
Linear Logic
Lecture Notes for CIS 670

Steve Zdancewic
University of Pennsylvania

February 25, 2014

Linear Logic Lecture Notes Draft of: February 25, 2014

Contents

1 Overview 5
1.1 Introduction . 5

2 Intuitionistic Linear Logic 7
2.1 The Multiplicative Fragment . 8

2.1.1 Multiplicative Conjunction . 10
2.1.2 Multiplicative Conjunction Unit . 11
2.1.3 Linear Implication . 11
2.1.4 Summary . 12

2.2 The Additive Fragment . 13
2.2.1 Additive Products . 13
2.2.2 Additive Product Unit . 15
2.2.3 Additive Sums . 15
2.2.4 Additive Sum Unit . 16

2.3 Persistence and the Exponential Modality . 16

3 Terms for ILL 21
3.1 Evaluations . 21
3.2 Call-by-Name Translation of Intuitionistic Logic 27
3.3 Call-by-Value Translation of Intuitionistic Logic 27

4 Proof Search and ILL 29
4.1 Normal Proofs . 29
4.2 Sequent Calculus . 30

Linear Logic Lecture Notes Draft of: February 25, 2014

Linear Logic Lecture Notes Draft of: February 25, 2014

Chapter 1

Overview

1.1 Introduction

• Linear logic was introduced in 1987 by Jean-Yves Girard [62].

– Spawned hundreds of subsequent papers, with many(!) variants (substructural
logics)

– Very influential paper: cited > 4250 times according to Google Scholar.

Why?

– Linear logic is a generalization of “ordinary” logic in such a way that it becomes
“resource conscious”.

* Key idea: a resource is a “hypothesis” that can be used only once (hence it
is used up)

* Weakening and Contraction rules of ordinary propositional logic

* Also possible to ephasize the “communication” behavior: parts of the
proof that can “interact”

* Duality is central: DeMorgan’s laws highlight many of the symmetries in
logic

– Linear logic is constructive and low level:

* meaning that it has computational content and therefore has connections
to programming languages

– Fully classical propositional logic and intuitionistic logic are both encodeable
in Linear Logic

– Even in the intuitionistic fragment there are both call-by-value and call-by-
name translations of lambda calculus into the logic

– Connections to parallel computation (even emphasized by Girard)

Many Uses, either directly, or inspirationally:

Linear Logic Lecture Notes Draft of: February 25, 2014

In Logic and Proof theory

– Proof theory: cut elimination, consistency

– Notion of duality, polarity, decomposition of (say) intuitionistic propositional
logic.

– Proof terms: Proof Nets, µ calculus, linear lambda calculus, π calculus

– LL, LU, ILL, DILL, JILL, LNL, (LPC: Jennifer)

Semantics

– Coherence Spaces, Chu Spaces, Game Semantics

– Categorical Models:

Applications

– Manual memory management [84, 7, 69]

– Control of pointer aliasing [51, 69, 152, 132]

– Heap separation properties [118]

– Referential transparency (purity) [133, 33]

– Resource handles and capabilities [77, 37, 39]

– State-dependent program analysis (typestates) [46, 51, 50]

– Safe concurrent communication (session types) [72, 124, 130]

– Security policy enforcement [144, 123]

– Program optimization [146]

– Differential Privacy [117, 57]

– Implicit Computational Complexity [56]

– Concurrency: [94, 96]

TODO: Pottier’s recent work on state. TODO: Wadler, Pfenning’s recent work on
session types

Linear Logic Lecture Notes Draft of: February 25, 2014

Chapter 2

Intuitionistic Linear Logic

These notes follow the judgmental presentation of intuitionistic linear logic in Chang,
et al.’s paper [36]. They were also informed by Pfenning’s lecture notes on linear logic.
For more discussion about this approach to logic, see the notes on Martin-Löf’s Sienna
Lectures [93] and also Davies and Pfenning’s paper on modal logic [111].

In the “judgmental” approach to defining logics, one makes a distinction between
what it means for a piece of syntax to be a proposition and whether a proposition is true.
Going even further, there may be different notions of “truth,” each corresponding to a dif-
ferent means of justifying a particular proposition. Such modes of “truth” are judgments
about propositions. The meaning of a judgment is determined by what is considered to
count as “evidence” for it.

For example, consider the syntax “1 + 1 = 0”. The judgment “1 + 1 = 0” is a proposition
asserts that the syntax is a legal subject for manipulation using the logic. The designer
of the logic decides what pieces of syntax are legal propositions by determining what
counts as “evidence” that a proposition is legal. Not all syntax may be judged to be a
legal proposition, for example, one might wish to disallow “= +ELEPHANT = 0.”

Different logics make different choices about what it means for a piece of syntax to
be a legal propositions. For example, propositional logic usually assumes the existence of
some (finite or countably infinite) set of atomic propositions {a1, a2, . . .} and then defines a
grammar of propositions along the lines of:

p, q ::= ai | p ∧ q | p ∨ q | ¬p | p⇒ q

For convenience, we abbreviate the judgment “A is a proposition” by A prop. A gram-
mar like the one above is short hand for a collection of inference rules that collectively
determine how to provide evidence for the judgment “A is a proposition.” In this case, we
would have the rules shown in Figure 2.1.

This approach means that a piece of syntax like “1+1 = 0” may (or may not) constitute
a legal proposition. This could be indicated judgmentally by agreeing on what counts as
evidence for the judgment (“1 + 1 = 4” is a proposition), or, more tersely (“1 + 1 = 4”
prop).

Linear Logic Lecture Notes Draft of: February 25, 2014

a ∈ {a1, a2, . . .}
a prop

p prop q prop

p ∧ q prop
p prop q prop

p ∨ q prop

p prop

¬p prop
p prop q prop

p⇒ q prop

Figure 2.1: Propositions of propositional logic.

The role of a “logic” is to characterize how judgments interact in a general way, inde-
pendent of the details of how the evidence for those judgments is generated.

In intuitionistic (constructive) propositional logic, one is typically concerned with two
or three different kinds of judgments, for example:

A prop The syntax “A” is a proposition
A true The proposition A is true (contingently provable)
A valid The proposition A is valid (provable always)

In classical logic, besides A true, one might also consider the judgment A false, which
asserts that the proposition A is false. The structure of classical logic would then deter-
mine how proofs, which give evidence for A true, interact with refutations, which give
evidence for A false.

2.1 The Multiplicative Fragment

Judgment of the form A lin meaning “the proposition A is linearly true.”
We will eventually add another judgment A per with the intended meaning that “A

is persistently true” or “valid.”
Following Martin-Löf, we must give the judgment A lin meaning by deciding what

counts as evidence for it. Because we are thinking of linear propositions as some kind of
resource (for now), it seems obvious that evidence for a resource would be the resource
itself. If we think in terms of the money example, then the proposition q might mean
“Steve has a quarter” and evidence of that proposition would be my posession of the
quarter itself, which I could display as proof of the proposition.

Next we generalize to hypothetical judgments, which make some assumptions about
the existence of evidence for judgments. In the context:

A1 lin,A2 lin,A3 lin ` B lin

We decide on what counts as evidence for a hypothetical judgment by specifying ax-
ioms and inference rules. In the case of linear logic, we want to interpret evidence for
such a hypothetical judgment as a resource-efficient plan for producing evidence for the
judgment B lin given evidence for the assumed hypotheses.

Plans of this kind should be resource-conscious in two senses:

Linear Logic Lecture Notes Draft of: February 25, 2014

• The plan should be “efficient.” In particular, the plan should only mention relevant
resources. That means that each hypothetical resource should be used at least once
in the plan.

• The plan should be respect the our interpretation of A lin as a kind of resource.
There are different ways one might possibly do this, but a very simple, and natural
one is to say that the distinguishing characteristic of a resource is that it can’t (easily!)
be copied. Therefore, we should ensure that assuming A lin is not (necessarily) the
same as assuming two instances of it, as in A lin,A lin.

These considerations will have to be taken in to account as we design the logic. The
inference rules will thus have to respect our intended semantics of “plans” as evidence
for hypothetical linear judgments.

A lin ` A lin
HYP

An instance of this rule is:

q lin ` q lin

We could interpret it as: “Assuming that Steve has a quarter there is a trivial plan to
demonstrate that Steve has a quarter.”

A bad alternative for this hypothesis rule is:

∆,A lin ` A lin
BADHYP

It doesn’t respect the “efficiency” criterion of our intended interpretation. This plan
discards all of the resources in ∆.

Our interpretation of judgments as plans should validate the following substitution
principle:

Principle 2.1 (Substitution). If ∆1 ` A lin and ∆2,A lin ` B lin then ∆1,∆2 ` B lin.

