Announcements

• Plan for Today:
 – RSA continued
 – Dolev-Yao model of attackers
 – Authentication protocols

• Project 3 is due 6 April 2009 at 11:59 pm
 – Handout for SDES available by request…
 – Please read the project description *BEFORE* looking at the code

• Midterm 2 is Thursday, April 2nd (next week!) in class
• Final exam has been scheduled:
 Friday, May 8, 2009
 9:00am – 11:00am, Moore 216
RSA at a High Level

• Public and private key are derived from secret prime numbers
 – Keys are typically ≥ 1024 bits

• Plaintext message (a sequence of bits)
 – Treated as a (large!) binary number

• Encryption is modular exponentiation

• To break the encryption, conjectured that one must be able to factor large numbers
 – Not known to be in P (polynomial time algorithms)
 – Is known to be in BQP (bounded-error, quantum polynomial time – Shor’s algorithm)
RSA Key Generation

• Choose large, distinct primes p and q.
 – Should be roughly equal length (in bits)
• Let $n = p \cdot q$
• Choose a random encryption exponent e
 – With requirement: e and $(p-1) \cdot (q-1)$ are relatively prime.
• Derive the decryption exponent d
 – $d = e^{-1} \mod ((p-1) \cdot (q-1))$
 – d is e’s inverse mod $((p-1) \cdot (q-1))$
• Public key: $K = (e, n)$ pair of e and n
• Private key: $k = (d, n)$
• Discard primes p and q (they’re not needed anymore)
RSA Encryption and Decryption

• Message: m
• Assume m < n
 – If not, break up message into smaller chunks
 – Good choice: largest power of 2 smaller than n

• Encryption: \(E((e,n), m) = m^e \mod n \)
• Decryption: \(D((d,n), c) = c^d \mod n \)
Example RSA

- Choose p = 47, q = 71
- n = p * q = 3337
- \((p-1)(q-1) = 3220\)
- Choose e relatively prime with 3220: e = 79
 - Public key is \((79, 3337)\)
- Find d = 79\(^{-1}\) mod 3220 = 1019
 - Private key is \((1019, 3337)\)
- To encrypt \(m = 688232687966683\)
 - Break into chunks < 3337
 - 688 232 687 966 683
- Encrypt: \(E((79, 3337), 688) = 688^{79} \mod 3337 = 1570\)
- Decrypt: \(D((1019, 3337), 1570) = 1570^{1019} \mod 3337 = 688\)
Euler’s *totient* function: $\phi(n)$

- $\phi(n)$ is the number of positive integers less than n that are relatively prime to n
 - $\phi(12) = 4$
 - Relative primes of 12 (less than 12): \{1, 5, 7, 11\}

- For p a prime, $\phi(p) = p-1$. Why?

- For p, q two distinct primes, $\phi(p*q) = (p-1)*(q-1)$
 - There’s $p*q-1$ numbers less than $p*q$
 - Factors of $p*q =$
 - $\{1*p, 2*p, \ldots, q*p\}$ for a total of q of them
 - $\{1*q, 2*q, \ldots, p*q\}$ for another p of them
 - No other numbers
 - $\phi(p*q) = (p*q) - (p + q - 1) = pq - p - q + 1 = (p-1)*(q-1)$

All $s \leq p*q$ don’t double count $p*q$
Fermat’s Little Theorem

- Generalized by Euler.

- Theorem: If p is a prime then $a^p \equiv a \mod p$.

- Corollary: If $\gcd(a,n) = 1$ then $a^{\phi(n)} \equiv 1 \mod n$.

- Easy to compute $a^{-1} \mod n$
 - $a^{-1} \mod n = a^{\phi(n)-1} \mod n$
 - Why? $a \cdot a^{\phi(n)-1} \mod n$
 - $= a^{\phi(n)-1+1} \mod n$
 - $= a^{\phi(n)} \mod n$
 - $\equiv 1 \mod n$
Chinese Remainder Theorem

• (Or, enough of it for our purposes…)

• Suppose:
 – p and q are relatively prime
 – \(a \equiv b \pmod{p} \)
 – \(a \equiv b \pmod{q} \)

• Then: \(a \equiv b \pmod{pq} \)

• Proof:
 – p divides \((a-b)\) (because \(a \mod p = b \mod p \))
 – q divides \((a-b)\)
 – Since p, q are relatively prime, pq divides \((a-b)\)
 – But that is the same as: \(a \equiv b \pmod{pq} \)
Proof that D inverts E

\[c^d \mod n = (m^e)^d \mod n \]
\[= m^{ed} \mod n \]
\[= m^{k*(p-1)*(q-1) + 1} \mod n \]
\[= m*m^{k*(p-1)*(q-1)} \mod n \]
\[= m \mod n \]
\[= m \]

\[e*d \equiv 1 \mod (p-1)*(q-1) \]
Finished Proof

• Note: \(m^{p-1} \equiv 1 \mod p \) (if \(p \) doesn’t divide \(m \))
• Same argument yields: \(m^{q-1} \equiv 1 \mod q \)

