
Preserving Secrecy under Refinement ?

Rajeev Alur, Pavol Černý, and Steve Zdancewic

University of Pennsylvania

Abstract. We propose a general framework of secrecy and preserva-

tion of secrecy for labeled transition systems. Our definition of secrecy
is parameterized by the distinguishing power of the observer, the prop-
erties to be kept secret, and the executions of interest, and captures
a multitude of definitions in the literature. We define a notion of se-

crecy preserving refinement between systems by strengthening the clas-
sical trace-based refinement so that the implementation leaks a secret
only when the specification also leaks it. We show that secrecy is in
general not definable in µ-calculus, and thus not expressible in specifica-
tion logics supported by standard model-checkers. However, we develop
a simulation-based proof technique for establishing secrecy preserving re-
finement. This result shows how existing refinement checkers can be used
to show correctness of an implementation with respect to a specification.

1 Introduction

Security and confidentiality are growing concerns in software and system devel-
opment [14]. The question of how to ascertain that an attacker cannot easily get
information about classified data is central in this domain. We investigate the
possibilities for using automated verification techniques (such as model check-
ing) to answer this question, and in particular, we focus on the notion of refine-

ments that preserve secrecy. Stepwise refinement is considered to be the correct
approach to system and software construction, since it enables developers to
find design errors in earlier stages of development. Refinements are useful for
synthesizing implementations from higher level specifications, for instance via
compilation or other code transformations. Such refinement based approach has
been advocated by, for example, Hoare [6] and Lamport [8]. Our goal is to de-
velop a formal and general framework for refinement that also takes into account
secrecy.

Our contributions are two fold. First, we introduce a general framework for
reasoning about secrecy requirements in a system. We use the standard verifica-
tion framework – labeled transition systems. Our notion of secrecy depends on
three parameters: (1) the equivalence relation on runs of the system that models
the distinctions the observer can make, (2) the properties that are to be kept
secret, and (3) the set of runs that are of interest. Intuitively, a property is secret
if, for every run of interest, there is an equivalent run such that only one of these

? This research was partially supported by NSF Cybertrust award CNS 0524059.



two runs satisfies the property. We show that by varying these three parameters,
it is possible to capture possibilistic definitions of secrecy found in the literature
such as noninterference and perfect security property [13, 16]. We study whether
such a general notion of secrecy can be specified using temporal logics. The an-
swer is negative: we prove that secrecy is not expressible in µ-calculus. It has
been claimed (see [3]) that it is possible to specify secrecy in temporal logic
on self-composition (self-composition is a composition of a program with itself).
However, we demonstrate that this too is not possible for the general definition
of secrecy.

It is well-known that standard notions of refinement (e.g. trace inclusion) do
not preserve secrets, and the refined program may leak more secrets than the
original program [10]. Our second main contribution is that we define secrecy-
preserving refinement and present a simulation-based technique for proving that
one system is a refinement of another. In our definition, an implementation is a
refinement of the specification, if for every run r of the implementation, there
exists a run r′ of the specification such that the observer cannot distinguish r
from r′, and for every property that the observer can deduce from r in the imple-
mentation can also be deduced by observing r′ in the specification. Simulation
is a standard technique: in order to show that a program P refines a program Q
(in the classical sense), one can show that Q simulates P . This can also be part
of the simulation based proof of secrecy-preserving refinement, since we require
trace inclusion in the usual way. However, in order to show that P does not leak
more secrets than Q, one must also show that P simulates Q. The reason is that
using this simulation relation, one can prove that if P leaks a secret, then so
does Q. This implies that even though secrecy is not specifiable in µ-calculus,
and thus cannot be directly checked by existing model-checkers, showing that
implementation preserves secrets of the specification can be done using exist-
ing tools (such as Mocha [2], CadenceSMV [11], PVS [12]) by establishing a
simulation relation.