• The substitution principle is not a rule of the logic, but instead a structural invariant
that justifies the use of a judgment like A lin as a hypothesis.

• Note how this takes into account the non-duplicability of resources. In particular,
when we write ∆1,∆2 we should interpret this as requiring the combination of re-
sources hypothesized in both ∆1 and ∆2.

The following plausible substitution principle does not respect the intended interpre-
tation of linear hypotheses.

Principle 2.2 (Bad Substitution). If ∆ ` A lin and ∆,A lin ` B lin then ∆ ` B lin.

Linear Logic Lecture Notes Draft of: February 25, 2014

To extend the logic with more structure, we consider different possible ways that
generic, or hypothetical resources might be manipulated: as opposed to rules for work-
ing with particular resources (such as making change via coins), such rules describe plans
for manipulating any resource. Such “general” plans correspond to logical connectives,
and their meaning is justified (as suggested by Martin-Löf) by inference rules. In natural-
deduction style proofs, the semantics can be given by the introduction rules, which say
how to produce evidence from hypotheses, and elimination rules, which say how to con-
sume such evidence.

When developing the inference rules for our logic, we can assess their correctness by
ensuring that all of the rules we design are “in harmony” with the substitution principle.
This amounts to showing two properties for each connective of the logic:

• Local soundness: This ensures that the elimination rules are not too strong, in the
sense that all of the information produced by eliminating a judgment is available
during its construction. (These will correspond to β-reductions justified by substi-
tution.)

• Local expansion: This ensures that the elimination rules are not too weak, in the sense
that by eliminating a judgment produces information sufficient to reconstitute it.
(These will correspond to η-expansions.)

Note: Because, for the moment, all of the judgments that we manipulate in the logic
are of the form A lin, we write the hypothetical judgment

∆1,A1 lin,A2 lin,A3 lin,∆2 ` B lin

as simply
∆1,A1,A2,A3,∆2 ` B

This abbreviated form makes it less noisy to write inference rules, but we should keep
in mind that this linear judgment is distinct from other judgments.

2.1.1 Multiplicative Conjunction

Suppose we have two resources A and B , what constitutes evidence that both are true?
We write (A ⊗ B) for the simultaneous conjunction of A and B (also called multiplicative
product, also called tensor product).

What constitutes a (general purpose, efficient) plan to produce an A and a B assuming
some hypothetical resources?

∆1 ` A1 ∆2 ` A1

∆1,∆2 ` A1 ⊗ A2

⊗I

This rule (read top to bottom) says that given two plans, one building A1 from ∆1 and
one building A2 from ∆2 we can build a composite plan that needs the resources of both
constituent plans.

Linear Logic Lecture Notes Draft of: February 25, 2014

The corresponding elimination rule says that given a plan to produce (A1⊗A2) we can
assume them (as hypothetical judgments) simultaneously in some plan to construct B .

∆1 ` A1 ⊗ A2 ∆2,A1,A2 ` B

∆1,∆2 ` B
⊗E

Local soundness:

⊗E

⊗I

D1

∆1 ` A1

D2

∆2 ` A2

∆1,∆2 ` A1 ⊗ A2

E
∆3,A1,A2 ` B

∆1,∆2,∆3 ` B =⇒R

E ′

∆1,∆2,∆3 ` B

Local expansion:

D
∆ ` A1 ⊗ A2 =⇒E

D
∆ ` A1 ⊗ A2

A1 ` A1

HYP
A2 ` A2

HYP

A1,A2 ` A1 ⊗ A2

∆ ` A1 ⊗ A2

⊗E

2.1.2 Multiplicative Conjunction Unit

The unit of multiplicative conjunction is the “trivial” resource 1. It has rules:

· ` 1
1I

∆1 ` 1 ∆2 ` A

∆1,∆2 ` A
1E

Local soundness:

1E

1I
D
· ` 1

E
∆ ` A

∆ ` A =⇒R

E
∆ ` A

Local expansion:

D
∆ ` 1 =⇒E 1E

D
∆ ` 1 · ` 1

1I

∆ ` 1

2.1.3 Linear Implication

∆,A ` B

∆ ` A(B
(I

∆1 ` A(B ∆2 ` A

∆1,∆2 ` B
(E

Local soundness:

Linear Logic Lecture Notes Draft of: February 25, 2014

A ` A
HYP

∆1 ` A1 ∆2 ` A1

∆1,∆2 ` A1 ⊗ A2

⊗I

∆1 ` A1 ⊗ A2 ∆2,A1,A2 ` B

∆1,∆2 ` B
⊗E

· ` 1
1I

∆1 ` 1 ∆2 ` A

∆1,∆2 ` A
1E

∆,A ` B

∆ ` A(B
(I

∆1 ` A(B ∆2 ` A

∆1,∆2 ` B
(E

Figure 2.2: The multiplicative fragment of intuitionistic linear logic.

(E

(I

D
∆1,A ` B

∆1 ` A(B

E
∆2 ` A

∆1,∆2 ` B =⇒R

D′

∆1,∆2 ` B

Local Completeness:

D
∆ ` A(B =⇒E

D
∆ ` A(B A ` A

HYP

∆,A ` B
(E

∆ ` A(B
(I

2.1.4 Summary

The multiplicative fragment of intutionistic linear logic is summarized in Figure Fig-
ure 2.2.

Investigate the relationships among the connectives:

Linear Logic Lecture Notes Draft of: February 25, 2014

A1 ⊗ (A2 ⊗ A3) ` (A1 ⊗ A2) ⊗ A3

(A1 ⊗ A2) ⊗ A3 ` A1 ⊗ (A2 ⊗ A3)
1 ⊗ A ` A

A ` 1 ⊗ A
A ⊗ 1 ` A

A ` A ⊗ 1
(A1 ⊗ A2)(B ` A1(A2(B
A1(A2(B ` (A1 ⊗ A2)(B

We can add axioms to the multiplicative fragment of linear logic. Such axioms are not
justified by the judgmental construction, but should rather be justified by some “external”
evidence.

For example, returning to the coin scenario, we might consider adding axioms like:

· ` q(d ⊗ d ⊗ n
CHANGE1

· ` q(n ⊗ n ⊗ n ⊗ n ⊗ n
CHANGE2

Axioms are subtley different than hypotheses because axioms are not “resources” in
the sense that the are consumed. If we wanted to model the ability to make change
for some (fixed) number of quarters, it would be better to represent the situation as the
derivation of some hypothetical judgment:

D
q(d ⊗ d ⊗ n ` B

2.2 The Additive Fragment

2.2.1 Additive Products

Suppose we have two plans for processing a linear resource. For example, suppose that
we have:

D1

q ` d ⊗ d ⊗ n
D2

q ` q

Given a resource of only one quarter, we have seen that (in general) it is not possible
to combine those two plans to obtain:

D1

. . .

D2

. . .

q ` (d ⊗ d ⊗ n) ⊗ q
BOGUS

Linear Logic Lecture Notes Draft of: February 25, 2014

Such a plan would need to somehow copy the resource q.
However, we can easily imagine creating a plan that, given a quarter q follows one of

the two plans. The resulting resource is “fungible” in that it presents two options for how
to use the it. The new kind of resource is written A & B and pronounced A with B . For
example, we have using the examples above:

D1

q ` d ⊗ d ⊗ n
D2

q ` q
q ` (d ⊗ d ⊗ n) & q

The introduction and elimination rules for & are:

∆ ` A ∆ ` B

∆ ` A & B
&I

∆ ` A & B

∆ ` A
&E1

∆ ` A & B

∆ ` B
&E2

As usual, we can check whether these rules make sense by checking local soundness
and local expansion. However, because there are two elimination rules for &, there are
two possible local soundness reductions.

Local Soundness 1:

&E1

&I

D1

∆ ` A

D2

∆ ` B

∆ ` A & B

∆ ` A =⇒R

D1

∆ ` A

Local Soundness 2:

&E1

&I

D1

∆ ` A

D2

∆ ` B

∆ ` A & B

∆ ` B =⇒R

D2

∆ ` B

Local Expansion:

D
∆ ` A & B =⇒E &I

&E1

D
∆ ` A & B

∆ ` A
&E2

D
∆ ` A & B

∆ ` B

∆ ` A & B

Note that the semantics of A & B as a hypothetical resource means that the plan that
uses the resources as an input gets to decide whether to treat it as an A or a B . This means
that the “consumer” of the resource A & B gets to determine which way to go.

