CIS 551 / TCOM 401
Computer and Network Security

Spring 2008
Lecture 10
Announcements

• Project 2: Due March 7th
• Midterm 1 Distribution

Average: 61
Std. Dev: 12
Max: 83
Min: 39
Open Systems Interconnection (OSI)

- **End Host**: Reference model – not actual implementation.
 - Application: Transmits *messages* (e.g. FTP or HTTP)
 - Presentation: Data format issues (e.g. big- vs. little-endian)
 - Session: Manages multiple streams of data
 - Transport: Process to process protocols
 - Network: Routes *packets* among nodes in network
 - Data Link: Packages bit streams into *frames*
 - Physical: Transmits raw bits over link
IEEE 802 network standards

The IEEE 802 committee produces standards & specifications for Local Area Networks (LAN):

- **802.3 CSMA/CD Networks** (Ethernet)
- 802.4 Token Bus Networks
- 802.5 Token Ring Networks
- 802.6 Metropolitan Area Networks
- **802.11 Wireless LAN (Wifi)** [Thursday]
Ethernet (802.3)

- A standard for local area networks (LAN)

- Developed in mid-70’s at Xerox PARC
 - Descendent of Aloha, a U. of Hawaii radio packet network
 - DEC, Intel, and Xerox standard: 1978 for 10Mbps
 - IEEE 802.3 standard grew out of that

- Physical implementations:
 - 10Base5, 10BaseT, 100BaseT, 1000BaseT…
 - Speed: 10Mbps, 100Mbps, 1000Mbps, …
Ethernet Physical links

• Originally used “Thick-net” 10Base5
 – 10 = 10Mbps
 – 5 = maximum of 500 meters segments
 – Up to 4 repeaters between two hosts
 =2500m max

• More common: 10BaseT
 – 10 = 10Mbps
 – T = Twisted pair (typically Category 5),
 Maximum of 100 meter segments
 – Connected via hubs (still 2500m max)

• Today’s standards: 100BaseT, 1000BaseT
Ethernet topologies

10Base5 topology

Repeater

Host

10BaseT topology

Hub

Hub
How the ethernet works

• The Ethernet link is *shared*
 – A signal transmitted by one host reaches *all* hosts

• Method of operation: **CSMA/CD**
 – Carrier Sense, Multiple Access, with Collision Detection

• Hosts competing for the same link are said to be in the same *collision domain*
 – Good news: easy to exchange data
 – Bad news: have to regulate link access

• Protocol: *Media Access Control (MAC)*
Ethernet Addresses

• Every adapter manufactured has a unique address
 – 6 bytes (48 bits) usually written in Hex.
 – Examples: 00-40-50-B1-39-69 and 8:0:2b:e4:b1:2
 – Each manufacturer is assigned 24bit prefix
 – Manufacturer ensures unique suffixes
Ethernet Frame Format

<table>
<thead>
<tr>
<th>64</th>
<th>48</th>
<th>48</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>Dest</td>
<td>Src</td>
<td>Type</td>
<td>Body</td>
</tr>
</tbody>
</table>

- **Preamble** – repeating pattern of 0’s & 1’s
 - Used by receiver to synchronize on signal
- **Dest** and **Src** – Ethernet Addresses
- **Type** – demultiplexing key
 - Identifies higher-level protocol
- **Body** – payload
 - Minimum 46 Bytes
 - Maximum 1500 Bytes
Addresses in an ethernet frame

- All bits = 1 indicates a broadcast address
 - Sent to all adapters

- First bit = 0 indicates unicast address
 - Sent to only one receiver

- First bit = 1 indicates multicast address
 - Sent to a group of receivers
An Ethernet Adapter Receives:

• Frames addressed to the broadcast address
• Frames addressed to its own address
• Frames sent to a multicast address
 – If it has been programmed to listen to that address
• All frames
 – If the adapter has been put into *promiscuous mode*
Ethernet Transmitter Algorithm

- If the link is idle transmit the frame immediately
 - Upper bound on frame size means adapter can’t hog the link
- If the link is busy
 - Wait for the line to go idle
 - Wait for 9.6μs after end of last frame (sentinel)
 - Transmit the frame

- Two (or more) frames may collide
 - Simultaneously sent frames interfere
Collision Detection

• When an adapter detects a collision
 – Immediately sends 32 bit jamming signal
 – Stops transmitting

• A 10MBps adapter may need to send 512 bits in order to detect a collision
 – Why?
 – 2500m + 4 repeaters gives RTT of 51.2μs
 – 51.2μs at 10Mbps = 512 bits
 – Fortunately, minimum frame (excluding preamble) is 512 bits = 64 bytes
 • 46 bytes data + 14 bytes header + 4 bytes CRC
Ethernet Collision (Worst Case)

T=0

25.6µs

25.6µs

51.2µs
Exponential Backoff

• After it detects 1st collision
 – Adapter waits either 0 or 51.2\mu s before retrying
 – Selected randomly

