
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2009
Lecture 12

2/26/09 CIS/TCOM 551 2

Announcements

•  Plan for Today:
–  Access Control
–  Discretionary vs. Mandatory access control
–  Software validation

•  Project 2 reminder
–  Due: Friday, March 6th (right before Spring Break)

2/26/09 CIS/TCOM 551 3

Access Control
•  Discretionary: The individual user may, at his own

discretion, determine who is authorized to access the
objects he creates.

•  Mandatory: The creator of an object does not necessarily
have the ability to determine who has authorized access
to it.
–  Typically policy is governed by some central authority
–  The policy on an object in the system depends on what object/

information was used to create the object.

2/26/09 CIS/TCOM 551 4

Bell-LaPadula Confidentiality Model
•  “No read up, no write down.”

– Subjects are assigned clearance levels drawn from the
lattice of security labels.

•  C(S) = "clearance of the subject S"
– A principal may read objects with lower (or equal)

security label.
•  Read: C(O) ≤ C(S)

– A principal may write objects with higher (or equal)
security label.

•  Write: C(S) ≤ C(O)

•  Example: A user with Secret clearance can:
– Read objects with label Public and Secret
– Write/create objects with label Secret

2/26/09 CIS/TCOM 551 5

Picture: Confidentiality

S

Public

Secret

Read below, write above

S

Public

Secret

Read above, write below

2/26/09 CIS/TCOM 551 6

Picture: Integrity

S

Untainted

Tainted

Read below, write above

S

Untainted

Tainted

Read above, write below

2/26/09 CIS/TCOM 551 7

Multilevel Security Policies
•  In general, security levels form a "join semi-lattice"

–  There is an ordering ≤ on security levels
–  For any pair of labels L1 and L2 there is an "join" operation:

L1 ⊕ L2 is a label in the lattice such that:
(1) L1 ≤ L1 ⊕ L2 and L2 ≤ L1 ⊕ L2 "upper bound"
(2) If L1 ≤ L3 and L2 ≤ L3 then L1 ⊕ L2 ≤ L3 "least bound"

•  For example: Public ⊕ Secret = Secret
•  Labeling rules:

–  Classification is a function C : Object → Lattice
–  If some object O is "created from" objects O1,…,On

then C(O) = C(O1) ⊕ … ⊕ C(On)

2/26/09 CIS/TCOM 551 8

Implementing Multilevel Security
•  Dynamic:

–  Tag all values in memory with their security level
–  Operations propagate security levels
–  Must be sure that tags can’t be modified
–  Expensive, and approximate

•  Classic result: Information-flow policies cannot be
enforced purely by a reference monitor!
–  Problem arises from implicit flows

•  Static:
–  Program analysis
–  May be more precise
–  May have less overhead

2/26/09 CIS/TCOM 551 9

Perl's Solution (for Integrity)
•  The problem: need to track the source of data
•  Examples: Format string, SQL injection, etc.

 $arg = shift;

system ("echo $arg");

• Give this program the argument "; rm *"
• Perl offers a taint checking mode

–  Tracks the source of data (trusted vs. tainted)
–  Ensure that tainted data is not used in system calls
–  Tainted data can be converted to trusted data by pattern matching
–  Doesn't check implicit flows

2/26/09 CIS/TCOM 551 10

SELinux
•  Security-enhanced Linux system (NSA)

–  Enforce separation of information based on confidentiality and
integrity requirements

–  Mandatory access control incorporated into the major subsystems of
the kernel

•  Limit tampering and bypassing of application security mechanisms
•  Confine damage caused by malicious applications

•  Type enforcement
–  Each process has an associated domain
–  Each object has an associated type (label)
–  Configuration files specify

•  How domains are allowed to access types
•  Allowable interactions and transitions between domains

•  Role-based access control
–  Each process has an associated role

•  Separate system and user processes
–  Configuration files specify

•  Set of domains that may be entered by each role

http://www.nsa.gov/selinux/

2/26/09 CIS/TCOM 551 11

Information Flows through Software

Implicit Flows:

int{Secret} X = f();
int{Public} Y = 0;
int{Public} Z = 0;
int{Public} W = 0;

if (X > 0) then {
 Y = 1;
} else {
 Z = 1;
}
W = 3;

