
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2009
Lecture 11

2/24/09 CIS/TCOM 551 2

Announcements

•  Plan for Today:
–  Access Control
–  Discretionary vs. Mandatory access control
–  Software validation

•  Project 2 reminder
–  Due: Friday, March 6th (right before Spring Break)

2/24/09 CIS/TCOM 551 3

Access Control Matrices

{r,w,x} … {r,w,x} {x} SubjM

… … … … …

… … {} {w,x} Subj2

{} … {r,w} {r,w,x} Subj1

ObjN … Obj2 Obj1 A[s][o]

Each entry
contains
a set of
rights.

2/24/09 CIS/TCOM 551 4

Access Control Lists

{r,w,x} … {r,w,x} {x} SubjM

… … … … …

{r} … {} {w,x} Subj2

{} … {r,w} {r,w,x} Subj1

ObjN … Obj2 Obj1 A[s][o]

For each object, store a list of (Subject x Rights) pairs.

2/24/09 CIS/TCOM 551 5

Unix file security
•  Each file has owner and group
•  Permissions set by owner

–  Read, write, execute
–  Owner, group, other
–  Represented by vector of
 four octal values

•  Only owner, root can change permissions
–  This privilege cannot be delegated or shared

•  Setid bits – Discuss in a few slides

rwx rwx rwx ---

owner group other

setid

2/24/09 CIS/TCOM 551 6

Setid bits on executable Unix file
•  Three setid bits

–  Sticky
•  Off: if user has write permission on directory, can rename or remove

files, even if not owner
•  On: only file owner, directory owner, and root can rename or remove

file in the directory
–  Setuid – set EUID of process to ID of file owner

–  passwd owned by root and setuid is true
–  Jeff executes passwd: “passwd runs as root”

–  Setgid – set EGID of process to GID of file

2/24/09 CIS/TCOM 551 7

Effective User ID (EUID)
•  Each process has three user IDs (more in Linux)

–  Real user ID (RUID)
•  same as the user ID of parent (unless changed)
•  used to determine which user started the process

–  Effective user ID (EUID)
•  from set user ID bit on program file, or system call
•  determines the permissions for process

–  file access and port binding
–  Saved user ID (SUID)

•  So previous EUID can be restored

•  Real group ID, effective group ID, used similarly

2/24/09 CIS/TCOM 551 8

Process Operations and IDs
•  Root

–  ID=0 for superuser root; can access any file
•  Fork and Exec

–  Inherit three IDs, except when executing a file with setuid bit on.
•  Setuid system calls

–  seteuid(newid) can set EUID to
•  Real ID or saved ID, regardless of current EUID
•  Any ID, if EUID=0

•  Details are actually more complicated
–  Several different calls: setuid, seteuid, setruid

2/24/09 CIS/TCOM 551 9

Example

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--
file

-rw-r--r--
file

Owner 18

Owner 25

read/write

read/write

Owner 18

2/24/09 CIS/TCOM 551 10

Setuid programming
•  Can do anything that owner of file is allowed to do
•  Be Careful!

–  Root can do anything; don’t get tricked (no middle ground)
–  Principle of least privilege – change EUID when root privileges

no longer needed
–  Be sure not to

•  Take action for untrusted user
•  Return secret data to untrusted user

•  Setuid scripts
–  This is a bad idea
–  Historically, race conditions

•  Begin executing setuid program; change contents of program
before it loads and is executed

2/24/09 CIS/TCOM 551 11

Unix summary
•  We’re all very used to this …

–  So probably seems pretty good
–  We overlook ways it might be better

•  Good things
–  Some protection from most users
–  Flexible enough to make things possible

•  Main bad thing
–  Too tempting to use root privileges
–  No way to assume some root privileges without all root privileges

2/24/09 CIS/TCOM 551 12

Capabilities Lists
A[s][o] Obj1 Obj2 … ObjN

Subj1 {r,w,x} {r,w} … {}

Subj2 {w,x} {} … {r}

… … … … …

SubjM {x} {r,w,x} … {r,w,x}

For each subject, store a list of (Object x Rights) pairs.

