CIS 551 / TCOM 401 Computer and Network Security

Spring 2007 Lecture 23

Announcements

• Project 4 is Due Friday April 20th at 11:59 PM

- Today's topic:
 - Trusted Computing
- Assigned reading for next class(es):
 - "Analysis of an Electronic Voting System" by Kohno, et al.
 - <u>http://avirubin.com/vote.pdf</u>
 - (Links on course web pages.)

Project 2 grade distribution

Trusted Computing Base

- How do you know the hardware/software can be trusted?
- How can you "bootstrap" a small, trusted component into a complete trusted system?
- Important for:
 - Secure (encrypted) storage
 - Digital rights management
 - Remote "attestation"

Trusted Computing Group

- https://www.trustedcomputinggroup.org/home
- TCG consortium. Founded in 1999 as TCPA.
 - Main players (promotors): (>200 members)
 AMD, HP, IBM, Infineon, Intel,
 Lenovo, Microsoft, Sun
- <u>Goals</u>:
 - Hardware protected (encrypted) storage:
 - Only "authorized" software can decrypt data
 - e.g.: protecting key for decrypting file system
 - **Secure boot**: method to "authorize" software
 - Attestation: Prove to remote server what software is running on my machine.

TCG: changes to PC or cell phone

- <u>Extra hardware</u>: **TPM**
 - Trusted Platform Module (TPM) chip
 - Single 33MhZ clock.
 - TPM Chip vendors: (~7\$)
 - Atmel, Infineon, National, STMicro
 - Intel D875GRH motherboard
- <u>Software changes</u>:
 - BIOS
 - OS and Apps

TPMs in the real world

- Systems containing TPM chips:
 - Lenovo (IBM) Thinkpads and desktops
 - Fujitsu lifebook
 - HP desktop and notebooks
 - Dell, Gateway, etc.
- Software using TPMs:
 - File/disk encryption: Vista, IBM, HP, Softex
 - Attestation for enterprise login: Cognizance, Wave
 - Client-side single sign on: IBM, Utimaco, Wave

Components on TPM chip

- RSA: 1024, 2048 bit modulus
- SHA-1: Outputs 20 byte digest

PCR: the heart of the matter

- PCR: Platform Configuration Registers
 - Lots of PCR registers on chip (at least 16)
 - Register contents: 20-byte SHA-1 digest (+junk)
- <u>Updating PCR #n</u> :
 - TPM_Extend(n,D): $PCR[n] \leftarrow SHA-1(PCR[n] \parallel D)$
 - TPM_PcrRead(n): returns value(PCR(n))
- PCRs initialized to default value (e.g. 0) at boot time
 - TPM can be told to restore PCR values via TPM_SaveState and TPM_Startup(ST_STATE)

Using PCRs: the TCG boot process

- At power-up PCR[n] initialized to 0
- BIOS boot block executes
 - Calls PCR_Extend(n, <BIOS code>)
 - Then loads and runs BIOS post boot code
- BIOS executes:
 - Calls PCR_Extend(n, <MBR code>)
 - Then runs MBR (master boot record), e.g. GRUB.
- MBR executes:
 - Calls PCR_Extend(n, <OS loader code, config>)
 - Then runs OS loader

... and so on

In a diagram

- After boot, PCRs contain hash chain of booted software
- Collision resistance of SHA1 (?) ensures commitment

Example: Trusted GRUB (IBM'05)

What PCR # to use and what to measure specified in GRUB config file

Using PCR values after boot

- Application 1: encrypted (a.k.a sealed) storage.
- Step 1: TPM_TakeOwnership(OwnerPassword, ...)
 - Creates 2048-bit RSA Storage Root Key (SRK) on TPM
 - Cannot run TPM_TakeOwnership again:
 - Ownership Enabled flag ← False
 - Done once by IT department or laptop owner.
- (optional) Step 2: TPM_CreateWrapKey
 - Create more RSA keys on TPM certified by SRK
 - Each key identified by 32-bit keyhandle

Protected Storage

- Main Step: Encrypt data using RSA key on TPM
 - TPM_Seal (some) Arguments:
 - keyhandle: which TPM key to encrypt with
 - KeyAuth: Password for using key `keyhandle'
 - PcrValues: PCRs to embed in encrypted blob
 - data block: at most 256 bytes (2048 bits)
 - Used to encrypt symmetric key (e.g. AES)
 - Returns encrypted blob.
- Main point: blob can only be decrypted with TPM_Unseal when PCR-reg-vals = PCR-vals in blob.
 - TPM_Unseal will fail othrwise

Protected Storage

- Embedding PCR values in blob ensures that only certain apps can decrypt data.
 - e.g.: Messing with MBR or OS kernel will change PCR values.
- Why can't attacker disable TPM until after boot, then extend PCRs with whatever he wants?
 - Root of trust: BIOS boot block.
- Gaping hole: roll-back attack on encrypted blobs
 - e.g. undo security patches without being noticed.
 - Can be mitigated using Data Integrity Regs (DIR)

Sealed storage: applications

- Lock software on machine:
 - OS and apps sealed with MBR's PCR.
 - Any changes to MBR (to load other OS) will prevent locked software from loading.
 - Prevents reverse-engineering
- Web server: seal server's SSL private key
 - Goal: only unmodified Apache can access SSL key
 - Problem: updates to Apache, config, or content
- General problem with software patches:
 - When updating MBR, must re-seal blobs
 - Not a simple process ...

