
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2007
Lecture 13

2/23/07 CIS/TCOM 551 2

Announcements
• Project 2 is on the web.

– Due: March 15th
– Send groups to Jeff Vaughan (vaughan2@seas) today.

• Plan for today:
– Automatic Signature Extraction
– Other kinds of Intrusion Detection Tools

2/23/07 CIS/TCOM 551 3

Naïve Content Sifting
• ProcessTraffic(packet, srcIP, dstIP) {

 count[packet]++;
 Insert(srcIP, dispersion[packet].sources);
 Insert(dstIP, dispersion[packet].dests);
 if (count[packet] > countThresh
 && size(dispersion[packet].sources) > srcThresh
 && size(dispersion[packet].dests) > dstThresh) {
 Alarm(packet)
 }
}

• Tables count and dispersion are indexed by entire packet content.

2/23/07 CIS/TCOM 551 4

Practical Content Sifting
• Reduce size of count table by:

– Hashing the packet content to a fixed size (not cryptographic hashes)
– Hash collisions may lead to false positives
– So, do multiple different hashes (say 3) -- worm content is flagged only if counts

along all hashes exceed a threshold

• Include the destination port in the hash of the packet content
– Current worms target specific vulnerabilities, so they usually aim for a particular

port.

• To check for substring matches they propose to use a Rabin fingerprint
– Probabilistic, incrementally computable hash of substrings of a fixed length.

2/23/07 CIS/TCOM 551 5

Rabin Fingerprints

• Given string of length n
– Write as sequence of bytes: t0 t1 t2 … tn

• Check all possible substrings of length k
• Choose constants p (a prime) and M (modulus)
• Fingerprint for substrings are:

– F1 = (t0*p(k-1) + t1*p(k-2) + … + tk) mod M
– F2 = (t1*p(k-1) + t2*p(k-2) + … + tk+1) mod M

 = (F1 * p + tk+1 - t0*pk) mod M
– F3 = (F2 * p + tk+2 - t1*pk) mod M
– Fi = (Fi-1 * p + tk+i-1 - ti-1*pk) mod M

• For efficiency, precompute table of x*pk

abcdefghijklm…………………………………

n

k

2/23/07 CIS/TCOM 551 6

Multistage Filters, Pictorially

2/23/07 CIS/TCOM 551 7

Tracking Address Dispersion
• In this case, we care about the number of distinct source (or

destination) addresses in packets that contain suspected worm data.

• Could easily keep an exact count by using a hash table, but that
becomes too time and memory intensive.
– In the limit, need one bit per address to mark whether it has been seen or

not.

• Instead: Keep an approximate count
• Scalable bitmap counters

– Reduce memory requirements by 5x

2/23/07 CIS/TCOM 551 8

Scalable Bitmap Counters
• Suppose there are 64 possible addresses and you want

to use only 32 bits to keep track of them.
• High-level idea:

– Hash the address into a value between 0 and 63
– Use only the lower 5 bits (yielding 32)
– To estimate actual number of addresses, multiply the number of

bits set in the bitmap by 2.

2/23/07 CIS/TCOM 551 9

Multiple Bitmaps, Pictorially
• Recycle bitmaps after they fill up
• Adjust the scale factors on the counts accordingly

2/23/07 CIS/TCOM 551 10

Results
• Earlybird successfully detects and extracts virus

signatures from every known recent worm (CodeRed,
MyDoom, Sasser, Kibvu.B,…)

• Tool generates content filter rules suitable for use with
Snort

2/23/07 CIS/TCOM 551 11

Analysis
• False Positives:

– SPAM
• No solution yet

– BitTorrent (35% of Internet traffic?!)
• Replicates packets, so it actually looks like worm traffic

– Common protocol headers
• HTTP and SMTP
• Some P2P system headers
• Solution: whitelist by hand

• False Negatives:
– Hard (impossible?) to prove absence of worms
– Over 8 months Earlybird detected all worm outbreaks reported on

security mailing lists

2/23/07 CIS/TCOM 551 12

Attacks
• What about violating the assumptions?

– Invariant content
– Worm propagates randomly
– Worm propagates quickly

2/23/07 CIS/TCOM 551 13

Polymorphic Viruses/Worms
• Virus/worm writers know that signatures are the most effective way to

detect such malicious code.

• Polymorphic viruses mutate themselves during replication to prevent
detection
– Virus should be capable of generating many different descendents
– Simply embedding random numbers into virus code is not enough

2/23/07 CIS/TCOM 551 14

Strategies for Polymorphic Viruses
• Change data:

– Use different subject lines in e-mail

• Encrypt most of the virus with a random key
– Virus first decrypts main body using random key
– Jumps to the code it decrypted
– When replicating, generate a new key and encrypt the main part of the

replica

• Still possible to detect decryption portion of the virus using virus
signatures
– This part of the code remains unchanged
– Worm writer could use a standard self-decompressing executable format

(like ZIP executables) to cause confusion (many false positives)

2/23/07 CIS/TCOM 551 15

Advanced Evasion Techniques
• Randomly modify the code of the virus/worm by:

– Inserting no-op instructions: subtract 0, move value to itself
– Reordering independent instructions
– Using different variable/register names
– Using equivalent instruction sequences:

 y = x + x vs. y = 2 * x
– These viruses are sometimes called "metamorphic" viruses in the literature.

• There exist C++ libraries that, when linked against an appropriate executable,
automatically turn it into a metamorphic program.

• Sometimes vulnerable software itself offers opportunities for hiding bad code.
– Example: ssh or SSL vulnerabilities may permit worm to propagate over encrypted channels,

making content filtering impossible.
– If IPSEC becomes popular, similar problems may arise with it.

