
Ironclad C++
A Library-Augmented Type-Safe Subset of C++

Christian DeLozier Richard Eisenberg Santosh Nagarakatte† Peter-Michael Osera
Milo M. K. Martin Steve Zdancewic

Computer and Information Science Department, University of Pennsylvania
†Computer Science Department, Rutgers University

{delozier, eir, posera, milom, stevez}@cis.upenn.edu santosh.nagarakatte@cs.rutgers.edu

Abstract
The C++ programming language remains widely used, de-
spite inheriting many unsafe features from C—features that
often lead to failures of type or memory safety that manifest
as buffer overflows, use-after-free vulnerabilities, or abstrac-
tion violations. Malicious attackers can exploit such viola-
tions to compromise application and system security.

This paper introduces Ironclad C++, an approach to
bringing the benefits of type and memory safety to C++.
Ironclad C++ is, in essence, a library-augmented, type-safe
subset of C++. All Ironclad C++ programs are valid C++
programs that can be compiled using standard, off-the-shelf
C++ compilers. However, not all valid C++ programs are
valid Ironclad C++ programs: a syntactic source-code val-
idator statically prevents the use of unsafe C++ features. To
enforce safety properties that are difficult to check statically,
Ironclad C++ applies dynamic checks via templated “smart
pointer” classes.

Using a semi-automatic refactoring tool, we have ported
nearly 50K lines of code to Ironclad C++. These benchmarks
incur a performance overhead of 12% on average, compared
to the original unsafe C++ code.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Dynamic storage management

General Terms Languages, Performance, Reliability, Se-
curity

Keywords C++, type safety, memory safety, local pointers

Permission to make digital or hard copies of part or all of this work is granted without
fee provided that that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported
License: http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

OOPSLA ’13, October 29, 2013, Indianapolis, IN, USA.
Copyright © 2013. Copyright is held by the owner/author(s).
ACM 978-1-4503-2374-1/13/10.
http://dx.doi.org/10.1145/2509136.2509550

1. Introduction
C and C++ are widely used programming languages for im-
plementing web browsers, native mobile applications, com-
pilers, databases, and other infrastructure software [33]. C
and C++ provide efficiency and low-level control, but these
advantages come at the well-known cost of lack of memory
and type safety. This unsafety allows programming errors
such as buffer overflows (accessing location beyond the ob-
ject or array bounds), use-after-free errors (accessing mem-
ory locations that have been freed), and erroneous type casts
to cause arbitrary memory corruption and break program-
ming abstractions. More dangerously, malicious attackers
exploit such bugs to compromise system security [29].

Recognizing this problem, many approaches have been
proposed to prevent memory safety violations or enforce full
memory safety in C and C-like languages [2, 4, 9, 10, 12,
14, 17, 23–25, 31, 36]. Collectively, these prior works iden-
tified several key principles for bringing safety efficiently
to C. However, one challenge in making C memory safe is
that C provides limited language support for creating type-
safe programming abstractions. In contrast, although C++
includes many unsafe features, C++ also provides advanced
constructs that enable type-safe programming, such as tem-
plates and dynamically checked type-casts.

Ironclad C++ is our proposal to bring comprehensive
memory and type safety to C++. Ironclad C++ is, in essence,
a library-augmented [32] type-safe subset of C++. As such,
an Ironclad C++ program is a valid C++ program (but not all
C++ programs are valid Ironclad C++ programs). Dynamic
checking is implemented in a “smart pointer” library, so no
language extensions or compiler changes are required. Iron-
clad C++ uses a syntactic static validation tool to ensure the
code conforms to the Ironclad C++ subset of C++, and the
code is then compiled using an unmodified off-the-shelf C++
compiler (see Figure 1).

This paper describes Ironclad C++ and reports on our ex-
perience programming in this type-safe subset of C++, in-
cluding:

1

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

Source
Code Validator

C++ Compiler
(unmodified)

Is Valid?

Executable

No

Yes
(Safe)

Refactor Code

Ironclad
Library

Figure 1. Workflow for coding with Ironclad C++

• a C++ smart pointer library that efficiently and compre-
hensively enforces strong typing and bounds safety,

• a hybrid static–dynamic checking technique that prevents
use-after-free errors for stack objects, without requiring
costly heap allocation,

• an opt-in, source-level heap-precise garbage collector de-
signed to reduce memory leaks due to conservative GC,

• tools for semi-automated refactoring of existing C and
C++ code into the Ironclad subset of C++ and a validator
that enforces compliance with that subset, and

• experimental evaluation of the performance overheads of
this approach to enforce memory safety.

To evaluate practicality and performance, we refactored
several C/C++ programs—over 50K lines in total—into
Ironclad C++. We performed this translation with a semi-
automatic refactoring tool we created to assist in this
conversion, and we report our experiences converting these
programs. We also converted multiple test suites designed
for evaluating memory safety bug detectors, which con-
firmed that Ironclad C++ does successfully detect memory
access violations. Using performance-oriented benchmarks,
we measured an average performance overhead of 12% for
enforcing complete type and memory safety.

2. Overview and Approach
Type-safe languages such as Java and C# enforce type
safety through a combination of static and dynamic enforce-
ment mechanisms such as static typing rules, dynamically
checked type casts, null dereference checking, runtime
bounds checking, and safe dynamic memory management.
In such languages, violations of type safety are prevented by
either rejecting the program at compile time (type errors) or
raising an exception during execution. The aim of Ironclad
C++ is to use this same set of familiar static/dynamic
enforcement mechanisms to bring type-safety to C++ while
retaining much of the syntax, performance, and efficiency
of C++. To provide context on how these enforcement
mechanisms apply to C/C++, this section overviews some
key principles of efficient type safety for C, surveys their
implementations in prior work, and describes how these
principles can be brought to C++ by leveraging existing
language features.

Differentiating array pointers from non-array point-
ers. Several prior memory safety proposals have recognized
the performance benefit of distinguishing between a pointer
to an array (which requires bounds information) versus a
pointer to non-array (a.k.a. singleton) object (which does
not). Doing so automatically has typically relied on whole-
program analysis at compile time or introduced language ex-
tensions. For example, CCured [25] uses a whole-program
type inference at compile time to distinguish between sin-
gleton and array pointers, Cyclone [17] introduces different
type decorators, and some pool allocation approaches [9]
create type-homogeneous pools of singleton objects. Sys-
tems without such differentiation implicitly treat all pointers
as array pointers, adding unnecessary space and time over-
heads for bounds checking.

Ironclad C++ captures this differentiation between single-
ton and array pointers without language extension or whole-
program analysis during each compilation by using the well-
known C++ technique of smart pointers [1, 2, 8]. Smart
pointers leverage C++’s template and operator overloading
constructs, and they have previously been used to dynam-
ically insert safety checks [2] or perform reference count-
ing [8] on pointer operations. Ironclad C++ requires that all
bare C++ pointer types be replaced with one from a suite of
smart pointers, some of which include bounds information
and thus support pointer arithmetic and indexing (for array
pointers) and some that avoid the bounds checking overhead
(for singleton pointers). The distinction between singleton
and array smart pointer types allows their overloaded oper-
ators to perform the minimum dynamic checking necessary
to detect bounds violations based on the type of the pointer.

Enforcing strong typing. C’s use of void* and
unchecked type casts results in either pessimistic typing
assumptions, which can significantly increase the overhead
of dynamic checking [23, 27], and/or the failure to detect
all memory safety violations. Disallowing unsafe casts in
C reduces checking overhead, but doing so has typically
required augmenting the C language in some way. For
example, Cyclone found it necessary to support generics,
CCured adds RTTI (run-time type information) pointers, and
both support structural subtyping. However, C++ already
provides alternatives to C’s unsafe constructs (for example,
templates and class hierarchies). Yet, to facilitate adoption,
C++ inherited many of C’s unsafe constructs. Ironclad C++
takes a different approach and explicitly enforces strong
typing by disallowing legacy type-unsafe constructs and
requiring that all pointer type-cast operations are either
known to be safe statically or checked dynamically (by
building upon C++’s existing dynamic_cast construct).

Heap-safety through conservative garbage collection.
Ironclad C++’s smart pointers provide strong typing and
bounds safety, but they do not prevent use-after-free er-
rors. To avoid the overhead of reference counting [12] or
use-after-free checking [2, 24, 36], Ironclad C++ facilitates

2

the use of conservative garbage collection [7] by targeting
a key challenge of using conservative GC to enforce
safety: conservative collection can lead to non-deterministic
memory leaks (due to non-pointer data that “looks” like
a pointer) [5, 30]. To reduce such memory leaks due to
conservative garbage collection, Ironclad C++ supports
heap-precise garbage collection. Inspired by prior work
on mostly-copying and more-precise conservative garbage
collection [3, 11, 15, 30], Ironclad’s collector treats the
roots conservatively but supports the precise identification
of pointers in heap objects by employing mark() class
methods to precisely identify pointer fields and pointer
containing members.

Facilitating stack-allocation safety. Garbage collection
does not prevent dangling pointers to stack objects. In recog-
nition of this problem, CCured prevents use-after-free errors
to stack objects by selectively converting escaping stack-
allocated objects into heap-allocated objects (a.k.a. heapi-
fication), which unfortunately introduces significant perfor-
mance overheads in some programs [25]. To prevent use-
after-free errors for stack allocated memory without the per-
formance penalties of heapification, this paper introduces
hybrid static-dynamic checking of stack pointer lifetimes.
The hybrid checking in Ironclad C++ avoids the perfor-
mance overheads of heapification with simple static check-
ing and limited dynamic checking.

Validating conformance statically. Statically validating
that code conforms to the rules of Ironclad C++ is paramount
for ensuring safety. Without some form of static validation,
smart pointer schemes cannot alone provide a guarantee of
safety because unsafe constructs can still be used outside of
the use of smart pointers, and smart pointers can be used
incorrectly. Our current prototype divides this responsibility
between two checkers. First, we created a static code valida-
tor that checks basic syntactic properties of the program to
ensure that it conforms to the Ironclad C++ subset (e.g., no
raw pointers). Second, after carefully precluding unsafe con-
structs with the validator, we then leverage the existing C++
type checker to complete the remaining checking of type
safety. This use of strong static validation distinguishes Iron-
clad C++’s approach from other non-validated smart pointer
approaches [2, 8] and mark() methods for precise garbage
collection [3, 30].