Related Work

We know of only two notions of secrecy preserving refinements that were defined
previously. Mantel [9] assumes that some fixed, strong information-flow proper-
ties of the system are enforced and his definition of refinement preserves those
properties. Our approach is more flexible because it permits the specification
of arbitrary secrecy requirements. This means that if the specification program
does not maintain secrecy of a certain property, the implementation program
does not need to either. Jürjens [7] considers a different (and weaker) defini-
tions of secrets. In his approach, a secret is leaked if the program (possibly when
interacting with an adversary) outputs the secret. This approach thus ignores
information-flow leaks, i.e. cases when the adversary can infer something about
the secret without explicitly seeing it.

There is a large body of literature in language-based security (see [13] for an
overview). Various definitions of secrecy have been considered, but all possibilis-
tic variations (those that ignore probabilistic information about the distribution



of system behaviors) can be captured in our framework. More closely related is
the work on checking for secrecy using self-composition techniques—the work
by Barthe et al. mentioned above and [15, 4], where the authors consider only
deterministic programs. Halpern and O’Neill [5] define a notion of secrecy in the
context of multiagent systems that is similar to our definitions, but they do not
consider secrecy-preserving refinements. The preservation of secrecy has been
studied in the context of programming language translation by Abadi [1] using
techniques based on full abstraction.

2 Secrecy requirements

In this section, we introduce a framework in which we can reason about prop-
erties of a system being secret, i.e. not inferable by an observer who sees the
behavior of the system. The framework we present is general enough to capture
all possibilistic definitions of secrecy defined in both programming language and
verification literature, to the best of our knowledge.

A labeled transition system (LTS) T is a tuple (Q, L, δ, I), where Q is a set
of states, L is a set of labels, δ ⊆ Q × L × Q is a transition relation, and I ⊆ Q
a set of initial states.

A sequence r = q0l0q1 . . . of alternating states and labels is a run of the
labeled transition system T iff q0 ∈ I and ∀i : 0 ≤ i < |r| ⇒ (qi, li, qi+1) ∈ δ. Let
R(T ) be the set of all runs of the LTS T .

A property α is a subset of the set of runs, i.e. α ⊆ R(T ). A state-property

is a property that depends only on the last state of a run. Formally, α is a
state-property iff there is a set of states Qs ⊆ Q such that r ∈ α iff r =
q0l0q1l1 . . . ln−1qn and qn is in Qs.

Given this model of systems, we want to define what an observer can see
and what he or she can infer based on those observations. The observer cannot
see everything about the current run of the system, that is to say, in general,
several runs can correspond to the same observation. We model this using an
equivalence relation on runs, ≡ ⊆ R(T ) × R(T ). For a property α, the observer
is able to conclude that α holds, if α holds for all the runs that correspond to
his or her observations. He or she is able to conclude that α does not hold, if
it does not hold for all the runs that correspond to the observations. The third
possibility is that the observer is not able to conclude whether α holds or not. We
will thus need to use a three-valued domain, {>,⊥, m} (true, false, maybe), and
a partial order that models the knowledge the observer has. v is the following
partial order on {>,⊥, m}: m v m, m v >, m v ⊥,⊥ v ⊥,> v >.

Function IP – inferable properties, is a function that, given a run r, a property
α and an equivalence relation ≡, represents the knowledge of the observer about
the property α after the run r. IP(r, α,≡) = > if ∀r′ : r′ ≡ r ⇒ r′ ∈ α,
IP(r, α,≡) = ⊥ if ∀r′ : r′ ≡ r ⇒ r′ /∈ α and IP(r, α,≡) = m otherwise. Our
notion of secrecy depends on one additional parameter: instead of requiring a
property α to be secret in every run of the system, we may want to focus only



on a subset β of runs that are of interest, e.g. the set of all terminating runs.
This leads to the following formalization of secrecy:

Let T be a labeled transition system and α and β be two properties. The
property α is a secret in β for T w.r.t. ≡ if for all r ∈ β, IP(r, α,≡) = m.

We present the following examples in order to show that our definition is general
enough to capture several standard information-flow properties such as noninter-
ference or Perfect Security Property. We can capture these definitions by varying
the parameters ≡ and β.

