely it is to be the target of an attack. Pop-
ularity, however, also increases the likelihood that
bugs (security-related or not) will be discovered and
fixed rapidly. Other similar and related tradeoffs ex-
ist. For example, programs with more useful features
are often more popular. However, a large feature-
set increases complexity and also increases the like-
lihood of bugs. Bugs decrease robustness, can be
exploited as security holes, and reduce the attrac-
tiveness of a program. On the plus side, popular
featureful software is more likely to be ported to a
wide variety of hardware architectures and operat-
ing systems. Such diversity of platforms is good be-
cause it reduces the likelihood and magnitude of the
worst-case failure scenarios; on the other hand di-
versity represents a maintenance and administrative
headache. Large programs also may increase the size

3



of the Trusted Computing Base (TCB).
A moment’s reflection reveals that the notion

of popularity (some measure of “community size”)
must be carefully refined. In order to understand
the impact of community size on the expected time
for bug-discovery and repair, one must characterize
community with finer granularity. Open source soft-
ware, for example, is likely to have a community
with a higher ratio of developers to users. Developers
are more likely to fix bugs, so the mix of users and
developers will affect the rate of bug-repair. Simi-
larly, web servers may have many users, but config-
uration is mostly done by a small set of (trained? in-
formed?) administrators. In contrast, web browsers
that may allow remote applets to run are typically
configured by each user. Administrators are osten-
sibly less likely to misconfigure a web server than
users are likely to misconfigure a browser, so again
the components of the community are relevant.

Such complex, qualitative, interrelated tradeoffs
are not helpful without some way of weighing one
attribute against another. The first step seems to be
to develop crude quantitative models and gradually
refine them as more data is collected. Many of these
factors may seem hard to quantify. However, we are
heartened by recent work by groups such as Engler’s
at Stanford [4, 2, 1], who have some simple mod-
els that quantify attributes such as rate of bugs and
bug-fixes in succeeding versions of software such as
operating systems.

5 Conclusion

Experience with computer systems has led to some
general principles of computer security [6], but de-
spite their importance, these principles do not yield
any way to ascertain whether a system is secure. Our
belief is that to make real progress, we must estab-
lish better experimental techniques, better metrics of
security, and better models that have real predictive
power; we must put security research on a foundation
of science.

References

[1] Ken Ashcraft and Dawson Engler. Us-
ing programmer-written compiler extensions to
catch security holes. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 143–
159, May 12-15 2002. Oakland, CA.

[2] Andy Chou, Jun-Feng Yang, Benjamin Chelf,
Seth Hallem, and Dawson Engler. An empirical
study of operating systems errors. In Proceed-
ings of 18th ACM Symposium on Operating Sys-
tems Principles (SOSP ’01), pages 73–82, Octo-
ber 2001. Chateau Lake Louise, Banff, Alberta.

[3] D. Dolev and A. Yao. On the security of public
key protocols. IEEE Transactions on Informa-
tion Theory, 2(29), 1983.

[4] Dawson Engler, David Yu Chen, Seth Hallem,
Andy Chou, and Benjamin Chelf. Bugs as de-
viant behavior: A general approach to inferring
errors in systems code. In Proceedings of 18th
ACM Symposium on Operating Systems Princi-
ples (SOSP ’01), pages 57–72, October 2001.
Chateau Lake Louise, Banff, Alberta.

[5] Erland Jonsson and Tomas Olovsson. A quan-
titative model of the security intrusion process
based on attacker behavior. IEEE Transactions
on Software Engineering, 23(4), April 1997.

[6] J. H. Saltzer and M. D. Schroeder. The pro-
tection of information in computer systems.
Proceedings of the IEEE, 63(9):1278–1308,
September 1975.

4