3. Bounds Checking & Strong Static Typing
The Ironclad dialect of C++ is formed by first providing safe
idioms via the Ironclad C++ library (e.g., the smart point-
ers described in Table 1) and then disallowing the use of
unsafe language features (e.g., disallowing the use of raw
pointers). In this way, Ironclad C++ brings memory and type
safety to C++ using a combination of static code validation,
the standard C++ type checker, and dynamic safety checks.
A code validator, described in Section 7, statically enforces
that disallowed constructs are not used. This section first de-

Type Capabilities Safety Checks
ptr Dereference Null Check
aptr Dereference Bounds Check

Index Bounds Check
Arithmetic No Check†

lptr Dereference Null Check
Receive address-of object Lifetime Check
Receive this pointer Lifetime Check

laptr Dereference Bounds Check
Receive address-of object Lifetime Check
Receive this pointer Lifetime Check
Hold static-sized array Lifetime Check
Index Bounds Check
Arithmetic No Check†

†: Arbitrary pointer arithmetic is permitted because a
bounds check occurs before an aptr is dereferenced.

Table 1. This table describes the capabilities and safety
checks performed by each pointer type. As more letters are
added to the type, the capabilities increase, but the overhead
also increases due to additional required checks.

scribes safety without considering arrays or memory deallo-
cation (Section 3.1), it then describes support for references
(Section 3.2), arrays, and pointer arithmetic (Section 3.3).
Further sections discuss memory deallocation safety for the
heap (Section 4) and stack (Section 5).

3.1 Strong Static Typing with ptr<T>

Ironclad C++ requires replacing all raw C++ pointer
types with templated smart pointer types. For referring
to singleton (non-array) objects, Ironclad C++ provides
the ptr<T> class. Because new returns a raw pointer,
Ironclad C++ provides a replacement for performing heap
allocation, new_obj<T>(...), which uses new internally but
returns a ptr<T> (rather than returning a T*). Similarly,
calls to delete are replaced by destruct(), which calls
the pointed-to object’s destructor (but it does not neces-
sarily deallocate the underlying memory, as described in
Section 4). Accordingly, the following C++ code:

Rectangle* p = new Rectangle(2, 5);

...

delete p;

Would be rewritten in Ironclad C++ as:

ptr<Rectangle> p = new_obj<Rectangle>(2, 5);

...

p.destruct();

C++11’s variadic templates allow new_obj to accept arbi-
trary arguments to pass along to the underlying object con-
structor.

Rule (Pointers). All pointer types are transformed to
ptr<T> (or one of its variants, described below) provided
by the Ironclad C++ library. Raw pointers are disallowed.

3

Example: Strong Static Typing
float radius(Shape* shape) {

Circle* circle = static_cast<Circle>(shape);

return circle->radius;

}

float radius(ptr<Shape> shape) {

ptr<Circle> circle = cast<Circle>(shape);

return circle->radius;

}

Example: Bounds Checking
float* computeArea(Shape* shapes, int N) {

float* areas = new float[N];

for(int i = 0; i < N; ++i) {

float r = radius(shapes);

areas[i] = PI * (r * r);

shapes++;

}

return areas;

}

aptr<float> computeArea(aptr<Shape> shapes, int N) {

aptr<float> areas = new_array<float>(N);

for(int i = 0; i < N; ++i) {

float r = radius(shapes);

areas[i] = PI * (r * r);

shapes++;

}

return areas;

}

Figure 2. Comparison of C++ syntax (left) and Ironclad C++ syntax (right).

Supporting type casts safely. By disallowing raw
pointers, Ironclad C++ also implicitly disallows both void*

pointers and unsafe pointer-to-pointer casts. To support safe
pointer-to-pointer casts, Ironclad C++ provides a cast<T>

function template to safely cast a ptr<S> to a ptr<T>.
Figure 2 shows an example of casting from a ptr<Shape>

to a ptr<Circle>. The cast<T>(...) function is a wrapper
over C++’s existing dynamic_cast operation, which is
used to cast between members of a class hierarchy. Casts
between incompatible types will be caught either: (1) dur-
ing compilation when the template is instantiated (e.g.,
when attempting a cast that can be proven invalid during
type-checking) or (2) when the underlying dynamic_cast

fails at runtime due to an incompatible type, setting the
resulting pointer to NULL. Casting from void* or integers
to a pointer is not supported by C++’s dynamic_cast, so
this use of dynamic_cast statically enforces that a ptr

cannot be created from an integer or void* pointer. Uses of
void* pointers can generally be eliminated by refactoring
the code to use inheritance or templates (e.g., to implement
generic containers, which is one use-case of void*). Note
that Ironclad C++ does not restrict cast operations (type
conversions) among non-pointer types, such as ints and
doubles, because such type conversions are well-defined
and do not violate memory safety. For example, if a variable
is cast from a negative int to an unsigned int and then
used as an index into an array, the possibly out-of-bounds
index will be caught by Ironclad C++’s dynamic checks.
Thus, type-conversions do not violate memory safety in
Ironclad C++.

Rule (Pointer Casts). Pointer casts must use cast<T>(...),
provided by the Ironclad C++ library.

C-style unions are not allowed in Ironclad C++ because,
unlike type-casts on non-pointer types, the implicit cast be-
tween types that occurs through the use of a union can lead
to undefined behavior [16]. Unions are less prevalent in C++

compared to C because only POD (plain old data) types can
be used in unions.

Rule (Unions). Unions are disallowed in Ironclad C++.

Dynamic NULL checking. As ptr<T> pointers may point
only to singleton objects (arrays and pointer arithmetic are
handled in the next subsection), the ptr<T> class explic-
itly does not overload the operators for performing array
indexing and pointer arithmetic, so the standard C++ type
checker disallows such operations during compilation. How-
ever, dereferencing a NULL pointer is an illegal memory oper-
ation. To prevent this, the overloaded dereference operations
(* and ->) in ptr check for NULL prior to performing the
dereference. Although many NULL dereferences would result
in a segmentation fault, the explicit check is still necessary.
Consider a program in which p is NULL and is a pointer to
type struct Foo{int a[1000000]; int x;}. Without
an explicit NULL check, the expression p->x would attempt
to address at address 1000000*sizeof(int), which could
result in arbitrary memory corruption. Checking for NULL

before dereference also catches the dereference of a ptr that
resulted from an invalid dynamically checked pointer cast.

3.2 C++ References
References in C++ (T&) are similar to pointers but differ in
a few ways that allow them to be treated differently in Iron-
clad C++. References must be initialized when declared, as
shown below.

Object& r = *p; // p has type ptr<Object>

Once a reference has been initialized, the location that the
reference points to cannot change.

In Ironclad C++, the NULL check performed during the
dereference of a pointer (“*p” in the above code) prevents
the creation of NULL references. By preventing the creation
of NULL references, there is no need to perform a NULL check
on the use of a reference. Thus, unlike raw pointers, which
must be wrapped using smart pointers, C++ style references

4

are allowed in Ironclad C++. References will be further dis-
cussed in Section 5.3.

3.3 Bounds Checking with aptr<T>

Ironclad C++ supports static-sized arrays, dynamic-sized ar-
rays, and pointer arithmetic by providing the array<T,N>

and aptr<T> (“array pointer”) classes. For static-sized ar-
rays, the Ironclad C++ library provides a templated array
class array<T,N>. This class overrides the index operator
and checks that the requested index (an unsigned int) is
less than N before returning the requested element. To create
an array<T,N>, the size N of the allocated array must be
known at compile time.

Rule (Static-sized Arrays). All static-sized arrays must be
replaced by array<T,N>.

To support dynamic-sized arrays, Ironclad C++ provides
an aptr<T> class. The aptr<T> class replaces raw pointers
for referring to either dynamically or statically sized arrays.
To perform the necessary bounds checking, each aptr is a
three-element fat pointer with a pointer to the base of the
array, the current index, and the maximum index. A bounds
check is performed on each dereference or array index oper-
ation. This bounds check will fail if the pointer is NULL, so
a separate NULL check is not needed. Arbitrary pointer arith-
metic is allowed, and the bounds check during dereference
and array indexing are sufficient to detect invalid pointer
arithmetic. To heap allocate new dynamically sized arrays,
the Ironclad C++ library provides new_array<T>(size)

function, which returns an aptr<T> created by calling new.
Accordingly, the following C++ code:
Foo* p = new Foo[number];

...

delete[] p;

Would be rewritten in Ironclad C++ as:
aptr<Foo> p = new_array<Foo>(number);

...

p.destruct();

Figure 2 shows an example of creating and using an array in
Ironclad C++. As shown, only the type and allocation of the
array must be rewritten to conform to Ironclad C++; all other
array pointer operations are performed using overloaded op-
erators.

Rule (Array Pointers). Pointers to dynamic and static arrays
must be replaced by aptr<T>.

Ironclad C++ provides both ptr<T> and aptr<T> be-
cause they provide different tradeoffs: ptr does not provide
indexing or pointer arithmetic operators, but it avoids the
performance and storage overheads incurred by the bounds
checking for aptr. The Ironclad C++ library provides an im-
plicit conversion from aptr<T> to ptr<T>, allowing a ptr

to point to a single element of an array. During such a con-
version, if the aptr is invalid (not in bounds) the ptr is set
to NULL.

3.4 Pointer Initialization
If pointers were allowed to be uninitialized, a pointer could
contain garbage and point to arbitrary memory. Therefore,
Ironclad C++ ensures that pointers are properly initialized
by setting the underlying raw pointer to NULL in the default
constructor for each smart pointer class.

In one particularly insidious corner case, the order of ini-
tialization of members of a class may allow a smart pointer
to be dereferenced before its constructor has been called:

class Foo {

int x;

ptr<int> p;

Foo() : x(*p) // initializer list

{

... // body of constructor

}

};

To ensure proper initialization, the initializer expression for
any data member must not use a smart pointer data member
field that was declared subsequent to the data member be-
ing initialized (in C++ the order of initialization of fields is
determined by the order in which they were declared in the
class declaration). To enforce the above rule, Ironclad C++
also disallows the use of the this pointer and method calls
within any initializer list expression for a data member field
that was declared prior to any smart pointer data member
field. The static validator enforces these requirements.

Rule (Init.). A ptr<T> must be initialized before use.

