
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2008
Lecture 2

1/22/08 CIS/TCOM 551 2

Announcments
• First project: Due: 8 Feb. 2007 at 11:59 p.m.
• http://www.cis.upenn.edu/~cis551/project1.html
• Group project:

– 2 or 3 students per group
– Send e-mail to TA with your group by Jan. 25th

• Plan for Today / Thursday:
– Designing secure systems
– Buffer overflows in detail

1/22/08 CIS/TCOM 551 3

Building Secure Software
• Source: book by John Viega and Gary McGraw

– Copy on reserve in the library
– Strongly recommend buying it if you care about implementing

secure software.
• Designing software with security in mind

• What are the security goals and requirements?
– Risk Assessment
– Tradeoffs

• Why is designing secure software a hard problem?
• Design principles
• Implementation
• Testing and auditing

1/22/08 CIS/TCOM 551 4

Security Goals
• Prevent common vulnerabilities from occurring (e.g. buffer

overflows)
• Recover from attacks

– Traceability and auditing of security-relevant actions
• Monitoring

– Detect attacks
• Privacy, confidentiality, anonymity

– Protect secrets
• Authenticity

– Needed for access control, authorization, etc.
• Integrity

– Prevent unwanted modification or tampering
• Availability and reliability

– Reduce risk of DoS

1/22/08 CIS/TCOM 551 5

Other Software Project Goals
• Functionality
• Usability
• Efficiency
• Time-to-market
• Simplicity

• Often these conflict with security goals
– Examples?

• So, an important part of software development is risk
assessment/risk management to help determine the
design choices made in light of these tradeoffs.

1/22/08 CIS/TCOM 551 6

Risk Assessment
• Identify:

– What needs to be protected?
– From whom?
– For how long?
– How much is the protection worth?

• Refine specifications:
– More detailed the better (e.g. "Use crypto where appropriate." vs.

"Credit card numbers should be encrypted when sent over the
network.")

– How urgent are the risks?

• Follow good software engineering principles, but take into
account malicious behavior.

1/22/08 CIS/TCOM 551 7

Principles of Secure Software
• What guidelines are there for developing secure

software?

• How would you go about building secure software?
Class answers:

1/22/08 CIS/TCOM 551 8

#1: Secure the Weakest Link
• Attackers go after the easiest part of the system to attack.

– So improving that part will improve security most.

• How do you identify it?

• Weakest link may not be a software problem.
– Social engineering
– Physical security

• When do you stop?

1/22/08 CIS/TCOM 551 9

#2: Practice Defense in Depth
• Layers of security are harder to break than a single

defense.

• Example: Use firewalls, and virus scanners, and encrypt
traffic even if it's behind firewall

1/22/08 CIS/TCOM 551 10

#3: Fail Securely
• Complex systems fail.
• Plan for it:

– Aside: For a great example, see the work of George Candea
who's Ph.D. research is about something called "microreboots"

• Sometimes better to crash or abort once a problem is
found.
– Letting a system continue to run after a problem could lead to

worse problems.
– But sometimes this is not an option.

• Good software design should handle failures gracefully
– For example, handle exceptions

1/22/08 CIS/TCOM 551 11

#4: Principle of Least Privilege
• Recall the Saltzer and Schroeder article

• Don't give a part of the system more privileges than it
needs to do its job.
– Classic example is giving root privileges to a program that doesn't

need them: mail servers that don't relinquish root privileges once
they're up and running on port 25.

– Another example: Lazy Java programmer that makes all fields
public to avoid writing accessor methods.

• Military's slogan: "Need to know"

1/22/08 CIS/TCOM 551 12

#5: Compartmentalize
• As in software engineering, modularity is useful to isolate

problems and mitigate failures of components.

• Good for security in general: Separation of Duties
– Means that multiple components have to fail or collude in order for

a problem to arise.
– For example: In a bank the person who audits the accounts can't

issue cashier's checks (otherwise they could cook the books).

• Good examples of compartmentalization for secure
software are hard to find.
– Negative examples?

1/22/08 CIS/TCOM 551 13

#6: Keep it Simple
• KISS: Keep it Simple, Stupid!
• Einstein: "Make things as simple as possible, but no

simpler."

• Complexity leads to bugs and bugs lead to vulnerabilities.

• Failsafe defaults: The default configuration should be
secure.

• Ed Felten quote: "Given the choice between dancing pigs
and security, users will pick dancing pigs every time."