Linear-time Secrecy

Consider an observer who can see the actions of the system, i.e. the labels in L.
These labels, for example, might be the messages sent or received by the system.
Assume that L contains a symbol τ , which models internal actions of the system.

We define the strong (time-sensitive) equivalence relation (≈) as follows.
Let Tr be an erasing homomorphism defined on runs: Tr(q) = ε, Tr(l) = l,
i.e. Tr erases all states. Two runs r and r′ are strongly equivalent (r ≈ r′) iff
Tr(r) = Tr(r′). The equivalence class to which a run r belongs can be rep-
resented by Tr(r), which corresponds to what the observer sees when r is the
current execution of the system. Tr(r) is a sequence of labels, and such sequences
are called traces. Tr(T ) is the set of all traces of the LTS T .

We define the weak (time-insensitive) equivalence relation (≈w) as follows.
Let Trw be an erasing homomorphism defined on runs: Trw(q) = ε, Trw(l) = l
for l 6= τ and Trw(τ) = ε, i.e. Trw erases all states and all internal actions.
Two runs r and r′ are weakly equivalent (r ≈w r′) iff Trw(r) = Trw(r′). The
equivalence class can be represented by Trw(r) and is called a weak trace. Let
Trw(T ) be the set of all weak traces of the LTS T .

Consider the following two programs.

A: x=?; y=0; z=x; send z;
B: x=?; y=0; z=y; send z;

It is easy to see how they can be modeled as transition systems in our framework.
The states are valuations of variables. The set L contains three labels s0, s1, τ .
s0 denotes the fact that 0 was sent, s1 that 1 was sent and τ denotes all the
internal (silent) actions. The input (x = ?) is intended not to be seen by an
observer and thus is modeled by a silent action. We want to analyze what an
observer might infer about whether or not x = 0 during the execution of the
program if he or she can observe what the program sends. We model this using
the strong observational equivalence ≈ and the state property x = 0. Suppose
that the input is 0. Note that the observer sees the same trace for both programs,
namely t = τττ0. For the program A, the observer, after having seen the trace
t was sent, can conclude that x = 0 holds. For the program B, the observer
does not know whether x = 0 holds or not after having seen the trace t. We can
conclude that for program A, the state property x = 0 is not a secret in the set
of all runs w.r.t. ≈ and it is a secret for program B.



Noninterference

Consider the standard formulation of termination insensitive noninterference [13].
It is defined using low and high variables, where low variables are visible to the
observer and high variables are not. Noninterference can be then formulated in-
formally as follows: “if two input states share the same values of low variables
then the behaviors of the program executed from these states are indistinguish-
able by the observer”.

We define functional equivalence ≈f as follows. Let ≈i
f and ≈o

f be two equiv-
alence relations on states. For all terminating runs r and r′ we have r ≈f r′

iff their initial states are related by ≈i
f and their final states by ≈o

f . We model
noninterference by functional equivalence defined above. Two states q and q′ are
related by ≈i

f (and ≈o
f ) exactly when the valuation of the low variables is the

same in q and q′.

The purpose of using noninterference is to determine whether some property
α of high variables is inferable by an observer who sees only low variables. We
can capture this in our framework as follows. Let P be the set of all expressible
properties of high variables. For example, if every property of high variables
is considered to be expressible, P corresponds to the powerset of the set of
valuations of high variables. Consider a classic requirement such as “a secret key
should stay secret.” In our framework, this can be expressed as “a secret key
stays secret with respect to a set of predicates P”, i.e. none of the properties of
the secret key that are in P will be revealed.

Let βt be the set of all terminating runs. We can conclude that the system
satisfies the noninterference property w.r.t. P iff for all α ∈ P , α is secret in βt

w.r.t. ≈f .

Perfect Security Property

Let us consider the Perfect Security Property (PSP) [16]. It is an information-
flow property defined in a trace-based setting. In order to define it, we divide
the labels into low-security and high-security categories. The observer knows the
specification of the system - i.e. the set of all possible traces (sequences of labels)
and he or she can observe low-security labels. PSP ensures that the observer
cannot deduce any information about occurrences of high-security events.