• After 2nd failed transmission attempt
 – Adapter randomly waits 0, 51.2, 102.4, or 153.6\mu s

• After nth failed transmission attempt
 – Pick k in 0 \ldots 2^n-1
 – Wait k x 51.2\mu s
 – Give up after 16 retries
 (but cap n at 10)
Ethernet Security Issues

- Promiscuous mode
 - *Packet sniffer* detects all Ethernet frames

- Less of a problem in *switched* Ethernet
 - Why?
Wireless (802.11)

- Spread spectrum radio
 - 2.4GHz frequency band
- Bandwidth ranges 1, 2, 5.5, 11, 22, … Mbps

- Like Ethernet, 802.11 has shared medium
 - Need MAC (uses exponential backoff)
- Unlike Ethernet, in 802.11
 - No support for collision detection
 - Not all senders and receivers are directly connected
Hidden nodes

- A and C are *hidden* with respect to each other
 - Frames sent from A to B and C to B simultaneously may collide, but A and C can’t detect the collision.
Exposed nodes

- B is exposed to C
 - Suppose B is sending to A
 - C should still be allowed to transmit to D
 - Even though C—B transmission would collide
 - (Note A to B transmission would cause collision)
Multiple Access Collision Avoidance

- Sender transmits Request To Send (RTS)
 - Includes length of data to be transmitted
 - Timeout leads to exponential backoff (like Ethernet)
- Receiver replies with Clear To Send (CTS)
 - Echoes the length field
- Receiver sends ACK of frame to sender
- Any node that sees CTS cannot transmit for durations specified by length
- Any node that sees RTS but not CTS is not close enough to the receiver to interfere
 - It’s free to transmit
Wireless Access Points

- Distribution System – wired network infrastructure
- Access points – stationary wireless device
- Roaming wireless
Selecting an Access Point

- **Active scanning**
 - Node sends a Probe frame
 - All AP’s within reach reply with a Probe Response frame
 - Node selects an AP and sends Association Request frame
 - AP replies with Association Response frame

- **Passive scanning**
 - AP periodically broadcasts Beacon frame
 - Node sends Association Request
Node Mobility

- B moves from AP1 to AP2
- B sends Probes, eventually prefers AP2 to AP1
- Sends Association Request
802.11 Security Issues

• Packet Sniffing is worse
 – No physical connection needed
 – Long range (6 blocks)
 – Current encryption standards (WEP, WEP2) not that good

• Denial of service
 – Association (and Disassociation) Requests are not authenticated
Wired Equivalent Privacy (WEP)

- Designed to provide same security standards as wired LANs (like Ethernet)
 - WEP uses 40 bit keys
 - WEP2 uses 128 bit keys

- Uses shared key authentication
 - Key is configured manually at the access point
 - Key is configured manually at the wireless device

- WEP frame transmission format:
 \[802.11\text{Hdr, IV, } K_{S+IV}\{\text{DATA, ICV}\} \]
 - \(S \) = shared key
 - \(IV \) = 24 bit "initialization vector"
 - \(ICV \) = "integrity checksum" uses the CRC checksum algorithm
 - Encryption algorithm is RC4
Problem with WEP

• RC4 generates a keystream
 – Shared key S plus IV generates a long sequence of pseudorandom bytes \(RC4(IV,S) \)
 – Encryption is: \(C = P \oplus RC4(IV,S) \) \(\oplus = \text{"xor"} \)

• IV's are public -- so it's easy to detect their reuse

• Problem: if IV ever repeats, then we have
 – \(C_1 = P_1 \oplus RC4(IV,S) \)
 – \(C_2 = P_2 \oplus RC4(IV,S) \)
 – So \(C_1 \oplus C_2 = P_1 \oplus P_2 \)
 – Statistical analysis or known plaintext can disentangle \(P_1 \) and \(P_2 \)
Finding IV Collisions

• How IV is picked is not specified in the standard:
 – Standard "recommends" (but does not require) that IV be changed for every packet
 – Some vendors initialize to 0 on reset and then increment
 – Some vendors generate IV randomly per packet

• Very active links send ~1000 packets/sec
 – Exhaust 24 bit keyspace in < 1/2 day

• If IV is chosen randomly, probability is > 50% that there will be a collision after only 4823 packets
Other WEP problems

• Replay attacks
 – Standard requires the protocol to be stateless
 – Expensive to rule out replay attacks. (The sender and receiver can't keep track of expected sequence numbers)

• Integrity violations
 – Attacker can inject or corrupt WEP encrypted packets
 – CRC (Cyclic Redundancy Check) is an error detection code commonly used in internet protocols
 – CRC is good at detecting random errors (introduced by environmental noise)
 – But, CRC is not a hash function -- it is easy to find collisions
 – Attacker can arbitrarily pass off bogus WEP packets as legitimate ones