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Chapter 1

Overview

1.1 Introduction

• Linear logic was introduced in 1987 by Jean-Yves Girard [62].

– Spawned hundreds of subsequent papers, with many(!) variants (substructural
logics)

– Very influential paper: cited > 4250 times according to Google Scholar.

Why?

– Linear logic is a generalization of “ordinary” logic in such a way that it becomes
“resource conscious”.

* Key idea: a resource is a “hypothesis” that can be used only once (hence it
is used up)

* Weakening and Contraction rules of ordinary propositional logic

* Also possible to ephasize the “communication” behavior: parts of the
proof that can “interact”

* Duality is central: DeMorgan’s laws highlight many of the symmetries in
logic

– Linear logic is constructive and low level:

* meaning that it has computational content and therefore has connections
to programming languages

– Fully classical propositional logic and intuitionistic logic are both encodeable
in Linear Logic

– Even in the intuitionistic fragment there are both call-by-value and call-by-
name translations of lambda calculus into the logic

– Connections to parallel computation (even emphasized by Girard)

Many Uses, either directly, or inspirationally:
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In Logic and Proof theory

– Proof theory: cut elimination, consistency

– Notion of duality, polarity, decomposition of (say) intuitionistic propositional
logic.

– Proof terms: Proof Nets, µ calculus, linear lambda calculus, π calculus

– LL, LU, ILL, DILL, JILL, LNL, (LPC: Jennifer)

Semantics

– Coherence Spaces, Chu Spaces, Game Semantics

– Categorical Models:

Applications

– Manual memory management [84, 7, 69]

– Control of pointer aliasing [51, 69, 152, 132]

– Heap separation properties [118]

– Referential transparency (purity) [133, 33]

– Resource handles and capabilities [77, 37, 39]

– State-dependent program analysis (typestates) [46, 51, 50]

– Safe concurrent communication (session types) [72, 124, 130]

– Security policy enforcement [144, 123]

– Program optimization [146]

– Differential Privacy [117, 57]

– Implicit Computational Complexity [56]

– Concurrency: [94, 96]

TODO: Pottier’s recent work on state. TODO: Wadler, Pfenning’s recent work on
session types
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Chapter 2

Intuitionistic Linear Logic

These notes follow the judgmental presentation of intuitionistic linear logic in Chang,
et al.’s paper [36]. They were also informed by Pfenning’s lecture notes on linear logic.
For more discussion about this approach to logic, see the notes on Martin-Löf’s Sienna
Lectures [93] and also Davies and Pfenning’s paper on modal logic [111].

In the “judgmental” approach to defining logics, one makes a distinction between
what it means for a piece of syntax to be a proposition and whether a proposition is true.
Going even further, there may be different notions of “truth,” each corresponding to a dif-
ferent means of justifying a particular proposition. Such modes of “truth” are judgments
about propositions. The meaning of a judgment is determined by what is considered to
count as “evidence” for it.

For example, consider the syntax “1 + 1 = 0”. The judgment “1 + 1 = 0” is a proposition
asserts that the syntax is a legal subject for manipulation using the logic. The designer
of the logic decides what pieces of syntax are legal propositions by determining what
counts as “evidence” that a proposition is legal. Not all syntax may be judged to be a
legal proposition, for example, one might wish to disallow “= +ELEPHANT = 0.”

Different logics make different choices about what it means for a piece of syntax to
be a legal propositions. For example, propositional logic usually assumes the existence of
some (finite or countably infinite) set of atomic propositions {a1, a2, . . .} and then defines a
grammar of propositions along the lines of:

p, q ::= ai | p ∧ q | p ∨ q | ¬p | p⇒ q

For convenience, we abbreviate the judgment “A is a proposition” by A prop. A gram-
mar like the one above is short hand for a collection of inference rules that collectively
determine how to provide evidence for the judgment “A is a proposition.” In this case, we
would have the rules shown in Figure 2.1.

This approach means that a piece of syntax like “1+1 = 0” may (or may not) constitute
a legal proposition. This could be indicated judgmentally by agreeing on what counts as
evidence for the judgment (“1 + 1 = 4” is a proposition), or, more tersely (“1 + 1 = 4”
prop).
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a ∈ {a1, a2, . . .}
a prop

p prop q prop

p ∧ q prop
p prop q prop

p ∨ q prop

p prop

¬p prop
p prop q prop

p⇒ q prop

Figure 2.1: Propositions of propositional logic.

The role of a “logic” is to characterize how judgments interact in a general way, inde-
pendent of the details of how the evidence for those judgments is generated.

In intuitionistic (constructive) propositional logic, one is typically concerned with two
or three different kinds of judgments, for example:

A prop The syntax “A” is a proposition
A true The proposition A is true (contingently provable)
A valid The proposition A is valid (provable always)

In classical logic, besides A true, one might also consider the judgment A false, which
asserts that the proposition A is false. The structure of classical logic would then deter-
mine how proofs, which give evidence for A true, interact with refutations, which give
evidence for A false.

2.1 The Multiplicative Fragment

Judgment of the form A lin meaning “the proposition A is linearly true.”
We will eventually add another judgment A per with the intended meaning that “A

is persistently true” or “valid.”
Following Martin-Löf, we must give the judgment A lin meaning by deciding what

counts as evidence for it. Because we are thinking of linear propositions as some kind of
resource (for now), it seems obvious that evidence for a resource would be the resource
itself. If we think in terms of the money example, then the proposition q might mean
“Steve has a quarter” and evidence of that proposition would be my posession of the
quarter itself, which I could display as proof of the proposition.