We can model the PSP in our framework by choosing an appropriate equiv-
alence relation on runs and a property on runs. Let Low ⊆ L be a set of low-
security labels and let High ⊆ L be a set of high-security labels such that Low

and High partition L. We use the following equivalence relation. Let Tr psp be
an erasing homomorphism defined on runs as follows: Tr psp(q) = ε, Trpsp(l) = l
for l ∈ Low and Trw(l) = ε for l ∈ High , i.e. Trpsp erases all states and
all high-security actions. Two runs r and r′ are psp-equivalent (r ≈psp r′) iff
Trpsp(r) = Trpsp(r′). For each label h ∈ High , we define the property αh: a run
r is in αh if h occurs in r. Now we can conclude that PSP holds iff αh is secret
in βall w.r.t. ≈psp for all h ∈ High .



Specifying Secrecy in Temporal Logics

It is well-known that secrecy cannot be expressed as a predicate on a single trace
and hence cannot be specified in linear-time specification languages such as linear
temporal logic (see, for example, [10], for a proof). We prove that secrecy is not
a branching-time property either.

Let us consider finite trees over alphabet Σ. The vertices are labeled by
elements of Σ (edges are not labeled). A tree T can be seen as an LTS T ′, where
states correspond to vertices of the tree, edges are the parent-child edges, and
all the edges are labeled by the same symbol. For each label α ∈ Σ, let α′ be a
state-property corresponding to the set of all vertices labeled by α.

Theorem 1. The set S of trees T over {α, β} such that α′ is secret in β′ w.r.t.

≈ for T ′ is not a regular tree-language.

Proof. For a proof by contradiction, suppose that S is regular. Then the following
special case, defined by a regular condition that β′ is false only for the root of the
tree, would also be regular. The fact that α′ is secret in β′ w.r.t. ≈ corresponds
to the fact that at each depth d (d > 0) of the tree, there is a node in α′ and a
node not in α′. It is well-known that this is not a regular property. ut

Corollary 1. The set of trees T over {α, β} such that α′ is secret in β′ w.r.t.

≈ for T ′ is not definable in µ-calculus.

Note that it is possible to devise algorithms based on standard model-checking
for special cases of our definition of secrecy. For example, Barthe et al. [3] claim
that it is possible to use CTL model-checking to check for noninterference in
finite-state systems. However, upon examination, this holds only for a specific
definition of noninterference, the one based on functional equivalence relation
(as opposed to, e.g., strong equivalence relation). Barthe et al. reduce checking
for noninterference to model-checking a CTL formula on self-composition. Self-
composition can be viewed as a (sequential or parallel) composition of a program
with itself (variables are renamed in the other copy of the program). It can be
shown, by a proof similar to the one above, that there is no µ-calculus formula
that characterizes the general definition of noninterference on self-composition.

3 Secrecy-preserving Refinements

Let us suppose that we have two labeled transition systems Tspec and Timp . We
want to establish that Timp does not leak more secrets than Tspec.

First, consider the classical notion of refinement, where Timp refines Tspec iff
all behaviors of Timp are allowed by Tspec. This notion of refinement preserves all
properties expressible in linear temporal logic, but does not in general preserve
the secrecy of properties. Consider two of the systems in Figure 1, (a) as Tspec

and (b) as Timp . Using the classical notion, Timp is a refinement of Tspec, since
the behaviors of Timp are included in behaviors of Tspec. This holds for both
the functional (input-output) and observational (trace-based) view of behaviors.



However, Timp leaks more secrets than Tspec does. If the observer of Timp sees a
trace s0, he or she can conclude that α does not hold. On the other hand, for
Tspec, the observer cannot determine whether α holds or not.

We proceed to introduce a new notion of refinement, one that preserves se-
crecy of properties. Intuitively, we want to show that for each run r of Timp , there
is an equivalent run r′ of Tspec, such that the observer can deduce less about
the properties of interest when observing Timp executing r than when observing
Tspec executing r′. Hence, let us extend the equivalence relation ≡ to the runs of
the two systems, i.e. ≡ ⊆ (R(Tspec)∪R(Timp))× (R(Tspec)∪R(Timp)). Further-
more, we need to relate properties of interest for the two systems. Analogously,
a property α now will be a subset of R(Tspec) ∪ R(Timp).