3.5 The C Standard Library
The C Standard Library contains utility functions, standard
types, I/O functions, functions on C-strings (char *), and
other functionality. To ensure safety, Ironclad C++ disallows
the use of some of the available headers (e.g., <csetjmp>)
and replaces others with safe versions. A few of the C stan-
dard library headers contain functions that consume C-string
parameters without checking to see if the C-string is properly
null terminated or large enough to perform the operation.
Even the functions in <cstring> that take a size parame-
ter, such as strncpy, can violate memory safety if the size
parameter is incorrect.

Ironclad C++ provides safe functions to replace each of
these unsafe functions. These functions take aptr<char>

parameters instead of char* and check that the inputs are
null-terminated and within the specified bounds. Two spe-
cific functions — memset and memcpy — are unsafe in C++.
Calling memset can accidentally overwrite virtual pointers;
memcpy ignores any effects that copy constructors might
have. Ironclad C++ replaces memset and memcpy with the
functions zero<T> and copy<T>. The zero function iter-
ates through the input array and sets each element to 0. The
copy function assigns each element of the source array to
the corresponding element in the destination array. To im-
prove performance, the zero and copy functions have hand-

5

optimized template specializations for standard data types,
such as char.

The <cstdio> header contains C-style variable argument
functions that rely on the programmer to provide a correct
format string. In C++11, the unsafe use of va_list can be
replaced by the type-safe use of variadic templates. Using
variadic templates, Ironclad C++ checks that the number and
type of arguments provided to functions such as printf and
scanf matches the arguments expected by the format string.

Rule (C Standard Library Functions). Uses of unsafe C
Standard Library functions must be replaced with their
corresponding safe variant (e.g., strlen(const char *)

with safe_strlen(aptr<const char>)).

4. Heap-Precise Garbage Collection
Along with strong typing and bounds checking, dealloca-
tion safety (i.e., no dangling pointers) is the final require-
ment for comprehensive type and memory safety. In many
languages, including C++, pointers can refer to both heap-
allocated and stack-allocated objects. In standard C++, heap-
allocated objects are created using new and explicity deallo-
cated using delete. Stack-allocated objects are automati-
cally allocated and deallocated on function entry and exit,
respectively. Ironclad C++ uses separate mechanisms for
enforcing deallocation safety for heap-allocated and stack-
allocated objects. For heap-allocated objects, Ironclad C++
relies on a conservative garbage collector to delay the deal-
location of heap objects until a time at which it is known to
be safe (i.e., no references to the object remain).

4.1 Conservative Collection
For many applications, a conservative, mark-sweep garbage
collector prevents dangling pointers for heap allocations
with reasonable performance overheads. Unlike reference
counting [12] (which requires work on every pointer
assignment), dynamic allocation checking [2, 24] (which
requires work on every pointer dereference), and precise
garbage collection (which requires work to provide safe
points), conservative garbage collection performs work
only when the allocator requires more free memory than is
currently available. At that time, the collector conservatively
scans the program roots (e.g., stack, registers, and globals)
for pointers to heap allocations and pushes each identified
address onto a mark stack. Collection then proceeds by (1)
popping an address to an allocation off of the mark stack,
(2) discarding the address if it has already been marked,
(3) performing the “marking” operation by conservatively
scanning the allocation region for any values that are
potential pointers, (4) pushing all such values onto the mark
stack, and (5) recording that the allocation has been marked.
This process repeats until the mark stack is empty. Finally,
the collector frees all allocations that were not recorded as
having been marked [19].

class Circle :

// Inherits from Shape & IroncladPreciseGC

public Shape, public IroncladPreciseGC {

private:

Color color;

ptr<Point> center;

double radius;

public:

void mark() {

Shape::mark(); // Marks the base class

color.mark(); // Marks the color object

center.mark(); // Enqueues on mark stack

// radius is primitive, no need to mark

}

};

Figure 3. Example of mark() methods for heap-precise
collection. Calling mark() on the ptr<Point> object
pushes its address onto the mark stack to ensure that the col-
lector marks the referred to Point object.

Although conservative garbage collection exhibited low
runtime and memory overheads on many programs (includ-
ing most of the benchmarks we use for evaluations in Sec-
tion 9), some programs suffer from large memory over-
heads due to a well-known weakness of conservative collec-
tion in which memory leaks can occur due to non-pointer
data (such as floating-point numbers) that “looks” like a
pointer [15, 30, 34]. Several approaches have been proposed
to mitigate this problem. The Boehm-Demers-Weiser col-
lector performs blacklisting to avoid allocating on pages that
have previously been pointed to by non-pointer data [7]. It
also provides an interface for providing precise pointer iden-
tification bitmap descriptors for allocated data [5]. A pro-
posal was put forth (although not accepted) for C++11 that
would have added keywords to C++ for precise identifica-
tion of specified gc_strict classes [6]. Prior approaches
have proposed methods for precisely identifying pointers in
the heap either by tracking pointers on creation and destruc-
tion [11] or calling tool-generated or user-defined methods
for precisely identifying an object’s pointer and pointer con-
taining members [3, 30].

4.2 Heap-Precise Collection
Building on these prior works, Ironclad C++ adopts opt-in
heap-precise garbage collection. To enable heap-precise col-
lection, a class (1) provides a mark() method that precisely
identifies all of the pointers in the allocation and (2) inherits
non-virtually from IroncladPreciseGC, which is used as a
type tag to inform the collector (i.e., in new_obj<T>(...))
to call the mark() method when scanning the allocation.

Like the conservative collector, heap-precise collection
begins by conservatively scanning the program roots for
pointers to the heap and pushing each identified address
onto the mark stack. The collector then proceeds as usual by
popping an address to an allocation off of the mark stack,

6

discarding the address if it has already been marked. To
perform the “marking” operation, the collector invokes the
mark() method on the object, which precisely identifies all
pointers in the allocation and pushes them onto the mark
stack. If the type of the allocation does not inherit from the
IroncladPreciseGC class, the collector falls back to us-
ing the conservative marking strategy. Like the conservative
collector, once the allocation has been processed, the alloca-
tion is recorded as having been marked. This process repeats
until the mark stack is empty, and the collector frees all allo-
cations that have not been marked.

4.3 Requirements for Precise Marking
For an object to be precisely marked, all of the objects that
it directly contains (i.e., not pointers to objects) and all of
its base classes must define mark() methods because the
heap-precise collector must be aware of all pointers in the
physical layout of the marked object. A class’s mark() is
responsible for adding all pointers contained in the object
to the mark stack, including all pointer that are data member
fields, in object fields, or in an inherited-from base class. The
mark()method accomplishes this task by calling mark() on
all smart pointers data members, on all object data member
fields, and on all inherited-from base classes. The mark()

method of each smart pointer class pushes the address onto
the mark stack. The mark() methods of the object’s data
members will in turn subsequently call mark() methods on
their fields, resulting in all pointers contained by the alloca-
tion being added to the mark stack. Primitive non-pointer
types need not be marked. Figure 3 provides an example
mark() method for a simple class hierarchy. Calling the
mark() method on class that does not actually contain point-
ers is unlikely to hurt performance because such mark()

methods will be empty and defined in the class’s header file,
allowing them to be optimized away by the compiler’s in-
lining pass. The heap-precise collector uses template spe-
cialized mark() methods for arrays of primitive data types.
Primitive types do not contain pointers, so these methods do
nothing and thus avoid the overhead of scanning an array
when it clearly does not contain pointers.

In Ironclad C++, the mark() methods are supplied
by the programmer and part of the program’s permanent
source code. To ensure safety, the mark() methods are
checked for conformance with the above rules by the
Ironclad C++ validator (Section 7), unlike prior systems
that utilize programmer-supplied marking [3, 30]. To assist
the programmer, the Ironclad C++ refactoring tool can
automatically generate mark() methods in many cases.

4.4 Object Destruction
In C++, calling delete on a heap-allocated object will de-
struct the object and reclaim the memory in which the object
had been allocated. In Ironclad C++, the garbage collector
reclaims memory only once an object becomes unreachable.
Therefore, Ironclad C++ divides the functionality otherwise

provided by delete between the garage collector, which re-
claims the object’s memory, and the destruct() method
(provided by ptr and aptr), which explicitly calls the ob-
ject’s destructor. This approach avoids the problem of calling
destructor asynchronously, but it has the disadvantage that
Ironclad C++ does not prevent a program from accessing an
object after its destructor has been called. Such an access—
although certainly a bug in the program—does not violate
type safety because the garbage collector ensures the under-
lying memory is still valid (i.e., has not be reclaimed) and
thus remains properly typed.

5. Stack Deallocation Safety via lptr

Although garbage collection prevents all dangling pointers
to objects on the heap, it does not protect against dangling
pointers to stack-allocated objects. One way to prevent such
errors is to forgo some of the efficiency benefits of stack allo-
cation by limiting the use of stack allocation to non-escaping
objects only (a.k.a. heapification). To avoid the performance
penalties of heapification, Ironclad C++ provides additional
templated smart pointers that, cooperatively with the static
code validator and C++ type checker, uses dynamic lifetime
checking to prevent use-after-free errors for stack allocations
while avoiding heapification in almost all cases.

5.1 Heapification
A common approach for preventing use-after-free errors for
stack allocations in a garbage collected system is simply to
restrict stack allocations by employing heapification [25],
which is the process of heap-allocating an object that was
originally allocated on the stack. Heapification enforces
deallocation safety by conservatively disallowing any object
whose address might escape the function from being allo-
cated on the stack. For example, without inter-procedural
analysis, heapification requires heap allocation of any
object whose address is passed into a function. This is a
particular challenge for C++ code, because object methods
and constructors are implicitly passed the address of the
object (the this pointer), thus disallowing stack allocation
of almost all objects unless inter-procedural analysis could
prove otherwise. Unfortunately, heapification results in
significant performance degradations in some cases (see
Section 9.5).

5.2 Dynamic Lifetime Checking
Ironclad C++ reduces the need for heapification by focusing
on preventing the two causes of dangling pointers to stack al-
locations: stack addresses that escape to the heap or globals
and stack addresses that escape to longer-living stack frames.
To prevent dangling pointers to the stack, Ironclad C++
identifies, tracks, and prevents the unsafe escape of stack
addresses using two additional templated pointer classes,
lptr<T> and laptr<T>, called local pointers. Prior work
on preventing use-after-free errors has introduced some no-
tion of a local pointer [10, 21], but these efforts have been

7

focused on purely static enforcement through sophisticated
program analyses.

