
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2007
Lecture 24

4/17/07 CIS/TCOM 551 2

Announcements

• Project 4 is Due Friday April 20th at 11:59 PM

• Final exam:
– Friday, May 4th. 9:00 - 11:00 a.m. Towne 313

• Thursday's Class:
– Review
– Project 4
– Course evaluations (please come!)

4/17/07 CIS/TCOM 551 3

What is “Bad”?
Depends upon:

– Task: what is the program’s purpose?
– Context: what host, OS, whose behalf?
– Policy: e.g., mandatory access control

Tighter constraints are better? Sometimes.
No silver bullet.

“true”

does not
crashMAC

full specification

idealized
implementation

type safe
language

who wrote
the code

4/17/07 CIS/TCOM 551 4

Trends:
Vendors manyfew

Media softhard

Frequency of
installation

alwaysseldom

Size of
package

small
pieces

whole
thing

Permanence ephemeralpersistent

Delivery
mechanism electronicphysical

4/17/07 CIS/TCOM 551 5

Challenges
• Complexity of the software

– # components going up
– everything is extensible
– legacy C and C++ code to interact with

• Complexity of policy
– Internet has complicated trust models

• many more parties involved
• much more dynamic systems

– More confidential information online
– More exposure to attack

• ⇒ Need for tools to improve security of software, both for producers
& consumers

4/17/07 CIS/TCOM 551 6

Language-based Tools for Security
• Birds-eye view of some new technologies

– Protect software consumers (end-users) from malicious programs
– Help software developers create more robust, secure programs

• Measuring security?

4/17/07 CIS/TCOM 551 7

Software Deployment Architecture
• Trusted Computing Base

– Becomes huge when software is run on many,
many hosts

• Minimumize TCB:
– Ensure the quality of the software

• Must be cheap, easy to deploty
– Otherwise won’t be adopted

Host Machine

Running
 Code

Source

Compiler

Code

4/17/07 CIS/TCOM 551 8

Existing Approach: Virus Scanners
Source

Compiler

Code

• Virus Scanners?
– e.g., McAffee, Norton, etc.
– perhaps the most commercially effective tool.
– only works for previously seen bad code.
– virus kits make it easy to disguise a virus.
– not clear that it scales over time.

• Not a complete solution

Scanner

Host Machine

Running
 Code

4/17/07 CIS/TCOM 551 9

Existing Approach: Signatures
Source

Compiler

Code

• Digital Signatures of Code?
– e.g., Verisign, Authenticode, MS device drivers
– bad assumption: signature implies “good”

• keys may be stolen
• “good” for what context?
• even well-intentioned people make “bad” code

– bad assumption: you can sue the signer
• Not a complete solution
• Can we do better?

Verify Sig.

MS

Host Machine

Running
 Code

4/17/07 CIS/TCOM 551 10

Language-based Security
• Use compiler & programming language technology to

improve security.
• Before the program runs

– Proof Carrying Code (PCC)
– Jif - Java for Information Flow

• During the program execution
– Inlined Reference Monitors

4/17/07 CIS/TCOM 551 11

Java Bytecode
• Verify the bytecode at the consumer
• Pro: Simple, cost effective

• Con: Large TCB:
– commercial, optimizing JIT: 200,000-

500,000 LOC
– when is the last time your favorite software company

wrote a bug-free 200,000 line program?

• Con: Java specific policy

Host Machine

Running
 Code

Verifier

JIT
Compiler

Bytecode

4/17/07 CIS/TCOM 551 12

Proof Carrying Code

• Verify a provided proof of program security
– Meaning of the proof

connected to meaning of
program (unlike signatures)

– Up to code producer to generate proof
– Consumer only has to

check the proof
• Verifier is small

– 3000 LOC

Host Machine

Running
 Code

Verifierpolicy

Certifying
Compiler

Code Proof

Source[Necula & Lee ‘97, Morrisett ‘98, Appel...]

4/17/07 CIS/TCOM 551 13

PCC: An Analogy
Legend: code

proof

4/17/07 CIS/TCOM 551 14

PCC Advantages
• Reduces the TCB

– Verification is simpler/faster than proof generation.
– Consumer is independent of how the proof is generated ⇒ compiler not

trusted.
• Tamperproof

– Changing the proof or program is either
(1) detected or (2) proven to be OK.

• No cryptography, no trusted 3rd party
• No run-time overhead

– Static checking

4/17/07 CIS/TCOM 551 15

PCC Engineering Challenges
• Where do you get the proof?

– Programmer & compiler
– Automated techniques needed

• Dealing with formal proofs
– Must be machine checkable
– Naive encoding of proofs of program properties are very large.

• Careful engineering reduces overhead
• Touchstone Compiler [Necula & Lee]

– Java to Intel x86 assembly language
– Enforces Java’s security policy without byte code interpreter or large

trusted JIT

4/17/07 CIS/TCOM 551 16

Security-oriented Languages
• PCC doesn’t address policy

– type safety ⇒ no crashes
– in principle, can enforce any policy
– ... but how to describe the policy?

• Programming languages with facilities for implementing specific
policies
– Confidentiality

• protect secrets
– Integrity

• prevent tampering
– Availability

• ensure legitimate use succeeds

4/17/07 CIS/TCOM 551 17

Jif = Java + Information Flow

• Problem: Lots of confidential info.
– passwords, e-mail, financial data, medical data,

buisiness transactions, ...
• Existing technology essential, but...