Next we generalize to hypothetical judgments, which make some assumptions about
the existence of evidence for judgments. In the context:

A1 lin,A2 lin,A3 lin ` B lin

We decide on what counts as evidence for a hypothetical judgment by specifying ax-
ioms and inference rules. In the case of linear logic, we want to interpret evidence for
such a hypothetical judgment as a resource-efficient plan for producing evidence for the
judgment B lin given evidence for the assumed hypotheses.

Plans of this kind should be resource-conscious in two senses:
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• The plan should be “efficient.” In particular, the plan should only mention relevant
resources. That means that each hypothetical resource should be used at least once
in the plan.

• The plan should be respect the our interpretation of A lin as a kind of resource.
There are different ways one might possibly do this, but a very simple, and natural
one is to say that the distinguishing characteristic of a resource is that it can’t (easily!)
be copied. Therefore, we should ensure that assuming A lin is not (necessarily) the
same as assuming two instances of it, as in A lin,A lin.

These considerations will have to be taken in to account as we design the logic. The
inference rules will thus have to respect our intended semantics of “plans” as evidence
for hypothetical linear judgments.

A lin ` A lin
HYP

An instance of this rule is:

q lin ` q lin

We could interpret it as: “Assuming that Steve has a quarter there is a trivial plan to
demonstrate that Steve has a quarter.”

A bad alternative for this hypothesis rule is:

∆,A lin ` A lin
BADHYP

It doesn’t respect the “efficiency” criterion of our intended interpretation. This plan
discards all of the resources in ∆.

Our interpretation of judgments as plans should validate the following substitution
principle:

Principle 2.1 (Substitution). If ∆1 ` A lin and ∆2,A lin ` B lin then ∆1,∆2 ` B lin.

• The substitution principle is not a rule of the logic, but instead a structural invariant
that justifies the use of a judgment like A lin as a hypothesis.

• Note how this takes into account the non-duplicability of resources. In particular,
when we write ∆1,∆2 we should interpret this as requiring the combination of re-
sources hypothesized in both ∆1 and ∆2.

The following plausible substitution principle does not respect the intended interpre-
tation of linear hypotheses.

Principle 2.2 (Bad Substitution). If ∆ ` A lin and ∆,A lin ` B lin then ∆ ` B lin.
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To extend the logic with more structure, we consider different possible ways that
generic, or hypothetical resources might be manipulated: as opposed to rules for work-
ing with particular resources (such as making change via coins), such rules describe plans
for manipulating any resource. Such “general” plans correspond to logical connectives,
and their meaning is justified (as suggested by Martin-Löf) by inference rules. In natural-
deduction style proofs, the semantics can be given by the introduction rules, which say
how to produce evidence from hypotheses, and elimination rules, which say how to con-
sume such evidence.

When developing the inference rules for our logic, we can assess their correctness by
ensuring that all of the rules we design are “in harmony” with the substitution principle.
This amounts to showing two properties for each connective of the logic:

• Local soundness: This ensures that the elimination rules are not too strong, in the
sense that all of the information produced by eliminating a judgment is available
during its construction. (These will correspond to β-reductions justified by substi-
tution.)

• Local expansion: This ensures that the elimination rules are not too weak, in the sense
that by eliminating a judgment produces information sufficient to reconstitute it.
(These will correspond to η-expansions.)

Note: Because, for the moment, all of the judgments that we manipulate in the logic
are of the form A lin, we write the hypothetical judgment

∆1,A1 lin,A2 lin,A3 lin,∆2 ` B lin

as simply
∆1,A1,A2,A3,∆2 ` B

This abbreviated form makes it less noisy to write inference rules, but we should keep
in mind that this linear judgment is distinct from other judgments.

2.1.1 Multiplicative Conjunction

Suppose we have two resources A and B , what constitutes evidence that both are true?
We write (A ⊗ B) for the simultaneous conjunction of A and B (also called multiplicative
product, also called tensor product).

What constitutes a (general purpose, efficient) plan to produce an A and a B assuming
some hypothetical resources?

∆1 ` A1 ∆2 ` A1

∆1,∆2 ` A1 ⊗ A2

⊗I

This rule (read top to bottom) says that given two plans, one building A1 from ∆1 and
one building A2 from ∆2 we can build a composite plan that needs the resources of both
constituent plans.
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The corresponding elimination rule says that given a plan to produce (A1⊗A2) we can
assume them (as hypothetical judgments) simultaneously in some plan to construct B .

∆1 ` A1 ⊗ A2 ∆2,A1,A2 ` B

∆1,∆2 ` B
⊗E

Local soundness:

⊗E

⊗I

D1

∆1 ` A1

D2

∆2 ` A2

∆1,∆2 ` A1 ⊗ A2

E
∆3,A1,A2 ` B

∆1,∆2,∆3 ` B =⇒R

E ′

∆1,∆2,∆3 ` B

Local expansion:

D
∆ ` A1 ⊗ A2 =⇒E

D
∆ ` A1 ⊗ A2

A1 ` A1

HYP
A2 ` A2

HYP

A1,A2 ` A1 ⊗ A2

∆ ` A1 ⊗ A2

⊗E

2.1.2 Multiplicative Conjunction Unit

The unit of multiplicative conjunction is the “trivial” resource 1. It has rules:

· ` 1
1I

∆1 ` 1 ∆2 ` A

∆1,∆2 ` A
1E

Local soundness:

1E

1I
D
· ` 1

E
∆ ` A

∆ ` A =⇒R

E
∆ ` A

Local expansion:

D
∆ ` 1 =⇒E 1E

D
∆ ` 1 · ` 1

1I

∆ ` 1

2.1.3 Linear Implication

∆,A ` B

∆ ` A( B
( I

∆1 ` A( B ∆2 ` A

∆1,∆2 ` B
( E

Local soundness:
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A ` A
HYP

∆1 ` A1 ∆2 ` A1

∆1,∆2 ` A1 ⊗ A2

⊗I

∆1 ` A1 ⊗ A2 ∆2,A1,A2 ` B

∆1,∆2 ` B
⊗E

· ` 1
1I

∆1 ` 1 ∆2 ` A

∆1,∆2 ` A
1E

∆,A ` B

∆ ` A( B
( I

∆1 ` A( B ∆2 ` A

∆1,∆2 ` B
( E

Figure 2.2: The multiplicative fragment of intuitionistic linear logic.