To prevent stack addresses from escaping to the heap or
globals (example shown in Figure 4(a)), Ironclad C++ com-
bines static restrictions on where stack addresses may exist
in memory with a dynamic check on assignment between lo-
cal pointers and non-local pointers (ptr and aptr). Ironclad
C++ does not place any restrictions on where ptr and aptr

can be allocated; ptr and aptr can both exist on the heap or
as globals. Therefore, it is unsafe for a ptr or aptr to hold
the address of a stack allocation.

In C++, the address of a stack allocation can be initially
accessed by using the address-of operator (&), using the
this pointer of a stack allocated object, or by implicitly con-
verting from a stack allocated array to a pointer. Although
operations such as address-of may also produce a non-stack
address (i.e. if applied to a global variable), Ironclad C++
requires that the result of any operation that may produce a
stack address be held by an lptr or laptr. More concretely,
Ironclad C++ requires that stack addresses can only be held
by lptr and laptr.

Rule (Stack Pointers). Any pointer to stack object must be
held by an lptr or laptr.

Given that local pointers can hold stack addresses, and
stack addresses should not be allowed to escape to the heap
or globals, it follows that local pointers cannot be stored in
the heap or globals. That is, local pointers are limited to use
as local variables and function parameters.

Rule (Local Pointer Location). A local pointer may only
exist on the stack.

Although it is unsafe for a non-local pointer to point to a
stack allocation, a local pointer can safely point to the heap
or globals. Further, the address held by a local pointer can
be safely assigned into a ptr or aptr if the address refers
to the heap or globals. When assigning to a ptr or aptr

from an lptr or laptr, the assignment operator performs
a dynamic check to ensure the address being written into
the ptr or aptr is actually a heap or global address; if the
address is a stack address, the check fails and an exception is
raised. No such check is required when assigning a ptr into
a ptr (or aptr into an aptr).

Dangling pointers to stack-allocated objects can occur
even without placing a pointer to a stack object in the heap
or globals. As illustrated in Figure 4(b), a stack address es-
caping to longer living stack frames can also cause a dan-
gling pointer error. To prevent dangling pointers from one
stack frame to another, local pointers record a lower bound
on stack addresses to which they may point.1 Local point-
ers are allowed to point only to stack allocations at the same
level or above in the call stack. Local pointers ensure that

1 The use of “lower” here assumes that a stack grows down through its
memory region.

each assignment into or out of the local pointer will not cre-
ate a dangling pointer.

Overall, Ironclad C++ enforces the following invariant to
ensure deallocation safety with regard to stack allocations.

Invariant (Pointer lifetime). The lifetime of a pointer may
not exceed the lifetime of the value that it points to.

To more concretely explain the dynamic checks applied
by local pointers, we give a case-by-case analysis of the non-
trivial assignments between lptr and ptr.

Case: Assign from ptr<T> into lptr<T>

In this case, the address being assigned into the lptr

points to the heap or globals. Therefore, the address can
be safely assigned into the lptr.

Case: Assign from lptr<T> into ptr<T>

To assign from an lptr into a ptr, the address currently
held by the lptr must point to a heap or global value.
A dynamic check is performed to ensure that the address
held by the lptr points to a heap or global value. If the
lptr points to a stack value, the check fails.

Case: Assign from lptr<T> into lptr<T>

In this case, the address held by the source lptr is as-
signed into the destination lptr. If the source lptr cur-
rently points to a heap or global value, execution pro-
ceeds as in the first case. If not, the destination lptr must
check that the address held by the source lptr is not be-
low the minimum address allowed to be held by the des-
tination lptr, which is defined by the destination lptr’s
lower bound.

To ensure the correct use of local pointers, Ironclad C++
places a few restrictions on where local pointers may be
used. First, a function may not return a local pointer. Sec-
ond, as noted earlier, a local pointer may not be allocated on
the heap. From the second restriction, it follows that a local
pointer may not be declared in a struct or class because Iron-
clad C++ does not restrict in which memory space an object
may be allocated.

Rule (Local Pointer Return). A local pointer may not be
returned from a function.

With the dynamic lifetime checks described above and
these few restrictions placed on the static use of local point-
ers, Ironclad C++ provides deallocation safety for stack ob-
jects without the need for heapification in most situations.
For example, stack-allocated arrays can be passed to nested
functions without requiring heapification. For the code we
examined, the single example requiring heapification oc-
curred in our conversion of the benchmark leveldb. The
relevant code is shown in Figure 5. Here, the address of a
stack value is stored in the field of a heap object, which
is disallowed by the rules for local pointers. Even though
the code does not actually create a dangling reference, Iron-

8

(A) Stack Address Escapes to Global Scope
int* global = NULL;

void f()

{

g();

cout << *global; // dangling pointer dereference

}

void g()

{

int y = 1;

int* q = &y;

global = q; // Puts stack pointer into a global

}

ptr<int> global = NULL;

void f()

{

g();

cout << *global; // Prevented by check in g()

}

void g()

{

int y = 1;

lptr<int> q = &y; // check passes

global = q; // "ptr = lptr" check fails

}

(B) Stack Address Escapes to Longer Living Stack Frame
void f()

{

int* p = NULL;

g(&p);

cout << *p; // dangling pointer dereference

}

void g(int** ptr_to_p)

{

int y = 1;

int* q = &y;

*ptr_to_p = q; // Sets p to point to y

}

void f()

{

lptr<int> p = NULL;

g(&p);

cout << *p; // Prevented by check in g()

}

void g(lptr<lptr<int>> ptr_to_p)

{

int y = 1;

lptr<int> q = &y; // check passes

*ptr_to_p = q; // "lptr = lptr" check fails

}

Figure 4. Examples of unsafe operations that are prevented by local pointers.

void Acquire(Logger* logger) {

obj->logger = logger;

}

void Release() {

obj->logger = NULL;

}

void f() {

Logger logger;

Acquire(&logger);

...

Release();

}

Figure 5. Case in leveldb under which dynamic lifetime
checking could not avoid heapification

clad C++ could not provide this guarantee. Therefore, the
programmer must heap-allocate the object to ensure safety.

5.3 References
C++ references behave similarly to local pointers. However,
references cannot be reassigned after initialization and there-
fore do not need to track a lower bound like local pointers.
If a reference points to valid memory when it is initialized,
it will point to valid memory for its lifetime.

Unlike local pointers, Ironclad C++ allows references to

be used as function return values, mainly to support common
code idioms, including chaining function or method calls on
an object (e.g., std::cout) but restricts the expressions that
can be returned as references. In general, any value with a
lifetime that will persist through the function or method call
may be returned safely. The result of the dereference of an
aptr or a ptr can be returned as a reference because the
referred location must be in the heap or globals. Ironclad
C++ limits the expressions that may be returned by reference
to the dereference of an aptr or a ptr, reference function
parameters, the dereference of the this pointer, and class
members (of the class that the method was called on). In-
tuitively, these expressions are allowed because the location
they point to must have a lifetime that is at least as long as
the lifetime of the return value.

Rule (Reference Return Values). A reference return value
may only be initialized from the dereference of an aptr or a
ptr, from a reference function parameter, from the derefer-
ence of the this pointer, or from a class member.

Although we did not identify any such cases in our bench-
marks, it is possible that a valid program will not conform to
the above static restrictions on reference return values. For
any such cases, Ironclad C++ provides the ref<T> class,

9

which is used as a return value. The ref<T> class provides
nothing other than an implicit conversion to a T&, which per-
forms a dynamic check, similar to the local pointer dynamic
check, to ensure that the location held by the ref<T> refers
to valid memory.

Ironclad C++ prohibits the use of reference class mem-
bers due to the possible unsafety from initializer lists. Other-
wise, a class member with reference type of an object on the
heap could be initialized to point to a stack location through
the use of a constructor initializer list. Reference class mem-
bers are rare in C++ code and generally discouraged because
the fact that they cannot be reseated makes them inflexible.
For example, an assignment operator cannot properly assign
a new location to a reference. We encountered only a sin-
gle case in astar in which we refactored a reference class
member to be a ptr instead.

Rule (Reference Class Members). Reference class members
are disallowed.

6. Formalizing the Pointer Lifetime Invariant
To ensure that this collection of rules satisfies the pointer
lifetime invariant, we prove that the invariant is maintained
during execution using a formalism of a core fragment of
Ironclad C++ called Core Ironclad. In the name of simplic-
ity, Core Ironclad omits most language features of C++ that
do not directly impinge on this part of the system. For exam-
ple, inheritance, templates, and overloading do not interact
with pointer lifetimes, so they are left out. References are
also excluded in the interest of simplicity as the interesting
interactions with references arise in conjunction with other
language features that are not in the formalism, e.g. over-
loading. What is left is a small, C++-like core calculus with
just enough features to cover the interesting parts of Iron-
clad’s pointer lifetime checking system.

For a complete account of Core Ironclad, including a
complete language description and full proofs of type safety,
please see our technical report [28].

6.1 Locations and the Store
Figure 6 gives the syntax of Core Ironclad. The language
consists of statements s and expressions e, evaluated in a
context ∆ that contains the program’s set of class definitions.
The store Σ contains both the stack and the heap which maps
locations ` to values v. The only values that need to be for-
malized to verify the pointer lifetime invariant are pointers
ptr and lptr and objects of class type C. Within the store, a
value is tagged as being either a ptr or an lptr. These contain
a pointer-value, pv, which is either a valid location or null or
the “head” of an object of type C.

Locations have the form xn@y1 ..ym, where xn is a base
location with name x and store level n, and y1 ..ym is a path
in the style of Rossie and Friedman [18]. The heap is located
at store index 0 and the stack grows with increasing indices
starting at index 1. The store height index n disambiguates

between two variables that have the same name but exist in
different stack frames.

The type-checking and evaluation relations appear in Fig-
ure 7. All of these judgments keep track of the current store
height to ensure that variable lookup picks out the appro-
priate values. Ψ is the store typing which maps locations to
types τ.

Objects are represented in the store using paths. For ex-
ample, consider the following class definitions:

structC{ptr〈C〉a; };
structB{C c; };

A declaration B x; in the main function creates a B object
that lives at base location x1 with value tag B. The fields of
this object are represented as locations with paths rooted at
x1. For example, the location x1@c refers to the C sub-object
within x, and x1@c.a refers to the pointer within that sub-
object.