TPM Counters

- TPM must support at least four hardware counters
 - Increment rate: every 5 seconds for 7 years.
- Applications:
 - Provides time stamps on blobs.
 - Supports "music will pay for 30 days" policy.

Non-volatile TPM memory

- Stores:

Storage Root Key (SRK)
 Owner Password
 Generated when user takes ownership

- Endorsement Key (EK)
 - Created once for the life of the TPM
 - Certificate for EK issued by TPM vendor
 - Basis of attestation
- Persistent flags (e.g. ownership flag)

Attestation: what it does

- **Goal**: prove to remote party what software is running on my machine.
- Good applications:
 - Bank allows money transfer only if customer's machine runs "upto-date" OS patches.
 - Enterprise allows laptop to connect to its network only if laptop runs "authorized" software
 - Quake players can join a Quake network only if their Quake client is unmodified.
- DRM:
 - MusicStore sells content for authorized players only.

Attestation: how it works

- Recall: EK private key on TPM.
 - Cert for EK public-key issued by TPM vendor.
- Step 1: Create Attestation Identity Key (AIK)
 - Details not important.
 - AIK Private key known only to TPM
 - AIK public cert issued only if EK cert is valid

Attestation: how it works

- Step 2: sign PCR values (after boot)
 - Call TPM_Quote (some) Arguments:
 - keyhandle: which AIK key to sign with
 - KeyAuth: Password for using key `keyhandle'
 - PCR List: Which PCRs to sign.
 - Challenge: 20-byte challenge from remote server
 - Prevents replay of old signatures.
 - Userdata: additional data to include in sig.
 - Returns signed data and signature.

Attestation: how it (should) work

- Attestation should include key-exchange
- App must be isolated from rest of system

Attesting to VMs: Terra

http://suif.stanford.edu/papers/sosp03-terra.pdf

TVMM Provides isolation between attested applications

Nexus OS

[Sirer et al]

- <u>www.cs.cornell.edu/People/egs/nexus</u>
- Problem: attesting to hashed application/kernel code
 Too many possible software configurations
- Better approach: attesting to properties
 - Example: "application never writes to disk"
- Supported in Nexus OS
- General attestation statements:
 - "TPM says that it booted Nexus, Nexus says that it ran checker with hash X, checker says that IPD A has property P"

EFF: Owner Override

- EFF = Electronic Frontier Federation (www.eff.org)
- TCG attestation:
 - The good: enables user to prove to remote bank that machine is up-to-date
 - The bad: content owners can release decryption key only to machines running "authorized" software.
 - Stifles innovation in player design
- EFF: allow users to inject chosen values into PCRs.
 - Enables users to conceal changes to their computing environment.
 - Still defeats malicious changes to computing platform

TCG Alternatives

- IBM 4758: Supports all TCG functionality and more.
 - Tamper resistant 486 100MhZ PCI co-processor.
 - Programmable.
 - ... but expensive ~ \$2000. TPM ~ \$7.
- AEGIS System: Arbaugh, Farber, Smith '97:
 - Secure boot with BIOS changes only.
 - Cannot support sealed storage.
 - Phoenix TrustConnector 2
- SWATT: Seshadri et al., 2004
 - Attestation w/o extra hardware
 - Server must know precise HW configuration

Problem 1. Attesting to Current State

- Attestation only attests to what code was loaded.
- Does not say whether running code has been compromised.
 - Problem: what if Quake vulnerability exploited after attestation took place?
- Can we attest to the current state of a running system?
 - ... or is there a better way?

Problem 2. Encrypted viruses

- Suppose malicious music file exploits bug in Windows Media Player.
 - Music file is encrypted.
 - TCG prevents anyone from getting music file in the clear.
 - Can anti-virus companies block virus without ever seeing its code in the clear?

Problem 3. TPM Compromise

- Suppose one TPM Endorsement Private Key is exposed
 - Destroys all attestation infrastructure:
 - Embed private EK in TPM emulator.
 - Now, can attest to anything without running it.
 - $\Rightarrow \quad \mbox{Certificate Revocation is critical for} \\ \mbox{TCG Attestation.}$

4. Private attestation

- Attestation should not reveal platform ID.
 - Recall Intel CPU-ID fiasco.
- Private attestation:
 - Remote server can validate trustworthiness of attestation
 - ... but cannot tell what machine it came from.
- <u>TCG Solutions</u>:
 - Privacy CA: online trusted party
 - Group sigs: privacy without trusted infrastructure