(E

(I

D
∆1,A ` B

∆1 ` A( B

E
∆2 ` A

∆1,∆2 ` B =⇒R

D′

∆1,∆2 ` B

Local Completeness:

D
∆ ` A( B =⇒E

D
∆ ` A( B A ` A

HYP

∆,A ` B
(E

∆ ` A( B
(I

2.1.4 Summary

The multiplicative fragment of intutionistic linear logic is summarized in Figure Fig-
ure 2.2.

Investigate the relationships among the connectives:
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A1 ⊗ (A2 ⊗ A3) ` (A1 ⊗ A2) ⊗ A3

(A1 ⊗ A2) ⊗ A3 ` A1 ⊗ (A2 ⊗ A3)
1 ⊗ A ` A

A ` 1 ⊗ A
A ⊗ 1 ` A

A ` A ⊗ 1
(A1 ⊗ A2)( B ` A1( A2( B
A1( A2( B ` (A1 ⊗ A2)( B

We can add axioms to the multiplicative fragment of linear logic. Such axioms are not
justified by the judgmental construction, but should rather be justified by some “external”
evidence.

For example, returning to the coin scenario, we might consider adding axioms like:

· ` q( d ⊗ d ⊗ n
CHANGE1

· ` q( n ⊗ n ⊗ n ⊗ n ⊗ n
CHANGE2

Axioms are subtley different than hypotheses because axioms are not “resources” in
the sense that the are consumed. If we wanted to model the ability to make change
for some (fixed) number of quarters, it would be better to represent the situation as the
derivation of some hypothetical judgment:

D
q( d ⊗ d ⊗ n ` B

2.2 The Additive Fragment

2.2.1 Additive Products

Suppose we have two plans for processing a linear resource. For example, suppose that
we have:

D1

q ` d ⊗ d ⊗ n
D2

q ` q

Given a resource of only one quarter, we have seen that (in general) it is not possible
to combine those two plans to obtain:

D1

. . .

D2

. . .

q ` (d ⊗ d ⊗ n) ⊗ q
BOGUS
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Such a plan would need to somehow copy the resource q.
However, we can easily imagine creating a plan that, given a quarter q follows one of

the two plans. The resulting resource is “fungible” in that it presents two options for how
to use the it. The new kind of resource is written A & B and pronounced A with B . For
example, we have using the examples above:

D1

q ` d ⊗ d ⊗ n
D2

q ` q
q ` (d ⊗ d ⊗ n) & q

The introduction and elimination rules for & are:

∆ ` A ∆ ` B

∆ ` A & B
&I

∆ ` A & B

∆ ` A
&E1

∆ ` A & B

∆ ` B
&E2

As usual, we can check whether these rules make sense by checking local soundness
and local expansion. However, because there are two elimination rules for &, there are
two possible local soundness reductions.

Local Soundness 1:

&E1

&I

D1

∆ ` A

D2

∆ ` B

∆ ` A & B

∆ ` A =⇒R

D1

∆ ` A

Local Soundness 2:

&E1

&I

D1

∆ ` A

D2

∆ ` B

∆ ` A & B

∆ ` B =⇒R

D2

∆ ` B

Local Expansion:

D
∆ ` A & B =⇒E &I

&E1

D
∆ ` A & B

∆ ` A
&E2

D
∆ ` A & B

∆ ` B

∆ ` A & B

Note that the semantics of A & B as a hypothetical resource means that the plan that
uses the resources as an input gets to decide whether to treat it as an A or a B . This means
that the “consumer” of the resource A & B gets to determine which way to go.
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2.2.2 Additive Product Unit

The unit for & is a “0-ary” version of the product. This means that it uses its resources in
0 premises and there are no ways to eliminate it:

∆ ` >
>I (no elimination form)

However, we still have a reasonable notion of local soundness:

D
∆ ` > =⇒E ∆ ` >

>I

An instance of this is:

> ` >
HYP

=⇒E > ` >
>I

2.2.3 Additive Sums

The dual to “with” is a kind of resource that acts like a disjunction chosen by the provider
of that resource, instead of the consumer. We call it the “additive sum” and write it as
A ⊕ B . It has two introduction rules and one elimination rule.