A curious feature of Core Ironclad is that all expressions
evaluate to locations. The value denoted by an expression
is stored at the location the expression evaluates to. This
greatly simplifies the evaluation semantics in several places.
Notably, assignment simply copies the location denoted by
the right-hand side into the location denoted by the left-hand
side. As the only primitive values that we have are point-
ers, this amounts to making the left-hand pointer refer to the
same location referred to by the right-hand side. We discuss
these rules in more detail in Section 6.3.

6.2 Method Calls
Core Ironclad embeds the active call frame within the term
language using an internal frame expression {s; returne}
rather than using continuations or a separate stack syntax.
This is similar in style to Core Cyclone [13]. For example,
the (abbreviated) rule for method calls

EVAL EXP METH...
Σ′ = . . . [thisn+1@ 7→ lptr (`1)]

(Σ, `1.f (x2
n2@π2))−→exp

n
∆
(Σ′,{s; returne})

replaces a method invocation with an appropriate frame ex-
pression. While the this pointer cannot be wrapped in a smart
pointer in the implementation, the Ironclad validator ensures
that the this pointer behaves like a lptr. Consequently,
Core Ironclad treats the this pointer as a lptr rather than a
third pointer type distinct from ptr and lptr. The remaining
premises (not shown) look up the appropriate method body
to invoke and set up the arguments and local variable decla-
rations in the store. Because the method body is evaluated at
any index n, we typecheck the method at index 0 (i.e., has no
dependence on prior stack frames) and prove a lemma that
shows we can lift that result to the required index n.

When the statement of a frame expression steps, the stack
count must be one higher than that of the frame expression

10

Types τ : : = ptr〈τ〉 | lptr〈τ〉 | C
Surface exprs e : : = x | null | e.x | e1.f (e2)

| newC() | &e | ∗e
Internal exprs e : : = ` | {s; returne} | error
Statements s : : = e1 = e2 | s1;s2

| skip | error
Class decls cls : : = structC{τi xi; imeths};
Methods meth : : = τ1 f (τ2 x){τi xi

i;s; returne}

Expression variables x,y

Locations ` : : = xn@y1 ..ym
Pointer values pv : : = ` | bad ptr
Values v : : = ptr (pv) | lptr (pv) | C
Store Σ : : = · | Σ [` 7→ v]
Store typing Ψ : : = · | Ψ [` : τ]
Class context ∆ : : = {cls1 ..clsm}
Programs prog : : = ∆;void main() {s}

Figure 6. Core Ironclad Syntax

expressions statements

typing Ψ `∆;n
exp e : τ Ψ `∆;n

stmt sok

evaluation (Σ,e)−→
exp

n
∆
(Σ′,e′) (Σ,s)−→

stmt

n
∆
(Σ′,s′)

Figure 7. Typing judgments and evaluation relations

to reflect the new stack frame:

EVAL EXP BODY CONG1

(Σ,s)−→
stmt

n+1
∆

(Σ′,s′)

(Σ,{s; returne})−→
exp

n
∆
(Σ′,{s′; returne})

Finally, when a frame expression returns, the frame expres-
sion is replaced with the location of the return value.

EVAL EXP BODY RET

xn freshforΣ

Σ2 = copy store(Σ, `,xn)
Σ′ = ΣΣ2\(n+1)

(Σ,{skip; return`})−→
exp

n
∆
(Σ′,xn@)

The premises copy the return value ` into a fresh base loca-
tion xn in the caller’s frame (taking care to copy additional
locations if the returned value is an object) and pop the stack.
The result of the method call then becomes that fresh loca-
tion. Note that no dynamic check (say, to make sure that the
value stored in xn is valid after the function returns) is needed
here because the type system enforces that the returned value
cannot be a lptr in this rule:

TYPE EXP BODY

∀τ′.τ 6= lptr〈τ′〉
Ψ `∆;n+1

stmt sok Ψ `∆;n+1
exp e : τ

Ψ `∆;n
exp {s; returne} : τ

6.3 Pointer Semantics
With respect to the pointer lifetime invariant, the most inter-
esting rules concern the assignment of pointers as well as the
constraints we place on their values in the store. The simplest
case is when we assign between two ptr values where we
simply overwrite the left-hand pointer with the right-hand
pointer in the store.

EVAL STMT ASSIGN PTR PTR

Σ(`1) = ptr (pv1) Σ(`2) = ptr (pv2)
Σ′ = Σ [`1 7→ ptr (pv2)]

(Σ, `1 = `2)−→
stmt

n
∆
(Σ′,skip)

When assigning a (non-null) lptr to a ptr, we verify that the
lptr does indeed point to the heap by checking that the store
index of the location referred to by the lptr is 0.

EVAL STMT ASSIGN PTR LPTR

Σ(`1) = ptr (pv1) Σ(`2) = lptr (x0@π)
Σ′ = Σ [`1 7→ ptr (x0@π)]

(Σ, `1 = `2)−→
stmt

n
∆
(Σ′,skip)

When the lptr does not point to the heap, we raise an error.

EVAL STMT ASSIGN PTR LPTR ERR

Σ(`1) = ptr (pv1) n′ 6= 0
Σ(`2) = lptr (xn′@π2)

(Σ, `1 = `2)−→
stmt

n
∆
(Σ,error)

Finally, when assigning (non-null) lptrs, the dynamic check
ensures that the lptr being assigned to out-lives the location
it receives by comparing the appropriate store indices.

EVAL STMT ASSIGN LPTR LPTR

Σ(x1
n1@π1) = lptr (pv1)

Σ(`2) = lptr (x2
n2@π2)

Σ′ = Σ [x1
n1@π1 7→ lptr (x2

n2@π2)] n2 ≤ n1

(Σ,x1
n1@π1 = `2)−→

stmt

n
∆
(Σ′,skip)

If the lptr does not out-live its new location, we raise an error
like the ptr-lptr case above.

In addition to standard typing rules for statements and
expressions, Core Ironclad enforces a consistency judgment
over the store through the store typing. Two of these binding
consistency rules for pointers capture the pointer lifetime
invariant.

11

The first rule concerns ptrs and requires that the location
pointed to by the ptr is on the heap (at index 0).

CONS BINDING PTR

Σ(xn@π) = ptr (x′n
′
@π′) n′ = 0

Ψ(x′n
′
@π′) = τ

Ψ;Σ s̀t1 xn@π : ptr〈τ〉ok

The second rule concerns lptrs and requires that lptrs only
exist at base locations without paths (not embedded within
an object) and that the location pointed to by a particular lptr
is in the same stack frame or a lower one.

CONS BINDING LPTR

Σ(xn@) = lptr (x′n
′
@π′) n′ ≤ n

Ψ(x′n
′
@π′) = τ

Ψ;Σ s̀t1 xn@ : lptr〈τ〉ok

6.4 The Pointer Lifetime Invariant
Invariant (Pointer lifetime). For all bindings of the form
[x1

n1@π1 7→ ptr (pv)] and [x1
n1@π1 7→ lptr (pv)] in Σ, if pv=

x2
n2@π2 (i.e., is non-null) then n2 ≤ n1.

We can now present our theorem that states that the
pointer lifetime invariant is preserved by execution. We
make use of the summary judgment wf (∆,Ψ,Σ,k), which
asserts that the class and method context ∆, the store typing
Ψ, and the store Σ are all consistent with one another and
contain only bindings at or below stack height k. These
checks also include the pointer lifetime invariant. Therefore,
wf (∆,Ψ,Σ,k) implies that the pointer lifetime invariant
holds for Σ.

Theorem (Pointer lifetime invariant is preserved). If
wf (∆,Ψ,Σ,k), Ψ `∆;n

stmt sok, and (Σ,s) −→
stmt

n
∆
(Σ′,s′), where

k is the maximum stack height used within the statement s,
then the pointer lifetime invariant holds in the store Σ′.

This theorem is a straightforward corollary of a standard
type preservation lemma. That is, preservation tells us that
the wf judgment is preserved by evaluation.

Lemma 1 (Preservation).

1. If wf (∆,Ψ,Σ, |s|+n), Ψ`∆;n
stmt sok, and (Σ,s)−→

stmt

n
∆
(Σ′,s′),

then there exists Ψ′ such that wf (∆,Ψ′,Σ′, |s| + n),
Ψ `∆;n

stmt s′ ok, and Ψ⊆n Ψ′.
2. If wf (∆,Ψ,Σ, |e|+n), Ψ `∆;n

exp e : τ, and (Σ,e)−→
exp

n
∆
(Σ′,e′),

then there exists Ψ′ such that wf (∆,Ψ′,Σ′, |e|+n), Ψ′ `∆;n
exp

e′ : τ, and Ψ⊆n Ψ′.

Core Ironclad also supports a standard progress lemma,
completing the proof of type safety.

Lemma 2 (Progress).
1. If Ψ `∆;n

stmt sok and Ψ s̀t Σok then s is skip, error, or
(Σ,s)−→

stmt

n
∆
(Σ′,s′).

2. If Ψ `∆;n
exp e : τ and Ψ s̀t Σok then e is `, error, or (Σ,e)−→

exp
n
∆
(Σ′,e′).

In Core Ironclad, well-formed terms take a step or step
to error. error terms arise only when an attempted pointer
assignment breaks the pointer lifetime invariant. This corre-
sponds to the dynamic checks outlined in Section 6.3.

We prove preservation at stack height |s|+n (respectively
|e|+ n) where n is the height of the stack up to statement s
(respectively e) and |s| (respectively |e|) is the number of
additional stack frames embedded in the subject of the eval-
uation. The extra condition Ψ⊆n Ψ′ says that new store typ-
ing Ψ′ has all the bindings of the old store typing Ψ up to
stack height n. The complete details of the proofs of these
theorems can be found in our companion technical report.