• Implies: \(m^{k*\phi(n)+1} \equiv m \mod p \)
• And \(m^{k*\phi(n)+1} \equiv m \mod q \)

• Chinese Remainder Theorem implies:
 \(m^{k*\phi(n)+1} \equiv m \mod n \)

• Note: if \(p \) (or \(q \)) divides \(m \), then \(m^x \equiv 0 \mod n \)
 – Since \(m < n \) we must have \(m = 0 \).
How to Generate Prime Numbers

- Many strategies, but \textit{Rabin-Miller} primality test is often used in practice.
 - \(a^{p-1} \equiv 1 \mod p \)
- Efficiently checkable test that, with probability \(\frac{3}{4} \), verifies that a number \(p \) is prime.
 - Iterate the Rabin-Miller primality test \(t \) times.
 - Probability that a composite number will slip through the test is \(\left(\frac{1}{4}\right)^t \)
 - These are worst-case assumptions.
- In practice (takes several seconds to find a 512 bit prime):
 1. Generate a random \(n \)-bit number, \(p \)
 2. Set the high and low bits to 1 (to ensure it is the right number of bits and odd)
 3. Check that \(p \) isn’t divisible by any “small” primes 3,5,7,…,<2000
 4. Perform the Rabin-Miller test at least 5 times.
Rabin-Miller Primality Test

• Is n prime?
• Write n as $n = (2^r)^s + 1$
• Pick random number a, with $1 \leq a \leq n - 1$
• If
 – $a^s \equiv 1 \mod n$ and
 – for all j in $\{0 \ldots r-1\}$, $a^{2^js} \equiv -1 \mod n$
• Then return composite
• Else return probably prime
General Definition of “Protocol”

- A protocol is a multi-party algorithm
 - A sequence of steps that precisely specify the actions required of the parties in order to achieve a specified objective.

- Important that there are multiple participants
- Typically a situation of heterogeneous trust
 - Alice may not trust Bart
 - Bart may not trust the network
Characteristics of Protocols

• Every participant must know the protocol and the steps in advance.

• Every participant must agree to follow the protocol
 – *Honest participants*

• Big problem: How to deal with bad participants?
Cryptographic Protocols

- Consider communication over a network...
- What is the threat model?
 - What are the vulnerabilities?
What Can the Attacker Do?

- Intercept them (confidentiality)
- Modify them (integrity)
- Fabricate other messages (integrity)
- Replay them (integrity)
- Block the messages (availability)
- Delay the messages (availability)
- Cut the wire (availability)
- Flood the network (availability)
Dolev-Yao Model

- Simplifies reasoning about protocols
 - doesn't require reduction to computational complexity
- Treat cryptographic operations as "black box"
- Given a message $M = (c_1, c_2, c_3, \ldots)$ attacker can deconstruct message into components $c_1 \ c_2 \ c_3$
- Given a collection of components c_1, c_2, c_3, \ldots attacker can forge message using a subset of the components (c_1, c_2, c_3)
- Given an encrypted object $K\{c\}$, attacker can learn c only if attacker knows decryption key corresponding to K
- Attacker can encrypt components by using:
 - fresh keys, or
 - keys they have learned during the attack
Formal Dolev-Yao Model

• A message is a finite sequence of:
 – Atomic strings, nonces, Keys (public or private), Encrypted Submessages
 \[M ::= a | n | K | k | K\{M\} | k\{M\} | M, M \]

• The attacker's (or observer's) state is a set \(S \) of messages:
 – The set of all message & message components that the attacker has seen -- the attacker's "knowledge"
 – Seeing a new message sent by an honest participant adds the new message components to the attacker's knowledge
 – If \(M_1, M_2 \in S \) then \(M_1 \in S \) and \(M_2 \in S \)
 – If \(K_A\{M\} \in S \) and \(K_A \in S \) then \(M \in S \)
 – If \(K_A\{M\} \in S \) and \(k_A \in S \) then \(M \in S \)
 – If \(M \in S \) and \(K \in S \) then \(K\{M\} \in S \)
 – If \(M \in S \) and \(k \in S \) then \(k\{M\} \in S \)
 – If \(k \) is a “fresh” key, then \(k \in S \)

\[S \text{ closed under these operations} \]
Using the Dolev-Yao model

- Given a description of a protocol:
 - Sequence of messages to be exchanged among honest parties.