2/24/09 CIS/TCOM 551 13

Capabilities
•  A capability is a (Object, Rights) pair

–  Used like a movie ticket e.g.:
(“Slumdog Millionaire”@7:00pm, {admit one})

•  Should be unforgeable
–  Otherwise, subjects could get illegal access

•  Authentication takes place when the capabilities are
granted (not needed at use)

•  Harder to do revocation (must find all tickets)
•  Easy to audit a subject, hard to audit an object

2/24/09 CIS/TCOM 551 14

Implementing Capabilities
•  Must be able to name objects
•  Unique identifiers

–  Must keep map of UIDs to objects
–  Must protect integrity of the map
–  Extra level of indirection to use the object
–  Generating UIDs can be difficult

•  Pointers
–  Name changes when the object moves
–  Remote pointers in distributed setting
–  Aliasing possible

2/24/09 CIS/TCOM 551 15

Unforgeability of Capabilities
•  Special hardware: tagged words in memory

–  Can’t copy/modify tagged words
•  Store the capabilities in protected address space
•  Could use static scoping mechanism of safe programming

languages.
–  Java’s “private” fields

•  Could use cryptographic techniques
–  OS kernel could sign (Object, Rights) pairs using a private key
–  Any process can verify the capability
–  Example: Kerberos

2/24/09 CIS/TCOM 551 16

Access control in Windows (NTFS)
•  Some basic functionality similar to Unix

–  Specify access for groups and users
•  Read, modify, change owner, delete

–  ACLs used for fine grained control
•  Some additional concepts

–  Security Tokens -- these are a form of capability
•  Allows clients to temporarily upgrade their privileges
•  Can also be used for delegation of privileges from one process to

another
•  Replaces Unix’s setuid model

–  Security attributes

•  Generally
–  More flexibility than Unix

•  Can define new permissions
•  Can give some but not all administrator privileges

2/24/09 CIS/TCOM 551 17

Access Control
•  Discretionary: The individual user may, at his own

discretion, determine who is authorized to access the
objects he creates.

•  Mandatory: The creator of an object does not necessarily
have the ability to determine who has authorized access
to it.
–  Typically policy is governed by some central authority
–  The policy on an object in the system depends on what object/

information was used to create the object.

2/24/09 CIS/TCOM 551 18

Multilevel Security
•  Multiple levels of confidentiality or integrity ratings
•  Military security policy

•  Classification involves sensitivity levels, compartments
•  Do not let classified information leak to unclassified files

•  Group individuals and resources
–  Use some form of hierarchy to organize policy

•  Trivial example: Public ≤ Secret
•  Information flow

–  Regulate how information is used throughout entire system
–  A document generated from both Public and Secret information

must be rated Secret.
–  Intuition: "Secret" information should not flow to "Public"

locations.

2/24/09 CIS/TCOM 551 19

Military security policy

•  Sensitivity levels

Top Secret
Secret
Confidential
Restricted
Unclassified

•  Compartments

Satellite data
Afghanistan

Middle East
Israel

2/24/09 CIS/TCOM 551 20

Military security policy

•  Classification of personnel and data
–  Class D = 〈rank, compartment〉

•  Dominance relation
–  D1 ≤ D2 iff rank1 ≤ rank2
 and compartment1 ⊆ compartment2

–  Example: 〈Restricted, Israel〉 ≤ 〈Secret, Middle East〉
•  Applies to

–  Subjects – users or processes: C(S) = "clearance of S"
–  Objects – documents or resources: C(O) = "classification of O"

2/24/09 CIS/TCOM 551 21

Bell-LaPadula Confidentiality Model
•  “No read up, no write down.”

– Subjects are assigned clearance levels drawn from the
lattice of security labels.

•  C(S) = "clearance of the subject S"
– A principal may read objects with lower (or equal)

security label.
•  Read: C(O) ≤ C(S)

– A principal may write objects with higher (or equal)
security label.