7. Validator for Ironclad C++
Although many of the rules of Ironclad C++ are simple
enough for a well-intentioned programmer to follow un-
aided, ensuring safety requires the use of a static syntactic
validation tool to certify the code’s conformance to the Iron-
clad C++ subset. The role of the validator is to ensure that
any violations of memory/type safety will be caught by ei-
ther: (1) the standard C++ static type checker or (2) the dy-
namic type cast and bounds checks performed by the smart
pointers. For example, the validator ensures that no raw
pointer or union types remain. For heap-precise garbage col-
lection, the validator ensures that user-defined mark() meth-
ods correctly identify all pointers, pointer-containing mem-
bers, and inherited base classes of each precisely marked
class. To prevent dangling pointers to stack objects via dy-
namic lifetime checking, the validator checks that all uses
of address-of, the this pointer, and conversions from stack
arrays to pointers immediately enter an lptr or laptr. The
syntactic validator examines the initializer lists for each class
constructor to ensure that pointer class members are safely
initialized. The validator ensures that references are not used
as class members. Finally, the validator ensures that expres-
sions returned by reference match one of the following con-
structs: dereference of an aptr or ptr, a reference parame-
ter, the dereference of the this pointer, or a class member.

Once the code passes the static syntactic validator, the
C++ type-checker then statically enforces the remaining
type safety properties. For example, unsafe casts and void*

will not type-check in validated code because Ironclad C++
smart pointers explicitly do not support them. Similarly,
array indexing and pointer arithmetic operators are not
defined on ptr<T> objects, ensuring the disallowed use of
such operators will be caught during compilation.

Our implementation of the static validator builds upon
LLVM’s Clang compiler front-end [20]. Static validation is
performed on the AST after both preprocessing and template
instantiation have been performed by the Clang front-end.
The Ironclad C++ validator applies simple, local checks to

12

void f(void*);

⇓ (Manual)

template<typename T>

void f(T*);

⇓ (Refactoring Tool)

template<typename T>

void f(ptr<T>);

Figure 8. Common refactoring to remove void* pointers.
First we manually add templates. Then the refactoring tool
adds ptrs.

type declarations and expressions. None of the checks used
by the static validator require complicated analysis.

Although currently implemented as a stand-alone check-
ing tool, an alternative implementation would be to integrate
the static validation into a compiler such that the validator
can be invoked with a command line flag during compila-
tion (much as GCC’s -std= flag ensures the code conforms
to a specific language standard).

8. Experiences Refactoring to Ironclad C++
To evaluate the usability and applicability of Ironclad C++,
we refactored multiple performance benchmarks (from
the SPEC and Parsec suites) and an open-source key-store
database written in C++ to Ironclad C++. The open-source
database, leveldb, was developed at Google and uses
custom data structures, including a skip list and a LRU
cache. Table 2 characterizes the C++ language features used
by these applications and details the nature of the code
changes performed to refactor to Ironclad C++. Overall, we
were able to successfully refactor 50K lines of C/C++ code
to Ironclad C++. We performed a series of manual and au-
tomated refactoring steps to transform these programs, and
the majority of the code transformations were performed by
our semi-automatic refactoring tool (Section 8.3).

8.1 Step 1: Moving from C to C++
Ironclad C++ requires the use of a C++ compiler to com-
pile all our benchmarks. C++, unlike C, does not allow a
void* to be implicitly converted to a T*. Hence, three C
benchmarks from the SPEC benchmark suite could not be
compiled using a C++ compiler without a few manual mod-
ifications. We manually added explicit casts to the offending
expressions. In sjeng, we changed the name of a variable
named “this”, which is a C++ keyword. Once all of the
programs could be compiled using a C++ compiler, we fur-
ther modified them to use C++’s new function for allocation
rather than C’s malloc, which requires unsafe casts from
void*. To match new, we also replaced free with delete.

8.2 Step 2: Increasing Type-safety
After refactoring the code to compile with a C++ compiler
and use C++ allocation and deallocation functions, we per-
formed a few additional code modifications to prepare the
code for automated refactoring. As noted in Section 3.1,
void* pointers are not permitted by Ironclad C++. The pro-
cess of replacing void* pointers with type-safe constructs is
not generally automatable because it may require recogniz-
ing and extracting an inheritance hierarchy or adding tem-
plate parameters for more than one type. Rather than at-
tempting to perform this refactoring automatically, we in-
stead chose to manually replace occurrences of void*, as
shown in Figure 8. A few additional benchmark-specific
code modifications were necessary, but these modifications
were typically simple and did not require any deep under-
standing of the algorithms or the data structures used in the
benchmarks. For example, lbm used an errant cast from a
double*** to a double** that was fixed by correcting the
pointer types to allow compilation without an unsafe cast.

8.3 Step 3: Automated Refactoring
Once we manually modified the benchmarks to use type-
safe features, we applied a custom automated refactoring
tool to the code. This refactoring tool performs simple au-
tomated code modifications, including modifying pointer
type declarations (T* to ptr<T>), allocation and dealloca-
tion sites (new T(...) to new_obj<T>(...) and delete p

to p.destruct()), and type-casts ((T*)p to cast<T>(p)).
As shown in Table 2, the majority of the code modifications
necessary to refactor C and C++ code to Ironclad C++ are
performed by the refactoring tool. The refactoring tool is
meant to be used only once to aid the initial transformation.
The refactoring tool is built upon LLVM’s Clang compiler
front-end.

The refactoring tool could simply use aptr<T> as a re-
placement for every T*, but doing so results in unnecessary
dynamic checks whenever a more-efficient ptr<T> would
suffice. Thus, the refactoring tool implements a best-effort
analysis similar to the whole program pointer type inference
in CCured [25] to determine whether to replace a T* with
an aptr<T> or a ptr<T>. This whole program analysis is
run once, during refactoring, and it is not required for fu-
ture validation or further manual refactoring. The refactor-
ing tool analysis accounts for the use of address-of, this,
and assignments from stack allocated arrays to determine
which pointers require dynamic lifetime checking (lptr and
laptr). The refactoring tool can also optionally generate
mark() methods for heap-precise garbage collection.

8.4 Step 4: Post-Refactoring Modifications
Considering that C++ is a large language with many cor-
ner cases, the refactoring tool does not automatically han-
dle every possible code modification. We also performed a
few manual code changes following refactoring. Given that

13

Manual Code Changes Automated Code Changes
Benchmark Lang Class Ptrs Refs LoC C++ Alloc Pre Post Ptr Types SysFunc Alloc Casts

blackscholes C 1 20% N/A 405 0 5 4 2 5 5 4 0
bzip2 C 2 47% N/A 5731 16 41 28 14 224 21 30 30
lbm C 1 57% N/A 904 1 3 20 6 49 7 2 4
sjeng C 2 46% N/A 10544 45 24 164 158 310 82 30 0
astar C++ 25 7% 35% 4280 0 60 2 7 72 15 76 2
canneal C++ 3 27% 29% 2817 0 0 2 9 72 3 2 1
fluidanimate C++ 4 7% 7% 2785 0 1 0 2 85 7 44 1
leveldb C++ 66 49% 24% 16188 0 0 160 149 1028 69 195 33
namd C++ 15 46% 7% 3886 0 0 0 44 265 11 69 10
streamcluster C++ 5 37% 0% 1767 0 25 2 2 63 17 9 21
swaptions C++ 1 39% 0% 1095 0 11 1 12 63 3 0 9

Table 2. Characterization of the evaluated programs. From left to right, benchmark name, source language, number of class-
es/structs, % pointer declarations, % reference declarations, lines of code, manually refactored lines of code, and automatically
refactored lines of code.

refactoring is intended to be performed only once, the num-
ber of lines modified post-refactoring was relatively small
in most cases. For example, our pointer type inference im-
plementation sometimes missed a nested increment opera-
tion on an array pointer and inferred that the pointer was
therefore a singleton. This error is easily caught through the
type-checking done by the C++ compiler (ptr<T> does not
overload the increment operator). A more mature refactoring
tool would avoid these minor refactoring errors.

Two notable outliers required more manual refactor-
ing than the rest of the refactored programs (sjeng and
leveldb). We describe the code modifications below.

sjeng In sjeng, there were 154 uses of f(&A[0]) to pass
a pointer to the first element of a stack allocated array as an
argument to a function f. In Ironclad C++, the lptr<T> con-
structed from the result of &A[0] contains no information
about the size of A and therefore assumes that is has size 1.
We modified the code to use f(A) instead, which retains the
correct array size information. Where &A[i] is used with
some non-zero index i, the A.offset(i) method provided
by the array and array pointer classes was used to create a
new array pointer with the correct offset and size.

In addition, the gen function stores a pointer to a stack al-
located array in a global variable, which is not permitted in
Ironclad C++. This global variable is set on each entry to the
gen function and used by other functions that were called
from gen. In place of the unsafe use of the global variable,
we modified the code to simply pass the pointer parameter
from gen to the rest of the functions that required it. This
change was conceptually straightforward but required mod-
ifying 137 lines of code.

leveldb leveldb required a larger number of manual code
modifications compared to the benchmarks with fewer to-
tal lines of code. In particular, the Slice class in leveldb

contains a constructor that accepts a const char *. Refac-
toring this constructor to Ironclad C++ converts the param-

eter to type aptr<const char>. However, in cases where
a string literal was originally used to call a function with a
Slice parameter, the Ironclad C++ code required more than
the one implicit user-defined conversion allowed by the C++
standard [16]. Thus, we added an explicit conversion from
string literals to aptr<const char> at each call site.

8.5 Step 5: Performance Tuning
Finally, we identified modifications to three of the bench-
mark programs as examples of performance tuning that can
reduce the performance penalty of providing memory safety.
These optimizations serve as starting points for other source-
level optimizations that the Ironclad C++ API could provide.

bzip2 In bzip2, the generateMTFValues function cre-
ates a temporary pointer to a stack allocated array in a doubly
nested loop. In the Ironclad C++ version of this code, the
temporary pointer becomes an laptr, which must initial-
ize its lowerBound on each iteration of the outer loop. Fur-
ther, the temporary pointer was used in pointer arithmetic,
which is relatively expensive (compared to the array index
operator, which does not need to check a lower bound) for
Ironclad C++ aptr and laptr types. To improve the perfor-
mance of this code, we replaced the temporary pointer with
an integer index and used array indexing off of the orig-
inal stack allocated array instead of pointer arithmetic on
the temporary. This optimization reduced the performance
penalty from 53% to 35%.

streamcluster The streamcluster benchmark spends
the majority of its runtime in the distance function, which
computes the pointwise distance between two vectors.
Due to the use of a tight for-loop with repeated indexing
into the input vectors, our initial Ironclad C++ version of
this benchmark suffered from unnecessarily high bounds
checking overheads of 70%. To reduce this overhead, we
replaced the loop with a call to a reduce function, provided
by the Ironclad C++ library, that simply bounds checks the

14

start and end indices of the reduction on both input arrays,
and then runs the computation at unchecked speeds. With
this optimization, the streamcluster benchmark executes
with no measurable overhead compared to the original.

swaptions Swaptions spends most of its runtime per-
forming operations on vectors and matrices of floating
pointer numbers. For matrix structures, swaptions uses an
array-of-array-pointers to approximate a two-dimensional
array (i.e., aptr<aptr<double>>). These structures are
inefficient in two ways. First, creating the structure requires
multiple memory allocations. Second, due to the additional
metadata used by aptr, each two-dimensional index op-
eration (i.e., A[i][j]) must first load the address, current
index, and size stored in the first level array and then load
the double stored in the second level array. We replaced the
aptr<aptr<double>> structures with a matrix<double>.
The matrix class provides a proper two-dimensional ar-
ray by overloading operator() (unsigned int x,

unsigned int y). In this way, the matrix class performs
two bounds checks (one on each index) and then returns
the data, avoiding the additional indirection required by
the aptr<aptr<double>> structure. This optimization
reduced the performance penalty from 67% to 45%.

