
2/5/08 CIS/TCOM 551 1

CIS 551 / TCOM 401
Computer and Network Security

Spring 2008
Lecture 6

2/5/08 CIS/TCOM 551 2

Announcements

• Project 1 is due *this Friday* at 11:59
• Jianzhou's office hours

– Weds. 1:30 - 2:30 in Levine 612

• Today: access control
– Finish discussing windows
– Capabilities
– Multilevel security

2/5/08 CIS/TCOM 551 3

Access Control Matrices

{r,w,x}…{r,w,x}{x}SubjM

……………

……{}{w,x}Subj2

{}…{r,w}{r,w,x}Subj1

ObjN…Obj2Obj1A[s][o]

Each entry
contains
a set of
rights.

2/5/08 CIS/TCOM 551 4

Access control in Windows (NTFS)
• Some basic functionality similar to Unix

– Specify access for groups and users
• Read, modify, change owner, delete

– ACLs used for fine grained control
• Some additional concepts

– Tokens
– Security attributes

• Generally
– More flexibility than Unix

• Can define new permissions
• Can give some but not all administrator privileges

2/5/08 CIS/TCOM 551 5

Sample permission options
• SID

– “Security IDentifier”
– Identity (like Unix UID)

• SID revision number
• 48-bit authority value
• Globally unique

– Describes users, groups,
computers, domains, domain
members

2/5/08 CIS/TCOM 551 6

Security Descriptor
• Access Control List associated with an object

– Specifies who can perform what actions on the object
• Several fields

– Header
• Descriptor revision number
• Control flags, attributes of the descriptor

– E.g., memory layout of the descriptor
– SID of the object's owner
– SID of the primary group of the object
– Two attached optional lists:

• Discretionary Access Control List (DACL)
– Describes access policy

• System Access Control List (SACL)
– Describes audit/logging policy

2/5/08 CIS/TCOM 551 7

Impersonation Tokens
• Windows equivalent of setuid
• Process uses security attributes of another

– Client passes impersonation token to server
• Client specifies impersonation level of server

– Anonymous
• Token has no information about the client

– Identification
• server obtain the SIDs of client and client's privileges, but server

cannot impersonate the client
– Impersonation (= Anonymous + Identification)

• server identify and impersonate the client
– Delegation (= Impersonation + Authentication)

• lets server impersonate client on local, remote system

• Tokens are a form of capability

2/5/08 CIS/TCOM 551 8

Example access request
User: Mark

Group1: Administrators
Group2: Writers

Control flags

Group SID
DACL Pointer
SACL Pointer
 Deny
 Writers
 Read, Write
 Allow
 Mark
 Read, Write

Owner SID

Revision Number

Access
token

Security
descriptor

Access request: write
Action: denied

• User Mark requests write permission
• Descriptor denies permission to group
• Reference Monitor denies request

2/5/08 CIS/TCOM 551 9

Windows Summary
• Good things

– Very expressive
– Don’t need full SYSTEM (e.g. root) privileges for many tasks

• Bad thing
– More complex policies

• Harder to implement: Larger TCB
• Harder for users to understand

– Wrong defaults
• Users get administrator privileges by default

– Historically, programs run with all privileges

2/5/08 CIS/TCOM 551 10

Capabilities Lists

{r,w,x}…{r,w,x}{x}SubjM

……………

{r}…{}{w,x}Subj2

{}…{r,w}{r,w,x}Subj1

ObjN…Obj2Obj1A[s][o]

For each subject, store a list of (Object x Rights) pairs.

2/5/08 CIS/TCOM 551 11

Capabilities
• A capability is a (Object, Rights) pair

– Used like a movie ticket e.g.:
(“Cloverfield”, {admit one, 7:00pm show})

• Should be unforgeable
– Otherwise, subjects could get illegal access

• Authentication takes place when the capabilities are
granted (not needed at use)

• Harder to do revocation (must find all tickets)
• Easy to audit a subject, hard to audit an object

2/5/08 CIS/TCOM 551 12

Implementing Capabilities
• Must be able to name objects
• Unique identifiers

– Must keep map of UIDs to objects
– Must protect integrity of the map
– Extra level of indirection to use the object
– Generating UIDs can be difficult

• Pointers
– Name changes when the object moves
– Remote pointers in distributed setting
– Aliasing possible

2/5/08 CIS/TCOM 551 13

Unforgeability of Capabilities
• Special hardware: tagged words in memory

– Can’t copy/modify tagged words
• Store the capabilities in protected address space
• Could use static scoping mechanism of safe programming

languages.
– Java’s “private” fields

• Could use cryptographic techniques
– OS kernel could sign (Object, Rights) pairs using a private key
– Any process can verify the capability
– Example: Kerberos

2/5/08 CIS/TCOM 551 14

Access Control
• Discretionary: The individual user may, at his own

discretion, determine who is authorized to access the
objects he creates.

• Mandatory: The creator of an object does not necessarily
have the ability to determine who has authorized access
to it.
– Typically policy is governed by some central authority
– The policy on an object in the system depends on what

object/information was used to create the object.

2/5/08 CIS/TCOM 551 15

Multilevel Security
• Multiple levels of confidentiality or integrity ratings
• Military security policy

• Classification involves sensitivity levels, compartments
• Do not let classified information leak to unclassified files

• Group individuals and resources
– Use some form of hierarchy to organize policy

• Trivial example: Public ≤ Secret
• Information flow

– Regulate how information is used throughout entire system
– A document generated from both Public and Secret information

must be rated Secret.
– Intuition: "Secret" information should not flow to "Public"

locations.