•  Write: C(S) ≤ C(O)

•  Example: A user with Secret clearance can:
– Read objects with label Public and Secret
– Write/create objects with label Secret

2/24/09 CIS/TCOM 551 22

Picture: Confidentiality

S

Public

Secret

Read below, write above

S

Public

Secret

Read above, write below

2/24/09 CIS/TCOM 551 23

Picture: Integrity

S

Untainted

Tainted

Read below, write above

S

Untainted

Tainted

Read above, write below

2/24/09 CIS/TCOM 551 24

Multilevel Security Policies
•  In general, security levels form a "join semi-lattice"

–  There is an ordering ≤ on security levels
–  For any pair of labels L1 and L2 there is an "join" operation:

L1 ⊕ L2 is a label in the lattice such that:
(1) L1 ≤ L1 ⊕ L2 and L2 ≤ L1 ⊕ L2 "upper bound"
(2) If L1 ≤ L3 and L2 ≤ L3 then L1 ⊕ L2 ≤ L3 "least bound"

•  For example: Public ⊕ Secret = Secret
•  Labeling rules:

–  Classification is a function C : Object → Lattice
–  If some object O is "created from" objects O1,…,On

then C(O) = C(O1) ⊕ … ⊕ C(On)

2/24/09 CIS/TCOM 551 25

Implementing Multilevel Security
•  Dynamic:

–  Tag all values in memory with their security level
–  Operations propagate security levels
–  Must be sure that tags can’t be modified
–  Expensive, and approximate

•  Classic result: Information-flow policies cannot be
enforced purely by a reference monitor!
–  Problem arises from implicit flows

•  Static:
–  Program analysis
–  May be more precise
–  May have less overhead

2/24/09 CIS/TCOM 551 26

Information Flows through Software

Implicit Flows:

int{Secret} X = f();
int{Public} Y = 0;
int{Public} Z = 0;
int{Public} W = 0;

if (X > 0) then {
 Y = 1;
} else {
 Z = 1;
}
W = 3;

Explicit Flows:

int{Secret} X = f();
int{Public} Y = 0;

Y = X;

2/24/09 CIS/TCOM 551 27

Perl's Solution (for Integrity)
•  The problem: need to track the source of data
•  Examples: Format string, SQL injection, etc.

 $arg = shift;

system ("echo $arg");

• Give this program the argument "; rm *"
• Perl offers a taint checking mode

–  Tracks the source of data (trusted vs. tainted)
–  Ensure that tainted data is not used in system calls
–  Tainted data can be converted to trusted data by pattern matching
–  Doesn't check implicit flows

2/24/09 CIS/TCOM 551 28

SELinux
•  Security-enhanced Linux system (NSA)

–  Enforce separation of information based on confidentiality and
integrity requirements

–  Mandatory access control incorporated into the major subsystems of
the kernel

•  Limit tampering and bypassing of application security mechanisms
•  Confine damage caused by malicious applications

•  Type enforcement
–  Each process has an associated domain
–  Each object has an associated type (label)
–  Configuration files specify

•  How domains are allowed to access types
•  Allowable interactions and transitions between domains

•  Role-based access control
–  Each process has an associated role

•  Separate system and user processes
–  Configuration files specify

•  Set of domains that may be entered by each role

http://www.nsa.gov/selinux/

2/24/09 CIS/TCOM 551 29

Two Other MAC Policies
•  "Chinese Wall" policy: [Brewer & Nash '89]

–  Object labels are classified into "conflict classes"
–  If subject accesses one object with label L1 in a conflict class, all

access to objects labeled with other labels in the conflict class are
denied.

–  Policy changes dynamically

•  "Separation of Duties":
–  Division of responsibilities among subjects
–  Example: Bank auditor cannot issue checks.

2/24/09 CIS/TCOM 551 30

Question:
•  Suppose you have gone through the cost/benefit and risk

analysis to determine the securty requirements for a
computer system.

•  How do you know whether a system meets its security
requirements?

•  Class answers:

2/24/09 CIS/TCOM 551 31

Assurance methods
•  Testing

–  Regression testing, automation tools, etc.
–  Can demonstrate existence of flaw, not absence

•  Validation
–  Requirements checking
–  Design and code reviews

•  Sit around table, drink lots of coffee, …
–  Module and system testing

•  Formal verification
–  Develop a rigorous (mathematical) specification of the system
–  Prove (using tools or by hand) that the implementation meets the

specification
–  Time-consuming, painstaking process
–  Has been done for some systems. (See www.praxis-his.com)

