Announcements

• Plan for Today:
 – Networks: TCP
 – Firewalls

• Midterm 1: One week from Today!
 – 2/17/2009
 – In class, short answer, multiple choice, analysis

• Project 2 will be available soon
Protocol Stack Revisited

Application
Presentation
Session
Transport
Network
Data Link
Physical

So far…

UDP and TCP/IP
Application vs. Network

<table>
<thead>
<tr>
<th>Application Needs</th>
<th>Network Char.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliable, Ordered, Single-Copy Message Delivery</td>
<td>Drops, Duplicates and Reorders Messages</td>
</tr>
<tr>
<td>Arbitrarily large message sizes</td>
<td>Finite message size</td>
</tr>
<tr>
<td>Flow Control by Receiver</td>
<td>Arbitrary Delay</td>
</tr>
<tr>
<td>Supports multiple applications per-host</td>
<td>…</td>
</tr>
</tbody>
</table>
User Datagram Protocol (UDP)

- Simplest transport-layer protocol
- Just exposes IP packet functionality to application level
- *Ports* identify sending/receiving process
 - Demultiplexing information
 - (port, host) pair identifies a network process

<table>
<thead>
<tr>
<th>SrcPort</th>
<th>DestPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Checksum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP Packet Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 16 31</td>
</tr>
</tbody>
</table>
UDP End-to-End Model

- Multiplexing/Demultiplexing with Port number
Using Ports

• Client contacts Server at a well-known port
 – SMPT: port 25
 – DNS: port 53
 – POP3: port 110
 – Unix talk: port 517
 – In unix, ports are listed in /etc/services

• Sometimes Client and Server agree on a different port for subsequent communication

• Ports are an abstraction
 – Implemented differently on different OS’s
 – Typically a message queue
Transmission Control Protocol (TCP)

- Most widely used protocol for reliable byte streams
 - Reliable, in-order delivery of a stream of bytes
 - Full duplex: pair of streams, one in each direction
 - Flow and congestion control mechanisms
 - Like UDP, supports ports

- Built on top of IP (hence TCP/IP)
TCP End-to-End Model

- Buffering corrects errors but may introduce delays
Packet Format

- Flags
 - SYN
 - FIN
 - RESET
 - PUSH
 - URG
 - ACK

- Fields

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SrcPort</td>
<td>DstPort</td>
</tr>
<tr>
<td></td>
<td>SequenceNum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td></td>
</tr>
<tr>
<td>HL</td>
<td>Flags</td>
<td>Advert.Wind.</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checksum</td>
<td>UrgPtr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Options (variable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DATA</td>
<td></td>
</tr>
</tbody>
</table>
Three-Way Handshake

Active participant (client)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,
Acknowledgment = x + 1

ACK, Acknowledgment = y + 1

Passive participant (server)
TCP State Transitions

- **CLOSED**
 - Passive open
 - Close
 - Active open/SYN

- **LISTEN**
 - SYN/SYN + ACK
 - Send/SYN

- **SYN_RCVD**
 - SYN/SYN + ACK
 - ACK
 - Close/FIN

- **FIN_WAIT_1**
 - ACK
 - FIN/ACK

- **FIN_WAIT_2**
 - FIN/ACK

- **ESTABLISHED**
 - ACK
 - SYN + ACK/ACK

- **CLOSING**
 - FIN/ACK
 - ACK
 - Timeout after two segment lifetimes

- **CLOSE_WAIT**
 - Close/FIN

- **LAST_ACK**
 - ACK

- **TIME_WAIT**
 - FIN/ACK

- **CLOSED**
 - Ack
TCP Receiver

- Maintains a buffer from which application reads
- Advertises < buffer size as the window for sliding window
- Responds with Acknowledge and AdvertisedWindow on each send; updates byte counts when data O.K.
- Application blocked until read() O.K.
TCP Sender

- Maintains a buffer; sending application is blocked until room in the buffer for its write
- Holds data until acknowledged by receiver as successfully received
- Implement window expansion and contraction; note difference between flow and congestion control
TCP Flow & Congestion Control

• Flow vs. Congestion Control
 – Flow control protects the recipient from being overwhelmed.
 – Congestion control protects the network from being overwhelmed.

• TCP Congestion Control
 – Additive Increase / Multiplicative Decrease
 – Slow Start
 – Fast Retransmit and Fast Recovery
Increase and Decrease

- A value CongestionWindow is used to control the number of unacknowledged transmissions.
- This value is increased linearly until timeouts for ACKs are missed.
- When timeouts occur, CongestionWindow is decreased by half to reduce the pressure on the network quickly.
- The strategy is called “additive increase / multiplicative decrease”.