- "Simulate" an attacked version of the protocol:
 - At each step, the attacker's knowledge state is the (closure of the) knowledge of the prior state plus the new message.
 - An active attacker can create (and insert into the communication stream) any message \(M \) composed from the knowledge state \(S \):
 - \(M = M_1, M_2, \ldots, M_n \) such that \(M_i \in S \)

- See if the "attacked" protocol leads to any bad state
 - Example: if \(K \) is supposed to be kept secret but \(K \in S \) at some point, the attacker has learned the key.
Authentication

- For honest parties, the claimant A is able to authenticate itself to the verifier B. That is, B will complete the protocol having accepted A’s identity.
Shared-Key Authentication

- Assume Alice & Bart already share a key K_{AB}.
 - The key might have been decided upon in person or obtained from a trusted 3rd party.
- Alice & Bart now want to communicate over a network, but first wish to authenticate to each other.
Solution 1: Weak Authentication

- Alice sends Bart K_{AB}.
 - K_{AB} acts as a password.
- The secret (key) is revealed to passive observers.
- Only works one-way.
 - Alice doesn’t know she’s talking to Bart.
Solution 2: Strong Authentication

- Protocol doesn’t reveal the secret.

Challenge/Response
- Bart requests proof that Alice knows the secret
- Alice requires proof from Bart
- R_A and R_B are randomly generated numbers
(Flawed) Optimized Version

- Why not send more information in each message?
- This seems like a simple optimization.
- But, it’s broken… how?
Attack: Marvin can Masquerade as Alice

- Marvin pretends to take the role of Alice in two runs of the protocol.
 - Tricks Bart into doing Alice’s part of the challenge!
 - Interleaves two instances of the same protocol.
Lessons

• Protocol design is tricky and subtle
 – “Optimizations” aren’t necessarily good

• Need to worry about:
 – Multiple instances of the same protocol running in parallel
 – Intruders that play by the rules, mostly

• General principle:
 – Don’t do anything more than necessary until confidence is built.
 – Initiator should prove identity before responder takes action (like encryption)
Threats

• *Transferability*: B cannot reuse an identification exchange with A to successfully impersonate A to a third party C.

• *Impersonation*: The probability is negligible that a party C distinct from A can carry out the protocol in the role of A and cause B to accept it as having A’s identity.
Assumptions

• A large number of previous authentications between A and B may have been observed.

• The adversary C has participated in previous protocol executions with A and/or B.

• Multiple instances of the protocol, possibly instantiated by C, may be run simultaneously.
Primary Attacks

- **Replay.**
 - Reusing messages (or parts of messages) inappropriately

- **Interleaving.**
 - Mixing messages from different runs of the protocol.

- **Reflection.**
 - Sending a message intended for destination A to B instead.

- **Chosen plaintext.**
 - Choosing the data to be encrypted

- **Forced delay.**
 - Denial of service attack -- taking a long time to respond
 - Not captured by Dolev Yao model
Primary Controls

- **Replay:**
 - use of challenge-response techniques
 - embed target identity in response.

- **Interleaving**
 - link messages in a session with chained *nonces*.

- **Reflection:**
 - embed identifier of target party in challenge response
 - use asymmetric message formats
 - use asymmetric keys.

- **Chosen text:**
 - embed self-chosen random numbers (“confounders”) in responses
 - use “zero knowledge” techniques.

- **Forced delays:**
 - use nonces with short timeouts
 - use timestamps in addition to other techniques.
Replay

- *Replay*: the threat in which a transmission is observed by an eavesdropper who subsequently reuses it as part of a protocol, possibly to impersonate the original sender.
 - Example: Monitor the first part of a telnet session to obtain a sequence of transmissions sufficient to get a log-in.

- Three strategies for defeating replay attacks
 - Nonces
 - Timestamps
 - Sequence numbers.
Nonces: Random Numbers

- **Nonce**: A number chosen at random from a range of possible values.
 - Each generated nonce is valid *only once*.
- In a challenge-response protocol nonces are used as follows.
 - The verifier chooses a (new) random number and provides it to the claimant.
 - The claimant performs an operation on it showing knowledge of a secret.
 - This information is bound inseparably to the random number and returned to the verifier for examination.
 - A timeout period is used to ensure “freshness”.
Time Stamps

- The claimant sends a message with a timestamp.
- The verifier checks that it falls within an acceptance window of time.
- The last timestamp received is held, and identification requests with older timestamps are ignored.
- Good only if clock synchronization is close enough for acceptance window.
Sequence Numbers

• Sequence numbers provide a sequential or monotonic counter on messages.
• If a message is replayed and the original message was received, the replay will have an old or too-small sequence number and be discarded.
• Cannot detect forced delay.
• Difficult to maintain when there are system failures.