Now we are ready to state when a refined transition system preserves at least
as many secrets as the original one:

Secrecy-preserving refinement:

Let Tspec, Timp be two labeled transition system, let P be a set of
properties and let ≡ be an equivalence relation on R(Tspec) ∪ R(Timp).
Timp P-refines Tspec w.r.t. ≡ iff for all runs r ∈ R(Timp), there exists
a run r′ ∈ R(Tspec) such that r ≡ r′ and for all properties α ∈ P ,
IP(r, α,≡) v IP(r′, α,≡).

We present the following observations and an example to illustrate the defini-
tion. First, note that secrecy-preserving refinement extends the classical notion:
consider the case when the set of properties P is empty. For strong (weak)
equivalence P-refinement corresponds to (weak) trace inclusion. For functional
equivalence, P-refinement corresponds to the requirement that the input-output
relation of Timp is included in the input-output relation of Tspec.

Consider the programs A and B from Section 2 again. As before, suppose
that the observer does not see the input, but this time, we fix the input to be 0 in
order to simplify the example. We consider the strong observational equivalence
and we are interested in the state-property α that is true iff x = 0. There is only
one run in each of the programs. Those runs are equivalent, since the trace is
simply τττs0 in both cases. Let rA denote the run of A and let rB denote the
run of B. As we have seen, IP (rA, α,≈) = > and IP (rB , α,≈) = m. Thus we
can conclude that A does not P-refine B w.r.t. ≈, but B P-refines A w.r.t. ≈.

The following theorem states that the P-refinement preserves the secrets from
P , i.e. that if Tspec does not leak a secret α ∈ P and Timp is a P-refinement of
Tspec, then also Timp does not leak the secret α. Before stating the theorem, we
need to define one more condition on the set of runs that are of interest, β. A
property β is ≡-preserving iff for all r and for all r′, if r ∈ β and r ≡ r′, then
r′ ∈ β.

Theorem 2. Let Tspec and Timp be two transition systems such that Timp P-

refines Tspec w.r.t. ≡ and let β be a an ≡-preserving property. If α ∈ P is a

secret in β for Tspec w.r.t. ≡, then α is a secret in β for Timp w.r.t. ≡.



4 Proving Secrecy Using a Simulation Relation

In this section we restrict our attention to the strong (time-sensitive) and weak
(time-insensitive) equivalence relations on runs and we consider only state-
properties. With appropriate modifications, simulation-based proof techniques
can be developed for other equivalences such as the ones used for noninterfer-
ence and perfect security.

Let Tspec = (Qspec, L, δspec, Ispec) and Timp = (Qimp , L, Timp , Iimp) be labeled
transition systems. As above, let P denote both a set of properties about Tspec

and a corresponding set of properties about Timp . Note that the two transition
systems have the same set of labels, thus the relation ≈ (the strong observational
equivalence) can be seen as a relation on R(Tspec) ∪ R(Timp).

A binary relation . ⊆ Qspec ×Qimp is a simulation relation iff for all q1 . q′1
for all state properties α ∈ P , q1 ∈ α iff q′1 ∈ α and for every q2 ∈ Qspec and

l ∈ L such that q1

l
→ q2 there exists q′2 ∈ Qimp such that q′1

l
→ q′2 and q2 . q′2.

We say that Timp simulates Tspec (Tspec . Timp), if there exists a simulation
relation . such that for every q1 ∈ Ispec there exists q′1 ∈ Iimp such that q1 . q′1.

A binary relation .w ⊆ Qspec ×Qimp is a weak simulation relation iff for all
q1 .w q′1, for all state properties α ∈ P , q1 ∈ α iff q′1 ∈ α and we have:

– q′1
τ
→ q′2 implies that there exists a q2 such that q1

τ
→

∗

q2 and q2 .w q′2
– q′1

l
→ q′2 implies that there exists a q2 such that q1

τ
→

∗ l
→

τ
→

∗

q2 and q2 .w q′2.