Additive Increase
TCP Sawtooth Pattern

![Graph showing the TCP Sawtooth Pattern with the y-axis labeled KB and the x-axis labeled Time. The graph displays a sawtooth pattern with horizontal segments representing constant bandwidth usage and vertical segments indicating a sudden increase in bandwidth.]
Slow Start

• Sending the entire window immediately could cause a traffic jam in the network.

• Begin “slowly” by setting the congestion window to one packet.

• When acknowledgements arrive, double the congestion window.

• Continue until ACKs do not arrive or flow control dominates.
Slow Start
Network Vulnerabilities

• Anonymity
 – Attacker is remote, origin can be disguised
 – Authentication

• Many points of attack
 – Attacker only needs to find weakest link
 – Attacker can mount attacks from many machines

• Sharing
 – Many, many users sharing resources

• Complexity
 – Distributed systems are large and heterogeneous

• Unknown perimeter

• Unknown attack paths
Syn Flood Attack

- Recall TCP’s 3-way handshake:
 - SYN --- SYN+ACK --- ACK

- Receiver must maintain a queue of partially open TCP connections
 - Called SYN_RECV connections
 - Finite resource (often small: e.g. 20 entries)
 - Timeouts for queue entries are about 1 minute.

- Attacker
 - Floods a machine with SYN requests
 - Never ACKs them
 - Spoofs the sending address (Why? Two reasons!)
Reflected denial of service

• ICMP message with an "echo request" is called 'ping'

• Broadcast a ping request
 – For sender’s address put target’s address
 – All hosts reply to ping, flooding the target with responses

• Hard to trace
• Hard to prevent
 – Turn off ping? (Makes legitimate use impossible)
 – Limit with network configuration by restricting scope of broadcast messages

• Sometimes called a "smurf attack"
(Distributed) Denial of Service

- Coordinate multiple subverted machines to attack
- Flood a server with bogus requests
 - TCP SYN packet flood
 - > 600,000 packets per second
- Detection & Assessment?
 - 12,800 attacks at 5000 hosts! (in 3 week period during 2001)
 - IP Spoofing (forged source IP address)
 - http://www.cs.ucsd.edu/users/savage/papers/UsenixSec01.pdf

- Feb. 6 2007: 6 of 13 root servers suffered DDoS attack
- Oct. 21 2002: 9 of 13 root servers were swamped
 - Prompted changes in the architecture

- Prevention?
 - Filtering?
 - Decentralized file storage?
Kinds of Firewalls

- **Personal firewalls**
 - Run at the end hosts
 - e.g. Norton, Windows, etc.
 - Benefit: has more application/user specific information

- **Network Address Translators**
 - Rewrites packet address information

- **Filter Based**
 - Operates by filtering based on packet headers

- **Proxy based**
 - Operates at the level of the application
 - e.g. HTTP web proxy
Network Address Translation

- Idea: Break the invariant that IP addresses are globally unique
NAT Behavior

• NAT maintains a table of the form:
 <client IP> <client port> <NAT ID>

• Outgoing packets (on non-NAT port):
 – Look for client IP address, client port in the mapping table
 – If found, replace client port with previously allocated NAT ID
 (same size as PORT #)
 – If not found, allocate a new unique NAT ID and replace source
 port with NAT ID
 – Replace source address with NAT address
NAT Behavior

• Incoming Packets (on NAT port)
 – Look up destination port number as NAT ID in port mapping table
 – If found, replace destination address and port with client entries from the mapping table
 – If not found, the packet is not for us and should be rejected

• Table entries expire after 2-3 minutes to allow them to be garbage collected

• "Private" IP addresses:
 – 192.168.x.x
 – 172.16.x.x
 – 172.31.x.x
 – 10.x.x.x
Benefits of NAT

• Only allows connections to the outside that are established from inside.
 – Hosts from outside can only contact internal hosts that appear in the mapping table, and they’re only added when they establish the connection
 – Some NATs support firewall-like configurability

• Can simplify network administration
 – Divide network into smaller chunks
 – Consolidate configuration data

• Traffic logging
• Load balancing
• Robust failover
Drawbacks of NAT

- Rewriting IP addresses isn’t so easy:
 - Must also look for IP addresses in other locations and rewrite them (may have to be protocol-aware)
 - Potentially changes sequence number information
 - Must validate/recalculate checksums
- Hinder throughput
- May not work with all protocols
 - Clients may have to be aware that NAT translation is going on
- Slow the adoption of IPv6?
- Limited filtering of packets / change packet semantics
 - For example, NATs may not work well with encryption schemes that include IP address information
Firewalls

- Filters protect against “bad” packets.
- Protect services offered internally from outside access.
- Provide outside services to hosts located inside.
Filtering Firewalls

