CIS 551 / TCOM 401 Computer and Network Security

Spring 2007 Lecture 13

Announcements

- Project 2 is on the web.
 - Due: March 15th
 - Send groups to Jeff Vaughan (vaughan2@seas) today.

- Plan for today:
 - Automatic Signature Extraction
 - Other kinds of Intrusion Detection Tools

Naïve Content Sifting

- ProcessTraffic(packet, srcIP, dstIP) {
 count[packet]++;
 Insert(srcIP, dispersion[packet].sources);
 Insert(dstIP, dispersion[packet].dests);
 if (count[packet] > countThresh
 && size(dispersion[packet].sources) > srcThresh
 && size(dispersion[packet].dests) > dstThresh) {
 Alarm(packet)
 }
 }
- Tables count and dispersion are indexed by entire packet content.

Practical Content Sifting

- Reduce size of count table by:
 - Hashing the packet content to a fixed size (*not* cryptographic hashes)
 - Hash collisions may lead to false positives
 - So, do multiple different hashes (say 3) -- worm content is flagged only if counts along all hashes exceed a threshold
- Include the destination port in the hash of the packet content
 - Current worms target specific vulnerabilities, so they usually aim for a particular port.
- To check for substring matches they propose to use a Rabin fingerprint
 - Probabilistic, incrementally computable hash of substrings of a fixed length.

Rabin Fingerprints abcdefghijklm..... k Given string of length n - Write as sequence of bytes: $t_0 t_1 t_2 \dots t_n$ Check all possible substrings of length k • Choose constants p (a prime) and M (modulus) Fingerprint for substrings are: $- F_1 = (t_0 * p^{(k-1)} + t_1 * p^{(k-2)} + ... + t_k) \mod M$

$$-F_{2} = (t_{1} * p^{(k-1)} + t_{2} * p^{(k-2)} + \dots + t_{k+1}) \mod M$$

=
$$(F_1 * p + t_{k+1} - t_0 * p^k) \mod M$$

-
$$F_3 = (F_2 * p + t_{k+2} - t_1 * p^k) \mod M$$

$$- F_{i} = (F_{i-1} * p + t_{k+i-1} - t_{i-1} * p^{k}) \mod M$$

• For efficiency, precompute table of x*p^k

Multistage Filters, Pictorially

Tracking Address Dispersion

- In this case, we care about the number of distinct source (or destination) addresses in packets that contain suspected worm data.
- Could easily keep an exact count by using a hash table, but that becomes too time and memory intensive.
 - In the limit, need one bit per address to mark whether it has been seen or not.
- Instead: Keep an *approximate* count
- Scalable bitmap counters
 - Reduce memory requirements by 5x

Scalable Bitmap Counters

- Suppose there are 64 possible addresses and you want to use only 32 bits to keep track of them.
- High-level idea:
 - Hash the address into a value between 0 and 63
 - Use only the lower 5 bits (yielding 32)
 - To estimate actual number of addresses, multiply the number of bits set in the bitmap by 2.

Multiple Bitmaps, Pictorially

- Recycle bitmaps after they fill up
- Adjust the scale factors on the counts accordingly

Results

- Earlybird successfully detects and extracts virus signatures from every known recent worm (CodeRed, MyDoom, Sasser, Kibvu.B,...)
- Tool generates content filter rules suitable for use with Snort

PACKE SRC:	TH 11.1	EA	DE 13.:	R 14.∶	3920) DS	ST :	132	. 239	9.1	.3.2	24.	5006	PF	ROT	T	ĊР				
PACKE	ET P	AY	LO/	٩D	(CO	NTE	NT)													
00F0	90	90	90				-									1				 	
0100	90	90	9		KII	ονι	1. В	sig	jna	iti	lre	e Ca	apt	ur	ed	by	/			 M	?.w
0110	90	90	9		E E	arly	vbi	rd	on	N	1av	1	4th	2	00	4			. cd	 	
0120	90	90	90	90	- 20		, ~ .		<u> </u>		<u></u>	50	50	<u>, -</u>	30	50	·	· ·		 	
0130	90	90	90	90	90	90	90	90 1	EB 1	LO	5A	4A	33	C9	66	B9				 ZJ3	.f.
0140	66	01	80	34	0A	99	E2	FA I	EB ()5	E8	EB	FF	FF	FF	70	f.	. 4		 	p
																					-
2/23/0	7							C	JIS/T	CΟ	M 55	51								1	0