2/23/07 CIS/TCOM 551 16

Other Evasion Techniques
• Observation: worms don't need to scan randomly

– They won't be caught by internet telescopes

• Meta-server worm: ask server for hosts to infect (e.g., Google for
“powered by php”)

• Topological worm: fuel the spread with local information from infected
hosts (web server logs, email address books, config files, SSH “known
hosts”)
• No scanning signature; with rich inter-

 connection topology, potentially very fast.

• Propagate slowly: "trickle" attacks
• Also a very subtle form of denial of service attacks

2/23/07 CIS/TCOM 551 17

Witty Worm
• Released March 19, 2004.
• Single UDP packet exploits flaw in the passive

analysis of Internet Security Systems products.
• “Bandwidth-limited” UDP worm like Slammer.
• Vulnerable pop. (12K) attained in 75 minutes.
• Payload: slowly corrupt random disk blocks.

2/23/07 CIS/TCOM 551 18

Witty, con’t
• Flaw had been announced the previous day.

• Telescope analysis reveals:
– Initial spread seeded via a hit-list.
– In fact, targeted a U.S. military base.
– Analysis also reveals “Patient Zero”, a European retail ISP.

• Written by a Pro.

2/23/07 CIS/TCOM 551 19

Broader View of Defenses
• Prevention -- make the monoculture hardier

– Get the code right in the first place …
• … or figure out what’s wrong with it and fix it

– Lots of active research (static & dynamic methods)
– Security reviews now taken seriously by industry

• E.g., ~$200M just to review Windows Server 2003
– But very expensive
– And very large Installed Base problem

• Prevention -- diversify the monoculture
– Via exploiting existing heterogeneity
– Via creating artificial heterogeneity

2/23/07 CIS/TCOM 551 20

Broader View of Defenses, con’t
• Prevention -- keep vulnerabilities inaccessible

– Cisco’s Network Admission Control
• Examine hosts that try to connect, block if vulnerable

– Microsoft’s Shield
• Shim-layer blocks network traffic that fits known vulnerability

(rather than known exploit)

2/23/07 CIS/TCOM 551 21

Detecting Attacks
• Attacks (against computer systems) usually consist of several stages:

– Finding software vulnerabilities
– Exploiting them
– Hiding/cleaning up the exploit

• Attackers care about finding vulnerabilities:
– What machines are available?
– What OS / version / patch level are the machines running?
– What additional software is running?
– What is the network topology?

• Attackers care about not getting caught:
– How detectible will the attack be?
– How can the attacker cover her tracks?

• Programs can automate the process of finding/exploiting vulnerabilities.
– Same tools that sys. admins. use to audit their systems…
– A worm is just an automatic vulnerability finder/exploiter…

2/23/07 CIS/TCOM 551 22

Attacker Reconnaissance
• Network Scanning

– Existence of machines at IP addresses
– Attempt to determine network topology
– ping, tracert

• Port scanners
– Try to detect what processes are running on which ports, which ports are

open to connections.
– Typical machine on the internet gets 10-20 port scans per day!
– Can be used to find hit lists for flash worms

• Web services
– Use a browser to search for CGI scripts, Javascript, etc.

2/23/07 CIS/TCOM 551 23

Determining OS information
• Gives a lot of information that can help an attacker carry

out exploits
– Exact version of OS code can be correlated with vulnerability

databases

• Sadly, often simple to obtain this information:
– Just try telnet

playground~> telnet hpux.u-aizu.ac.jp
Trying 163.143.103.12 ...
Connected to hpux.u-aizu.ac.jp.
Escape character is '^]'.
HP-UX hpux B.10.01 A 9000/715 (ttyp2)

login:

2/23/07 CIS/TCOM 551 24

Determining OS
• Or ftp:

$ ftp ftp.netscape.com 21
Connected to ftp.gftp.netscape.com.
220-36
220 ftpnscp.newaol.com FTP server (SunOS 5.8) ready.
Name (ftp.netscape.com:stevez):
331 Password required for stevez.
Password:
530 Login incorrect.
ftp: Login failed.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> system
215 UNIX Type: L8 Version: SUNOS
ftp>

2/23/07 CIS/TCOM 551 25

Determining OS
• Exploit different implementations of protocols

– Different OS’s have different behavior in some cases
• Consider TCP protocol, there are many flags and options, and some

unspecified behavior
– Reply to bogus FIN request for TCP port

(should not reply, but some OS’s do)
– Handling of invalid flags in TCP packets

(some OS’s keep the invalid flags set in reply)
– Initial values for RWS, pattern in random sequence numbers, etc.
– Can narrow down the possible OS based on the combination of

implementation features
• Tools can automate this process

2/23/07 CIS/TCOM 551 26

Auditing: Remote auditing tools
• Several utilities available to “attack” or gather information about

services/daemons on a system.
– SATAN (early 1990’s):

Security Administrator Tool for Analyzing Networks
– SAINT - Based on SATAN utility
– SARA - Also based on SATAN
– Nessus - Open source vulnerability scanner

• http://www.nessus.org
– Nmap

• Commercial:
– ISS scanner
– Cybercop

2/23/07 CIS/TCOM 551 27

Nmap screen shot

http://www.insecure.org/nmap
http://www.insecure.org/nmap/nmap-fingerprinting-article.html

2/23/07 CIS/TCOM 551 28

Kinds of Auditing done
• Nessus web pages:

– Backdoors
– CGI abuses
– Denial of Service
– Finger abuses
– Firewalls
– FTP
– Gain a shell remotely
– Gain root remotely
– Netware
– NIS

– Port scanners
– Remote file access
– RPC
– Settings
– SMTP problems
– SNMP
– Useless services
– Windows
– Windows : User

management

• Doing this kind of auditing by hand is complex
 and error prone
• These tools aren’t fool proof or complete.