• Filtering can take advantage of the following information from network and transport layer headers:
 – Source
 – Destination
 – Source Port
 – Destination Port
 – Flags (e.g. ACK)
 – Protocol type (e.g. UDP vs. TCP)

• Some firewalls keep state about open TCP connections
 – Allows conditional filtering rules of the form “if internal machine has established the TCP connection, permit inbound reply packets”
Filter Example

<table>
<thead>
<tr>
<th>Action</th>
<th>ourhost</th>
<th>port</th>
<th>theirhost</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>*</td>
<td>*</td>
<td>BAD</td>
<td>*</td>
<td>untrusted host</td>
</tr>
<tr>
<td>allow</td>
<td>GW</td>
<td>25</td>
<td>*</td>
<td>*</td>
<td>allow our SMTP port</td>
</tr>
</tbody>
</table>

Apply rules from top to bottom with assumed default entry:

<table>
<thead>
<tr>
<th>Action</th>
<th>ourhost</th>
<th>port</th>
<th>theirhost</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>default</td>
</tr>
</tbody>
</table>

Bad entry intended to allow connections to SMTP from inside:

<table>
<thead>
<tr>
<th>Action</th>
<th>ourhost</th>
<th>port</th>
<th>theirhost</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>25</td>
<td>connect to their SMTP</td>
</tr>
</tbody>
</table>

This allows all connections from port 25, but an outside machine can run anything on its port 25!
Filter Example Continued

Permit *outgoing* calls to port 25.

<table>
<thead>
<tr>
<th>Action</th>
<th>src</th>
<th>port</th>
<th>dest</th>
<th>port</th>
<th>flags</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>123.45.6.*</td>
<td>*</td>
<td>*</td>
<td>25</td>
<td>*</td>
<td>their SMTP</td>
</tr>
<tr>
<td>allow</td>
<td>*</td>
<td>25</td>
<td>*</td>
<td>*</td>
<td>ACK</td>
<td>their replies</td>
</tr>
</tbody>
</table>

This filter doesn’t protect against IP address spoofing. The bad hosts can “pretend” to be one of the hosts with addresses 123.45.6.*.
When to Filter?

Firewall

Inside

Outside
On Input or Output?

• Filtering on *output* can be more efficient since it can be combined with table lookup of the route.
• However, some information is lost at the output stage
 – e.g. the physical input port on which the packet arrived.
 – Can be useful information to prevent address spoofing.
• Filtering on *input* can protect the router itself.
Principles for Firewall Configuration

• General principal: Filter as early as possible

• Least Privileges:
 – Turn off everything that is unnecessary (e.g. Web Servers should disable SMTP port 25)

• Failsafe Defaults:
 – By default should reject
 – (Note that this could cause usability problems…)

• Egress Filtering:
 – Filter outgoing packets too!
 – You know the valid IP addresses for machines internal to the network, so drop those that aren’t valid.
 – This can help prevent DoS attacks in the Internet.
Example “real” firewall config script

############
FreeBSD Firewall configuration.
Single-machine custom firewall setup. Protects somewhat
against the outside world.
############

Set this to your ip address.
ip="192.100.666.1"
setup_loopback

Allow anything outbound from this address.
${fwcmd} add allow all from ${ip} to any out

Deny anything outbound from other addresses.
${fwcmd} add deny log all from any to any out

Allow inbound ftp, ssh, email, tcp-dns, http, https, imap, imaps,
pop3, pop3s.
${fwcmd} add allow tcp from any to ${ip} 21 setup
${fwcmd} add allow tcp from any to ${ip} 22 setup
${fwcmd} add allow tcp from any to ${ip} 25 setup
${fwcmd} add allow tcp from any to ${ip} 53 setup
${fwcmd} add allow tcp from any to ${ip} 80 setup
${fwcmd} add allow tcp from any to ${ip} 443 setup
...

Proxy-based Firewalls

- Proxy acts like *both* a client and a server.
- Able to filter using application-level info
 - For example, permit some URLs to be visible outside and prevent others from being visible.
- Proxies can provide other services too
 - Caching, load balancing, etc.
 - FTP and Telnet proxies are common too
Benefits of Firewalls

- Increased security for internal hosts.
- Reduced amount of effort required to counter break ins.
- Possible added convenience of operation within firewall (with some risk).
- Reduced legal and other costs associated with hacker activities.
Drawbacks of Firewalls

• Costs:
 – Hardware purchase and maintenance
 – Software development or purchase, and update costs
 – Administrative setup and training, and ongoing administrative costs and trouble-shooting
 – Lost business or inconvenience from broken gateway
 – Loss of some services that an open connection would supply.

• False sense of security
 – Firewalls don’t protect against viruses…