Weak simulation between transition system is defined similarly to simulation
between transition systems.

Let us consider the case of strong (time-sensitive) equivalence relation on
runs. Firstly, we note that it follows from the definition of P-refinement that the
standard refinement condition (Tr(Timp) ⊆ Tr(Tspec)) is a necessary condition
for the P-refinement.

Secondly, note that unlike classical refinement, the condition that Tspec sim-
ulates Timp is not sufficient for P-refinement. To see this consider again two of
the systems in Figure 1, (a) as Tspec and (b) as Timp . Note that Tspec simulates
Timp , but Timp leaks information on α on the trace s0, whereas Tspec does not.

The property we are looking for is in fact the simulation in the other direction,
i.e. that Timp simulates Tspec. The reason is that using this simulation relation
one can prove that if Timp leaks a secret, then so does Tspec. Note also the
condition that Timp simulates Tspec is not a sufficient condition. Consider now
the system on Figure 1(a) as Tspec and the system on Figure 1(c) as Timp . Now
Timp refines Tspec, but for the trace s1, Timp leaks more secrets than Tspec.

The combination of the two conditions, Tr(Timp) ⊆ Tr(Tspec) and Timp sim-
ulates Tspec is sufficient to guarantee that P-refinement holds.

Theorem 3. If Tr(Timp) ⊆ Tr(Tspec) and Tspec . Timp, then Timp P-refines

Tspec w.r.t. ≈.

Proof. Let r be a run in R(Timp). We have to prove that there exists a run r′ in
Tspec such that r ≈ r′ and IP(r, α,≈) v IP(r′, α,≈). We have that Tr(Timp) ⊆



Tr(Tspec), therefore there exists a run r′ in Tspec such that r ≈ r′. It remains
to prove that IP(r, α,≈) v IP(r′, α,≈). Let us suppose that IP(r, α,≈) = >.
We have to show that IP(r′, α,≈) = >. Let us suppose that IP(r′, α,≈) = ⊥ or
IP(r′, α,≈) = m. In any of the two cases, we know that there exists r′′ ∈ R(Tspec)
such that r′ ≈ r′′ and the last state of r′′ is not in α. Using the condition
Tspec . Timp we prove (by induction on the length of the Tr(r′′)) that there
exists an r′′′ ∈ R(Timp) such that r′′ ≈ r′′′ and the last state of r′′′ is not in
α. By transitivity of ≈, we have that r′′′ ≈ r. This is a contradiction with the
assumption IP(r, α,≈) = >. Thus we can conclude that if IP(r, α,≈) = >, then
IP(r′, α,≈) = >. The case of IP(r, α,≈) = ⊥ is similar. If IP(r, α,≈) = m, then
there is nothing to prove, since m v IP(r′, α,≈). ut

For weak equivalence relation on runs, a similar theorem holds.

Theorem 4. If Trw(Timp) ⊆ Trw(Tspec) and Tspec .w Timp, then Timp P-

refines Tspec w.r.t ≈w.

Note that Theorem 3 implies that secrecy is preserved by bisimulation, since
for bisimilar systems, both conditions are met. Note also that we have shown in
Section 2 that secrecy is not a branching time property.

The conjunction of the two conditions of Theorem 3 is not a necessary condi-
tion for P refinement. Consider the two systems in Figure 2 and suppose the set
P of properties is the singleton {α}. Note that Tr(Timp) ⊆ Tr(Tspec) and Timp

does not simulate Tspec. However, Timp does not leak any more secrets Tspec.

α

α ¬α

(a)

α

¬α

(b)

α

α ¬α ¬α

(c)

s0 s0 s0 s0 s0 s1

Fig. 1. Refinement by simulation

α

¬α ¬α

α ¬α

s0 s0

s0 s0

Tspec

α

α ¬α

α ¬α

s0 s0

s0 s0

Timp

Fig. 2. Simulation is not a neces-
sary condition.