8.6 Libraries
The C++ STL The C++ Standard Template Library (STL)
provides common containers and algorithms. The under-
lying implementations of these containers use unchecked
pointer operations and are not safe by default. Only a few
of our benchmarks used the STL (canneal and leveldb),
so instead of refactoring the entire STL (approximately
100k lines of code) to conform to Ironclad C++, we
modified key parts of the STL to emulate the checking that
a fully refactored version would perform. We performed
four major modifications on the containers used in our
benchmarks. First, we changed the default allocator to be
the gc_allocator. Second, we inserted bounds checks
on all array operations, including the indexing operators
for string and vector. Third, we modified methods that
accepted or returned raw pointers to instead use Ironclad
C++ smart pointers. Finally, we modified the iterators to
each container to avoid accessing invalid memory. For
string and vector, this was as simple as replacing the raw
pointer iterator with an aptr. For map and set, we modified
the tree_iterator to avoid iterating past the root or end
nodes of the tree.

Atomics In C++11, atomic operations on primitive data
types and pointers were introduced as part of the STL. To
support atomic operations on pointers, Ironclad C++ pro-
vides template specializations for the atomic<T> type for
ptr and aptr; lptr and laptr do not require support for
atomic operations because pointers to them cannot escape a
thread’s stack. The template specialization for ptr mirrors
the standard atomic pointer implementation because ptr

contains a single pointer field. Unlike ptr, the template spe-
cialization of atomic for aptr requires the use of a lock or
transaction to atomically update the three fields of the aptr.
Using these atomic pointers, any program that was data-
race free prior to using Ironclad C++ remains data-race free.

External Libraries Ideally, library source-code would also
be refactored to Ironclad C++, but we acknowledge that it
may not always be feasible. In such cases, Ironclad C++ pro-
tects what it can, while begrudgingly allowing the program
to call unsafe library code through methods on the smart
pointer classes that allow the underlying raw pointer to be
passed to a library call. This functionality is provided for
the case where refactoring is not possible, similarly to how
Java provides the JNI for access to unsafe C/C++ code. This
behavior is optional and can be disabled.

8.7 Bug Detection Effectiveness
As a coarse sanity check on the implementation of the Iron-
clad C++ library, we tested Ironclad C++ on multiple suites
of known bugs, including selected programs from BugBench
(gzip, man, ncompress, and polymorph) [22], thirty array-
out-of-bounds vulnerability test cases from the NIST Juliet
Suite [26], and the Wilander test suite [35]. As expected,
Ironclad C++ safely aborted on all buggy inputs. We note
that these tests are not definitive proof of Ironclad C++’s
soundness or correctness, of course.

9. Experimental Evaluation
The previous section established the feasibility of bringing
full type and memory safety to C++ at the cost of refactor-
ing programs to conform to the Ironclad C++ rules, but it
did not evaluate the performance and memory usage cost of
enforcing such safety at runtime. This section describes our
prototype implementation and presents runtime overhead re-
sults, including experiments to isolate the overhead added by
the various aspects of Ironclad C++. In addition, we present
results that indicated the overheads from garbage collec-
tion are low, that heap-precise collection reduces memory
consumption versus purely conservative collection, and dy-
namic lifetime checking is faster than heapification.

9.1 Implementation and Experimental Methods
We use the programs refactored and optimized in the pre-
vious section (from the SPEC benchmark suite, the Parsec
benchmark suite, and an open-source database—leveldb)
to evaluate the runtime overheads of enforcing safety. The
benchmarks were compiled using LLVM/Clang version 3.2
C++ compiler, and our test system contains an Intel 2.66Ghz
Core2 processor. The Ironclad C++ library includes imple-
mentations of the various smart pointer classes and safe
versions of various C standard library functions. We mod-
ified the libcxx STL implementation to provide safe itera-
tors, bounds-checked array access operations, and interfaces
that accept and return smart pointers instead of raw point-

15

0.0

0.5

1.0

1.5

N
o
rm

al
iz

ed
 R

u
n
ti

m
e Translated Bounds Bounds + Stack Bounds + Stack + GC Bounds + Stack + Heap-Precise GC

astar blackscholes bzip2 canneal fluidanimate lbm ldb-fseq ldb-rreverse ldb-rhot namd sjeng stcluster swaptions average

Figure 9. Normalized runtimes for refactored Ironclad C++ code with (adding checking from left to right): no checking,
bounds checked arrays, safe stack allocations, safe heap allocations, and heap-precise garbage collection.

0.0

0.5

1.0

1.5

2.0

N
o
rm

al
iz

ed
 M

em
.
U

sa
g
e

Translated Bounds Bounds + Stack Bounds + Stack + GC Bounds + Stack + Heap-Precise GC

astar blackscholes bzip2 canneal fluidanimate lbm ldb-fseq ldb-rreverse ldb-rhot namd sjeng stcluster swaptions average

Figure 10. Normalized memory usage for Ironclad C++ code with (from left to right) bounds checking metadata, bounds and
stack checking metadata, both metadata with conservative GC, and both metadata with heap-precise GC.

ers. To reduce overhead, the smart pointer implementation
uses Clang’s always_inline function attribute to ensure
the compiler inlines the dereference and indexing operators.
We used Valgrind’s Massif tool to measure memory usage
overheads.

We used the Boehm-Demers-Weiser conservative
garbage collector both as the baseline garbage collector and
as the basis for the heap-precise garbage collector [7]. To im-
plement the heap-precise collector, we extended the marking
implementation of the Boehm-Demers-Weiser collector to
call the mark() method of allocations initialized for precise
collection rather than pushing the allocation’s address onto
the conservative collector’s mark stack. Any addresses
passed back to the collector from mark() are added to
the mark stack. Each potential address passes through the
existing checks employed by the Boehm-Demers-Weiser
collector for duplicate marking and blacklisting.

9.2 Overall Performance
The overall performance overhead for bringing type and
memory safety to the refactored programs is just 12% on
average. Figure 9 shows these results, and it also includes re-
sults for multiple configurations to show the impact of each
aspect of Ironclad C++. The left-most bar in each group
(“Translated”) shows the normalized execution time of the
fully refactored, strongly typed benchmarks when dynamic
bound checking, dynamic lifetime checking, and the garbage
collector are all disabled. These results indicate there is
negligible overhead from replacing raw pointers with smart
pointers. The second bar from the left in each group of Fig-
ure 9 (“Bounds”) shows bounds checking is by far the most
significant contributor to the overall performance overhead.

9.3 Overheads of Garbage Collection
Figure 9 shows that the runtime overhead of garbage collec-
tion is negligible in our benchmarks. Although perhaps sur-
prising, our benchmarks are not typical of programs used in
garbage collection studies, which are generally selected for
their frequent allocation behavior. For example, several of
our benchmarks allocate memory only during initialization
and do not deallocate memory—resulting in extremely rare
collection invocation (less than once per second for many
benchmarks). The benchmark that collects most frequently
(six hundred times per second), swaptions, incurs an addi-
tional 23% performance penalty due to garbage collection.

The garbage collector increases memory usage by 14%
on average and up to 85% for leveldb-fillseq (Fig-
ure 10) when compared to explicit deallocation with the
same underlying memory allocator. One caveat is that the
allocator underlying the conservative collector uses more
space on average than Clang’s default memory allocator (by
29%) even when operating in explicit memory deallocation
mode; if this overhead is included, the total memory over-
head of GC rises to 43% (not shown on Figure 10).

9.4 Benefits of Heap-Precise Collection
Figure 10 also shows the impact of Ironclad’s heap-precise
extension to the garbage collector. In most cases, the
heap-precise collector provides no appreciable reduc-
tion of memory usage, but in two cases — astar and
leveldb-fillseq — the pure-conservative collector
suffers due to imprecise identification of heap pointers.
When applying heap-precise collection, these programs’
memory usage is reduced by 28% and 66%, respectively,

16

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

Heapify (No GC) Dynamic Lifetime (No GC) Dynamic Lifetime (With GC) Unsafe

astar blackscholes bzip2 canneal fluidanimate lbm ldb-fseq ldb-rreverse ldb-rhot namd sjeng stcluster swaptions geom

Figure 11. Runtime normalized to using heapification with GC. Bars from left to right are heapification with unsafe deallo-
cation, dynamic lifetime checking (safe stack allocations), dynamic lifetime checking with GC (safe allocations), and unsafe
deallocation.

compared to the unmodified conservative collector. The
memory overheads of bzip2 and namd do not improve
under heap-precise collection due to stack-allocated arrays
(which are not tagged) with elements that are misidentified
as pointers. The overall average memory overhead of GC
vs. explicit memory allocation drops from 14% to 9% with
the addition of heap-precise collection.

We observe a 2% performance penalty for heap-precise
garbage collection. Upon investigation, we found this
penalty is not due to slower tracing time using mark()

methods during garbage collection; the penalty is a result
of changes in data layout introduced by our implementation
of heap-precise collection (which wraps each allocation
with a templated wrapper class with a virtual table pointer
for calling the correct mark() method). We confirmed this
hypothesis by including the same header when using the
completely conservative collector, which yielded the same
runtime overheads.