Linear Logic Lecture Notes Draft of: February 25, 2014

2.2.2 Additive Product Unit

The unit for & is a “0-ary” version of the product. This means that it uses its resources in
0 premises and there are no ways to eliminate it:

∆ ` >
>I (no elimination form)

However, we still have a reasonable notion of local soundness:

D
∆ ` > =⇒E ∆ ` >

>I

An instance of this is:

> ` >
HYP

=⇒E > ` >
>I

2.2.3 Additive Sums

The dual to “with” is a kind of resource that acts like a disjunction chosen by the provider
of that resource, instead of the consumer. We call it the “additive sum” and write it as
A ⊕ B . It has two introduction rules and one elimination rule.

∆ ` A

∆ ` A ⊕ B
⊕I1

∆ ` B

∆ ` A ⊕ B
⊕I2

∆1 ` A1 ⊕ A2 ∆2,A1 ` B ∆2,A2 ` B

∆1,∆2 ` B
⊕E

Local Soundness 1:

⊕I1

D
∆1 ` A1

∆1 ` A1 ⊕ A2

E1
∆2,A1 ` B

E2
∆2,A2 ` B

∆1,∆2 ` B
⊕E

=⇒R

E ′1
∆1,∆2 ` B

Local Soundness 1:

⊕I2

D
∆1 ` A2

∆1 ` A1 ⊕ A2

E1
∆2,A1 ` B

E2
∆2,A2 ` B

∆1,∆2 ` B
⊕E

=⇒R

E ′2
∆1,∆2 ` B

Local Expansion:

Linear Logic Lecture Notes Draft of: February 25, 2014

D
∆ ` A ⊕ B =⇒E

D
∆ ` A ⊕ B

A ` A
HYP

·,A ` A ⊕ B
⊕I1

B ` B
HYP

·,B ` A ⊕ B
⊕I2

∆ ` A ⊕ B
⊕E

2.2.4 Additive Sum Unit

This is a form of “False.” The unit for ⊕ is a “0-ary” version of the sum. This means that
its elimination rule requires 0 premises and there are no ways to introduce it:

(no introduction form)
∆1 ` 0

∆1,∆2 ` A
0E

There is still a reasonable notion of local expansion:

D
∆ ` 0 =⇒E

D
∆ ` 0

∆ ` 0
0E

2.3 Persistence and the Exponential Modality

So far, the fragment of intuitionistic linear logic that we have been working with is not
expressive enough to encode ordinary propositional logic because there is no way that a
hypothesis can be used multiple times (or even zero times). These properties of the mul-
tiplicative and additive fragments can be summarized by saying that the usual weakening
and contraction rules of logic are not admissible.

Lemma 2.3 (Weakening Wrong!). If ∆ ` B lin then ∆,A lin ` B lin.

Lemma 2.4 (Contraction Wrong!). If ∆,A lin,A lin ` B lin then ∆,A lin ` B lin.

To recover the expressiveness of full propositional logic while retaining the interpreta-
tion of hypotheses as resources, we introduce a new kind of judgment, persistence, which
indicates that a proposition is “persistently true.” In contrast to the judgment A lin, A per
means that the hypohesis A is not an exhaustible resource.

Again following Marin-Löf, we must decide what counts as evidence for the judgment
A per. Besides axiomatic declarations of such persistent truths, it also seems reasonable
to say that if we have a plan to construct a resource A from no other linear resources,
then A is itself a persistent resource. We can always execute the plan to construct the A
resource as many times as needed. This leads us to the following principle of persistence.

Principle 2.5 (Persistence). If · ` A lin then A per.

Linear Logic Lecture Notes Draft of: February 25, 2014

Pfenning calls this a categorical judgment. Persistence is the linear analogue to the
usual notion of validity from propositional logic: a proposition is valid if it is true using
no hypotheses.

We now need to reconsider the hypothetical judgments for linear propositions. In par-
ticular, it is now possible to have persistent hypotheses in addition to the linear hypothe-
ses we’ve been using so far. Therefore we refine our hypothetical judgment to include a
mix of linear and persistent hypotheses:

A1 lin,A2 per,A3 per,A4 lin, . . . ,An lin ` B lin

Because the order of hypotheses in the context doesn’t matter, we can use the nota-
tionally more convenient (and by now standard) form of such hypothetical judgments
that separates the persistent hypotheses from the linear ones. By convention we use ∆ for
the linear contexts and Γ for the persistent ones:

∆ ::= · | A lin | ∆1,∆2

Γ ::= · | A per | Γ1,Γ2

This means that the new form of the hypothetical judgments is:

Γ; ∆ ` A lin

Note that the conclusion is still a judgment about the linearity of the proposition A. We
could consider hypothetical judgments of the form Γ; ∆ ` A per that define the semantics
of persistence. However, doing so will turn out to be unnecessary because we categorically
defined persistence as · ` A lin; derivations about persistence are just a particular mode
of derivations about linearity.

We do have to consider how the persistent hypotheses warrant new linear judgments.
Observe that A per is just a mode of A lin, we can use the following rule for persistent
hypotheses:

Γ,A per; · ` A lin
!HYP

Note that it requires the linear context to be empty, but permits other persistent hy-
potheses to appear in Γ. The corresponding new formulation for linear hypotheses is:

Γ; A lin ` A lin
HYP

It also permits persistent hypotheses to appear in Γ, but as usual, requires exactly the
linear hypothesis being used. Together these rules will justify the weakening property
(but only for the persistent context).

Note: What would be the consequences of adding the following rather than the !HYP
rule above?

Linear Logic Lecture Notes Draft of: February 25, 2014

Γ,A per; ∆,A lin ` B lin

Γ,A per; ∆ ` B lin

Why is the first rule preferable?

Together with the modifications to the hypothesis rules, we must reconsider the sub-
stitution principles. Now there are two kinds of substitution—one that applies to linear
hypotheses and one that applies to persistent hypotheses. Again, the forms of the substi-
tution principles capture the intended semantics:

Principle 2.6 (Substitution II).

• If Γ; ∆1 ` A lin and Γ; ∆2,A lin ` B lin then Γ; ∆1,∆2 ` B lin.

• If Γ; · ` A lin and Γ,A per; ∆ ` B lin then Γ; ∆ ` B lin.

We can also write down the weakening an contraction principles that we expect to
hold of the resulting logic:

Principle 2.7 (Weakening). If Γ; ∆ ` B lin then Γ,A per; ∆ ` B lin.

Principle 2.8 (Contraction). If Γ,A per,A per; ∆ ` B lin then Γ,A per; ∆ ` B lin.

We can internalize the persistence judgment as a modal operator !. The introduction
rule makes the interpretation of the modality clear: the linear proposition !A stands for a
persistent judgment A per:

Γ; · ` A lin

Γ; · ` !A lin
!I

The elimination rule says that a plan to create a persistent resource !A justifies the use
of A as a persistent hypothesis:

Γ; ∆1 ` !A lin Γ,A per; ∆2 ` B

Γ; ∆1,∆2 ` B
!E

As usual, we test our new substitution principles against these rules by checking for
local soundness and local expansion:

Local Soundness:

D
Γ; · ` A

Γ; · ` !A
!I

E
Γ,A per; ∆ ` B

Γ; ∆ ` B
!E

=⇒R

E ′

Γ; ∆ ` B

Linear Logic Lecture Notes Draft of: February 25, 2014

Local Expansion:

D
Γ; ∆ ` !A =⇒E

D
Γ; ∆ ` !A

Γ,A per; · ` A
!HYP

Γ,A per; · ` !A
!I

Γ; ∆ ` !A
!E

As before, it is worthwhile to consider how the ! constructor interacts with the other
connectives of the logic. In particular, we have that the following are all derivable in
intuitionistic linear logic:

·; !A ` !A ⊗ !A
·; !A ` 1
·; !A ` !!A
·; !!A ` !A

·; !(A & B) ` !(A ⊗ B)
·; !A ⊗ !B ` !(A ⊗ B)

·; 1 ` !>
·; !> ` 1

On the other hand, the following are not possible to derive (though it will be easier to
prove that this is the case once we look at the sequent calculus formulation of the logic):

