CIS 551 / TCOM 401 Computer and Network Security

Spring 2008 Lecture 10

Announcements

- Project 2: Due March 7th
- Midterm 1 Distribution

Open Systems Interconnection (OSI)

IEEE 802 network standards

The IEEE 802 committee produces standards & specifications for Local Area Networks (LAN):

- 802.3 CSMA/CD Networks (Ethernet)
- 802.4 Token Bus Networks
- 802.5 Token Ring Networks
- 802.6 Metropolitan Area Networks
- 802.11 Wireless LAN (Wifi) [Thursday]

Ethernet (802.3)

- A standard for local area networks (LAN)
- Developed in mid-70's at Xerox PARC
 - Descendent of Aloha, a U. of Hawaii radio packet network
 - DEC, Intel, and Xerox standard: 1978 for 10Mbps
 - IEEE 802.3 standard grew out of that
- Physical implementations:
 - 10Base5, 10BaseT, 100BaseT, 1000BaseT...
 - Speed: 10Mbps,100Mbps, 1000Mbps, ...

Ethernet Physical links

- Originally used "Thick-net" 10Base5
 - 10 = 10Mbps
 - 5 = maximum of 500 meters segments
 - Up to 4 repeaters between two hosts
 =2500m max
- More common: 10BaseT
 - 10 = 10Mbps
 - T = Twisted pair (typically Category 5), Maximum of 100 meter segments
 - Connected via hubs (still 2500m max)
- Today's standards: 100BaseT, 1000BaseT

Ethernet topologies

How the ethernet works

- The Ethernet link is *shared*
 - A signal transmitted by one host reaches all hosts
- Method of operation: CSMA/CD
 - Carrier Sense, Multiple Access, with Collision Detection
- Hosts competing for the same link are said to be in the same *collision domain*
 - Good news: easy to exchange data
 - Bad news: have to regulate link access
- Procotol: Media Access Control (MAC)

Ethernet Addresses

- Every adapter manufactured has a unique address
 - 6 bytes (48 bits) usually written in Hex.
 - Examples: 00-40-50-B1-39-69 and 8:0:2b:e4:b1:2
 - Each manufacturer is assigned 24bit prefix
 - Manufacturer ensures unique suffixes

Ethernet Frame Format

64	48	48	16		32
Preamble	Dest	Src	Туре	Body	CRC

- Preamble repeating pattern of 0's & 1's
 - Used by receiver to synchronize on signal
- Dest and Src Ethernet Addresses
- Type demultiplexing key
 - Identifies higher-level protocol
- Body payload
 - Minimum 46 Bytes
 - Maximum 1500 Bytes

Addresses in an ethernet frame

- All bits = 1 indicates a *broadcast* address
 - Sent to all adapters
- First bit = 0 indicates *unicast* address
 - Sent to only one receiver
- First bit = 1 indicates *multicast* address
 - Sent to a group of receivers

An Ethernet Adapter Receives:

- Frames addressed to the broadcast address
- Frames addressed to its own address
- Frames sent to a multicast address
 - If it has been programmed to listen to that address
- All frames
 - If the adapter has been put into *promiscuous mode*

Ethernet Transmitter Algorithm

- If the link is idle transmit the frame immediately
 - Upper bound on frame size means adapter can't hog the link
- If the link is busy
 - Wait for the line to go idle
 - Wait for 9.6 μ s after end of last frame (sentinel)
 - Transmit the frame
- Two (or more) frames may collide
 - Simultaneously sent frames interfere

Collision Detection

- When an adapter detects a collision
 - Immediately sends 32 bit *jamming signal*
 - Stops transmitting
- A 10MBps adapter may need to send 512 bits in order to detect a collision
 - Why?
 - 2500m + 4 repeaters gives RTT of 51.2 μ s
 - $-51.2\mu s$ at 10Mbps = 512 bits
 - Fortunately, minimum frame (excluding preamble) is 512 bits = 64 bytes
 - 46 bytes data + 14 bytes header + 4 bytes CRC

Ethernet Collision (Worst Case)

Exponential Backoff

- After it detects 1st collision
 - Adapter waits either 0 or $51.2\mu s$ before retrying
 - Selected randomly
- After 2nd failed transmission attempt
 - Adapter randomly waits 0, 51.2, 102.4, or 153.6 μ s
- After nth failed

transmission attempt

- Pick k in 0 ... 2ⁿ-1
- Wait k x 51.2μs
- Give up after 16 retries
 - (but cap n at 10)

Ethernet Security Issues

- Promiscuous mode
 - Packet sniffer detects all Ethernet frames
- Less of a problem in *switched* Ethernet
 - Why?