1/22/08 CIS/TCOM 551 14

#7: Promote Privacy
• Don't reveal more information than necessary

– Related to least privileges

• Protect personal information
– Consider implementing a web pages that accepts credit card

information.
– How should the cards be stored?
– What tradeoffs are there w.r.t. usability?
– What kind of authentication/access controls are there?

1/22/08 CIS/TCOM 551 15

#8: Hiding Secrets is Hard
• The larger the secret, the harder it is to keep

– That's why placing trust in a cryptographic key is desirable

• Security through obscurity doesn't work
– Compiling secrets into the binary is a bad idea
– Code obfuscation doesn't work very well
– Reverse engineering is not that difficult
– Software antipirating measures don't work
– Even software on a "secure" server isn't safe (e.g. source code to

Quake was stolen from id software)

1/22/08 CIS/TCOM 551 16

#9: Be reluctant to trust
• Trusted Computing Base: The set of components that

must function correctly in order for the system to be
secure.

• The smaller the TCB, the better.

• Trust is transitive

• Be skeptical of code quality
– Especially when obtained from elsewhere
– Even when you write it yourself

1/22/08 CIS/TCOM 551 17

#10: Use Community Resources
• Software developers are not cryptographers

– Don't implement your own crypto
– (e.g. bugs in Netscape's storage of user data)

• Make use of CERT, Bugtraq, developer information, etc.

1/22/08 CIS/TCOM 551 18

Buffer Overflow Attacks
• > 50% of security incidents reported at CERT are related

to buffer overflow attacks

• Problem is access control but at a very fine level of
granularity

• C and C++ programming languages don’t do array
bounds checks

1/22/08 CIS/TCOM 551 19

3 parts of C memory model
• The code & data (or "text") segment

– contains compiled code, constant strings, etc.

• The Heap
– Stores dynamically allocated objects
– Allocated via "malloc"
– Deallocated via "free"
– C runtime system

• The Stack
– Stores local variables
– Stores the return address of a function

Code

Heap

Stack

La
rg

er
 A

dd
re

ss
es

1/22/08 CIS/TCOM 551 20

C’s Control Stack

f() {
 g(parameter);
}

g(char *args) {
 int x;
 // more local
 // variables
 ...
}

f’s stack
frame

Input
parameter

Return Addr.
Base Pointer

int x;
// local
// variables

La
rg

er
 A

dd
re

ss
es

ESP

1/22/08 CIS/TCOM 551 21

C’s Control Stack

f() {
 g(parameter);
}

g(char *args) {
 int x;
 // more local
 // variables
 ...
}

Input
parameter

La
rg

er
 A

dd
re

ss
es

f’s stack
frame

1/22/08 CIS/TCOM 551 22

C’s Control Stack

f() {
 g(parameter);
}

g(char *args) {
 int x;
 // more local
 // variables
 ...
}

La
rg

er
 A

dd
re

ss
es

Return Addr.

int x;
// local
// variables

Input
parameter

Base Pointer

ESP

f’s stack
frame

1/22/08 CIS/TCOM 551 23

Buffer Overflow Example

g(char *text) {
 char buffer[128];
 strcpy(buffer, text);
}

f’s stack
frame

Return Addr.

buffer[]

text
Attack code
132 bytes

ADDR

Base Pointer

ESP

1/22/08 CIS/TCOM 551 24

Buffer Overflow Example

g(char *text) {
 char buffer[128];
 strcpy(buffer, text);
}

f’s stack
frame

Return Addr.

text
Attack code
132 bytes

ADDR

Base Pointer

Attack code
132 bytes

ADDR

ADDR:

?

1/22/08 CIS/TCOM 551 25

Details: C calling conventions

int function(int a, int b, int c) {
 char buffer1[4];
 int ans = a + b + c;
 char buffer2[10];
 return ans;
}

int main() {
 return function(1,2,3);
}

1/22/08 CIS/TCOM 551 26

Resulting Assembly (1)

// Pop return address & jump to it

// ans = a + b + c

// Allocate local storage

// Tear down stack frame

// Set up stack frame

// %eax holds the return value

.file "example.c"

.text
.globl function

.type function, @function
function:

pushl %ebp
movl%esp, %ebp
subl$32, %esp
movl12(%ebp),%eax
addl8(%ebp), %eax
addl16(%ebp),%eax
movl%eax, -4(%ebp)
movl-4(%ebp), %eax
leave
ret
.size function, .-function

1/22/08 CIS/TCOM 551 27

// Push return address, jump to function:

// Push arguments onto the stack

// Restore caller-save register

// Save caller-save register

// Tear down stack frame

// Set up stack frame

// Undo stack alignment

// Align the stack on 16-byte boundary

// Pop arguments off the stack

Resulting Assembly (2)
.globl main

.type main, @function
main:

leal 4(%esp), %ecx
andl $-16, %esp
pushl -4(%ecx)
pushl %ebp
movl %esp, %ebp
pushl %ecx
subl $12, %esp
movl $3, 8(%esp)
movl $2, 4(%esp)
movl $1, (%esp)
call function
addl $12, %esp
popl %ecx
popl %ebp
leal -4(%ecx), %esp
ret

1/22/08 CIS/TCOM 551 28

Project hints
• Use plus.seas.upenn.edu

– minus.seas.upenn.edu still has stack protection turned on
– 'uname -a' will give you some useful information about which

machine you're connected to

• GCC has changed significantly since the Aleph One
tutorial was written:
– 16 bit vs. 32 bit architecture
– GCC uses arithmetic with %esp and movl instructions instead of

pushl when pushing arguments onto the stack
– GCC now automatically allocates 8 bytes of "free" space in each

stack frame.
– Syntax of inline assembly is different

1/22/08 CIS/TCOM 551 29

Constructing a Payload
• Idea: Overwrite the return address on the stack

– Value overwritten is an address of some code in the "payload"
– The processor will jump to the instruction at that location
– It may be hard to figure out precisely the location in memory

• You can increase the size of the "target" area by padding
the code with no-op instructions

• You can increase the chance over overwriting the return
address by putting many copies of the target address on
the stack

[NOP]…[NOP]{attack code} {attack data}[ADDR]…[ADDR]

1/22/08 CIS/TCOM 551 30

More About Payloads
• How do you construct the attack code to put in the

payload?
– You use a compiler!
– Gcc + gdb + options to spit out assembly (hex encoded)

• What about the padding?
– NOP on the x86 has the machine code 0x90

• How do you guess the ADDR to put in the payload?
– Some guesswork here
– Figure out where the first stack frame lives: OS & hardware

platform dependent, but easy to figure out
– Look at the program -- try to guess the stack depth at the point of

the buffer overflow vulnerability.
– Intel is little endian -- so if ADDR is:

0xbf9ae358 you actually need to put the following words in the
payload: 0x58 0xe3 0x9a 0xbf

1/22/08 CIS/TCOM 551 31

Finding Buffer Overflows
• The #1 source of vulnerabilities in software
• Caused because C and C++ are not safe languages

– They use a “null” terminated string representation:

“HELLO!\0”

– Standard library routines assume that strings will have the null
character at the end.

– Bad defaults: the library routines don’t check inputs

• Easy to accidentally get wrong
• …even easier to maliciously attack

1/22/08 CIS/TCOM 551 32

Buffer overflows in library code
• Basic problem is that the library routines look like this:

void strcopy(char *src, char *dst) {
 int i = 0;
 while (src[i] != “\0”) {
 dst[i] = src[i];
 i = i + 1;
 }
}

• If the memory allocated to dst is smaller than the
memory needed to store the contents of src, a buffer
overflow occurs.

1/22/08 CIS/TCOM 551 33

If you must use C/C++
• Avoid the (long list of) broken library routines:

– strcpy, strcat, sprintf, scanf, sscanf, gets, read, …

• Use (but be careful with) the "safer" versions:
– e.g. strncpy, snprintf, fgets, …

• Always do bounds checks
– One thing to look for when reviewing/auditing code

• Be careful to manage memory properly
– Dangling pointers often crash program
– Deallocate storage (otherwise program will have a memory leak)

• Be aware that doing all of this is difficult.

1/22/08 CIS/TCOM 551 34

Tool support for C/C++
• Extensions to gcc that do array bounds checking
• Link against "safe" versions of libc (e.g. libsafe)
• Test programs with tools such as Purify or Splint
• Compile programs using tools such as:

– Stackguard and Pointguard (Cowan et al., immunix.org)
– gcc's -fstack-guard and -mudflap options

• Research compilers:
– Ccured (Necula et al.)
– Cyclone (Morrisett et al.)

• Binary rewriting techniques
– Software fault isolation (Wahbe et al.)

1/22/08 CIS/TCOM 551 35

Defeating Buffer Overflows
• Use a typesafe programming language

– Java/C# are not vulnerable to these attacks

• Some operating systems move the start of the stack on a
per-process basis:
– E.g. eniac-l