·; !(A ⊗ B) 6` !(A & B)
·; !(A ⊗ B) 6` !A ⊗ !B

Linear Logic Lecture Notes Draft of: February 25, 2014

Γ; A lin ` A lin
HYP

Γ,A per; · ` A lin
!HYP

Γ; ∆1 ` 0

Γ; ∆1,∆2 ` A
0E

Γ; ∆ ` >
>I

Γ; ∆ ` A

Γ; ∆ ` A ⊕ B
⊕I1

Γ; ∆ ` A & B

Γ; ∆ ` A
&E1

Γ; ∆ ` B

Γ; ∆ ` A ⊕ B
⊕I2

Γ; ∆ ` A & B

Γ; ∆ ` B
&E2

Γ; ∆1 ` A1 ⊕ A2 Γ; ∆2,A1 ` B Γ; ∆2,A2 ` B

Γ; ∆1,∆2 ` B
⊕E

Γ; ∆ ` A Γ; ∆ ` B

Γ; ∆ ` A & B
&I

Γ; · ` 1
1I

Γ; ∆1 ` 1 Γ; ∆2 ` A

Γ; ∆1,∆2 ` A
1E

Γ; ∆1 ` A1 Γ; ∆2 ` A1

Γ; ∆1,∆2 ` A1 ⊗ A2

⊗I

Γ; ∆1 ` A1 ⊗ A2 Γ; ∆2,A1,A2 ` B

Γ; ∆1,∆2 ` B
⊗E

Γ; ∆,A ` B

Γ; ∆ ` A(B
(I

Γ; ∆1 ` A(B Γ; ∆2 ` A

Γ; ∆1,∆2 ` B
(E

Γ; · ` A lin

Γ; · ` !A lin
!I

Γ; ∆1 ` !A lin Γ,A per; ∆2 ` B

Γ; ∆1,∆2 ` B
!E

Figure 2.3: Intuitionistic Linear Logic

Linear Logic Lecture Notes Draft of: February 25, 2014

Chapter 3

Terms for ILL

3.1 Evaluations
e ::= expressions

| x
| u
| abort e
| inj1 e
| inj2 e
| case e of inj1 x . e1 | inj2 y . e2
| []
| [e1 & e2]
| prj1 e
| prj2 e
| 〈〉
| let 〈〉 = e1 in e2
| 〈e1 ⊗ e2〉
| let x ⊗ y = e1 in e2
| λx :A. e
| e1 e2
| !e
| let !u = e1 in e2
| (e) M
| {e1/x}e2 M
| {e1/u}e2 M
| E [e] M

Linear Logic Lecture Notes Draft of: February 25, 2014

v ::= values
| x
| inj1 v
| inj2 v
| [e1 & e2]
| 〈〉
| 〈v1 ⊗ v2〉
| λx :A. e
| !e

Γ; ∆ ` e : A Intuitionistic Linear Logic Proof Terms

Γ; x :A ` x : A

u:A ∈ Γ

Γ; · ` u : A

Γ; ∆1 ` e1 : A1 Γ; ∆2 ` e2 : A1

Γ; ∆1,∆2 ` 〈e1 ⊗ e2〉 : A1 ⊗ A2

Γ; ∆1 ` e1 : A1 ⊗ A2 Γ; ∆2, x1:A1, x2:A2 ` e2 : B

Γ; ∆1,∆2 ` let x1 ⊗ x2 = e1 in e2 : B

Γ; · ` 〈〉 : 1

Γ; ∆1 ` e1 : 1 Γ; ∆2 ` e2 : A

Γ; ∆1,∆2 ` let 〈〉 = e1 in e2 : A

Γ; ∆, x :A ` e : B

Γ; ∆ ` λx :A. e : A(B

Γ; ∆1 ` e1 : A(B Γ; ∆2 ` e2 : A

Γ; ∆1,∆2 ` (e1 e2) : B

Γ; ∆ ` e1 : A Γ; ∆ ` e2 : B

Γ; ∆ ` [e1 & e2] : A & B

Γ; ∆ ` e : A & B

Γ; ∆ ` prj1 e : A

Γ; ∆ ` e : A & B

Γ; ∆ ` prj2 e : B

Γ; ∆ ` [] : >

Linear Logic Lecture Notes Draft of: February 25, 2014

Γ; ∆ ` e : A

Γ; ∆ ` inj1 e : A ⊕ B

Γ; ∆ ` e : B

Γ; ∆ ` inj2 e : A ⊕ B

Γ; ∆1 ` e0 : A1 ⊕ A2 Γ; ∆2, x1:A1 ` e1 : B Γ; ∆2, x2:A2 ` e2 : B

Γ; ∆1,∆2 ` case e0 of inj1 x1. e1 | inj2 x2. e2 : B

Γ; ∆1 ` e : 0

Γ; ∆1,∆2 ` abort e : A

Γ; · ` e : A

Γ; · ` !e : !A

Γ; ∆1 ` e1 : !A Γ, u:A; ∆2 ` e2 : B

Γ; ∆1,∆2 ` let !u = e1 in e2 : B

E ::= evaluation contexts
| �
| inj1 E
| inj2 E
| case E of inj1 x . e1 | inj2 y . e2
| prj1 E
| prj2 E
| let 〈〉 = E in e
| 〈E ⊗ e〉
| 〈v ⊗ E 〉
| let x ⊗ y = E in e
| E e
| v E
| let !u = E in e
| (E) M

E [e1] = e2 Context Filling

�[e1] = e1

E [e1] = e2

(inj1 E)[e1] = inj1 e2

E [e1] = e2

(inj2 E)[e1] = inj2 e2

E [e1] = e2

(case E of inj1 x . e ′1 | inj2 y . e ′2)[e1] = case e2 of inj1 x . e ′1 | inj2 y . e ′2

Linear Logic Lecture Notes Draft of: February 25, 2014

E [e1] = e2

(prj1 E)[e1] = prj1 e2

E [e1] = e2

(prj2 E)[e1] = prj2 e2

E [e1] = e2

(let 〈〉 = E in e)[e1] = let 〈〉 = e2 in e

E [e1] = e2

〈E ⊗ e〉[e1] = 〈e2 ⊗ e〉

E [e1] = e2

〈v ⊗ E 〉[e1] = 〈v ⊗ e2〉

E [e1] = e2

(E e)[e1] = e2 e1

E [e1] = e2

(v E)[e1] = v e2

E [e1] = e2

(let !u = E in e)[e1] = let !u = e2 in e

{e/x}e1 = e2 Substitution for Linear Hypotheses

{e/x}x = e

{e/x}e = e ′

{e/x}(inj1 e) = inj1 e
′

{e/x}e0 = e ′0
{e/x}(inj1 e0) = inj1 e

′
0

{e/x}e0 = e ′0
{e/x}(case e0 of inj1 y1. e1 | inj2 y2. e2) = case e ′0 of inj1 y1. e1 | inj2 y2. e2

{e/x}e1 = e ′1 {e/x}e2 = e ′2 x 6= y1 x 6= y2

{e/x}(case e0 of inj1 y1. e1 | inj2 y2. e2) = case e0 of inj1 y1. e ′1 | inj2 y2. e ′2

{e/x}[] = []

{e/x}e0 = e ′0
{e/x}(prj1 e0) = prj1 e

′
0

{e/x}e0 = e ′0
{e/x}(prj2 e ′0) = prj2 e

′
0

Linear Logic Lecture Notes Draft of: February 25, 2014

{e/x}e1 = e ′1 {e/x}e2 = e ′2
{e/x}[e1 & e2] = [e ′1 & e ′2]

{e/x}e1 = e ′1
{e/x}(let 〈〉 = e1 in e2) = let 〈〉 = e ′1 in e2

{e/x}e2 = e ′2
{e/x}(let 〈〉 = e1 in e2) = let 〈〉 = e1 in e ′2

{e/x}e1 = e ′1
{e/x}〈e1 ⊗ e2〉 = 〈e ′1 ⊗ e2〉

{e/x}e2 = e ′2
{e/x}〈e1 ⊗ e2〉 = 〈e1 ⊗ e ′2〉

{e/x}e1 = e ′1
{e/x}(let y1 ⊗ y2 = e1 in e2) = let y1 ⊗ y2 = e ′1 in e2

{e/x}e2 = e ′2
{e/x}(let y1 ⊗ y2 = e1 in e2) = let y1 ⊗ y2 = e1 in e ′2

{e/x}e1 = e ′1 x 6= y

{e/x}(λy :A. e1) = λy :A. e ′1

{e/x}e1 = e ′1
{e/x}(e1 e2) = (e ′1 e2)

{e/x}e2 = e ′2
{e/x}(e1 e2) = (e1 e ′2)

{e/x}e1 = e ′1
{e/x}(let !u = e1 in e2) = let !u = e ′1 in e2

{e/x}e2 = e ′2
{e/x}(let !u = e1 in e2) = let 〈〉 = e1 in e ′2

{e/u}e1 = e2 Substitution for Persistent Hypotheses

{e/u}u = e

u ′ 6= u

{e/u}u ′ = u ′

{e/u}x = x

{e/u}e0 = e ′0
{e/u}abort e0 = abort e ′0

Linear Logic Lecture Notes Draft of: February 25, 2014

{e/u}e = e ′

{e/u}(inj1 e) = inj1 e
′

{e/u}e0 = e ′0
{e/u}(inj1 e0) = inj1 e

′
0

{e/u}e0 = e ′0 {e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(case e0 of inj1 y1. e1 | inj2 y2. e2) = case e0 of inj1 y1. e ′1 | inj2 y2. e ′2

{e/u}[] = []