– OS doesn’t provide fine grained control
– Cryptography not the solution
– Not “end-to-end” solutions

• Philosophy: improve security, do not try to
eliminate covert channels
– Modern take on MLS security

Source

Compiler

Code

policy

[Myers, Zdancewic, Zheng, Chong, Nystrom]

4/17/07 CIS/TCOM 551 18

Security Policies in Jif
• Confidentiality labels:

 int{Alice:} x; "Alice's private int"
 int{Alice:Bob}y; "Alice permits Bob as reader"
• Integrity labels:

 int{*:Alice} z; "Alice trusts z"
• Combined labels:

 int{Alice: ; *:Alice} w; (Both)

int{Alice:} a1, a2;
int{Bob:} b;
int{*:Alice} c;

Insecure
a1 = b;
b = a1;
c = a1;

Secure
a1 = a2;
a1 = c;

4/17/07 CIS/TCOM 551 19

Information Confidentiality

Program

Secret
Inputs

Public
Inputs

Secret
Outputs

Public
Outputs

4/17/07 CIS/TCOM 551 20

Jif Advantages
• Explicit information-flow policies

– compiler checks program for compliance
• Finer granularity than OS
• Enforces rich, programmable policies

– e.g “Medical data should not be sent to the public printer.”
– e.g. “Financial data should be encrypted before being transmitted

over the Internet.”
• Permits end-to-end security
• Similar technology already or soon to be used:

– Perl: Prevents “bad” data from being used inappropriately
(lightweight MLS)

– Microsoft e-mail will control dissemination

4/17/07 CIS/TCOM 551 21

Inlined Reference Monitors

• Rewrite the code at the consumer's
machine
– Have the system administrator specify

a policy.
– Transform the untrusted code to obey

the policy

[Schneider & Erlingsson] Compiler

Code

Running
 Code

Rewriterpolicy

Code’
class Password authority(root) {
 private String[] names;
 private String{root:}[] passwords;

 public boolean check(String user, String password)

where authority(root)
 {
 boolean match = false;
 try {
 for (int i = 0; i < names.length; i++) {
Code’

Host Machine

4/17/07 CIS/TCOM 551 22

IRM: Example Policy

“No network sends after private file P has been read.”

S0 S1

¬(Read P)

Read P

¬Send

4/17/07 CIS/TCOM 551 23

IRM: Code instrumentation

• Conceptually:
– Evaluate the reference monitor in parallel with the program

• Implemented by adding state
• Checking state before each instruction

– Optimize to eliminate overhead

S0 S1

: (Read P)
Read P

:Send
instr 1
send
instr 2
…

instr 1

send

instr 2
…

+ = =>
instr 1
if(s=1){abort}
send
instr 2
…

4/17/07 CIS/TCOM 551 24

IRM Advantages
• Consumer does not have to trust the software
• Can be made very efficient
• Once policy is determined, deployment can be automatic
• Flexible

– Implemented Java stack inspection

• Disadvantage:
– Sometimes difficult to describe high-level policies in terms of low-level

operations like assembly language instructions

4/17/07 CIS/TCOM 551 25

PL Technology Summary
• Proof Carrying Code

– Robust & scalable security infrastructure
– Flexible policy mechanisms

• Security-oriented languages (Jif)
– End-to-end confidentiality & integrity
– Explicit policies mean understanding tradeoffs

• Inlined reference monitors
– Efficiently monitor the behavior of applications

• Java / C# just the start!

4/17/07 CIS/TCOM 551 26

Authorization Logics
• An authorization logic is a domain-specific language for

writing access-control policies [ABLP]

• Logical connectives:
T ::= true | c | α | T ∧ T | T ∨ T | T → T | ∀α.T |

P says T
• Define "P speaks-for Q" = ∀α. (P says α) → (Q says α)

– (Q says (P speaks-for Q)) → (P speaks-for Q)
 "Q can delegate its authority to P" (The "hand off" axiom)

• Example proposition:
 (f:File, FS says may-read(Q,f))
 "f is a file and the FS says that principal Q may read f"

4/17/07 CIS/TCOM 551 27

Authorization Logic Programming Model
• Processes as reference monitors:

– Make access control decisions based on policies expressed in this
authorization logic.

• Processes as clients:
– Create and pass evidence (in the form of proofs) that they are authorized

to perform certain actions.
– Analogous to the "capabilities" discussed in the access control part of the

course
• Information-flow control:

– Control the flow of information through the reference monitor.
• Decentralized / distributed implementation:

– Possible proof that "P says T" is P's digital signature on a string "T"
– Associate a private key with each process (the "authority" of the process)

4/17/07 CIS/TCOM 551 28

An example program
getOwner : (f:File) → ∃O.FS says owns(O,f)

send : ∀O,R. (f:File) →
 O says mayRead(R,f) →

 FS says owns(O,f) → true

readReq = ∃A,R. R says {f:File; A says mayRead(R,f)}

handleRead(readReq r){
 let {A;R;req} = r;
 bind {f;c} = req in
 let {O;ownP} = getOwner(f);
 check ownP:(FS says owns(A,f)) { // note: O=A
 send [A,R] f c
 }
}

4/17/07 CIS/TCOM 551 29

What about cost & performance?
• Tragedy of the commons

– Everyone would benefit from better security
– Market forces are disincentive to build secure software

• Time to ship often outweighs security (and even correctness)
• “The user’s going to choose dancing pigs over security every time.” – Bruce

Schnier
• Java/C# are slower than C, but…

– Type safety ⇒ no crashes
– Array bounds checks ⇒ no buffer overflows
– Garbage collection ⇒ no memory management errors

• Security-oriented languages are promising, but…
– Still in the research stages
– How usable in practice?