Wireless (802.11)

- Spread spectrum radio
 - 2.4GHz frequency band
- Bandwidth ranges 1, 2, 5.5, 11, 22, ... Mbps
- Like Ethernet, 802.11 has shared medium
 - Need MAC (uses exponential backoff)
- Unlike Ethernet, in 802.11
 - No support for collision detection
 - Not all senders and receivers are directly connected

Hidden nodes

- A and C are *hidden* with respect to each other
 - Frames sent from A to B and C to B simultaneously may collide, but A and C can't detect the collision.

Exposed nodes

- B is exposed to C
 - Suppose B is sending to A
 - C should still be allowed to transmit to D
 - Even though C—B transmission would collide
 - (Note A to B transmission would cause collision)

Multiple Access Collision Avoidance

- Sender transmits Request To Send (RTS)
 - Includes length of data to be transmitted
 - Timeout leads to exponential backoff (like Ethernet)
- Receiver replies with Clear To Send (CTS)
 - Echoes the length field
- Receiver sends ACK of frame to sender
- Any node that sees CTS cannot transmit for durations specified by length
- Any node that sees RTS but not CTS is not close enough to the receiver to interfere
 - It's free to transmit

Wireless Access Points

- Distribution System wired network infrastructure
- Access points stationary wireless device
- Roaming wireless

Selecting an Access Point

- Active scanning
 - Node sends a Probe frame
 - All AP's within reach reply with a Probe Response frame
 - Node selects an AP and sends Association Request frame
 - AP replies with Association Response frame
- Passive scanning
 - AP periodically broadcasts Beacon frame
 - Node sends Association Request

Node Mobility

- B moves from AP1 to AP2
- B sends Probes, eventually prefers AP2 to AP1
- Sends Association Request

802.11 Security Issues

- Packet Sniffing is *worse*
 - No physical connection needed
 - Long range (6 blocks)
 - Current encryption standards (WEP, WEP2) not that good
- Denial of service
 - Association (and Disassociation) Requests are not authenticated

Wired Equivalent Privacy (WEP)

- Designed to provide same security standards as wired LANs (like Ethernet)
 - WEP uses 40 bit keys
 - WEP2 uses 128 bit keys
- Uses shared key authentication
 - Key is configured manually at the access point
 - Key is configured manually at the wireless device
- WEP frame transmission format:

802.11Hdr, IV, K_{S+IV} {DATA, ICV}

- S = shared key
- IV = 24 bit "initialization vector"
- ICV = "integrity checksum" uses the CRC checksum algorithm
- Encryption algorithm is RC4

Problem with WEP

- RC4 generates a keystream
 - Shared key S plus IV generates a long sequence of pseudorandom bytes RC4(IV,S)
 - Encryption is: $C = P \oplus RC4(IV,S)$ $\oplus = "xor"$
- IV's are public -- so it's easy to detect their reuse
- Problem: if IV ever repeats, then we have
 - C1 = P1 ⊕ RC4(IV,S)
 - C2 = P2 \oplus RC4(IV,S)
 - So C1 \oplus C2 = P1 \oplus P2
 - Statistical analysis or known plaintext can disentangle P1 and P2

Finding IV Collisions

- How IV is picked is not specified in the standard:
 - Standard "recommends" (but does not require) that IV be changed for every packet
 - Some vendors initialize to 0 on reset and then increment
 - Some vendors generate IV randomly per packet
- Very active links send ~1000 packets/sec
 - Exhaust 24 bit keyspace in < 1/2 day
- If IV is chosen randomly, probability is > 50% that there will be a collision after only 4823 packets

Other WEP problems

- Replay attacks
 - Standard requires the protocol to be stateless
 - Expensive to rule out replay attacks. (The sender and receiver can't keep track of expected sequence numbers)
- Integrity violations
 - Attacker can inject or corrupt WEP encrypted packets
 - CRC (Cyclic Redundancy Check) is an error detection code commonly used in internet protocols
 - CRC is good at detecting random errors (introduced by environmental noise)
 - But, CRC is not a hash function -- it is easy to find collisions
 - Attacker can arbitrarily pass off bogus WEP packets as legitimate ones