Explicit Flows:

int{Secret} X = f();
int{Public} Y = 0;

Y = X;

12

Jif: Java+Information Flow

•  Policy Language that extends Java’s type
system

–  Confidentiality & Integrity constraints
–  Principal hierarchy (delegation)
–  Robust Declassification

•  Jif is intended to enforce noninterference
–  Intuitively, requires that high security data not affect

any behavior of the program that is visible to low-
clearance users.

[Myers, Chong, Nystrom, Zdancewic, Zheng] http://www.cs.cornell.edu/jif/

13

Decentralized Label Model
•  Principals: users, groups,

etc.
–  Express constraints on data

usage
–  Distinct from hosts
–  Alice, Bob, etc. are

principals
•  Labels:

–  {} bottom label
(fewest constraints)

–  {Alice: Bob} readably by Alice
and Bob

–  {Alice: Bob, Charles;
 Bob: Charles}
 readable by Charles

–  {o1: r11,…,r1k; …; on: rn1,..rnm}

[Myers & Liskov '97, '00]

{}

{Alice:} {Bob:}

{Alice:Bob} {Bob:Alice}

{Alice:Bob; Bob:Alice}

…

… …

…

T

… … … …

14

Jif Policy Annotations
•  Augment Java types with labels:

 int{Alice:} a;
 int{Bob:} b;

 int{Alice:Bob:} c;
•  Give appropriate types to I/O routines:

•  Type-checking detects illegal flows:

a = b;
Network.send(a);
c = a + b;

 void Network.send(int{} x)

15

Security Policies in Jif
•  Confidentiality labels:

 int{Alice:} a; "a is Alice's private int"
•  Integrity labels:

 int{?Alice} a; "Alice must trust a"
•  Compound labels:

 int{Alice: ?Alice} a; (Both constraints)

int{Alice:} a1, a2;
int{Bob:} b;

// Insecure
a1 = b;
b = a1;

// Secure
a1 = a2;

16

Richer Security Policies
•  More complex policies:

"Alice will release her data to Bob, but only after
he has paid her $10."

•  Declassification
–  Escape from strict noninterference
–  Like “cast” in C, it’s dangerous
–  Bound its effects

•  Jif uses the notion of authority
–  Program runs on behalf of set of principals
–  Classes and methods can declare authority

requirements

17

Declassification

"type-cast"
int{Alice:} to
int{Bob:}

int{Alice:} a;
int Paid;
... // compute Paid
if (Paid==10) {
 int{Bob:} b = declassify(a to Bob);
 ...
}

18

Example: Oblivious Transfer

int m1;
int m2;

Alice Bob request(n)

•  Alice's Policy:
 "Bob gets to choose exactly one of m1 and m2."
•  Bob's Policy:
 "Alice doesn't get to know which item I request."
•  Classic Result: "Impossible to solve using 2

 principals, with perfect security."

answer(mn)

[Damgård, Kilian, Slavail '99]

[Rabin '81]

19

Oblivious Transfer (Java)

int m1, m2; // Alice's data
boolean accessed;
int n, ans; // Bob's data

n = choose(); // Bob's choice

if (!accessed) { // Transfer
 accessed = true;
 if (n == 1)
 ans = m1;
 else ans = m2;
}

20

int{Alice:} m1, m2; // Alice's data
boolean accessed;
int{Bob:} n, ans; // Bob's data

n = choose(); // Bob's choice

if (!accessed) { // Transfer
 accessed = true;
 if (n == 1)
 ans = m1;
 else ans = m2;
}

Adding Confidentiality Labels

Verification
Fails

21

int{Alice} m1, m2; // Alice's data
boolean accessed;
int{Bob} n, ans; // Bob's data

n = choose(); // Bob's choice

if (!accessed) { // Transfer
 accessed = true;
 if (n == 1)
 ans = declassify(m1 to Bob);
 else ans = declassify(m2 to Bob);
}