∆ ` A

∆ ` A ⊕ B
⊕I1

∆ ` B

∆ ` A ⊕ B
⊕I2

∆1 ` A1 ⊕ A2 ∆2,A1 ` B ∆2,A2 ` B

∆1,∆2 ` B
⊕E

Local Soundness 1:

⊕I1

D
∆1 ` A1

∆1 ` A1 ⊕ A2

E1
∆2,A1 ` B

E2
∆2,A2 ` B

∆1,∆2 ` B
⊕E

=⇒R

E ′1
∆1,∆2 ` B

Local Soundness 1:

⊕I2

D
∆1 ` A2

∆1 ` A1 ⊕ A2

E1
∆2,A1 ` B

E2
∆2,A2 ` B

∆1,∆2 ` B
⊕E

=⇒R

E ′2
∆1,∆2 ` B

Local Expansion:
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D
∆ ` A ⊕ B =⇒E

D
∆ ` A ⊕ B

A ` A
HYP

·,A ` A ⊕ B
⊕I1

B ` B
HYP

·,B ` A ⊕ B
⊕I2

∆ ` A ⊕ B
⊕E

2.2.4 Additive Sum Unit

This is a form of “False.” The unit for ⊕ is a “0-ary” version of the sum. This means that
its elimination rule requires 0 premises and there are no ways to introduce it:

(no introduction form)
∆1 ` 0

∆1,∆2 ` A
0E

There is still a reasonable notion of local expansion:

D
∆ ` 0 =⇒E

D
∆ ` 0

∆ ` 0
0E

2.3 Persistence and the Exponential Modality

So far, the fragment of intuitionistic linear logic that we have been working with is not
expressive enough to encode ordinary propositional logic because there is no way that a
hypothesis can be used multiple times (or even zero times). These properties of the mul-
tiplicative and additive fragments can be summarized by saying that the usual weakening
and contraction rules of logic are not admissible.

Lemma 2.3 (Weakening Wrong!). If ∆ ` B lin then ∆,A lin ` B lin.

Lemma 2.4 (Contraction Wrong!). If ∆,A lin,A lin ` B lin then ∆,A lin ` B lin.

To recover the expressiveness of full propositional logic while retaining the interpreta-
tion of hypotheses as resources, we introduce a new kind of judgment, persistence, which
indicates that a proposition is “persistently true.” In contrast to the judgment A lin, A per
means that the hypohesis A is not an exhaustible resource.

Again following Marin-Löf, we must decide what counts as evidence for the judgment
A per. Besides axiomatic declarations of such persistent truths, it also seems reasonable
to say that if we have a plan to construct a resource A from no other linear resources,
then A is itself a persistent resource. We can always execute the plan to construct the A
resource as many times as needed. This leads us to the following principle of persistence.

Principle 2.5 (Persistence). If · ` A lin then A per.

Linear Logic Lecture Notes Draft of: February 25, 2014



Pfenning calls this a categorical judgment. Persistence is the linear analogue to the
usual notion of validity from propositional logic: a proposition is valid if it is true using
no hypotheses.

We now need to reconsider the hypothetical judgments for linear propositions. In par-
ticular, it is now possible to have persistent hypotheses in addition to the linear hypothe-
ses we’ve been using so far. Therefore we refine our hypothetical judgment to include a
mix of linear and persistent hypotheses:

A1 lin,A2 per,A3 per,A4 lin, . . . ,An lin ` B lin

Because the order of hypotheses in the context doesn’t matter, we can use the nota-
tionally more convenient (and by now standard) form of such hypothetical judgments
that separates the persistent hypotheses from the linear ones. By convention we use ∆ for
the linear contexts and Γ for the persistent ones:

∆ ::= · | A lin | ∆1,∆2

Γ ::= · | A per | Γ1,Γ2

This means that the new form of the hypothetical judgments is:

Γ; ∆ ` A lin

Note that the conclusion is still a judgment about the linearity of the proposition A. We
could consider hypothetical judgments of the form Γ; ∆ ` A per that define the semantics
of persistence. However, doing so will turn out to be unnecessary because we categorically
defined persistence as · ` A lin; derivations about persistence are just a particular mode
of derivations about linearity.

We do have to consider how the persistent hypotheses warrant new linear judgments.
Observe that A per is just a mode of A lin, we can use the following rule for persistent
hypotheses:

Γ,A per; · ` A lin
!HYP

Note that it requires the linear context to be empty, but permits other persistent hy-
potheses to appear in Γ. The corresponding new formulation for linear hypotheses is:

Γ; A lin ` A lin
HYP

It also permits persistent hypotheses to appear in Γ, but as usual, requires exactly the
linear hypothesis being used. Together these rules will justify the weakening property
(but only for the persistent context).

Note: What would be the consequences of adding the following rather than the !HYP
rule above?
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Γ,A per; ∆,A lin ` B lin

Γ,A per; ∆ ` B lin

Why is the first rule preferable?

Together with the modifications to the hypothesis rules, we must reconsider the sub-
stitution principles. Now there are two kinds of substitution—one that applies to linear
hypotheses and one that applies to persistent hypotheses. Again, the forms of the substi-
tution principles capture the intended semantics:

Principle 2.6 (Substitution II).

• If Γ; ∆1 ` A lin and Γ; ∆2,A lin ` B lin then Γ; ∆1,∆2 ` B lin.

• If Γ; · ` A lin and Γ,A per; ∆ ` B lin then Γ; ∆ ` B lin.

We can also write down the weakening an contraction principles that we expect to
hold of the resulting logic:

Principle 2.7 (Weakening). If Γ; ∆ ` B lin then Γ,A per; ∆ ` B lin.

Principle 2.8 (Contraction). If Γ,A per,A per; ∆ ` B lin then Γ,A per; ∆ ` B lin.