{e/u}e0 = e ′0
{e/u}(prj1 e0) = prj1 e

′
0

{e/u}e0 = e ′0
{e/u}(prj2 e ′0) = prj2 e

′
0

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}[e1 & e2] = [e ′1 & e ′2]

{e/u}〈〉 = 〈〉

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(let 〈〉 = e1 in e2) = let 〈〉 = e1 in e ′2

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}〈e1 ⊗ e2〉 = 〈e1 ⊗ e ′2〉

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(let y1 ⊗ y2 = e1 in e2) = let y1 ⊗ y2 = e1 in e ′2

{e/u}e1 = e ′1 x 6= y

{e/u}(λy :A. e1) = λy :A. e ′1

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(e1 e2) = (e1 e ′2)

{e/u}e0 = e ′0
{e/u}!e0 = !e ′0

{e/u}e1 = e ′1 {e/u}e2 = e ′2
{e/u}(let !u = e1 in e2) = let 〈〉 = e ′1 in e ′2

e1 7→ e2 Evaluation Relation

e1 7→ e2

E [e1] 7→ E [e2]

Linear Logic Lecture Notes Draft of: February 25, 2014

case inj1 v of inj1 x . e1 | inj2 y . e2 7→ {v/x}e1

case inj2 v of inj1 x . e1 | inj2 y . e2 7→ {v/y}e2

prj1 [e1 & e2] 7→ e1

prj2 [e1 & e2] 7→ e2

let 〈〉 = 〈〉 in e 7→ e

let x ⊗ y = 〈v1 ⊗ v2〉 in e 7→ {v1/x}{v2/y}e

(λx :A. e) v 7→ {v/x}e

let !u = !e1 in e2 7→ {e1/u}e2

3.2 Call-by-Name Translation of Intuitionistic Logic

The basis of the call-by-name translation of Intuitionistic Logic into Intuitionistic Linear
Logic is given by extending the following type translation to terms in the “obvious” way:

True◦ = 1
(A ∧B)◦ = A◦ & B◦

(A ∨B)◦ = !A◦ ⊕ !B◦

(A⇒ B)◦ = !A◦(B◦

TODO: Typeset the term translation rules.

3.3 Call-by-Value Translation of Intuitionistic Logic

The basis of the call-by-value translation of Intuitionistic Logic into Intuitionstic Linear
Logic is given by extending the following (mutually recursive) type translations to terms
in the “obvious” way. Note that this translation makes a distinction between “values”
and “computations.” The main invariant of the translation is that the ! constructor is
used in two ways: (1) to make values persistent (and hence duplicable), and (2) to make
computations suspended.

Linear Logic Lecture Notes Draft of: February 25, 2014

Truev = 1
(A ∧B)v = !Av & !Bv

(A ∨B)v = !Av ⊕ !Bv

(A⇒ B)v = !Av(Bc

Ac = !(Av)

TODO: Typeset the term translation rules.

Linear Logic Lecture Notes Draft of: February 25, 2014

Chapter 4

Proof Search and ILL

4.1 Normal Proofs

We can introduce two judgments that constrain the proofs to be in normal form—that is,
containing no subterms that can be reduced by β-reduction (a.k.a. local soundness reduc-
tion rules).
I ::= intro forms

| inj1 I
| inj2 I
| case E of inj1 x . I1 | inj2 y . I2
| [I1 & I2]
| 〈〉
| 〈I1 ⊗ I2〉
| λx :A. I
| !I
| let 〈〉 = E in I
| let x ⊗ y = E in I
| let !u = E in I
| []
| abort E
| E
| (I) M

E ::= elim forms
| x
| u
| prj1 E
| prj2 E
| E I

Linear Logic Lecture Notes Draft of: February 25, 2014

| (I : A)
| (E) M

The corresponding inference rules are given in Figures 4.1 and 4.2.
We have the following soundness theorem for normal proofs:

Theorem 4.1 (Soundness for Normal Proofs).

1. If Γ; ∆ ` I : A ⇑ then Γ; ∆ ` A.

2. If Γ; ∆ ` E : A ↓ then Γ; ∆ ` A.

It is much harder to prove completeness because there is no simple, local way to dec-
orate a non-normal proof using the A ⇑ and A ↓ judgments.

Instead, we create an augmented version of the rules (marked with +`) and shown in
Figures 4.3 and 4.4.

Theorem 4.2 (Soundness for Normal Proofs).

1. If Γ; ∆ +` A ⇑ then Γ; ∆ ` A.

2. If Γ; ∆ +` A ↓ then Γ; ∆ ` A.

Theorem 4.3 (Completeness of Normal Proofs).

1. If Γ; ∆ ` A then Γ; ∆ +` A ⇑.

2. If Γ; ∆ ` A then Γ; ∆ +` A ↓.

4.2 Sequent Calculus

Linear Logic Lecture Notes Draft of: February 25, 2014

Γ; ∆ ` I : J Normal form Checking

Γ; ∆1 ` I1 : A1 ⇑ Γ; ∆2 ` I2 : A1 ⇑
Γ; ∆1,∆2 ` 〈I1 ⊗ I2〉 : A1 ⊗ A2 ⇑

Γ; ∆1 ` E : A1 ⊗ A2 ↓ Γ; ∆2, x1:A1, x2:A2 ` I : B ⇑
Γ; ∆1,∆2 ` let x1 ⊗ x2 = E in I : B ⇑

Γ; · ` 〈〉 : 1 ⇑

Γ; ∆1 ` E : 1 ↓ Γ; ∆2 ` I : A ⇑
Γ; ∆1,∆2 ` let 〈〉 = E in I : A ⇑

Γ; ∆, x :A ` I : B ⇑
Γ; ∆ ` λx :A. I : A(B ⇑

Γ; ∆ ` I1 : A ⇑ Γ; ∆ ` I2 : B ⇑
Γ; ∆ ` [I1 & I2] : A & B ⇑

Γ; ∆ ` [] : > ⇑
Γ; ∆ ` I : A ⇑

Γ; ∆ ` inj1 I : A ⊕ B ⇑

Γ; ∆ ` I : B ⇑
Γ; ∆ ` inj2 I : A ⊕ B ⇑

Γ; ∆1 ` E : A1 ⊕ A2 ↓ Γ; ∆2, x1:A1 ` I1 : B ⇑ Γ; ∆2, x2:A2 ` I2 : B ⇑
Γ; ∆1,∆2 ` case E of inj1 x1. I1 | inj2 x2. I2 : B ⇑

Γ; ∆1 ` E : 0 ↓
Γ; ∆1,∆2 ` abort E : A ⇑

Γ; · ` I : A ⇑
Γ; · ` !I : !A ⇑

Γ; ∆1 ` E : !A ↓ Γ, u:A; ∆2 ` I : B ⇑
Γ; ∆1,∆2 ` let !u = E in I : B ⇑

Γ; ∆ ` E : A ↓
Γ; ∆ ` E : A ⇑

Figure 4.1: Normal form checking rules for ILL.

Linear Logic Lecture Notes Draft of: February 25, 2014

Γ; ∆ ` E : J Normal Form Extraction

Γ; x :A ` x : A ↓
u:A ∈ Γ

Γ; · ` u : A ↓
Γ; ∆1 ` E : A(B ↓ Γ; ∆2 ` I : A ⇑

Γ; ∆1,∆2 ` (E I) : B ↓

Γ; ∆ ` E : A & B ↓
Γ; ∆ ` prj1 E : A ↓

Γ; ∆ ` E : A & B ↓
Γ; ∆ ` prj2 E : B ↓

Figure 4.2: Normal form hypothesis extraction rules for ILL.

Linear Logic Lecture Notes Draft of: February 25, 2014

Γ; ∆ +` J Augmented Checking

Γ; ∆1
+` A1 ⇑ Γ; ∆2

+` A1 ⇑
Γ; ∆1,∆2

+` A1 ⊗ A2 ⇑
Γ; ∆1

+` A1 ⊗ A2 ↓ Γ; ∆2, x1:A1, x2:A2
+` B ⇑

Γ; ∆1,∆2
+` B ⇑

Γ; · +` 1 ⇑
Γ; ∆1

+` 1 ↓ Γ; ∆2
+` A ⇑

Γ; ∆1,∆2
+` A ⇑

Γ; ∆, x :A +` B ⇑
Γ; ∆ +` A(B ⇑

Γ; ∆ +` A ⇑ Γ; ∆ +` B ⇑
Γ; ∆ +` A & B ⇑

Γ; ∆ +` > ⇑
Γ; ∆ +` A ⇑

Γ; ∆ +` A ⊕ B ⇑
Γ; ∆ +` B ⇑

Γ; ∆ +` A ⊕ B ⇑
Γ; ∆1

+` A1 ⊕ A2 ↓ Γ; ∆2, x1:A1
+` B ⇑ Γ; ∆2, x2:A2

+` B ⇑
Γ; ∆1,∆2

+` B ⇑
Γ; ∆1

+` 0 ↓
Γ; ∆1,∆2

+` A ⇑
Γ; · +` A ⇑
Γ; · +` !A ⇑

Γ; ∆1
+` !A ↓ Γ, u:A; ∆2

+` B ⇑
Γ; ∆1,∆2

+` B ⇑
Γ; ∆ +` A ↓
Γ; ∆ +` A ⇑

Figure 4.3: Augmented rules for proving completeness.