Using Declassification

Verification
Fails

22

Integrity Constraints

int{Alice} m1, m2; // Alice's data
boolean{Alice?} accessed;
int{Bob} n, ans; // Bob's data

n = choose(); // Bob's choice

if (!accessed) { // Transfer
 accessed = true;
 if (n == 1)
 ans = declassify(m1 to Bob);
 else ans = declassify(m2 to Bob);
}

Verification
Fails

23

Using Endorsement

int{Alice} m1, m2; // Alice's data
boolean{Alice?} accessed;
int{Bob} n, ans; // Bob's data

n = choose(); // Bob's choice

if (!accessed) { // Transfer
 accessed = true;
 if (endorse(n by Alice) == 1)
 ans = declassify(m1 to Bob);
 else ans = declassify(m2 to Bob);
}

2/26/09 CIS/TCOM 551 24

Two Other MAC Policies
•  "Chinese Wall" policy: [Brewer & Nash '89]

–  Object labels are classified into "conflict classes"
–  If subject accesses one object with label L1 in a conflict class, all

access to objects labeled with other labels in the conflict class are
denied.

–  Policy changes dynamically

•  "Separation of Duties":
–  Division of responsibilities among subjects
–  Example: Bank auditor cannot issue checks.

2/26/09 CIS/TCOM 551 25

Covert Channels & Information Hiding
•  A covert channel is a means by which two components of a system that are not

permitted to communicate do so anyway by affecting a shared resource.

•  Information hiding: Two components of the system that are permitted to communicate
about one set of things, exchange information about disallowed topics by encoding
contraband information in the legitimate traffic.

•  Not that hard to leak a small amount of data
–  A 64 bit encryption key is not that hard to transmit
–  Even possible to encode relatively large amounts of data!

•  Example channels / information hiding strategies
–  Program behavior
–  Adjust the formatting of output:

use the “\t” character for “1” and 8 spaces for “0”
–  Vary timing behavior based on key
–  Use "low order" bits to send signals
–  Power consumption
–  Grabbing/releasing a lock on a shared resource

2/26/09 CIS/TCOM 551 26

Differential Power Analysis
•  Read the value of a DES password off of a smartcard

by watching power consumption!

•  This figure shows simple power analysis of DES
encryption. The 16 rounds are clearly visible.

2/26/09 CIS/TCOM 551 27

TEMPEST Security
•  Transient Electromagnetic Pulse Emanation Standard

–  (Or?) Temporary Emanation and Spurious Transmission
–  Emission security (Van Eck phreaking)
–  computer monitors and other devices give off electromagnetic

radiation
–  With the right antenna and receiver, these emanations can be

intercepted from a remote location, and then be redisplayed (in
the case of a monitor screen) or recorded and replayed (such as
with a printer or keyboard).

•  Policy is set in National Communications Security
Committee Directive 4

•  Guidelines for preventing EM reception
–  Shield the device (expensive)
–  Shield a location (inconvenient?)

2/26/09 CIS/TCOM 551 28

Defenses for Covert Channels
•  Well specified security policies at the human level
•  Auditing mechanisms at the human level

–  Justify prosecution if the attacker is caught

•  Code review
–  This is a form of audit

•  Automated program analysis
–  Type systems that let programmers specify confidentiality labels
–  Transform programs so that both branches of a conditional

statement take the same amount of time
–  Disallow branches on "secret" information

•  Automated system analysis
–  Monitor http traffic to look for unusual behavior

2/26/09 CIS/TCOM 551 29

Specific Countermeasures
•  Against timing attacks:

–  Make all operations run in same amount of time
•  Hard to implement!
•  Can’t design platform-independent algorithms
•  All operations take as long as slowest one

–  Add random delays
•  Can take more samples to remove randomness

•  Against power analysis attacks:
–  Make all operations take the same amount of power

•  Again, hard to implement
–  Add randomness

2/26/09 CIS/TCOM 551 30

Question:
•  Suppose you have gone through the cost/benefit and risk

analysis to determine the securty requirements for a
computer system.