We can internalize the persistence judgment as a modal operator !. The introduction
rule makes the interpretation of the modality clear: the linear proposition !A stands for a
persistent judgment A per:

Γ; · ` A lin

Γ; · ` !A lin
!I

The elimination rule says that a plan to create a persistent resource !A justifies the use
of A as a persistent hypothesis:

Γ; ∆1 ` !A lin Γ,A per; ∆2 ` B

Γ; ∆1,∆2 ` B
!E

As usual, we test our new substitution principles against these rules by checking for
local soundness and local expansion:

Local Soundness:

D
Γ; · ` A

Γ; · ` !A
!I

E
Γ,A per; ∆ ` B

Γ; ∆ ` B
!E

=⇒R

E ′

Γ; ∆ ` B
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Local Expansion:

D
Γ; ∆ ` !A =⇒E

D
Γ; ∆ ` !A

Γ,A per; · ` A
!HYP

Γ,A per; · ` !A
!I

Γ; ∆ ` !A
!E

As before, it is worthwhile to consider how the ! constructor interacts with the other
connectives of the logic. In particular, we have that the following are all derivable in
intuitionistic linear logic:

·; !A ` !A ⊗ !A
·; !A ` 1
·; !A ` !!A
·; !!A ` !A

·; !(A & B) ` !(A ⊗ B)
·; !A ⊗ !B ` !(A ⊗ B)

·; 1 ` !>
·; !> ` 1

On the other hand, the following are not possible to derive (though it will be easier to
prove that this is the case once we look at the sequent calculus formulation of the logic):

·; !(A ⊗ B) 6` !(A & B)
·; !(A ⊗ B) 6` !A ⊗ !B
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Γ; A lin ` A lin
HYP

Γ,A per; · ` A lin
!HYP

Γ; ∆1 ` 0

Γ; ∆1,∆2 ` A
0E

Γ; ∆ ` >
>I

Γ; ∆ ` A

Γ; ∆ ` A ⊕ B
⊕I1

Γ; ∆ ` A & B

Γ; ∆ ` A
&E1

Γ; ∆ ` B

Γ; ∆ ` A ⊕ B
⊕I2

Γ; ∆ ` A & B

Γ; ∆ ` B
&E2

Γ; ∆1 ` A1 ⊕ A2 Γ; ∆2,A1 ` B Γ; ∆2,A2 ` B

Γ; ∆1,∆2 ` B
⊕E

Γ; ∆ ` A Γ; ∆ ` B

Γ; ∆ ` A & B
&I

Γ; · ` 1
1I

Γ; ∆1 ` 1 Γ; ∆2 ` A

Γ; ∆1,∆2 ` A
1E

Γ; ∆1 ` A1 Γ; ∆2 ` A1

Γ; ∆1,∆2 ` A1 ⊗ A2

⊗I

Γ; ∆1 ` A1 ⊗ A2 Γ; ∆2,A1,A2 ` B

Γ; ∆1,∆2 ` B
⊗E

Γ; ∆,A ` B

Γ; ∆ ` A( B
(I

Γ; ∆1 ` A( B Γ; ∆2 ` A

Γ; ∆1,∆2 ` B
(E

Γ; · ` A lin

Γ; · ` !A lin
!I

Γ; ∆1 ` !A lin Γ,A per; ∆2 ` B

Γ; ∆1,∆2 ` B
!E

Figure 2.3: Intuitionistic Linear Logic
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Chapter 3

Terms for ILL

3.1 Evaluations
e ::= expressions

| x
| u
| abort e
| inj1 e
| inj2 e
| case e of inj1 x . e1 | inj2 y . e2
| []
| [e1 & e2]
| prj1 e
| prj2 e
| 〈〉
| let 〈〉 = e1 in e2
| 〈e1 ⊗ e2〉
| let x ⊗ y = e1 in e2
| λx :A. e
| e1 e2
| !e
| let !u = e1 in e2
| (e) M
| {e1/x}e2 M
| {e1/u}e2 M
| E [e] M

Linear Logic Lecture Notes Draft of: February 25, 2014



v ::= values
| x
| inj1 v
| inj2 v
| [e1 & e2]
| 〈〉
| 〈v1 ⊗ v2〉
| λx :A. e
| !e

Γ; ∆ ` e : A Intuitionistic Linear Logic Proof Terms

Γ; x :A ` x : A

u:A ∈ Γ

Γ; · ` u : A

Γ; ∆1 ` e1 : A1 Γ; ∆2 ` e2 : A1

Γ; ∆1,∆2 ` 〈e1 ⊗ e2〉 : A1 ⊗ A2

Γ; ∆1 ` e1 : A1 ⊗ A2 Γ; ∆2, x1:A1, x2:A2 ` e2 : B

Γ; ∆1,∆2 ` let x1 ⊗ x2 = e1 in e2 : B

Γ; · ` 〈〉 : 1

Γ; ∆1 ` e1 : 1 Γ; ∆2 ` e2 : A

Γ; ∆1,∆2 ` let 〈〉 = e1 in e2 : A

Γ; ∆, x :A ` e : B

Γ; ∆ ` λx :A. e : A( B

Γ; ∆1 ` e1 : A( B Γ; ∆2 ` e2 : A

Γ; ∆1,∆2 ` (e1 e2) : B

Γ; ∆ ` e1 : A Γ; ∆ ` e2 : B

Γ; ∆ ` [e1 & e2] : A & B

Γ; ∆ ` e : A & B

Γ; ∆ ` prj1 e : A

Γ; ∆ ` e : A & B

Γ; ∆ ` prj2 e : B

Γ; ∆ ` [] : >
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Γ; ∆ ` e : A

Γ; ∆ ` inj1 e : A ⊕ B

Γ; ∆ ` e : B

Γ; ∆ ` inj2 e : A ⊕ B

Γ; ∆1 ` e0 : A1 ⊕ A2 Γ; ∆2, x1:A1 ` e1 : B Γ; ∆2, x2:A2 ` e2 : B

Γ; ∆1,∆2 ` case e0 of inj1 x1. e1 | inj2 x2. e2 : B

Γ; ∆1 ` e : 0

Γ; ∆1,∆2 ` abort e : A

Γ; · ` e : A

Γ; · ` !e : !A

Γ; ∆1 ` e1 : !A Γ, u:A; ∆2 ` e2 : B

Γ; ∆1,∆2 ` let !u = e1 in e2 : B

E ::= evaluation contexts
| �
| inj1 E
| inj2 E
| case E of inj1 x . e1 | inj2 y . e2
| prj1 E
| prj2 E
| let 〈〉 = E in e
| 〈E ⊗ e〉
| 〈v ⊗ E 〉
| let x ⊗ y = E in e
| E e
| v E
| let !u = E in e
| (E ) M