Linear Logic Lecture Notes Draft of: February 25, 2014

Γ; ∆ +` J Augmented Extraction

Γ; x :A +` A ↓
u:A ∈ Γ

Γ; · +` A ↓
Γ; ∆1

+` A(B ↓ Γ; ∆2
+` A ⇑

Γ; ∆1,∆2
+` B ↓

Γ; ∆ +` A & B ↓
Γ; ∆ +` A ↓

Γ; ∆ +` A & B ↓
Γ; ∆ +` B ↓
Γ; ∆ +` A ⇑
Γ; ∆ +` A ↓

Figure 4.4: Augmented extraction rules. Note the new coercion rule.

Γ; ∆ +=⇒ J AugmentedILL Sequents

Γ; ∆1
+=⇒ A Γ; ∆2,A

+=⇒ B

Γ; ∆1,∆2
+=⇒ B

Figure 4.5: Augmented sequent rules include all of the usual ones, plus cut.

Linear Logic Lecture Notes Draft of: February 25, 2014

Γ; ∆ =⇒ J ILL Sequents

Γ; A ↑=⇒ A ⇑

A ∈ Γ Γ; A,∆1 =⇒ B

Γ; ∆1 =⇒ B

Γ; ∆1 =⇒ A Γ; ∆2 =⇒ B

Γ; ∆1,∆2 =⇒ A ⊗ B

Γ; ∆,A1,A2 =⇒ B

Γ; ∆,A1 ⊗A2 =⇒ B

Γ; · =⇒ 1

Γ; ∆ =⇒ B

Γ; 1,∆ =⇒ B

Γ; ∆,A =⇒ B

Γ; ∆ =⇒ A(B

Γ; ∆1 =⇒ A1 Γ; ∆2,A2 =⇒ B

Γ; A1(A2,∆1,∆2 =⇒ B

Γ; ∆ =⇒ A Γ; ∆ =⇒ B

Γ; ∆ =⇒ A & B

Γ; ∆,A1 =⇒ B

Γ; ∆,A1 & A2 =⇒ B

Γ; ∆,A2 =⇒ B

Γ; ∆,A1 & A2 =⇒ B

Γ; ∆ =⇒ >

Γ; ∆ =⇒ A

Γ; ∆ =⇒ A ⊕ B

Γ; ∆ =⇒ B

Γ; ∆ =⇒ A ⊕ B

Γ; ∆,A1 =⇒ B Γ; ∆,A2 =⇒ B

Γ; ∆,A1 ⊕A2 =⇒ B

Γ; 0,∆ =⇒ B

Γ; · =⇒ A

Γ; · =⇒ !A

Γ,A; ∆ =⇒ B

Γ; !A,∆ =⇒ B

Figure 4.6: Sequent Presentation of ILL (Augmented)Linear Logic Lecture Notes Draft of: February 25, 2014

Linear Logic Lecture Notes Draft of: February 25, 2014

Bibliography

[1] Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core calculus
of dependency. In POPL. ACM, 1999.

[2] Samson Abramsky. Computational interpretations of linear logic. Theoretical Com-
puter Science, 111:3–57, 1993.

[3] Samson Abramsky. Computational interpretations of linear logic. Theoretical Com-
puter Science, 111:3–57, 1993.

[4] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified
types. In ESOP, pages 69–83, 2006.

[5] Amal Ahmed and Matthias Blume. Typed closure conversion preserves observa-
tional equivalence. SIGPLAN Not., 43(9):157–168, 2008.

[6] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear language with
locations. In TLCA, 2005.

[7] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear language with
locations. Fundam. Inf., 77(4):397–449, 2007.

[8] Andrew W Appel, Paul-André Mellies, Christopher D Richards, and Jérôme Vouil-
lon. A very modal model of a modern, major, general type system. In ACM SIG-
PLAN Notices, volume 42, pages 109–122. ACM, 2007.

[9] Robert Atkey. Parameterised notions of computation. JFP, 19(3-4), 2009.

[10] Robert Atkey, Patricia Johann, and Andrew Kennedy. Abstraction and invariance
for algebraically indexed types. In POPL. ACM, 2013.

[11] Patrick Baillot and Kazushige Terui. Light types for polynomial time computation
in lambda-calculus. In LICS. IEEE, 2004.

[12] Andrew Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Edin-
burgh University, 1997.

[13] Emmanuel Beffara. A concurrent model for linear logic. Electronic Notes in Theoret-
ical Computer Science, 155:147–168, 2006.

Linear Logic Lecture Notes Draft of: February 25, 2014

[14] G. Bellin and P. J. Scott. On the π-calculus and linear logic. Theoretical Computer
Science, 135(1):11–65, 1994.

[15] Gianluigi Bellin, Martin Hyland, Edmund Robinson, and Christian Urban. Cate-
gorical proof theory of classical propositional calculus. Theoretical Computer Science,
364(2):146 – 165, 2006.

[16] Nick Benton, G. M. Bierman, J. Martin E. Hyland, and Valeria de Paiva. A term
calculus for intuitionistic linear logic. In Proceedings of the International Conference on
Typed Lambda Calculi and Applications, pages 75–90. Springer-Verlag LNCS 664, 1993.

[17] Nick Benton, Gavin M. Bierman, J. Martin E. Hyland, and Valeria de Paiva. Term
assignment for intuitionistic linear logic. Technical Report 262, University of Cam-
bridge, 1992.

[18] Nick Benton and Nicolas Tabareau. Compiling functional types to relational speci-
fications for low level imperative code. In TLDI. ACM, 2009.

[19] Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. In
Proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science, New
Brunswick, New Jersey, July 1996.

[20] Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. In
LICS. IEEE, 1996.

[21] P. N. Benton. A mixed linear and non-linear logic: proofs, terms and models (pre-
liminary report). Technical Report 352, Computer Laboratory, University of Cam-
bridge, September 1994.

[22] P. N. Benton. A mixed linear and non-linear logic: proofs, terms and models. In
Proceedings of Computer Science Logic (CSL ’94), Kazimierz, Poland., pages 121–135.
Springer-Verlag, 1995.

[23] Josh Berdine. Linear and Affine Typing of Continuation-Passing Style. PhD thesis,
Queen Mary, University of London, 2004.

[24] Josh Berdine, Peter W. O’Hearn, Uday S. Reddy, and Hayo Thielecke. Linearly used
continuations. In Proceedings of the Continuations Workshop, 2001.

[25] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a poly-
morphic linear lambda calculus with recursion. In Fourth International Workshop
on Higher Order Operational Techniques in Semantics, Montral, volume 41 of Electronic
Notes in Theoretical Computer Science. Elsevier, 2000.

[26] Gavin Bierman. A classical linear lambda calculus. Theoretical Computer Science,
227(1–2):43–78, 1999.

Linear Logic Lecture Notes Draft of: February 25, 2014

[27] Gavin M. Bierman. Program equivalence in a linear functional language. Journal of
Functional Programming, 10(2), 2000.

[28] Lars Birkedal, Rasmus Ejlers Møgelberg, and Rasmus Lerchedahl Petersen.
Category-theoretic models of Linear Abadi & Plotkin Logic. Theory and Applications
in Categories, 20(7), 2008.

[29] Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied logic,
56(1):183–220, 1992.

[30] Aloı̈s Brunel. Quantitative classical realizability. Inf. and Comp., 2013. To appear.

[31] Aloı̈s Brunel and Antoine Madet. Indexed realizability for bounded-time program-
ming with references and type fixpoints. In APLAS. Springer, 2012.

[32] Aloı̈s Brunel and Kazushige Terui. Church => scott = ptime: an application of
resource sensitive realizability. EPTCS, 23:31–46.

[33] T. Brus, M.C.J.D. van Eekelen, M. van Leer, M.J. Plasmeijer, and H.P. Barendregt.
CLEAN - a language for functional graph rewriting. In Proc. of Conference on
Functional Programming Languages and Computer Architecture (FPCA), number 274
in LNCS, pages 364–384. Springer-Verlag, 1987.

[34] Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear propositions.
In Proceedings of the 21st International Conference on Concurrency Theory (CONCUR
2010), Paris, France, August 2010. Springer LNCS.