Analysis

- False Positives:
 - SPAM
 - No solution yet
 - BitTorrent (35% of Internet traffic?!)
 - Replicates packets, so it actually looks like worm traffic
 - Common protocol headers
 - HTTP and SMTP
 - Some P2P system headers
 - Solution: whitelist by hand
- False Negatives:
 - Hard (impossible?) to prove absence of worms
 - Over 8 months Earlybird detected all worm outbreaks reported on security mailing lists

Attacks

- What about violating the assumptions?
 - Invariant content
 - Worm propagates randomly
 - Worm propagates quickly

Polymorphic Viruses/Worms

- Virus/worm writers know that signatures are the most effective way to detect such malicious code.
- Polymorphic viruses mutate themselves during replication to prevent detection
 - Virus should be capable of generating many different descendents
 - Simply embedding random numbers into virus code is not enough

Strategies for Polymorphic Viruses

- Change data:
 - Use different subject lines in e-mail
- Encrypt most of the virus with a random key
 - Virus first decrypts main body using random key
 - Jumps to the code it decrypted
 - When replicating, generate a new key and encrypt the main part of the replica
- Still possible to detect decryption portion of the virus using virus signatures
 - This part of the code remains unchanged
 - Worm writer could use a standard self-decompressing executable format (like ZIP executables) to cause confusion (many false positives)

Advanced Evasion Techniques

- Randomly modify the *code* of the virus/worm by:
 - Inserting no-op instructions: subtract 0, move value to itself
 - Reordering independent instructions
 - Using different variable/register names
 - Using equivalent instruction sequences:

y = x + x vs. y = 2 * x

- These viruses are sometimes called "metamorphic" viruses in the literature.
- There exist C++ libraries that, when linked against an appropriate executable, automatically turn it into a metamorphic program.
- Sometimes vulnerable software itself offers opportunities for hiding bad code.
 - Example: ssh or SSL vulnerabilities may permit worm to propagate over encrypted channels, making content filtering impossible.
 - If IPSEC becomes popular, similar problems may arise with it.

Other Evasion Techniques

- Observation: worms don't need to scan randomly
 - They won't be caught by internet telescopes
- Meta-server worm: ask server for hosts to infect (e.g., Google for "powered by php")
- Topological worm: fuel the spread with local information from infected hosts (web server logs, email address books, config files, SSH "known hosts")
 - No scanning signature; with rich interconnection topology, potentially very fast.
- Propagate slowly: "trickle" attacks
 - Also a very subtle form of denial of service attacks

Witty Worm

- Released March 19, 2004.
- Single UDP packet exploits flaw in the *passive analysis* of Internet Security Systems products.
- "Bandwidth-limited" UDP worm like Slammer.
- Vulnerable pop. (12K) attained in 75 minutes.
- Payload: slowly corrupt random disk blocks.

Witty, con't

- Flaw had been announced the *previous day*.
- Telescope analysis reveals:
 - Initial spread seeded via a *hit-list*.
 - In fact, targeted a U.S. military base.
 - Analysis also reveals "Patient Zero", a European retail ISP.
- Written by a Pro.

Broader View of Defenses

- Prevention -- make the monoculture hardier
 - Get the code right in the first place ...
 - ... or figure out what's wrong with it and fix it
 - Lots of active research (static & dynamic methods)
 - Security reviews now taken seriously by industry
 - E.g., ~\$200M just to *review* Windows Server 2003
 - But very expensive
 - And very large Installed Base problem
- Prevention -- *diversify the monoculture*
 - Via exploiting existing heterogeneity
 - Via creating artificial heterogeneity

Broader View of Defenses, con't

- Prevention -- keep vulnerabilities inaccessible
 - Cisco's Network Admission Control
 - Examine hosts that try to connect, block if vulnerable
 - Microsoft's Shield
 - Shim-layer blocks network traffic that fits known *vulnerability* (rather than known *exploit*)

Detecting Attacks

- Attacks (against computer systems) usually consist of several stages:
 - Finding software vulnerabilities
 - Exploiting them
 - Hiding/cleaning up the exploit
- Attackers care about finding vulnerabilities:
 - What machines are available?
 - What OS / version / patch level are the machines running?
 - What additional software is running?
 - What is the network topology?
- Attackers care about not getting caught:
 - How detectible will the attack be?
 - How can the attacker cover her tracks?
- Programs can automate the process of finding/exploiting vulnerabilities.
 - Same tools that sys. admins. use to audit their systems...
 - A worm is just an automatic vulnerability finder/exploiter...

Attacker Reconnaissance

- Network Scanning
 - Existence of machines at IP addresses
 - Attempt to determine network topology
 - ping, tracert
- Port scanners
 - Try to detect what processes are running on which ports, which ports are open to connections.
 - Typical machine on the internet gets 10-20 port scans per day!
 - Can be used to find hit lists for flash worms
- Web services
 - Use a browser to search for CGI scripts, Javascript, etc.