E [e1] = e2 Context Filling

�[e1] = e1

E [e1] = e2

(inj1 E )[e1] = inj1 e2

E [e1] = e2

(inj2 E )[e1] = inj2 e2

E [e1] = e2

(case E of inj1 x . e ′1 | inj2 y . e ′2)[e1] = case e2 of inj1 x . e ′1 | inj2 y . e ′2
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E [e1] = e2

(prj1 E )[e1] = prj1 e2

E [e1] = e2

(prj2 E )[e1] = prj2 e2

E [e1] = e2

(let 〈〉 = E in e)[e1] = let 〈〉 = e2 in e

E [e1] = e2

〈E ⊗ e〉[e1] = 〈e2 ⊗ e〉

E [e1] = e2

〈v ⊗ E 〉[e1] = 〈v ⊗ e2〉

E [e1] = e2

(E e)[e1] = e2 e1

E [e1] = e2

(v E )[e1] = v e2

E [e1] = e2

(let !u = E in e)[e1] = let !u = e2 in e

{e/x}e1 = e2 Substitution for Linear Hypotheses

{e/x}x = e

{e/x}e = e ′

{e/x}(inj1 e) = inj1 e
′

{e/x}e0 = e ′0
{e/x}(inj1 e0) = inj1 e

′
0

{e/x}e0 = e ′0
{e/x}(case e0 of inj1 y1. e1 | inj2 y2. e2) = case e ′0 of inj1 y1. e1 | inj2 y2. e2

{e/x}e1 = e ′1 {e/x}e2 = e ′2 x 6= y1 x 6= y2

{e/x}(case e0 of inj1 y1. e1 | inj2 y2. e2) = case e0 of inj1 y1. e ′1 | inj2 y2. e ′2

{e/x}[] = []

{e/x}e0 = e ′0
{e/x}(prj1 e0) = prj1 e

′
0

{e/x}e0 = e ′0
{e/x}(prj2 e ′0) = prj2 e

′
0
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{e/x}e1 = e ′1 {e/x}e2 = e ′2
{e/x}[e1 & e2] = [e ′1 & e ′2]

{e/x}e1 = e ′1
{e/x}(let 〈〉 = e1 in e2) = let 〈〉 = e ′1 in e2

{e/x}e2 = e ′2
{e/x}(let 〈〉 = e1 in e2) = let 〈〉 = e1 in e ′2

{e/x}e1 = e ′1
{e/x}〈e1 ⊗ e2〉 = 〈e ′1 ⊗ e2〉

{e/x}e2 = e ′2
{e/x}〈e1 ⊗ e2〉 = 〈e1 ⊗ e ′2〉

{e/x}e1 = e ′1
{e/x}(let y1 ⊗ y2 = e1 in e2) = let y1 ⊗ y2 = e ′1 in e2

{e/x}e2 = e ′2
{e/x}(let y1 ⊗ y2 = e1 in e2) = let y1 ⊗ y2 = e1 in e ′2

{e/x}e1 = e ′1 x 6= y

{e/x}(λy :A. e1) = λy :A. e ′1

{e/x}e1 = e ′1
{e/x}(e1 e2) = (e ′1 e2)

{e/x}e2 = e ′2
{e/x}(e1 e2) = (e1 e ′2)

{e/x}e1 = e ′1
{e/x}(let !u = e1 in e2) = let !u = e ′1 in e2

{e/x}e2 = e ′2
{e/x}(let !u = e1 in e2) = let 〈〉 = e1 in e ′2

{e/u}e1 = e2 Substitution for Persistent Hypotheses

{e/u}u = e

u ′ 6= u

{e/u}u ′ = u ′

{e/u}x = x

{e/u}e0 = e ′0
{e/u}abort e0 = abort e ′0

Linear Logic Lecture Notes Draft of: February 25, 2014



{e/u}e = e ′

{e/u}(inj1 e) = inj1 e
′

{e/u}e0 = e ′0
{e/u}(inj1 e0) = inj1 e

′
0

{e/u}e0 = e ′0 {e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(case e0 of inj1 y1. e1 | inj2 y2. e2) = case e0 of inj1 y1. e ′1 | inj2 y2. e ′2

{e/u}[] = []

{e/u}e0 = e ′0
{e/u}(prj1 e0) = prj1 e

′
0

{e/u}e0 = e ′0
{e/u}(prj2 e ′0) = prj2 e

′
0

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}[e1 & e2] = [e ′1 & e ′2]

{e/u}〈〉 = 〈〉

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(let 〈〉 = e1 in e2) = let 〈〉 = e1 in e ′2

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}〈e1 ⊗ e2〉 = 〈e1 ⊗ e ′2〉

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(let y1 ⊗ y2 = e1 in e2) = let y1 ⊗ y2 = e1 in e ′2