9.5 Benefits of Dynamic Lifetime Checking
Dynamic lifetime checking incurs less than 1% overhead
over the baseline of providing no safety checking for stack
deallocation. We originally observed overheads of 17% in
bzip2, but these overheads were due to the creation of an
laptr temporary in a tight loop. The optimization described
in Section 8.5 eliminated the overhead from dynamic life-
time checking in bzip2.

In Figure 11, we compare dynamic lifetime checking
to the other notable alternative for stack allocation safety:
heapification. On average, heapification is 2× slower than
dynamic lifetime checking. We observed two situations
in which heapification lead to increased performance
overheads: a stack-allocated array escaping to a function
(occurs in sjeng) and calling a method on a stack-allocated
object (occurs in leveldb). As a result, dynamic lifetime
checking is faster than heapification by 27.5× (sjeng), 6.2×
(ldb-fseq), 9.1× (ldb-rreverse), and 6.4× (ldb-rhot).

In almost all cases, dynamic lifetime checking avoids the
use of heapification for enforcing stack deallocation safety.
The runtime performance of dynamic lifetime checking is
nearly identical to the performance of code with no safety
checking for stack deallocation.

10. Conclusion
Ironclad C++ brings type safety to C++ at a runtime over-
head of 12%. We demonstrated the feasibility of refactor-
ing C and C++ code to Ironclad C++ with the help of a
semi-automatic refactoring tool. With heap-precise garbage
collection, Ironclad C++ provides an optional interface for
precisely identifying heap pointers, which was shown to de-
crease average memory usage of garbage collection. We in-
vestigated both heapification and dynamic lifetime check-
ing for enforcing stack deallocation safety and found that
dynamic lifetime checking offered flexibility, memory con-
trol, and limited source code modifications as compared to
heapification. Overall, our experiences and experimental re-
sults indicate that Ironclad C++ has the potential to be an
effective, low-overhead, and pragmatic approach for bring-
ing comprehensive memory safety to C++.

Acknowledgments
We would like to thank Emery Berger, Mathias Payer, and
John Regehr for their comments and suggestions about this
work. This research was funded in part by the U.S. Gov-
ernment by ONR award N000141110596 and NSF grants
CNS-1116682 and CCF-1065166. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Government.

References
[1] A. Alexandrescu. Modern C++ Design: Generic Program-

ming and Design Patterns Applied. Addison-Wesley, Boston,
MA, 2001.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detection
of All Pointer and Array Access Errors. In Proceedings of
the SIGPLAN 1994 Conference on Programming Language
Design and Implementation, June 1994.

[3] J. Bartlett. Mostly-Copying Garbage Collection Picks Up
Generations and C++. Technical report, DEC, 1989.

[4] E. D. Berger and B. G. Zorn. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In Proceedings of the SIGPLAN
2006 Conference on Programming Language Design and Im-
plementation, pages 158–168, June 2006.

17

[5] H.-J. Boehm. Space Efficient Conservative Garbage Collec-
tion. In Proceedings of the SIGPLAN 1993 Conference on
Programming Language Design and Implementation, pages
197–206, June 1993.

[6] H.-J. Boehm and M. Spertus. Garbage collection in the next
C++ standard. In Proceedings of the 2009 International Sym-
posium on Memory Management, pages 30–38, June 2009.

[7] H.-J. Boehm and M. Weiser. Garbage Collection in an Unco-
operative Environment. Software — Practice & Experience,
18(9):807–820, Sept. 1988.

[8] D. Colvin, G. and Adler, D. Smart Pointers - Boost 1.48.0.
Boost C++ Libraries, Jan. 2012. www.boost.org/docs/

libs/1_48_0/libs/smart_ptr/smart_ptr.htm.
[9] D. Dhurjati and V. Adve. Backwards-Compatible Array

Bounds Checking for C with Very Low Overhead. In Proceed-
ings of the 28th International Conference on Software Engi-
neering (ICSE), pages 162–171, 2006.

[10] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
Safety Without Runtime Checks or Garbage Collection. In
Proceedings of the 2003 ACM SIGPLAN Conference on Lan-
guage, Compiler, and Tool for Embedded Systems (LCTES),
pages 69–80, 2003.

[11] D. Edelson and I. Pohl. A Copying Collector for C++. In
Proceedings of The 18th ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages (POPL), pages 51–
58, Jan. 1991.

[12] D. Gay, R. Ennals, and E. Brewer. Safe Manual Memory Man-
agement. In Proceedings of the 2007 International Sympo-
sium on Memory Management, Oct. 2007.

[13] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-Based Memory Management in Cyclone.
In Proceedings of the SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation, June 2002.

[14] R. Hastings and B. Joyce. Purify: Fast Detection of Mem-
ory Leaks and Access Errors. In Proc. of the Winter Usenix
Conference, 1992.

[15] M. Hirzel and A. Diwan. On the type accuracy of garbage col-
lection. In Proceedings of the 2000 International Symposium
on Memory Management, pages 1–11, Oct. 2004.

[16] International Standard ISO/IEC 14882:2011. Programming
Languages – C++. International Organization for Standards,
2011.

[17] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A Safe Dialect of C. In Proceedings of the
2002 USENIX Annual Technical Conference, June 2002.

[18] J. Jonathan G. Rossie and D. P. Friedman. An Algebraic Se-
mantics of Subobjects. In Proceedings of the 17th SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages and Application (OOPSLA), Nov. 2002.

[19] R. Jones and R. Lins. Garbage Collection: Algorithms for Au-
tomatic Dynamic Memory Management. John Wiley & Sons,
1996.

[20] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceed-
ings of the International Symposium on Code Generation and
Optimization, page 75, 2004.

[21] D. Lomet. Making Pointers Safe in System Programming
Languages. IEEE Transactions on Software Engineering,
pages 87 – 96, Jan. 1985.

[22] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bug-
bench: Benchmarks for Evaluating Bug Detection tools. In
In PLDI Workshop on the Evaluation of Software Defect De-
tection Tools, June 2005.

[23] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic.
SoftBound: Highly Compatible and Complete Spatial Mem-
ory Safety for C. In Proceedings of the SIGPLAN 2009 Con-
ference on Programming Language Design and Implementa-
tion, June 2009.

[24] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Pro-
ceedings of the 2010 International Symposium on Memory
Management, June 2010.

[25] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-Safe Retrofitting of Legacy Soft-
ware. ACM Transactions on Programming Languages and
Systems, 27(3), May 2005.

[26] NIST Juliet Test Suite for C/C++. NIST, 2010.
http://samate.nist.gov/SRD/testCases/suites/

Juliet-2010-12.c.cpp.zip.
[27] Y. Oiwa. Implementation of the Memory-safe Full ANSI-

C Compiler. In Proceedings of the SIGPLAN 2009 Confer-
ence on Programming Language Design and Implementation,
pages 259–269, June 2009.

[28] P.-M. Osera, R. Eisenberg, C. DeLozier, S. Nagarakatte,
M. M. K. Martin, and S. Zdancewic. Core Ironclad. Technical
Report MS-CIS-13-06, University of Pennsylvania, 2013.

[29] J. Pincus and B. Baker. Beyond Stack Smashing: Recent Ad-
vances in Exploiting Buffer Overruns. IEEE Security & Pri-
vacy, 2(4):20–27, 2004.

[30] J. Rafkind, A. Wick, M. Flatt, and J. Regehr. Precise Garbage
Collection for C. In Proceedings of the 2009 International
Symposium on Memory Management, June 2009.

[31] M. S. Simpson and R. K. Barua. MemSafe: Ensuring the
Spatial and Temporal Memory Safety of C at Runtime. In
IEEE International Workshop on Source Code Analysis and
Manipulation, pages 199–208, 2010.

[32] B. Stroustrup. A Rationale for Semantically Enhanced Library
Languages. In Library-Centric Software Design, page 44,
2005.

[33] B. Stroustrup. Software Development for Infrastructure. Com-
puter, 45:47–58, Jan. 2012.

[34] E. Unger. Severe memory problems on 32-bit Linux,
April 2012. https://groups.google.com/d/topic/

golang-nuts/qxlxu5RZAI0/discussion.
[35] J. Wilander and M. Kamkar. A Comparison of Publicly Avail-

able Tools for Dynamic Buffer Overflow Prevention. In Pro-
ceedings of the Network and Distributed Systems Security
Symposium, 2003.

[36] W. Xu, D. C. DuVarney, and R. Sekar. An Efficient and
Backwards-Compatible Transformation to Ensure Memory
Safety of C Programs. In Proceedings of the 12th ACM SIG-
SOFT International Symposium on Foundations of Software
Engineering (FSE), pages 117–126, 2004.

18

www.boost.org/docs/libs/1_48_0/libs/smart_ptr/smart_ptr.htm
www.boost.org/docs/libs/1_48_0/libs/smart_ptr/smart_ptr.htm
http://samate.nist.gov/SRD/testCases/suites/Juliet-2010-12.c.cpp.zip
http://samate.nist.gov/SRD/testCases/suites/Juliet-2010-12.c.cpp.zip
https://groups.google.com/d/topic/golang-nuts/qxlxu5RZAI0/discussion
https://groups.google.com/d/topic/golang-nuts/qxlxu5RZAI0/discussion

	Introduction
	Overview and Approach
	Bounds Checking & Strong Static Typing
	Strong Static Typing with ptr<T>
	C++ References
	Bounds Checking with aptr<T>
	Pointer Initialization
	The C Standard Library

	Heap-Precise Garbage Collection
	Conservative Collection
	Heap-Precise Collection
	Requirements for Precise Marking
	Object Destruction

	Stack Deallocation Safety via lptr
	Heapification
	Dynamic Lifetime Checking
	References

	Formalizing the Pointer Lifetime Invariant
	Locations and the Store
	Method Calls
	Pointer Semantics
	The Pointer Lifetime Invariant

	Validator for Ironclad C++
	Experiences Refactoring to Ironclad C++
	Step 1: Moving from C to C++
	Step 2: Increasing Type-safety
	Step 3: Automated Refactoring
	Step 4: Post-Refactoring Modifications
	Step 5: Performance Tuning
	Libraries
	Bug Detection Effectiveness

	Experimental Evaluation
	Implementation and Experimental Methods
	Overall Performance
	Overheads of Garbage Collection
	Benefits of Heap-Precise Collection
	Benefits of Dynamic Lifetime Checking

	Conclusion