5 Example

We present an example in order to illustrate the definition of secrecy-preserving
refinement and to demonstrate the simulation-based proof method defined above.
We will present two implementations, Tspec and Timp , of a protocol (more pre-
cisely, of one round of a protocol). We will show that while functionally they are
equivalent (their input-output relation is the same) and Timp refines Tspec in the



classical sense (trace inclusion), the implementation Timp leaks some properties
that should be secret, whereas Tspec does not.

Consider the game Battleship. We will analyze an implementation of one of
the players in one round of the protocol, so the following description is sufficient
for our purposes1. The input (for each round) consists of a grid, where each
square is either marked (meaning a ship is there) or unmarked, and of two
integers i and j. The output should be yes if the square with coordinates i and
j is marked.

Let us consider two implementations of this protocol, Tspec and Timp . Tspec

uses the straightforward array representation, Timp uses a list representation.
In Timp , the board is represented by a list of rows and each row contains a list
of the marked cells. (A possible motivation for the (re-)implementation Timp is
that it might be more efficient in case of sparse boards.)

Board:

1 2 3

3

1

2

Tspec :

array board;

int i,j;

rcv i; rcv j;

r = A[i,j];

send r;

Timp :

list board, row;

int i,j;

rcv i;rcv j;

row=Board.getRow(i)

if (row.IsEmpty())

r=0; send r;

else

r=row.getElem(j); send r;

Fig. 3. The Battleship game

We briefly explain how can the programs such as Tspec and Timp be modeled
in our framework. We use the standard operational semantics approach. The
states are valuations of all variables (such as board, row and program counter
pc). The label s0 denotes the fact that 0 was sent, s1 that 1 was sent and τ
denotes all the internal (silent) actions. We model the fact that the board can in
general be in any state at the beginning of a round of the battleship protocol by
having multiple initial states. For the purposes of this example, we also model
receives in this way. Thus any valuation of the variables where program counter
is equal to 0 is an initial state. An assignment is modeled as an internal action
τ . We model the methods (such as getRow()) by one internal action (thus a
statement that contains an assignment and a method call is modeled by two
internal actions). As an example consider the case shown in Figure 3 and the
inputs i = 1 (column numbered 1) and j = 2 (row numbered 2). The initial state
is now determined. The trace produced by Tspec is τs1. The trace produced by
Timp is τττττs1 . For each cell with coordinates (i, j) of the board, we define

1 For a full description of the game, google “battleship”.



a property αij that is true iff the cell is marked. Let P be the set of these
properties.

We will now show that Tspec and Timp are equivalent w.r.t. ≈w, that is, Tspec

P-refines Timp and Timp P-refines Tspec w.r.t. ≈w and that it can be proven by
simulation. We will prove also that Timp does not P-refine Tspec w.r.t. ≈.

Let us start by proving that for weak refinement, Tspec and Timp are equiv-
alent. We show that Tr(Timp) ⊆ Tr(Tspec) and that Tspec .w Timp . To see that
Tr(Timp) ⊆ Tr(Tspec), note that both Tspec and Timp have the same set of weak
traces, namely {0, 1} (since all the other actions are internal). Now we will show
that Timp simulates Tspec. We will present a function f from the states of Tspec

to the states of Timp and show that it defines a simulation relation. Recall that
the states of Tspec and Timp characterize the current board position, and contain
valuations of variables for i, j and the program counter pc. In order to be able to
define f , we divide the states of Tspec into Q1

spec and Q2
spec, where Q1

spec contains
those states where the value of pc (program counter) indicates that the send
instruction has not been executed yet and Q2

spec all the other states. We divide
the states of Timp analogously. The function f will relate each state q of Tspec to
a state q′ of Timp that has the same board position, the same valuations of i and
j, and q ∈ Qi

spec iff q′ ∈ Qi
imp . It is easy to check that f defines a weak simula-

tion such that Tspec simulates Timp . By Theorem 4, we can conclude that Timp

is a P-refinement of Tspec w.r.t. ≈. Note also that Tr(Timp) = Tr(Tspec) and
the simulation we just defined is a bisimulation. Thus we can similarly conclude
that Tspec is a P-refinement of Timp w.r.t. ≈.