{e/u}e1 = e ′1 x 6= y

{e/u}(λy :A. e1) = λy :A. e ′1

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(e1 e2) = (e1 e ′2)

{e/u}e0 = e ′0
{e/u}!e0 = !e ′0

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(let !u = e1 in e2) = let 〈〉 = e ′1 in e ′2

e1 7→ e2 Evaluation Relation

e1 7→ e2

E [e1] 7→ E [e2]
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case inj1 v of inj1 x . e1 | inj2 y . e2 7→ {v/x}e1

case inj2 v of inj1 x . e1 | inj2 y . e2 7→ {v/y}e2

prj1 [e1 & e2] 7→ e1

prj2 [e1 & e2] 7→ e2

let 〈〉 = 〈〉 in e 7→ e

let x ⊗ y = 〈v1 ⊗ v2〉 in e 7→ {v1/x}{v2/y}e

(λx :A. e) v 7→ {v/x}e

let !u = !e1 in e2 7→ {e1/u}e2

3.2 Call-by-Name Translation of Intuitionistic Logic

The basis of the call-by-name translation of Intuitionistic Logic into Intuitionistic Linear
Logic is given by extending the following type translation to terms in the “obvious” way:

True◦ = 1
(A ∧B)◦ = A◦ & B◦

(A ∨B)◦ = !A◦ ⊕ !B◦

(A⇒ B)◦ = !A◦( B◦

TODO: Typeset the term translation rules.

3.3 Call-by-Value Translation of Intuitionistic Logic

The basis of the call-by-value translation of Intuitionistic Logic into Intuitionstic Linear
Logic is given by extending the following (mutually recursive) type translations to terms
in the “obvious” way. Note that this translation makes a distinction between “values”
and “computations.” The main invariant of the translation is that the ! constructor is
used in two ways: (1) to make values persistent (and hence duplicable), and (2) to make
computations suspended.
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Truev = 1
(A ∧B)v = !Av & !Bv

(A ∨B)v = !Av ⊕ !Bv

(A⇒ B)v = !Av( Bc

Ac = !(Av)

TODO: Typeset the term translation rules.
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Chapter 4

Proof Search and ILL

4.1 Normal Proofs

We can introduce two judgments that constrain the proofs to be in normal form—that is,
containing no subterms that can be reduced by β-reduction (a.k.a. local soundness reduc-
tion rules).
I ::= intro forms

| inj1 I
| inj2 I
| case E of inj1 x . I1 | inj2 y . I2
| [I1 & I2]
| 〈〉
| 〈I1 ⊗ I2〉
| λx :A. I
| !I
| let 〈〉 = E in I
| let x ⊗ y = E in I
| let !u = E in I
| []
| abort E
| E
| (I) M

E ::= elim forms
| x
| u
| prj1 E
| prj2 E
| E I
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| (I : A)
| (E) M

The corresponding inference rules are given in Figures 4.1 and 4.2.
We have the following soundness theorem for normal proofs:

Theorem 4.1 (Soundness for Normal Proofs).

1. If Γ; ∆ ` I : A ⇑ then Γ; ∆ ` A.

2. If Γ; ∆ ` E : A ↓ then Γ; ∆ ` A.

It is much harder to prove completeness because there is no simple, local way to dec-
orate a non-normal proof using the A ⇑ and A ↓ judgments.

Instead, we create an augmented version of the rules (marked with +` ) and shown in
Figures 4.3 and 4.4.

Theorem 4.2 (Soundness for Normal Proofs).

1. If Γ; ∆ +` A ⇑ then Γ; ∆ ` A.

2. If Γ; ∆ +` A ↓ then Γ; ∆ ` A.

Theorem 4.3 (Completeness of Normal Proofs).

1. If Γ; ∆ ` A then Γ; ∆ +` A ⇑.

2. If Γ; ∆ ` A then Γ; ∆ +` A ↓.

4.2 Sequent Calculus
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Γ; ∆ ` I : J Normal form Checking

Γ; ∆1 ` I1 : A1 ⇑ Γ; ∆2 ` I2 : A1 ⇑
Γ; ∆1,∆2 ` 〈I1 ⊗ I2〉 : A1 ⊗ A2 ⇑

Γ; ∆1 ` E : A1 ⊗ A2 ↓ Γ; ∆2, x1:A1, x2:A2 ` I : B ⇑
Γ; ∆1,∆2 ` let x1 ⊗ x2 = E in I : B ⇑

Γ; · ` 〈〉 : 1 ⇑

Γ; ∆1 ` E : 1 ↓ Γ; ∆2 ` I : A ⇑
Γ; ∆1,∆2 ` let 〈〉 = E in I : A ⇑

Γ; ∆, x :A ` I : B ⇑
Γ; ∆ ` λx :A. I : A( B ⇑

Γ; ∆ ` I1 : A ⇑ Γ; ∆ ` I2 : B ⇑
Γ; ∆ ` [I1 & I2] : A & B ⇑

Γ; ∆ ` [] : > ⇑
Γ; ∆ ` I : A ⇑

Γ; ∆ ` inj1 I : A ⊕ B ⇑

Γ; ∆ ` I : B ⇑
Γ; ∆ ` inj2 I : A ⊕ B ⇑

Γ; ∆1 ` E : A1 ⊕ A2 ↓ Γ; ∆2, x1:A1 ` I1 : B ⇑ Γ; ∆2, x2:A2 ` I2 : B ⇑
Γ; ∆1,∆2 ` case E of inj1 x1. I1 | inj2 x2. I2 : B ⇑