2/24/09 CIS/TCOM 551 32

Rainbow Series

DoD Trusted Computer Sys Evaluation Criteria (Orange Book)
Audit in Trusted Systems (Tan Book)
Configuration Management in Trusted Systems (Amber Book)
Trusted Distribution in Trusted Systems (Dark Lavender Book)
Security Modeling in Trusted Systems (Aqua Book)
Formal Verification Systems (Purple Book)
Covert Channel Analysis of Trusted Systems (Light Pink Book)
… many more

http://www.fas.org/irp/nsa/rainbow.htm

2/24/09 CIS/TCOM 551 33

Orange Book Requirements (TCSEC)
•  TCSEC = Trusted Computer System Evaluation Criteria

•  Security Policy
•  Accountability
•  Assurance
•  Documentation

•  Next few slides: details not important …
–  Main point: Higher levels require more work …, documentation

and configuration management are part of the criteria

2/24/09 CIS/TCOM 551 34

Orange Book Criteria (TCSEC)
•  Level D

–  No security requirements

•  Level C For environments with cooperating users
–  C1 – protected mode OS, authenticated login, DAC, security

testing and documentation (Unix)
–  C2 – DAC to level of individual user, object initialization,

auditing (Windows NT 4.0)

•  Level B, A
–  All users and objects must be assigned a security label

(classified, unclassified, etc.)
–  System must enforce Bell-LaPadula model

2/24/09 CIS/TCOM 551 35

Levels B, A (continued)
•  Level B

–  B1 – classification and Bell-LaPadula
–  B2 – system designed in top-down modular way, must be possible

to verify, covert channels must be analyzed
–  B3 – ACLs with users and groups, formal TCB must be presented,

adequate security auditing, secure crash recovery

•  Level A1
–  Formal proof of protection system, formal proof that model is

correct, demonstration that impl conforms to model, formal covert
channel analysis

2/24/09 CIS/TCOM 551 36

Common Criteria
•  Three parts

–  CC Documents
•  Protection profiles: requirements for category of systems

–  Functional requirements
–  Assurance requirements

–  CC Evaluation Methodology
–  National Schemes (local ways of doing evaluation)

•  Endorsed by 14 countries
•  Replaces TCSEC

–  CC adopted 1998
–  Last TCSEC evaluation completed 2000

http://www.niap-ccevs.org/cc-scheme/
http://www.commoncriteriaportal.org/

2/24/09 CIS/TCOM 551 37

Protection Profiles
•  Requirements for categories of systems

–  Subject to review and certified

•  Example: Controlled Access PP (CAPP_V1.d)
–  Security functional requirements

•  Authentication, User Data Protection, Prevent Audit Loss
–  Security assurance requirements

•  Security testing, Admin guidance, Life-cycle support, …
–  Assumes non-hostile and well-managed users
–  Does not consider malicious system developers

2/24/09 CIS/TCOM 551 38

Evaluation Assurance Levels 1 – 4

EAL 1: Functionally Tested
–  Review of functional and interface specifications
–  Some independent testing

EAL 2: Structurally Tested
–  Analysis of security functions, including high-level design
–  Independent testing, review of developer testing

EAL 3: Methodically Tested and Checked
–  Development environment controls; configuration mgmt

EAL 4: Methodically Designed, Tested, Reviewed
–  Informal spec of security policy, Independent testing

2/24/09 CIS/TCOM 551 39

Evaluation Assurance Levels 5 – 7
EAL 5: Semiformally Designed and Tested

–  Formal model, modular design
–  Vulnerability search, covert channel analysis

EAL 6: Semiformally Verified Design and Tested
–  Structured development process

EAL 7: Formally Verified Design and Tested
–  Formal presentation of functional specification
–  Product or system design must be simple
–  Independent confirmation of developer tests

2/24/09 CIS/TCOM 551 40

Example: Windows 2000, EAL 4+
•  Evaluation performed by SAIC
•  Used “Controlled Access Protection Profile”
•  Level EAL 4 + Flaw Remediation

–  “EAL 4 … represents the highest level at which products not built
specifically to meet the requirements of EAL 5-7 ought to be
evaluated.”

 (EAL 5-7 requires more stringent design and development
procedures …)

–  Flaw Remediation
•  Evaluation based on specific configurations

–  Produced configuration guide that may be useful

2/24/09 CIS/TCOM 551 41

