Announcements

• Project 4 is Due *Tomorrow*
 – Friday April 20th at 11:59 PM

• Final exam:
 – Friday, May 4th. 9:00 - 11:00 a.m. Towne 313
 – Will cover all material in the course, but emphasize the content since the last midterm.
Grade Distributions

Cumulative, weighted grades except:
- projects 3 and 4
- final exam
Main Take-away Ideas (1)

• Security is about Tradeoffs
 – Balance risk vs. expense

• Principles of Secure System Design:

• Security is a process
• Least privileges
• Complete Mediation
• System Design
 – Economy of mechanism
 – Open standards
 – Failsafe Defaults
Main Take-away Ideas (2)

• Cryptography is important…
 – Can be used for more than just hiding information
 – Authentication and integrity

• … but not the only facet of security
 – Other risks
 – Social engineering is effective
 – Cryptography applied inappropriately is useless

• So: use it where necessary, and use it correctly
 – See Schneier’s book *Applied Cryptography*
Main Take-away Ideas (3)

• Concepts of security:
 – Confidentiality
 – Integrity
 – Availability

• General Mechanisms
 – Authentication
 • Challenge / Response
 – Authorization
 • Reference monitors
 • Access control matrices
 – Audit
 • Logs
Main Take-away Ideas (4)

• Cryptography & Protocol Design
 – Shared vs. Public key cryptography

• Cryptographic protocols can be used for:
 – Authentication, privacy, confidentiality

• Challenge—Response is the fundamental method of authentication

• Nonces, Time stamps, Sequence numbers prevent replay attacks
Main Take-away Ideas (5)

- Malicious Code
 - Viruses & Worms
 - Defense in depth: patching, firewalls, proper configuration, auditing

- Buffer overflows are the #1 vulnerability
 - Choose safe languages:
 - Java, C#, Scheme, ML
 - Be aware of format string and input errors, take care when writing programs and scripts.
 - Software audit and design is important.
 - If you must use C or C++, use StackGuard, ProPolice, or another buffer-overflow preventative measure.
Further study

- Advanced cryptography & cryptographic protocols
 - Elliptic curves
 - Protocol analysis - logic and model checkers
 - Secret sharing, voting

- Systems security
 - Fault tolerance: replication, consensus algorithms

- Additional sources of information (research literature):
 - IEEE Symposium on Security & Privacy ("Oakland conference")
 - Usenix Security conference
 - ACM Conference on Computer and Communications Security
 - Computer Security Foundations Workshop
 - CRYPTO, EUROCRYPT
Thanks!

$K_{AB} \{"Let's close this session, Bart", n_A, n_B\}$

$K_{AB} \{"Bye, Alice", n_A, n_B'\}$