2/5/08 CIS/TCOM 551 16

Military security policy

• Sensitivity levels

Top Secret
Secret
Confidential
Restricted
Unclassified

• Compartments

Satellite data
Afghanistan

Middle East
Israel

2/5/08 CIS/TCOM 551 17

Military security policy

• Classification of personnel and data
– Class D = 〈rank, compartment〉

• Dominance relation
– D1 ≤ D2 iff rank1 ≤ rank2
 and compartment1 ⊆ compartment2

– Example: 〈Restricted, Israel〉 ≤ 〈Secret, Middle East〉

• Applies to
– Subjects – users or processes: C(S) = "clearance of S"
– Objects – documents or resources: C(O) = "classification of O"

2/5/08 CIS/TCOM 551 18

Bell-LaPadula Confidentiality Model

• “No read up, no write down.”
– Subjects are assigned clearance levels drawn from the

lattice of security labels.
• C(S) = "clearance of the subject S"

– A principal may read objects with lower (or equal)
security label.

• Read: C(O) ≤ C(S)
– A principal may write objects with higher (or equal)

security label.
• Write: C(S) ≤ C(O)

• Example: A user with Secret clearance can:
– Read objects with label Public and Secret
– Write/create objects with label Secret

2/5/08 CIS/TCOM 551 19

Picture: Confidentiality

S

Public

Secret

Read below, write above

S

Public

Secret

Read above, write below

2/5/08 CIS/TCOM 551 20

Picture: Integrity

S

Untainted

Tainted

Read below, write above

S

Untainted

Tainted

Read above, write below

2/5/08 CIS/TCOM 551 21

Multilevel Security Policies
• In general, security levels form a "join semi-lattice"

– There is an ordering ≤ on security levels
– For any pair of labels L1 and L2 there is an "join" operation:

L1 ⊕ L2 is a label in the lattice such that:
(1) L1 ≤ L1 ⊕ L2 and L2 ≤ L1 ⊕ L2 "upper bound"
(2) If L1 ≤ L3 and L2 ≤ L3 then L1 ⊕ L2 ≤ L3 "least bound"

• For example: Public ⊕ Secret = Secret
• Labeling rules:

– Classification is a function C : Object → Lattice
– If some object O is "created from" objects O1,…,On

then C(O) = C(O1) ⊕ … ⊕ C(On)

2/5/08 CIS/TCOM 551 22

Implementing Multilevel Security
• Dynamic:

– Tag all values in memory with their security level
– Operations propagate security levels
– Must be sure that tags can’t be modified
– Expensive, and approximate

• Classic result: Information-flow policies cannot be
enforced purely by a reference monitor!
– Problem arises from implicit flows

• Static:
– Program analysis
– May be more precise
– May have less overhead

2/5/08 CIS/TCOM 551 23

Information Flows through Software

Implicit Flows:

int{Secret} X = f();
int{Public} Y = 0;
int{Public} Z = 0;
int{Public} W = 0;

if (X > 0) then {
 Y = 1;
} else {
 Z = 1;
}
W = 3;

Explicit Flows:

int{Secret} X = f();
int{Public} Y = 0;

Y = X;

2/5/08 CIS/TCOM 551 24

Perl's Solution (for Integrity)
• The problem: need to track the source of data
• Examples: Format string, SQL injection, etc.

$arg = shift;
system ("echo $arg");

•Give this program the argument "; rm *"
•Perl offers a taint checking mode

– Tracks the source of data (trusted vs. tainted)
– Ensure that tainted data is not used in system calls
– Tainted data can be converted to trusted data by pattern matching
– Doesn't check implicit flows

2/5/08 CIS/TCOM 551 25

SELinux
• Security-enhanced Linux system (NSA)

– Enforce separation of information based on confidentiality and
integrity requirements

– Mandatory access control incorporated into the major subsystems
of the kernel

• Limit tampering and bypassing of application security mechanisms
• Confine damage caused by malicious applications

http://www.nsa.gov/selinux/

2/5/08 CIS/TCOM 551 26

SELinux Security Policy Abstractions
• Security-Encanced Linux

– Built by NSA
• Type enforcement

– Each process has an associated domain
– Each object has an associated type (label)
– Configuration files specify

• How domains are allowed to access types
• Allowable interactions and transitions between domains

• Role-based access control
– Each process has an associated role

• Separate system and user processes
– Configuration files specify

• Set of domains that may be entered by each role

2/5/08 CIS/TCOM 551 27

Two Other MAC Policies
• "Chinese Wall" policy: [Brewer & Nash '89]

– Object labels are classified into "conflict classes"
– If subject accesses one object with label L1 in a conflict class, all

access to objects labeled with other labels in the conflict class are
denied.

– Policy changes dynamically

• "Separation of Duties":
– Division of responsibilities among subjects
– Example: Bank auditor cannot issue checks.

2/5/08 CIS/TCOM 551 28

Covert Channels & Information Hiding
• A covert channel is a means by which two components of a system that are

not permitted to communicate do so anyway by affecting a shared resource.

• Information hiding: Two components of the system that are permitted to
communicate about one set of things, exchange information about disallowed
topics by encoding contraband information in the legitimate traffic.

• Not that hard to leak a small amount of data
– A 64 bit encryption key is not that hard to transmit
– Even possible to encode relatively large amounts of data!

• Example channels / information hiding strategies
– Program behavior
– Adjust the formatting of output:

use the “\t” character for “1” and 8 spaces for “0”
– Vary timing behavior based on key
– Use "low order" bits to send signals
– Power consumption
– Grabbing/releasing a lock on a shared resource