Determining OS information

- Gives a lot of information that can help an attacker carry out exploits
 - Exact version of OS code can be correlated with vulnerability databases
- Sadly, often simple to obtain this information:
 - Just try telnet

```
playground~> telnet hpux.u-aizu.ac.jp
Trying 163.143.103.12 ...
Connected to hpux.u-aizu.ac.jp.
Escape character is '^]'.
HP-UX hpux B.10.01 A 9000/715 (ttyp2)
login:
```

Determining OS

• Or ftp:

```
$ ftp ftp.netscape.com 21
Connected to ftp.gftp.netscape.com.
220-36
220 ftpnscp.newaol.com FTP server (SunOS 5.8) ready.
Name (ftp.netscape.com:stevez):
331 Password required for stevez.
Password:
530 Login incorrect.
ftp: Login failed.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> system
215 UNIX Type: L8 Version: SUNOS
ftp>
```

Determining OS

- Exploit different implementations of protocols
 - Different OS's have different behavior in some cases
- Consider TCP protocol, there are many flags and options, and some unspecified behavior
 - Reply to bogus FIN request for TCP port (should not reply, but some OS's do)
 - Handling of invalid flags in TCP packets (some OS's keep the invalid flags set in reply)
 - Initial values for RWS, pattern in random sequence numbers, etc.
 - Can narrow down the possible OS based on the combination of implementation features
- Tools can automate this process

Auditing: Remote auditing tools

- Several utilities available to "attack" or gather information about services/daemons on a system.
 - SATAN (early 1990's): Security Administrator Tool for Analyzing Networks
 - SAINT Based on SATAN utility
 - SARA Also based on SATAN
 - Nessus Open source vulnerability scanner
 - <u>http://www.nessus.org</u>
 - Nmap
- Commercial:
 - ISS scanner
 - Cybercop

Nmap screen shot

	Nmap Front End v3.49				
<u>F</u> ile <u>V</u> iew				<u>H</u> elp	
Target(s): www.insecu	e.org		Scan	Exit	
Scan Discover Timir	ng Files Options				
Scan Type		Scanned Po	orts		
SYN Stealth Scan		✓ Most Impo	rtant [fast]	¥	
Relay Host: [Range:			
RPC Scan	lentd Info 🛛 OS Detection 🚽 Version Pro	e			
Interesting ports o (The 1212 ports sca PORT STATE SERY 22/tcp open ssh 25/tcp open sntp 53/tcp open doma 80/tcp open http 113/tcp closed auth Device type: genera Running: Linux 2.4. OS details: Linux K	OpenSSH 3.1p1 (protocol 1.99) qmail <mark>smtpd</mark> in ISC Bind 9.2.1 Apache httpd 2.0.39 ((Unix) mod_p l purpose	: filtered)		.)	
Interesting ports o (The 1212 ports sca PORT STATE SERY 22/tcp open ssh 25/tcp open doma 80/tcp open doma 80/tcp closed auth Device type: genera Running: Linux 2.4. OS details: Linux K Uptime 212.119 days	n www.insecure.org (205.217.153.53); nned but not shown below are in state ICE VERSION	: filtered) erl/1.99_07-dev	/ Perl/v5.6.1	.)	
Interesting ports o (The 1212 ports sca PORT STATE SERV 22/tcp open sh 25/tcp open sh 53/tcp open doma 80/tcp open http 113/tcp closed auth Device type: genera Running: Linux 2.4. 05 details: Linux K Uptime 212.119 days Nmap run completed Command http://	n www.insecure.org (205.217.153.53); nned but not shown below are in state ICE VERSION openSSH 3.1p1 (protocol 1.99) qmail sntpd in ISC Bind 9.2.1 Apache httpd 2.0.39 ((Unix) mod_p l purpose XI2.5.X ernel 2.4.0 - 2.5.20 (since Wed May 21 12:38:26 2003)	: filtered) erl/1.99_07-dev n 33.792 second ap	/ Perl∕v5.6.1 ∜s		a-article htr

Kinds of Auditing done

- Nessus web pages:
 - Backdoors
 - CGI abuses
 - Denial of Service
 - Finger abuses
 - Firewalls
 - FTP
 - Gain a shell remotely
 - Gain root remotely
 - Netware
 - NIS

- Port scanners
- Remote file access
- RPC
- Settings
- SMTP problems
- SNMP
- Useless services
- Windows
- Windows : User management

- Doing this kind of auditing by hand is complex and error prone
- These tools aren't fool proof or complete.