We also show that Timp does not P-refine Tspec w.r.t. ≈ according to our
definition, because Timp leaks more secrets in certain situations. Again, consider
the case depicted in Figure 3, but this time we fix the inputs to be i = 1 (column
numbered 1) and j = 1 (row numbered 1). We assume the observer knows these
inputs (but note that he or she does not see the board.) We analyze what he
or she can infer from the execution of Tspec (and Timp) on these inputs. As
noted above, once the initial state is fixed (by the input values) there is only one
possible run of Timp (we denote it by r). The corresponding trace is t1 = ττττs0 .
However, after the observer observes the trace t1, he or she can infer that the
j-th row is empty. For example, he or she knows that IP(r, α21,≈) = ⊥. This
can be inferred because the number of internal actions is 4 (whereas if the j-th
row was not empty, 5 internal actions would be observed before the final s0).
The execution of Tspec is similar in that there is only one possible run r given
the inputs. The corresponding trace is τs0. Given the program Tspec, it is clear
that it is not possible to infer information about a property αij , i 6= 1, j 6= 1, i.e.
IP(r′, αi′j′ ,≈) = m for i 6= 1 and j 6= 1. In particular, IP(r′, α21,≈) = m. We
can thus conclude that Timp is not a P-refinement of Tspec w.r.t. ≈.

6 Conclusion

This paper presents a general framework for formal reasoning about secrecy
properties. The framework is based on labeled transition systems and is thus



suitable for presentation of algorithms for automated verification of secrecy. We
presented how different definitions of secrecy can be captured in our framework.
We showed also that secrecy is not definable by a µ-calculus formula. The main
focus of this work was on defining a notion of refinement that preserves secrecy of
properties and providing a method for proving that such a refinement holds. This
method is based on simulation and thus can be used for automatic verification
using existing tools.

There are several directions for future research. One possibility is to extend
this work with static analysis for secrecy-preserving refinements of programs.
Second, it would be useful to define program transformations to help designers
to transform designs in a way that guarantees the preservation of secrecy. Third,
we plan to investigate a logic for secrecy of properties. Fourth, it would be
interesting to apply the framework presented here to resource-driven protocol
transformation for embedded systems, such as Java cards or smart cards.

References

1. M. Abadi. Protection in programming-language translations. In Proc. of

ICALP’98, pages 868–883, 1998.
2. R. Alur, T.A. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.

MOCHA: Modularity in model checking. In Proc. of CAV’98, pages 521–525,
1998.

3. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-
Composition. In Proc. of CSFW’04, pages 100–114, 2004.

4. Á. Darvas, R. Hähnle, and D. Sands. A Theorem Proving Approach to Analysis
of Secure Information Flow. In Proc. of SPC’05, pages 193–208, 2005.

5. J. Halpern and K. O’Neill. Secrecy in multiagent systems. In Proc. of CSFW’02,
pages 32–46, 2002.

6. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
7. J. Jürjens. Secrecy-preserving refinement. In Proc. of FME’01, pages 135–152,

2001.
8. L. Lamport. The temporal logic of actions. ACM Transactions on Programming

Languages and Systems, 16(3):872–923, 1994.
9. H. Mantel. Preserving information flow properties under refinement. In Proc. of

SP’01, pages 78–91, 2001.
10. J. McLean. A general theory of composition for trace sets closed under selective

interleaving functions. In Proc. of SP’94, pages 79–93, 1994.
11. K.L. McMillan. A compositional rule for hardware design refinement. In Proc. of

CAV’97, pages 24–35, 1997.
12. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In

CADE’92, pages 748–752, 1992.
13. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Jour-

nal on Selected Areas in Communications, 21(1):5–19, 2003.
14. F.B. Schneider, editor. Trust in Cyberspace. National Academy Press, 1999.
15. T. Terauchi and A. Aiken. Secure Information Flow as a Safety Problem. In Proc.

of SAS’05, pages 352–367, 2005.
16. A. Zakinthinos and E. S. Lee. A general theory of security properties. In Proc. of

SP’97, pages 94–102, 1997.