[35] Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear propositions.
In CONCUR, 2010.

[36] Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental
analysis of linear logic. 2003.

[37] Arthur Charguéraud and François Pottier. Functional translation of a calculus of
capabilities. In ICFP ’08: Proceeding of the 13th ACM SIGPLAN international conference
on Functional programming, pages 213–224, New York, NY, USA, 2008. ACM.

[38] J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. Journal of Pure and
Applied Algebra, 114(2):133 – 173, 1997.

[39] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in
a calculus of capabilities. In Proc. 26th ACM Symp. on Principles of Programming
Languages (POPL), pages 262–275, San Antonio, Texas, January 1999.

[40] U. Dal Lago and M. Gaboardi. Linear dependent types and relative completeness.
In LICS. IEEE, 2011.

Linear Logic Lecture Notes Draft of: February 25, 2014

[41] Ugo Dal Lago and Martin Hofmann. Bounded linear logic, revisited. In TLCA. 2009.

[42] Ugo Dal Lago and Martin Hofmann. A semantic proof of polytime soundness of
light affine logic. Theory of Computing Systems, 46(4):673–689, 2010.

[43] Ugo Dal Lago and Martin Hofmann. Realizability models and implicit complexity.
TCS, 412(20), 2011.

[44] Loris D’Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, Andreas Haeberlen,
and Benjamin Pierce. Sensitivity analysis using type-based constraints. In FPCDSL.
ACM, 2013.

[45] Valeria de Paiva and Eike Ritter. A parigot-style linear lambda-calculus for full
intuitionistic linear logic. Theory and Applications of Categories, 17(3), 2006.

[46] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level
software. In Proc. of the SIGPLAN Conference on Programming Language Design, pages
59–69, Snowbird, UT, June 2001.

[47] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical rela-
tions. In LICS. IEEE, 2009.

[48] David Easley and Jon Kleinberg. Networks, crowds, and markets, volume 8. Cam-
bridge Univ Press, 2010.

[49] Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science,
15(4):615–646, 2005.

[50] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt,
James R. Larus, and Steven Levi. Language support for fast and reliable message-
based communication in singularity os. SIGOPS Oper. Syst. Rev., 40(4):177–190,
2006.

[51] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear types
for imperative programming. In Proc. of the SIGPLAN Conference on Programming
Language Design, pages 13–24, Berlin, Germany, June 2002.

[52] M. Felleisen and R. Hieb. A revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235–271, 1992.

[53] Andrzej Filinski. Linear continuations. In Proc. 19th ACM Symp. on Principles of
Programming Languages (POPL), pages 27–38, 1992.

[54] Andrzej Filinski. Representing layered monads. In POPL. ACM, 1999.

[55] Carsten Führmann and David Pym. Order-enriched categorical models of the clas-
sical sequent calculus. Journal of Pure and Applied Algebra, 204:21–78, 2006.

Linear Logic Lecture Notes Draft of: February 25, 2014

[56] Marco Gaboardi. Linearity: an Analytic Tool in the study of Complexity and Semantics
of Programming Languages. PhD thesis, PhD thesis, Universita degli Studi di Torino-
Institut National Polytechnique de Lorraine, 2007.

[57] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C.
Pierce. Linear dependent types for differential privacy. In POPL. ACM, 2013.

[58] Dan R. Ghica and Alex Smith. From bounded affine types to automatic timing
analysis. CoRR, abs/1307.2473, 2013.

[59] J.-Y. Girard. Linear logic. TCS, 50(1):1–102, 1987.

[60] J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic. TCS, 97(1), 1992.

[61] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arith mé
tique d’ordre supérieur. Thèse d’état, University of Paris VII, 1972. Summary in
Scandinavian Logic Symposium, pp. 63–92, North-Holland, 1971.

[62] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[63] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. Lecture Notes in
Pure and Applied Mathematics, pages 97–124, 1996.

[64] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules. Mathe-
matical. Structures in Comp. Sci., 11(3):301–506, 2001.

[65] Timothy G. Griffin. A formulae-as-types notion of control. In Conference Record of the
Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages
47–58. ACM Press, 1990.

[66] Nicolas Guenot. Focused proof search for linear logic in the calculus of structures.
In ICLP (Technical Communications), pages 84–93, 2010.

[67] Bertrand Guillou. Strictification of categories weakly enriched in symmetric
monoidal categories. Theory and Applications of Categories, 24(20):564–579, 2010.

[68] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy
and integrity. In POPL. ACM, 1998.

[69] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with
safe manual memory-management in Cyclone. In ISMM ’04: Proceedings of the 4th
international symposium on Memory management, pages 73–84, New York, NY, USA,
2004. ACM.

[70] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-
order functional programs. In POPL, 2003.

Linear Logic Lecture Notes Draft of: February 25, 2014

[71] Martin Hofmann and Philip J. Scott. Realizability models for BLL-like languages.
TCS., 318(1-2), 2004.

[72] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In ESOP98, vol-
ume 1381 of LNCS, pages 122–138. Springer-Verlag, 1998.

[73] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language prim-
itives and type discipline for structured communication-based programming. In
ESOP. Springer-Verlag, 1998.

[74] W. A. Howard. The formulae-as-types notion of contstruction. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, 1980.

[75] Dominic JD Hughes and Rob J Van Glabbeek. Proof nets for unit-free multiplicative-
additive linear logic. ACM Transactions on Computational Logic (TOCL), 6(4):784–842,
2005.

[76] Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear
logic. Theoretical Computer Science, 294(1):183–231, 2003.

[77] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. ACM Trans. Pro-
gram. Lang. Syst., 27(2):264–313, 2005.

[78] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph
Schorr, and Steve Zdancewic. Aura: a programming language for authorization
and audit. SIGPLAN Not., 43(9):27–38, 2008.

[79] Oleg Kiselyov and Chung-chieh Shan. Lightweight monadic regions. In Haskell ’08:
Proceedings of the first ACM SIGPLAN symposium on Haskell, pages 1–12, New York,
NY, USA, 2008. ACM.

[80] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the Pi-
Calculus. Transactions on Programming Languages and Systems, 21(5):914–947, 1999.

[81] Neelakantan R Krishnaswami, Nick Benton, and Jan Hoffmann. Higher-order func-
tional reactive programming in bounded space. In POPL. ACM, 2012.

[82] Jean-Louis Krivine. A call-by-name lambda-calculus machine. HOSC, 20(3), 2007.

[83] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–
229, 2009.

[84] Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59:157–180,
1988. Corrections in vol. 62, pp. 327–328.

[85] Ugo Dal Lago and Ulrich Schöpp. Functional programming in sublinear space. In
ESOP. Springer, 2010.

Linear Logic Lecture Notes Draft of: February 25, 2014

[86] J. Laird, G. Manzonetto, G. McCusker, and M. Pagani. Weighted relational models
of typed lambda-calculi. In LICS. IEEE, 2013.

[87] Miguel Laplaza. Coherence for distributivity. Lecture Notes in Math., 281, 1972.

[88] Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic. In
Computer Science Logic, pages 451–465. Springer, 2007.

[89] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic,
and classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

[90] Patrick Lincoln and John Mitchell. Operational aspects of linear lambda calculus.
In 7th Symposium on Logic in Computer Science, IEEE, pages 235–246. IEEE Computer
Society Press, 1992.

[91] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name,
call-by-value, call-by-need, and the linear lambda calculus. In 11’th International
Conference on the Mathematical Foundations of Programming Semantics, New Orleans,
Lousiana, – 1995.

[92] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name,
call-by-value, call-by-need and the linear lambda calculus. TCS, 228(1-2), 1999.

[93] Per Martin-Löf. On the meanings of the logical constants and the justifications of
the logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60, 1996.

[94] Karl Mazurak and Steve Zdancewic. Lolliproc: to Concurrency from Classical Lin-
ear Logic via Curry-Howard and Control. In Proc. of the 15th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP), 2010.

[95] Karl Mazurak and Steve Zdancewic. Lolliproc: to concurrency from classical linear
logic via curry-howard and control. In ICFP, pages 39–50, 2010.

[96] Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. Lightweight linear types in
System F◦. In ACM SIGPLAN International Workshop on Types in Languages Design
and Implementation (TLDI), pages 77–88, 2010.

[97] Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. Lightweight linear types in
System F◦. In TLDI ’10: Proceedings of the 5th ACM SIGPLAN workshop on Types in
language design and implementation, pages 77–88, New York, NY, USA, 2010. ACM.

[98] Conor McBride. Faking it simulating dependent types in haskell. J. Funct. Program.,
12(5):375–392, 2002.