•  How do you know whether a system meets its security
requirements?

•  Class answers:

2/26/09 CIS/TCOM 551 31

Assurance methods
•  Testing

–  Regression testing, automation tools, etc.
–  Can demonstrate existence of flaw, not absence

•  Validation
–  Requirements checking
–  Design and code reviews

•  Sit around table, drink lots of coffee, …
–  Module and system testing

•  Formal verification
–  Develop a rigorous (mathematical) specification of the system
–  Prove (using tools or by hand) that the implementation meets the

specification
–  Time-consuming, painstaking process
–  Has been done for some systems. (See www.praxis-his.com)

2/26/09 CIS/TCOM 551 32

Rainbow Series

DoD Trusted Computer Sys Evaluation Criteria (Orange Book)
Audit in Trusted Systems (Tan Book)
Configuration Management in Trusted Systems (Amber Book)
Trusted Distribution in Trusted Systems (Dark Lavender Book)
Security Modeling in Trusted Systems (Aqua Book)
Formal Verification Systems (Purple Book)
Covert Channel Analysis of Trusted Systems (Light Pink Book)
… many more

http://www.fas.org/irp/nsa/rainbow.htm

2/26/09 CIS/TCOM 551 33

Orange Book Requirements (TCSEC)
•  TCSEC = Trusted Computer System Evaluation Criteria

•  Security Policy
•  Accountability
•  Assurance
•  Documentation

•  Next few slides: details not important …
–  Main point: Higher levels require more work …, documentation

and configuration management are part of the criteria

2/26/09 CIS/TCOM 551 34

Common Criteria
•  Three parts

–  CC Documents
•  Protection profiles: requirements for category of systems

–  Functional requirements
–  Assurance requirements

–  CC Evaluation Methodology
–  National Schemes (local ways of doing evaluation)

•  Endorsed by 14 countries
•  Replaces TCSEC

–  CC adopted 1998
–  Last TCSEC evaluation completed 2000

http://www.niap-ccevs.org/cc-scheme/
http://www.commoncriteriaportal.org/

2/26/09 CIS/TCOM 551 35

Protection Profiles
•  Requirements for categories of systems

–  Subject to review and certified

•  Example: Controlled Access PP (CAPP_V1.d)
–  Security functional requirements

•  Authentication, User Data Protection, Prevent Audit Loss
–  Security assurance requirements

•  Security testing, Admin guidance, Life-cycle support, …
–  Assumes non-hostile and well-managed users
–  Does not consider malicious system developers

2/26/09 CIS/TCOM 551 36

Evaluation Assurance Levels 1 – 4

EAL 1: Functionally Tested
–  Review of functional and interface specifications
–  Some independent testing

EAL 2: Structurally Tested
–  Analysis of security functions, including high-level design
–  Independent testing, review of developer testing

EAL 3: Methodically Tested and Checked
–  Development environment controls; configuration mgmt

EAL 4: Methodically Designed, Tested, Reviewed
–  Informal spec of security policy, Independent testing

2/26/09 CIS/TCOM 551 37

Evaluation Assurance Levels 5 – 7
EAL 5: Semiformally Designed and Tested

–  Formal model, modular design
–  Vulnerability search, covert channel analysis

EAL 6: Semiformally Verified Design and Tested
–  Structured development process

EAL 7: Formally Verified Design and Tested
–  Formal presentation of functional specification
–  Product or system design must be simple
–  Independent confirmation of developer tests

2/26/09 CIS/TCOM 551 38

Example: Windows 2000, EAL 4+
•  Evaluation performed by SAIC
•  Used “Controlled Access Protection Profile”
•  Level EAL 4 + Flaw Remediation

–  “EAL 4 … represents the highest level at which products not built
specifically to meet the requirements of EAL 5-7 ought to be
evaluated.”

 (EAL 5-7 requires more stringent design and development
procedures …)

–  Flaw Remediation
•  Evaluation based on specific configurations

–  Produced configuration guide that may be useful

2/26/09 CIS/TCOM 551 39