Γ; ∆1 ` E : 0 ↓
Γ; ∆1,∆2 ` abort E : A ⇑

Γ; · ` I : A ⇑
Γ; · ` !I : !A ⇑

Γ; ∆1 ` E : !A ↓ Γ, u:A; ∆2 ` I : B ⇑
Γ; ∆1,∆2 ` let !u = E in I : B ⇑

Γ; ∆ ` E : A ↓
Γ; ∆ ` E : A ⇑

Figure 4.1: Normal form checking rules for ILL.
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Γ; ∆ ` E : J Normal Form Extraction

Γ; x :A ` x : A ↓
u:A ∈ Γ

Γ; · ` u : A ↓
Γ; ∆1 ` E : A( B ↓ Γ; ∆2 ` I : A ⇑

Γ; ∆1,∆2 ` (E I) : B ↓

Γ; ∆ ` E : A & B ↓
Γ; ∆ ` prj1 E : A ↓

Γ; ∆ ` E : A & B ↓
Γ; ∆ ` prj2 E : B ↓

Figure 4.2: Normal form hypothesis extraction rules for ILL.
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Γ; ∆ +` J Augmented Checking

Γ; ∆1
+` A1 ⇑ Γ; ∆2

+` A1 ⇑
Γ; ∆1,∆2

+` A1 ⊗ A2 ⇑
Γ; ∆1

+` A1 ⊗ A2 ↓ Γ; ∆2, x1:A1, x2:A2
+` B ⇑

Γ; ∆1,∆2
+` B ⇑

Γ; · +` 1 ⇑
Γ; ∆1

+` 1 ↓ Γ; ∆2
+` A ⇑

Γ; ∆1,∆2
+` A ⇑

Γ; ∆, x :A +` B ⇑
Γ; ∆ +` A( B ⇑

Γ; ∆ +` A ⇑ Γ; ∆ +` B ⇑
Γ; ∆ +` A & B ⇑

Γ; ∆ +` > ⇑
Γ; ∆ +` A ⇑

Γ; ∆ +` A ⊕ B ⇑
Γ; ∆ +` B ⇑

Γ; ∆ +` A ⊕ B ⇑
Γ; ∆1

+` A1 ⊕ A2 ↓ Γ; ∆2, x1:A1
+` B ⇑ Γ; ∆2, x2:A2

+` B ⇑
Γ; ∆1,∆2

+` B ⇑
Γ; ∆1

+` 0 ↓
Γ; ∆1,∆2

+` A ⇑
Γ; · +` A ⇑
Γ; · +` !A ⇑

Γ; ∆1
+` !A ↓ Γ, u:A; ∆2

+` B ⇑
Γ; ∆1,∆2

+` B ⇑
Γ; ∆ +` A ↓
Γ; ∆ +` A ⇑

Figure 4.3: Augmented rules for proving completeness.
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Γ; ∆ +` J Augmented Extraction

Γ; x :A +` A ↓
u:A ∈ Γ

Γ; · +` A ↓
Γ; ∆1

+` A( B ↓ Γ; ∆2
+` A ⇑

Γ; ∆1,∆2
+` B ↓

Γ; ∆ +` A & B ↓
Γ; ∆ +` A ↓

Γ; ∆ +` A & B ↓
Γ; ∆ +` B ↓
Γ; ∆ +` A ⇑
Γ; ∆ +` A ↓

Figure 4.4: Augmented extraction rules. Note the new coercion rule.

Γ; ∆ +=⇒ J AugmentedILL Sequents

Γ; ∆1
+=⇒ A Γ; ∆2,A

+=⇒ B

Γ; ∆1,∆2
+=⇒ B

Figure 4.5: Augmented sequent rules include all of the usual ones, plus cut.
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Γ; ∆ =⇒ J ILL Sequents

Γ; A ↑=⇒ A ⇑

A ∈ Γ Γ; A,∆1 =⇒ B

Γ; ∆1 =⇒ B

Γ; ∆1 =⇒ A Γ; ∆2 =⇒ B

Γ; ∆1,∆2 =⇒ A ⊗ B

Γ; ∆,A1,A2 =⇒ B

Γ; ∆,A1 ⊗A2 =⇒ B

Γ; · =⇒ 1

Γ; ∆ =⇒ B

Γ; 1,∆ =⇒ B

Γ; ∆,A =⇒ B

Γ; ∆ =⇒ A( B

Γ; ∆1 =⇒ A1 Γ; ∆2,A2 =⇒ B

Γ; A1( A2,∆1,∆2 =⇒ B

Γ; ∆ =⇒ A Γ; ∆ =⇒ B

Γ; ∆ =⇒ A & B

Γ; ∆,A1 =⇒ B

Γ; ∆,A1 & A2 =⇒ B

Γ; ∆,A2 =⇒ B

Γ; ∆,A1 & A2 =⇒ B

Γ; ∆ =⇒ >

Γ; ∆ =⇒ A

Γ; ∆ =⇒ A ⊕ B

Γ; ∆ =⇒ B

Γ; ∆ =⇒ A ⊕ B

Γ; ∆,A1 =⇒ B Γ; ∆,A2 =⇒ B

Γ; ∆,A1 ⊕A2 =⇒ B

Γ; 0,∆ =⇒ B

Γ; · =⇒ A

Γ; · =⇒ !A

Γ,A; ∆ =⇒ B

Γ; !A,∆ =⇒ B

Figure 4.6: Sequent Presentation of ILL (Augmented)Linear Logic Lecture Notes Draft of: February 25, 2014
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229, 2009.

[84] Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59:157–180,
1988. Corrections in vol. 62, pp. 327–328.
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