[99] James McKinna. Why dependent types matter. In POPL ’06: Conference record of
the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 1–1, New York, NY, USA, 2006. ACM.

Linear Logic Lecture Notes Draft of: February 25, 2014

[100] Paul-André Melliès. Categorical semantics of linear logic. Panoramas et Syntheses,
2009.

[101] Paul-André Melliès. Parametric monads and enriched adjunctions. Techni-
cal report, 2012. http://www.pps.univ-paris-diderot.fr/˜mellies/
tensorial-logic/.

[102] Paul-André Mellies and Jérôme Vouillon. Recursive polymorphic types and para-
metricity in an operational framework. In Logic in Computer Science, 2005. LICS 2005.
Proceedings. 20th Annual IEEE Symposium on, pages 82–91. IEEE, 2005.

[103] Eugenio Moggi. Computational lambda-calculus and monads. In LICS. IEEE, 1989.

[104] Benoı̂t Montagu and Didier Rémy. Modeling abstract types in modules with open
existential types. In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 354–365, New York, NY,
USA, 2009. ACM.

[105] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and sep-
aration in Hoare type theory. In ICFP ’06: Proceedings of the eleventh ACM SIG-
PLAN International Conference on Functional programming, pages 62–73, New York,
NY, USA, 2006. ACM.

[106] F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

[107] Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subex-
ponentials. In PPDP. ACM, 2009.

[108] Dominic Orchard. Programming contextual computations, 2013. Cambridge Uni-
versity.

[109] Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: Unified static anal-
ysis of context-dependence. In ICALP, 2013.

[110] Frank Pfenning. Structural cut elimination in linear logic. Technical report, DTIC
Document, 1994.

[111] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical structures in computer science, 11(04):511–540, 2001.

[112] Andrew M Pitts. Parametric polymorphism and operational equivalence. Mathe-
matical Structures in Computer Science, 10(3):321–359, 2000.

[113] Andrew M. Pitts. Step-indexed biorthogonality: a tutorial example. Dagstuhl, 2010.

[114] Gordon D. Plotkin. Second order type theory and recursion. Notes for a talk at the
Scott Fest, February 1993.

Linear Logic Lecture Notes Draft of: February 25, 2014

http://www.pps.univ-paris-diderot.fr/~mellies/tensorial-logic/
http://www.pps.univ-paris-diderot.fr/~mellies/tensorial-logic/

[115] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of prob-
ability distributions. ACM SIGPLAN Notices, 37(1):154–165, 2002.

[116] Dana Randall. Efficient generation of random nonsingular matrices. Random Struc-
tures & Algorithms, 4(1):111–118, 1993.

[117] Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: A
calculus for differential privacy. In ICFP. ACM, 2010.

[118] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings Seventeenth Annual IEEE Symposium on Logic in Computer Science, pages
55–74, Los Alamitos, California, 2002. IEEE Computer Society.

[119] Eike Ritter, David J. Pym, and Lincoln A. Wallen. Proof-terms for classical and
intuitionistic resolution. Journal of Logic and Computation, 10(2):173–207, 2000.

[120] Andrea Schalk. Whats is a categorical model of linear logic. Technical report, Uni-
versity of Manchester, 2004.

[121] Tim Sheard and Nathan Linger. Programming in omega. In CEFP, volume 5161 of
Lecture Notes in Computer Science, pages 158–227. Springer, 2007.

[122] Kirsten Lackner Solberg. Annotated type systems for program analysis, 1995.
Aarhus Univ.

[123] Nikhil Swamy and Michael Hicks. Verified enforcement of stateful information
release policies. In Proceedings of the ACM SIGPLAN Workshop on Programming Lan-
gauges and Analysis for Security (PLAS), 2008.

[124] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language
and its typing system. In Proceedings of PARLE’94, pages 398–413. Springer-Verlag,
1994. Lecture Notes in Computer Science number 817.

[125] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In LICS. IEEE,
1992.

[126] Ross Tate. The sequential semantics of producer effect systems. In POPL, 2013.

[127] David N. Turner and Philip Wadler. Operational interpretations of linear logic.
Theoretical Computer Science, 227(1-2):231–248, September 1999.

[128] Tarmo Uustalu and Varmo Vene. Signals and comonads. J. UCS, 11(7), 2005.

[129] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. ENTCS, 203,
2008.

Linear Logic Lecture Notes Draft of: February 25, 2014

[130] Vasco T. Vasconcelos, Simon J. Gay, and António Ravara. Type checking a mul-
tithreaded functional language with session types. Theoretical Computer Science,
368(1–2):64–87, 2006.

[131] Lionel Vaux. The algebraic lambda calculus. Mathematical Structures in Computer
Science; MSCS, 19(5):1029, 2009.

[132] Edsko Vries, Rinus Plasmeijer, and David M. Abrahamson. Uniqueness typing sim-
plified. In Implementation and Application of Functional Languages: 19th International
Workshop, IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised Selected Papers,
pages 201–218, Berlin, Heidelberg, 2008. Springer-Verlag.

[133] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors,
Progarmming Concepts and Methods, Sea of Galilee, Israel, April 1990. North Holland.
IFIP TC 2 Working Conference.

[134] Philip Wadler. Linear types can change the world! In IFIP TC 2, 1990.

[135] Philip Wadler. The essence of functional programming. In POPL. ACM, 1992.

[136] Philip Wadler. There’s no substitute for linear logic. In 8th International Workshop on
the Mathematical Foundations of Programming Semantics, 1992.

[137] Philip Wadler. A taste of linear logic. In Mathematical Foundations of Computer
Science, volume 711 of Lecture Notes in Computer Science, pages 185–210. Springer-
Verlag, 1993.

[138] Philip Wadler. The marriage of effects and monads. In ICFP. ACM, 1998.

[139] Philip Wadler. The girard-reynolds isomorphism. In Theoretical Aspects of Computer
Software, pages 468–491. Springer, 2001.

[140] Philip Wadler. Call-by-value is dual to call-by-name. In ICFP ’03: Proceedings of
the eighth ACM SIGPLAN international conference on Functional programming, pages
189–201, New York, NY, USA, 2003. ACM.

[141] Philip Wadler. Down with the bureaucracy of syntax! Pattern matching for classical
linear logic. unpublished manuscript, 2004.

[142] Philip Wadler. Call-by-value is dual to call-by-name–reloaded. In Term Rewriting
and Applications, pages 185–203. Springer, 2005.

[143] Philip Wadler. Propositions as sessions. In ICFP. ACM, 2012.

[144] David Walker. A type system for expressive security policies. In Proc. 27th ACM
Symp. on Principles of Programming Languages (POPL), pages 254–267. ACM Press,
Jan 2000.

Linear Logic Lecture Notes Draft of: February 25, 2014

[145] David Walker. Advanced Topics in Types and Programming Languages, chapter Sub-
structural Type Systems. MIT Press, 2005.

[146] Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type. In
POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 15–28, New York, NY, USA, 1999. ACM.

[147] D.A. Wright and C.A. Baker-Finch. Usage Analysis with Natural Reduction Types.
In Proc. 3rd Workshop on Static Analysis, 1993.

[148] Nobuko Yoshida, Kohei Honda, and Martin Berger. Linearity and bisimulation. J.
Log. Algebr. Program., 72(2):207–238, 2007.

[149] Steve Zdancewic and Andrew C. Myers. Secure information flow via linear contin-
uations. Higher Order and Symbolic Computation, 15(2/3):209–234, 2002.

[150] Noam Zeilberger. On the unity of duality. Annals of Pure and Applied Logic, 153(1–
3):66–96, 2006.

[151] Jianzhou Zhao, Qi Zhang, and Steve Zdancewic. Relational parametricity for poly-
morphic linear lambda calculus. In Proceedings of the Eighth ASIAN Symposium on
Programming Languages and Systems (APLAS), 2010.

[152] Dengping Zhu and Hongwei Xi. Safe Programming with Pointers through Stateful
Views. In Proceedings of the 7th International Symposium on Practical Aspects of Declar-
ative Languages, pages 83–97, Long Beach, CA, January 2005. Springer-Verlag LNCS
vol. 3350.

Linear Logic Lecture Notes Draft of: February 25, 2014

	Overview
	Introduction

	Intuitionistic Linear Logic
	The Multiplicative Fragment
	Multiplicative Conjunction
	Multiplicative Conjunction Unit
	Linear Implication
	Summary

	The Additive Fragment
	Additive Products
	Additive Product Unit
	Additive Sums
	Additive Sum Unit

	Persistence and the Exponential Modality

	Terms for ILL
	Evaluations
	Call-by-Name Translation of Intuitionistic Logic
	Call-by-Value Translation of Intuitionistic Logic

	Proof Search and ILL
	Normal Proofs
	Sequent Calculus

